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Math 504 Lecture 17

1. Hermitian matrices (cont’d)

1.1. Rayleigh quotients (cont’d)
Recall:

Definition 1.1.1. Let A € C"*" be a Hermitian matrix, and x € C" be a nonzero
vector. Then, the Rayleigh quotient for A and x is defined to be the real number

R(A,x) = (Ax,x)  x*Ax  x*Ax
N E

=y Ay,

x
where y = e

We need to show:
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Theorem 1.1.2 (Courant-Fisher theorem). Let A € C"*" be a Hermitian matrix.
Let A1, Ay, ..., Ay be the eigenvalues of A, with A} < Ay < --- < Ay, Then, for
each k € [n], we have

A = min max R (A, x)
SCC" is a subspace; x€S;
dim S=k x#£0
and
A = max min R (A, x).

SCC" is a subspace; x€S5;
dim S=n—k+1 x#0

To prove this theorem, we will use some elementary facts about subspaces of
finite-dimensional vector spaces. We begin by recalling the following definition:

Definition 1.1.3. Let S; and S, be two subspaces of a vector space V. Then,
S1+Sy:={s1+s2 | s1 €S1and s; € S}

This is again a subspace of V. (This is the smallest subspace of V that contains
both S; and S, as subspaces.)

Proposition 1.1.4. Let IF be a field. Let V be a finite-dimensional F-vector space.
Let S; and S, be two subspaces of V. Then,

dim (51N Sy) + dim (S1 4+ Sp) = dim S + dim S,.

Proof. Pick any basis (x1,xp, ..., xx) of the vector space S; N S.
Then, (x1,x2,...,xx) is a linearly independent list of vectors in S;. Thus, we can
extend it to a basis of S; by inserting some new vectors y1, >, ...,y,. Thus,

(x1,%2, ..., Xk, Y1,Y2,-..,Yp) is a basis of Sy.

On the other hand, (x1,xy,...,xk) is a linearly independent list of vectors in S;.
Thus, we can extend it to a basis of S, by inserting some new vectors z1,z, .. ., Zg.
Thus,

(xl,xz, ee s Xks 21,22, - .,Zq) is a basis of 52.
The above three bases yield dim (S; N Sp) = k and dim Sy = k+ p and dim S, =
k+q.
Now, we claim that

W= (X1, X2, ..., X, Y1, Y2, - Yps 21,22, - - -, Z4) 1S a basis of Sy + S».

Once this is proved, we will conclude that dim (S1 + Sp) = k+ p + ¢, and the propo-
sition will follow by a simple computation (k+ (k+p+q) = (k+ p) + (k+q)).

So let us prove our claim. To prove that w is a basis of S; + S,, we need to check
the following two statements:
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1. The list w is linearly independent.

2. The list w spans S; + 5.

Proving statement 2 is easy: Any element of S; + S is an element of S; plus an
element of Sy, and thus can be written as

(a linear combination of x1,x,..., Xk, Y1,Y2, - . .,yp)
+ (a linear combination of x1, X3, ..., Xk, 21,22, - . .,zq)

= Mx1p + Aaxg + -+ A+ Haoy2 + - apyp
+ pax1 + paxa + - -+ X+ frz1 + Paza + -+ Byzg

= (At ) 21+ (Ao + p2) x2+ - 4 (Ap + pi) i
“‘“1]/1‘|‘“2y2+"'+0¢pyp+,3121+,3222+""|‘,3qu

= (a linear combination of x1,%x2,..., Xk, Y1,Y2,-- -, Yp, 21,22, - - -, 2q) ;

thus it belongs to the span of w.
Let us now prove statement 1. We need to show that w is linearly independent.
So let us assume that

AMxy 4 Apxp + - -+ X+ @y +aoya + - apyp + f1z1 + Paza+ -+ Bazg =0

for some coefficients A, «;, Bi that are not all equal to 0. We want a contradiction.
Let

vi=Mxg +Aaxp + - A+ iy + oy + -+ apyp.
Then,

v=— (B1z1+ Paz2+ - + Byzg) (by the above equation)
€S, (since the zj’s lie in ;) .

On the other hand, the definition of v yields v € S; (since the x;;’s and the y;’s lie in
S1). Thus, v lies in both S; and S,. This entails that v € S; N S;. Since (x1, x3, ..., Xk)
is a basis of 51 N Sy, this entails that

v =C1x1 + Coxp + - - - + CpXg for some ¢1,¢>,...,Cx € F.
Comparing this with
v=—(B1z1+ Poza+ -+ Bgzy),
we obtain
G1x1 +Goxa + o+ Gxp = — (Br1z1 + Baza + -+ Byzg) -
In other words,

G1x1 + Goxo + -+ -+ Cpxp + P1z1 + Paza + - + Bgzg = 0.
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Since the list (xl, X0, vy XkyZ1, 22, - .,zq) is linearly independent (being a basis of
S»), this entails that all coefficients ¢, and B; are 0. Thus, v = 0 (since v = §1x1 +
Caxo + - - - + Gxxi). Now, recalling that

v =AMx1+ Axxo + -+ A+ gy +agy + o apyp,
we obtain
Axy + Agxp + - -+ A + @y + gy + -+ apyp = 0.

Since the list (xl,xz,. Xk YL Y2, .,yp) is linearly independent (being a basis of
Sq), this entails that all coefficients A,; and «; are 0.

Now we know that all A, and «; and f; are 0, which contradicts our assumption
that some of them are nonzero. This completes the proof of Statement 1.

As we said, we now conclude that dim (S + Sp) = k+ p + g, so that

9im(51ﬂ522+gim(51+522: k + (k+p+q)
;,k :k—r—rp—&-q

—dim$S;  =dimS$,
= dim S; 4+ dim S5.

]

Remark 1.1.5. A well-known fact in elementary set theory says that if A; and A,
are two finite sets, then

|A1 ﬁA2| + |A1 UA2| = |A1| -+ |A2| .

The above theorem is an analogue of this fact for vector spaces (noticing that the
sum Sq + S is a vector-space analogue of the union).

Note, however, that the “next level” of the above formula has no vector space
analogue. We do have

’Al UAQUA3| + ’Al ﬂAz‘ + |A1 ﬂA3| + ‘A20A3|
= |A1| + [Az| + |A3] + |A1 N Ay N A3

for any three finite sets Aj, A, A3, but no such relation holds for three subspaces
of a vector space.

Corollary 1.1.6. Let F be a field, and let » € IN. Let V be an n-dimensional
F-vector space. Let S1, Sy, ..., Sk be subspaces of V (with k > 1). Let

0 :=dim (S1) +dim (Sp) + - - +dim (S¢) — (k —1) n.

(a) Then, dim (51 NSyN---N Sk) > 0.
b)If F=Cand V = C" and § > 0, then there exists a vector x € SN S, N
-+ N S with ||x]| = 1.
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Proof. (a) We induct on k. The base case (k = 1) is obvious (since dim (S; NSy N --- N Sy) =
dim (S1) = ¢ in this case).

Induction step: Suppose the statement holds for some k. Now consider k + 1
subspaces 51, Sz, ..., Sky1 of V, and let

ka1 = dim (S1) +dim (Sy) + - - - + dim (Spq) — kn.

We want to prove that dim (S NSy N -~ N SN Skr1) > -
Then,

dim (S1 NSy M-+~ N SN Skiq)
=dim (S1 NSy N---NSk_ 1N (SkNSky1))-

Now, set
O :=dim (51) + dim (Sp) + - - - + dim (Sg_1) + dim (Sg N Sg11) — (k—1) n.
By the induction hypothesis, we have
dim (S1 NSy N+ NSk 1N (SkNSki1)) = O
What remains is to show that éy > 1. Equivalently, we need to show that
dim (Sx N Sgy1) — (k—1)n > dim (Sg) + dim (S q) — kn.
In other words, we need to show that
dim (Sg N Sgy1) +n > dim (Sg) + dim (Sg11) -

However, Sy + Sig.1 is a subspace of V, so its dimension is dim (Sg + Sgi1) <
dim V = n. Therefore,

dim (S N Sky1) + > dim (Sg N Sgyq) +dim (Sg + Sgy1) = dim (Sg) +dim (Sg 1)

-
>dim(Sg+Sk41)
(by the previous proposition). So the induction step is complete, and part (a) of the
corollary is proved.

(b) Assume that IF = C and V = C" and 6 > 0. Then, part (a) yields

dim (S1 NS N---NS) > > 0.

Thus, the subspace SN S, N - - - N Sy is not just {0}. Therefore, it contains a nonzero
vector. Scaling this vector by the reciprocal of its length, we obtain a vector of length
1. This proves part (b). O

Now, we get to the proof of the Courant-Fisher theorem:

October 29, 2021



Math 504 notes page 6

Proof of the Courant—Fisher theorem. The spectral theorem says that A = UDU* for
some unitary U and some real diagonal matrix D. Consider these U and D. The
columns of U form an orthonormal basis of C" (since U is unitary); let (u1, uy, ..., uy)
be this basis. Then, uj,uy, ..., u, are eigenvectors of A. We WLOG assume that the
corresponding eigenvalues are Ay, Ay, ..., A, (otherwise, permute the diagonal en-
tries of D and correspondingly permute the columns of U).

Let k € [n].

Let S be a vector subspace of C" with dim S = k. Let S’ = span (ug, tg11,...,Un).
Then, by the proposition, we have

dim (SNS') +dim (S+5') =dimS+ dimS =n+1>n > dim (54 5')
=k =n—k+1
(since S+ S’ is a subspace of C"). Subtracting dim (S + S’) from this inequal-

ity, we obtain dim (SNS’) > 0. Thus, SN S’ contains a nonzero vector. Thus,
sup R(A,x)and inf R (A,x) are well-defined.

XGSQS/; xGSﬂS’;
x#0 x70
Now,

sup R(A,x)> sup R(Ax)> inf R(Ax)> inf R(Ax).
X€S; xeSNS’; xeSNs’; xes’;

x#0 x#0 x7#0 x#0
However, I claim that inf R (A, x) = A;. Indeed, any x € S’ is a linear combina-
x€s’;
x#£0

tion ajuy + ag1Ugr1 + - - - + ayuy, and therefore satisfies

(Ax,x) = (A (apug + Qg1 + - -+ Qplly) , Kpllg + Qg + - -+ Kpldy)
= (apAug + a1 Al + -+ 0 Ay, Uy + Qg + o+ Qplly)
= {

QAU+ Q1 A1 Ur1 o F @Ay, Gl + K gl + o 4 Rplly)

=Y ww A (since u, tgy1, . . ., Uy are orthonormal)

i—k

=ai

=2 =0
=) |wjl Aj > M Y o™ = A (x, %)

i=k ?Xk" i—k

(since A <A< <Ay) —(x,x)
(Ax, x)

and thus R (A, x) = > Ag. So, altogether, we find

X, X)

sup R (A, x) > A
X€S;
x#£0
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Furthermore, this supremum is a maximum, because
sup R(A,x)= sup R(Ay) (since R(A,x) =R (A,y) wherey = L)
X€ES; yEeS; |x | |
x#0 lyll=1
since the set of all y € S satisfying ||y|| =1
= max R (A,y) is compact, and since a continuous function
\|yyﬁ5:;1 on a compact set always has a maximum
=max R (A, x).
X€S;
x#0

So we conclude

max R(A,x) =sup R(A,x) > A
X€S; xeSs:
x#£0 x;éO,

Forget that we fixed S. We thus have shown that if S is any k-dimensional sub-
space of C", then max R (A, x) exists and satisfies
€S;
40
max R (A, x) > A

X€ES;

x#£0

However, by choosing S appropriately, we can achieve equality here; indeed, we
have to choose S = span (u1, uy, ..., uy) for this. (Why? Because each x € span (u1, up, .
can easily be seen to satisfy (Ax, x) < Ay (x,x) by a similar argument to the one we
used above.)

So max R (A, x)is > Ag for each S, but is = Ay for a certain S. Therefore, A is

X€ES;
x#£0
the smallest possible value of max R (A, x). In other words,
Xe5;
x#0
A = min max R (A, x).
SCC" is a subspace; x€S;
dim S=k x#0

It remains to prove the other part of the theorem —i.e., the equality

A = max min R (A, x).
SCC" is a subspace; x€S;
dim S=n—k+1 x70

One way to prove this is by arguing similarly to the above proof. Alternatively, we
can simply apply the already proved equality

A = min max R (A, x)
SCC" is a subspace; x€S;
dim S=k x#0
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to —A instead of A, which is a Hermitian matrix with eigenvalues
—An < _)\nfl < < _)\1-

Keep in mind that —Ay is not the k-th smallest eigenvalue of —A, but it is the k-th
largest eigenvalue of —A, and thus the (n — k + 1)-st smallest eigenvalue of —A.
Thus, we have to apply the equality to —A and n — k + 1 instead of A and k. Taking
negatives turns minima into maxima and vice versa. [

The Courant-Fisher theorem can be used to connect the eigenvalues of A 4 B
with the eigenvalues of A and B.

Theorem 1.1.7 (Weyl's theorem). Let A and B be two Hermitian matrices in C**".
Letie [n]and j€ {0,1,...,n —i}.
(a) Then,
Ai(A+B) <Ay (A) + Ay (B).

Here, A (C) means the k-th smallest eigenvalue of a Hermitian matrix C.
Moreover, this inequality becomes an equality if and only if there exists a
nonzero vector x € C" satisfying

Ax = Aiyj (A) x, Bx=A,_j(B)x, (A+B)x=A;(A+B)x

(at the same time).
(b) Furthermore,

Aiki1 (A)+ A (B) <A (A+B) for any k € [i].

Proof. Let (x1,x2,...,%1), (Yy1,Y2,--.,Yn) and (z1,22,...,2,) be three orthonormal
bases of C" with

Ax; = A (A) x;, By; = A (B) y;, (A+B)z = Ai (A+B)z

for all i € [n]. (As above, we can find such bases by using the spectral decomposi-
tions of A, B and A + B.)

Let
Sy = span (x1,%2,...,Xi1j) ;
Sy =span (y1, Y2, .-, Yn—j) ;
Sz = span (z;,zj41,.--,2n) -
Then,

0 :=dim (S1) +dim (Sy) +dim (S3) —2n =1 > 0.
—— N——— N —
=i+j =n—j =n—i+1
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Hence, part (b) of the corollary yields that there is a length-1 vector x in 51 NS> N Ss.

This x satisfies

This proves (a).

< Aisj (A) + s (B).

We leave (b) and (c¢) to the reader.
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