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Math 504 Lecture 17

1. Hermitian matrices (cont’d)

1.1. Rayleigh quotients (cont’d)

Recall:

Definition 1.1.1. Let A ∈ Cn×n be a Hermitian matrix, and x ∈ Cn be a nonzero
vector. Then, the Rayleigh quotient for A and x is defined to be the real number

R (A, x) :=
〈Ax, x〉
〈x, x〉 =

x∗Ax
x∗x

=
x∗Ax

||x||2
= y∗Ay,

where y =
x
||x|| .

We need to show:
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Theorem 1.1.2 (Courant–Fisher theorem). Let A ∈ Cn×n be a Hermitian matrix.
Let λ1, λ2, . . . , λn be the eigenvalues of A, with λ1 ≤ λ2 ≤ · · · ≤ λn. Then, for
each k ∈ [n], we have

λk = min
S⊆Cn is a subspace;

dim S=k

max
x∈S;
x 6=0

R (A, x)

and
λk = max

S⊆Cn is a subspace;
dim S=n−k+1

min
x∈S;
x 6=0

R (A, x) .

To prove this theorem, we will use some elementary facts about subspaces of
finite-dimensional vector spaces. We begin by recalling the following definition:

Definition 1.1.3. Let S1 and S2 be two subspaces of a vector space V. Then,

S1 + S2 := {s1 + s2 | s1 ∈ S1 and s2 ∈ S2} .

This is again a subspace of V. (This is the smallest subspace of V that contains
both S1 and S2 as subspaces.)

Proposition 1.1.4. Let F be a field. Let V be a finite-dimensional F-vector space.
Let S1 and S2 be two subspaces of V. Then,

dim (S1 ∩ S2) + dim (S1 + S2) = dim S1 + dim S2.

Proof. Pick any basis (x1, x2, . . . , xk) of the vector space S1 ∩ S2.
Then, (x1, x2, . . . , xk) is a linearly independent list of vectors in S1. Thus, we can

extend it to a basis of S1 by inserting some new vectors y1, y2, . . . , yp. Thus,(
x1, x2, . . . , xk, y1, y2, . . . , yp

)
is a basis of S1.

On the other hand, (x1, x2, . . . , xk) is a linearly independent list of vectors in S2.
Thus, we can extend it to a basis of S2 by inserting some new vectors z1, z2, . . . , zq.
Thus, (

x1, x2, . . . , xk, z1, z2, . . . , zq
)

is a basis of S2.

The above three bases yield dim (S1 ∩ S2) = k and dim S1 = k + p and dim S2 =
k + q.

Now, we claim that

w :=
(
x1, x2, . . . , xk, y1, y2, . . . , yp, z1, z2, . . . , zq

)
is a basis of S1 + S2.

Once this is proved, we will conclude that dim (S1 + S2) = k+ p+ q, and the propo-
sition will follow by a simple computation (k + (k + p + q) = (k + p) + (k + q)).

So let us prove our claim. To prove that w is a basis of S1 + S2, we need to check
the following two statements:

October 29, 2021



Math 504 notes page 3

1. The list w is linearly independent.

2. The list w spans S1 + S2.

Proving statement 2 is easy: Any element of S1 + S2 is an element of S1 plus an
element of S2, and thus can be written as(

a linear combination of x1, x2, . . . , xk, y1, y2, . . . , yp
)

+
(
a linear combination of x1, x2, . . . , xk, z1, z2, . . . , zq

)
= λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp

+ µ1x1 + µ2x2 + · · ·+ µkxk + β1z1 + β2z2 + · · ·+ βqzq

= (λ1 + µ1) x1 + (λ2 + µ2) x2 + · · ·+ (λk + µk) xk

+ α1y1 + α2y2 + · · ·+ αpyp + β1z1 + β2z2 + · · ·+ βqzq

=
(
a linear combination of x1, x2, . . . , xk, y1, y2, . . . , yp, z1, z2, . . . , zq

)
;

thus it belongs to the span of w.
Let us now prove statement 1. We need to show that w is linearly independent.

So let us assume that

λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp + β1z1 + β2z2 + · · ·+ βqzq = 0

for some coefficients λm, αi, β j that are not all equal to 0. We want a contradiction.
Let

v := λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp.

Then,

v = −
(

β1z1 + β2z2 + · · ·+ βqzq
)

(by the above equation)

∈ S2
(
since the zj’s lie in S2

)
.

On the other hand, the definition of v yields v ∈ S1 (since the xm’s and the yi’s lie in
S1). Thus, v lies in both S1 and S2. This entails that v ∈ S1 ∩ S2. Since (x1, x2, . . . , xk)
is a basis of S1 ∩ S2, this entails that

v = ξ1x1 + ξ2x2 + · · ·+ ξkxk for some ξ1, ξ2, . . . , ξk ∈ F.

Comparing this with

v = −
(

β1z1 + β2z2 + · · ·+ βqzq
)

,

we obtain

ξ1x1 + ξ2x2 + · · ·+ ξkxk = −
(

β1z1 + β2z2 + · · ·+ βqzq
)

.

In other words,

ξ1x1 + ξ2x2 + · · ·+ ξkxk + β1z1 + β2z2 + · · ·+ βqzq = 0.
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Since the list
(

x1, x2, . . . , xk, z1, z2, . . . , zq
)

is linearly independent (being a basis of
S2), this entails that all coefficients ξm and β j are 0. Thus, v = 0 (since v = ξ1x1 +
ξ2x2 + · · ·+ ξkxk). Now, recalling that

v = λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp,

we obtain

λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp = 0.

Since the list
(
x1, x2, . . . , xk, y1, y2, . . . , yp

)
is linearly independent (being a basis of

S1), this entails that all coefficients λm and αi are 0.
Now we know that all λm and αi and β j are 0, which contradicts our assumption

that some of them are nonzero. This completes the proof of Statement 1.
As we said, we now conclude that dim (S1 + S2) = k + p + q, so that

dim (S1 ∩ S2)︸ ︷︷ ︸
=k

+dim (S1 + S2)︸ ︷︷ ︸
=k+p+q

= k + (k + p + q)

= (k + p)︸ ︷︷ ︸
=dim S1

+ (k + q)︸ ︷︷ ︸
=dim S2

= dim S1 + dim S2.

Remark 1.1.5. A well-known fact in elementary set theory says that if A1 and A2
are two finite sets, then

|A1 ∩ A2|+ |A1 ∪ A2| = |A1|+ |A2| .

The above theorem is an analogue of this fact for vector spaces (noticing that the
sum S1 + S2 is a vector-space analogue of the union).

Note, however, that the “next level” of the above formula has no vector space
analogue. We do have

|A1 ∪ A2 ∪ A3|+ |A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|
= |A1|+ |A2|+ |A3|+ |A1 ∩ A2 ∩ A3|

for any three finite sets A1, A2, A3, but no such relation holds for three subspaces
of a vector space.

Corollary 1.1.6. Let F be a field, and let n ∈ N. Let V be an n-dimensional
F-vector space. Let S1, S2, . . . , Sk be subspaces of V (with k ≥ 1). Let

δ := dim (S1) + dim (S2) + · · ·+ dim (Sk)− (k− 1) n.

(a) Then, dim (S1 ∩ S2 ∩ · · · ∩ Sk) ≥ δ.
(b) If F = C and V = Cn and δ > 0, then there exists a vector x ∈ S1 ∩ S2 ∩
· · · ∩ Sk with ||x|| = 1.
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Proof. (a) We induct on k. The base case (k = 1) is obvious (since dim (S1 ∩ S2 ∩ · · · ∩ Sk) =
dim (S1) = δ in this case).

Induction step: Suppose the statement holds for some k. Now consider k + 1
subspaces S1, S2, . . . , Sk+1 of V, and let

δk+1 := dim (S1) + dim (S2) + · · ·+ dim (Sk+1)− kn.

We want to prove that dim (S1 ∩ S2 ∩ · · · ∩ Sk ∩ Sk+1) ≥ δk+1.
Then,

dim (S1 ∩ S2 ∩ · · · ∩ Sk ∩ Sk+1)

= dim (S1 ∩ S2 ∩ · · · ∩ Sk−1 ∩ (Sk ∩ Sk+1)) .

Now, set

δk := dim (S1) + dim (S2) + · · ·+ dim (Sk−1) + dim (Sk ∩ Sk+1)− (k− 1) n.

By the induction hypothesis, we have

dim (S1 ∩ S2 ∩ · · · ∩ Sk−1 ∩ (Sk ∩ Sk+1)) ≥ δk.

What remains is to show that δk ≥ δk+1. Equivalently, we need to show that

dim (Sk ∩ Sk+1)− (k− 1) n ≥ dim (Sk) + dim (Sk+1)− kn.

In other words, we need to show that

dim (Sk ∩ Sk+1) + n ≥ dim (Sk) + dim (Sk+1) .

However, Sk + Sk+1 is a subspace of V, so its dimension is dim (Sk + Sk+1) ≤
dim V = n. Therefore,

dim (Sk ∩ Sk+1)+ n︸︷︷︸
≥dim(Sk+Sk+1)

≥ dim (Sk ∩ Sk+1)+dim (Sk + Sk+1) = dim (Sk)+dim (Sk+1)

(by the previous proposition). So the induction step is complete, and part (a) of the
corollary is proved.

(b) Assume that F = C and V = Cn and δ > 0. Then, part (a) yields

dim (S1 ∩ S2 ∩ · · · ∩ Sk) ≥ δ > 0.

Thus, the subspace S1∩ S2∩ · · · ∩ Sk is not just {0}. Therefore, it contains a nonzero
vector. Scaling this vector by the reciprocal of its length, we obtain a vector of length
1. This proves part (b).

Now, we get to the proof of the Courant–Fisher theorem:

October 29, 2021



Math 504 notes page 6

Proof of the Courant–Fisher theorem. The spectral theorem says that A = UDU∗ for
some unitary U and some real diagonal matrix D. Consider these U and D. The
columns of U form an orthonormal basis of Cn (since U is unitary); let (u1, u2, . . . , un)
be this basis. Then, u1, u2, . . . , un are eigenvectors of A. We WLOG assume that the
corresponding eigenvalues are λ1, λ2, . . . , λn (otherwise, permute the diagonal en-
tries of D and correspondingly permute the columns of U).

Let k ∈ [n].
Let S be a vector subspace of Cn with dim S = k. Let S′ = span (uk, uk+1, . . . , un).

Then, by the proposition, we have

dim
(
S ∩ S′

)
+ dim

(
S + S′

)
= dim S︸ ︷︷ ︸

=k

+ dim S′︸ ︷︷ ︸
=n−k+1

= n + 1 > n ≥ dim
(
S + S′

)
(since S + S′ is a subspace of Cn). Subtracting dim (S + S′) from this inequal-
ity, we obtain dim (S ∩ S′) > 0. Thus, S ∩ S′ contains a nonzero vector. Thus,

sup
x∈S∩S′;

x 6=0

R (A, x) and inf
x∈S∩S′;

x 6=0

R (A, x) are well-defined.

Now,

sup
x∈S;
x 6=0

R (A, x) ≥ sup
x∈S∩S′;

x 6=0

R (A, x) ≥ inf
x∈S∩S′;

x 6=0

R (A, x) ≥ inf
x∈S′;
x 6=0

R (A, x) .

However, I claim that inf
x∈S′;
x 6=0

R (A, x) = λk. Indeed, any x ∈ S′ is a linear combina-

tion αkuk + αk+1uk+1 + · · ·+ αnun and therefore satisfies

〈Ax, x〉 = 〈A (αkuk + αk+1uk+1 + · · ·+ αnun) , αkuk + αk+1uk+1 + · · ·+ αnun〉
= 〈αk Auk + αk+1Auk+1 + · · ·+ αn Aun, αkuk + αk+1uk+1 + · · ·+ αnun〉
= 〈αkλkuk + αk+1λk+1uk+1 + · · ·+ αnλnun, αkuk + αk+1uk+1 + · · ·+ αnun〉

=
n

∑
i=k

αiαi︸︷︷︸
=|αi|2

λi (since uk, uk+1, . . . , un are orthonormal)

=
n

∑
i=k
|αi|2 λi︸︷︷︸

≥λk
(since λ1≤λ2≤···≤λn)

≥ λk

n

∑
i=k
|αi|2︸ ︷︷ ︸

=〈x,x〉

= λk 〈x, x〉

and thus R (A, x) =
〈Ax, x〉
〈x, x〉 ≥ λk. So, altogether, we find

sup
x∈S;
x 6=0

R (A, x) ≥ λk.
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Furthermore, this supremum is a maximum, because

sup
x∈S;
x 6=0

R (A, x) = sup
y∈S;
||y||=1

R (A, y)
(

since R (A, x) = R (A, y) where y =
x
||x||

)

= max
y∈S;
||y||=1

R (A, y)

 since the set of all y ∈ S satisfying ||y|| = 1
is compact, and since a continuous function

on a compact set always has a maximum


= max

x∈S;
x 6=0

R (A, x) .

So we conclude
max
x∈S;
x 6=0

R (A, x) = sup
x∈S;
x 6=0

R (A, x) ≥ λk.

Forget that we fixed S. We thus have shown that if S is any k-dimensional sub-
space of Cn, then max

x∈S;
x 6=0

R (A, x) exists and satisfies

max
x∈S;
x 6=0

R (A, x) ≥ λk.

However, by choosing S appropriately, we can achieve equality here; indeed, we
have to choose S = span (u1, u2, . . . , uk) for this. (Why? Because each x ∈ span (u1, u2, . . . , uk)
can easily be seen to satisfy 〈Ax, x〉 ≤ λk 〈x, x〉 by a similar argument to the one we
used above.)

So max
x∈S;
x 6=0

R (A, x) is ≥ λk for each S, but is = λk for a certain S. Therefore, λk is

the smallest possible value of max
x∈S;
x 6=0

R (A, x). In other words,

λk = min
S⊆Cn is a subspace;

dim S=k

max
x∈S;
x 6=0

R (A, x) .

It remains to prove the other part of the theorem – i.e., the equality

λk = max
S⊆Cn is a subspace;

dim S=n−k+1

min
x∈S;
x 6=0

R (A, x) .

One way to prove this is by arguing similarly to the above proof. Alternatively, we
can simply apply the already proved equality

λk = min
S⊆Cn is a subspace;

dim S=k

max
x∈S;
x 6=0

R (A, x)
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to −A instead of A, which is a Hermitian matrix with eigenvalues

−λn ≤ −λn−1 ≤ · · · ≤ −λ1.

Keep in mind that −λk is not the k-th smallest eigenvalue of −A, but it is the k-th
largest eigenvalue of −A, and thus the (n− k + 1)-st smallest eigenvalue of −A.
Thus, we have to apply the equality to −A and n− k + 1 instead of A and k. Taking
negatives turns minima into maxima and vice versa.

The Courant–Fisher theorem can be used to connect the eigenvalues of A + B
with the eigenvalues of A and B.

Theorem 1.1.7 (Weyl’s theorem). Let A and B be two Hermitian matrices in Cn×n.
Let i ∈ [n] and j ∈ {0, 1, . . . , n− i}.

(a) Then,
λi (A + B) ≤ λi+j (A) + λn−j (B) .

Here, λk (C) means the k-th smallest eigenvalue of a Hermitian matrix C.
Moreover, this inequality becomes an equality if and only if there exists a

nonzero vector x ∈ Cn satisfying

Ax = λi+j (A) x, Bx = λn−j (B) x, (A + B) x = λi (A + B) x

(at the same time).
(b) Furthermore,

λi−k+1 (A) + λk (B) ≤ λi (A + B) for any k ∈ [i] .

Proof. Let (x1, x2, . . . , xn), (y1, y2, . . . , yn) and (z1, z2, . . . , zn) be three orthonormal
bases of Cn with

Axi = λi (A) xi, Byi = λi (B) yi, (A + B) zi = λi (A + B) zi

for all i ∈ [n]. (As above, we can find such bases by using the spectral decomposi-
tions of A, B and A + B.)

Let

S1 = span
(
x1, x2, . . . , xi+j

)
;

S2 = span
(
y1, y2, . . . , yn−j

)
;

S3 = span (zi, zi+1, . . . , zn) .

Then,
δ := dim (S1)︸ ︷︷ ︸

=i+j

+dim (S2)︸ ︷︷ ︸
=n−j

+dim (S3)︸ ︷︷ ︸
=n−i+1

−2n = 1 > 0.
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Hence, part (b) of the corollary yields that there is a length-1 vector x in S1∩ S2∩ S3.
This x satisfies

λi (A + B) ≤ 〈(A + B) x, x〉 = 〈Ax + Bx, x〉 = 〈Ax, x〉︸ ︷︷ ︸
≤λi+j(A)

+ 〈Bx, x〉︸ ︷︷ ︸
≤λn−j(B)

≤ λi+j (A) + λn−j (B) .

This proves (a).
We leave (b) and (c) to the reader.
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