Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

October 29, 2021 (unfinished!)

Contents

1.	Hermitian matrices (cont'd)												1												
	1.1.	Rayleigh quotients (cont'd)	•				•	•		•	•							•	•			•	•		1

Math 504 Lecture 17

1. Hermitian matrices (cont'd)

1.1. Rayleigh quotients (cont'd)

Recall:

Definition 1.1.1. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, and $x \in \mathbb{C}^n$ be a nonzero vector. Then, the **Rayleigh quotient** for *A* and *x* is defined to be the real number

$$R(A,x) := \frac{\langle Ax,x \rangle}{\langle x,x \rangle} = \frac{x^*Ax}{x^*x} = \frac{x^*Ax}{||x||^2} = y^*Ay,$$

where $y = \frac{x}{||x||}$.

We need to show:

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

Theorem 1.1.2 (Courant–Fisher theorem). Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of A, with $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then, for each $k \in [n]$, we have

$$\lambda_{k} = \min_{\substack{S \subseteq \mathbb{C}^{n} \text{ is a subspace;} \\ \dim S = k}} \max_{\substack{x \in S; \\ x \neq 0}} R(A, x)$$

and

$$\lambda_{k} = \max_{\substack{S \subseteq \mathbb{C}^{n} \text{ is a subspace;} \\ \dim S = n-k+1 \\ x \neq 0}} \min_{\substack{x \in S; \\ x \neq 0}} R(A, x).$$

To prove this theorem, we will use some elementary facts about subspaces of finite-dimensional vector spaces. We begin by recalling the following definition:

Definition 1.1.3. Let S_1 and S_2 be two subspaces of a vector space V. Then,

$$S_1 + S_2 := \{s_1 + s_2 \mid s_1 \in S_1 \text{ and } s_2 \in S_2\}.$$

This is again a subspace of *V*. (This is the smallest subspace of *V* that contains both S_1 and S_2 as subspaces.)

Proposition 1.1.4. Let \mathbb{F} be a field. Let *V* be a finite-dimensional \mathbb{F} -vector space. Let *S*₁ and *S*₂ be two subspaces of *V*. Then,

$$\dim (S_1 \cap S_2) + \dim (S_1 + S_2) = \dim S_1 + \dim S_2.$$

Proof. Pick any basis $(x_1, x_2, ..., x_k)$ of the vector space $S_1 \cap S_2$.

Then, $(x_1, x_2, ..., x_k)$ is a linearly independent list of vectors in S_1 . Thus, we can extend it to a basis of S_1 by inserting some new vectors $y_1, y_2, ..., y_p$. Thus,

 $(x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_p)$ is a basis of S_1 .

On the other hand, $(x_1, x_2, ..., x_k)$ is a linearly independent list of vectors in S_2 . Thus, we can extend it to a basis of S_2 by inserting some new vectors $z_1, z_2, ..., z_q$. Thus,

$$(x_1, x_2, ..., x_k, z_1, z_2, ..., z_q)$$
 is a basis of S_2 .

The above three bases yield dim $(S_1 \cap S_2) = k$ and dim $S_1 = k + p$ and dim $S_2 = k + q$.

Now, we claim that

$$\mathbf{w} := (x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_p, z_1, z_2, \dots, z_q)$$
 is a basis of $S_1 + S_2$.

Once this is proved, we will conclude that dim $(S_1 + S_2) = k + p + q$, and the proposition will follow by a simple computation (k + (k + p + q) = (k + p) + (k + q)).

So let us prove our claim. To prove that **w** is a basis of $S_1 + S_2$, we need to check the following two statements:

- 1. The list **w** is linearly independent.
- 2. The list **w** spans $S_1 + S_2$.

Proving statement 2 is easy: Any element of $S_1 + S_2$ is an element of S_1 plus an element of S_2 , and thus can be written as

$$(a \text{ linear combination of } x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_p) + (a \text{ linear combination of } x_1, x_2, \dots, x_k, z_1, z_2, \dots, z_q) = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k + \alpha_1 y_1 + \alpha_2 y_2 + \dots + \alpha_p y_p + \mu_1 x_1 + \mu_2 x_2 + \dots + \mu_k x_k + \beta_1 z_1 + \beta_2 z_2 + \dots + \beta_q z_q = (\lambda_1 + \mu_1) x_1 + (\lambda_2 + \mu_2) x_2 + \dots + (\lambda_k + \mu_k) x_k + \alpha_1 y_1 + \alpha_2 y_2 + \dots + \alpha_p y_p + \beta_1 z_1 + \beta_2 z_2 + \dots + \beta_q z_q = (a \text{ linear combination of } x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_p, z_1, z_2, \dots, z_q);$$

thus it belongs to the span of **w**.

Let us now prove statement 1. We need to show that **w** is linearly independent. So let us assume that

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k + \alpha_1 y_1 + \alpha_2 y_2 + \dots + \alpha_p y_p + \beta_1 z_1 + \beta_2 z_2 + \dots + \beta_q z_q = 0$$

for some coefficients λ_m , α_i , β_j that are not all equal to 0. We want a contradiction. Let

$$v := \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_k x_k + \alpha_1 y_1 + \alpha_2 y_2 + \cdots + \alpha_p y_p.$$

Then,

$$v = -(\beta_1 z_1 + \beta_2 z_2 + \dots + \beta_q z_q)$$
 (by the above equation)
 $\in S_2$ (since the z_j 's lie in S_2).

On the other hand, the definition of *v* yields $v \in S_1$ (since the x_m 's and the y_i 's lie in *S*₁). Thus, *v* lies in both *S*₁ and *S*₂. This entails that $v \in S_1 \cap S_2$. Since (x_1, x_2, \ldots, x_k) is a basis of $S_1 \cap S_2$, this entails that

$$v = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_k x_k$$
 for some $\xi_1, \xi_2, \dots, \xi_k \in \mathbb{F}$.

Comparing this with

$$v=-\left(eta_1z_1+eta_2z_2+\dots+eta_qz_q
ight)$$
 ,

we obtain

$$\xi_1 x_1 + \xi_2 x_2 + \cdots + \xi_k x_k = - \left(\beta_1 z_1 + \beta_2 z_2 + \cdots + \beta_q z_q\right).$$

In other words,

$$\xi_1 x_1 + \xi_2 x_2 + \cdots + \xi_k x_k + \beta_1 z_1 + \beta_2 z_2 + \cdots + \beta_q z_q = 0.$$

Since the list $(x_1, x_2, ..., x_k, z_1, z_2, ..., z_q)$ is linearly independent (being a basis of S_2), this entails that all coefficients ξ_m and β_j are 0. Thus, v = 0 (since $v = \xi_1 x_1 + \xi_2 x_2 + \cdots + \xi_k x_k$). Now, recalling that

$$v = \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_k x_k + \alpha_1 y_1 + \alpha_2 y_2 + \cdots + \alpha_p y_p,$$

we obtain

$$\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_k x_k + \alpha_1 y_1 + \alpha_2 y_2 + \cdots + \alpha_p y_p = 0.$$

Since the list $(x_1, x_2, ..., x_k, y_1, y_2, ..., y_p)$ is linearly independent (being a basis of S_1), this entails that all coefficients λ_m and α_i are 0.

Now we know that all λ_m and α_i and β_j are 0, which contradicts our assumption that some of them are nonzero. This completes the proof of Statement 1.

As we said, we now conclude that dim $(S_1 + S_2) = k + p + q$, so that

$$\underbrace{\dim (S_1 \cap S_2)}_{=k} + \underbrace{\dim (S_1 + S_2)}_{=k+p+q} = k + (k+p+q)$$
$$= \underbrace{(k+p)}_{=\dim S_1} + \underbrace{(k+q)}_{=\dim S_2}$$
$$= \dim S_1 + \dim S_2.$$

Remark 1.1.5. A well-known fact in elementary set theory says that if A_1 and A_2 are two finite sets, then

$$A_1 \cap A_2 | + |A_1 \cup A_2| = |A_1| + |A_2|.$$

The above theorem is an analogue of this fact for vector spaces (noticing that the sum $S_1 + S_2$ is a vector-space analogue of the union).

Note, however, that the "next level" of the above formula has no vector space analogue. We do have

$$|A_1 \cup A_2 \cup A_3| + |A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|$$

= |A_1| + |A_2| + |A_3| + |A_1 \cap A_2 \cap A_3|

for any three finite sets A_1 , A_2 , A_3 , but no such relation holds for three subspaces of a vector space.

Corollary 1.1.6. Let \mathbb{F} be a field, and let $n \in \mathbb{N}$. Let *V* be an *n*-dimensional \mathbb{F} -vector space. Let S_1, S_2, \ldots, S_k be subspaces of *V* (with $k \ge 1$). Let

$$\delta := \dim (S_1) + \dim (S_2) + \dots + \dim (S_k) - (k-1) n.$$

(a) Then, dim $(S_1 \cap S_2 \cap \cdots \cap S_k) \ge \delta$.

(b) If $\mathbb{F} = \mathbb{C}$ and $V = \mathbb{C}^n$ and $\delta > 0$, then there exists a vector $x \in S_1 \cap S_2 \cap \cdots \cap S_k$ with ||x|| = 1.

dim $(S_1) = \delta$ in this case). *Induction step:* Suppose the statement holds for some *k*. Now consider k + 1subspaces $S_1, S_2, \ldots, S_{k+1}$ of *V*, and let

$$\delta_{k+1} := \dim (S_1) + \dim (S_2) + \cdots + \dim (S_{k+1}) - kn.$$

We want to prove that dim $(S_1 \cap S_2 \cap \cdots \cap S_k \cap S_{k+1}) \ge \delta_{k+1}$. Then,

$$\dim (S_1 \cap S_2 \cap \cdots \cap S_k \cap S_{k+1}) = \dim (S_1 \cap S_2 \cap \cdots \cap S_{k-1} \cap (S_k \cap S_{k+1})).$$

Now, set

$$\delta_k := \dim (S_1) + \dim (S_2) + \dots + \dim (S_{k-1}) + \dim (S_k \cap S_{k+1}) - (k-1) n.$$

By the induction hypothesis, we have

$$\dim (S_1 \cap S_2 \cap \cdots \cap S_{k-1} \cap (S_k \cap S_{k+1})) \geq \delta_k.$$

What remains is to show that $\delta_k \geq \delta_{k+1}$. Equivalently, we need to show that

 $\dim (S_k \cap S_{k+1}) - (k-1) n \ge \dim (S_k) + \dim (S_{k+1}) - kn.$

In other words, we need to show that

$$\dim (S_k \cap S_{k+1}) + n \ge \dim (S_k) + \dim (S_{k+1}).$$

However, $S_k + S_{k+1}$ is a subspace of V, so its dimension is dim $(S_k + S_{k+1}) \le \dim V = n$. Therefore,

$$\dim (S_k \cap S_{k+1}) + \underbrace{n}_{\geq \dim(S_k + S_{k+1})} \geq \dim (S_k \cap S_{k+1}) + \dim (S_k + S_{k+1}) = \dim (S_k) + \dim (S_{k+1})$$

(by the previous proposition). So the induction step is complete, and part (a) of the corollary is proved.

(b) Assume that $\mathbb{F} = \mathbb{C}$ and $V = \mathbb{C}^n$ and $\delta > 0$. Then, part (a) yields

$$\dim (S_1 \cap S_2 \cap \cdots \cap S_k) \geq \delta > 0.$$

Thus, the subspace $S_1 \cap S_2 \cap \cdots \cap S_k$ is not just $\{0\}$. Therefore, it contains a nonzero vector. Scaling this vector by the reciprocal of its length, we obtain a vector of length 1. This proves part **(b)**.

Now, we get to the proof of the Courant–Fisher theorem:

Proof of the Courant–Fisher theorem. The spectral theorem says that $A = UDU^*$ for some unitary U and some real diagonal matrix D. Consider these U and D. The columns of U form an orthonormal basis of \mathbb{C}^n (since U is unitary); let (u_1, u_2, \ldots, u_n) be this basis. Then, u_1, u_2, \ldots, u_n are eigenvectors of A. We WLOG assume that the corresponding eigenvalues are $\lambda_1, \lambda_2, \ldots, \lambda_n$ (otherwise, permute the diagonal entries of D and correspondingly permute the columns of U).

Let $k \in [n]$.

Let *S* be a vector subspace of \mathbb{C}^n with dim S = k. Let $S' = \text{span}(u_k, u_{k+1}, \dots, u_n)$. Then, by the proposition, we have

$$\dim (S \cap S') + \dim (S + S') = \underbrace{\dim S}_{=k} + \underbrace{\dim S'}_{=n-k+1} = n+1 > n \ge \dim (S + S')$$

(since S + S' is a subspace of \mathbb{C}^n). Subtracting dim (S + S') from this inequality, we obtain dim $(S \cap S') > 0$. Thus, $S \cap S'$ contains a nonzero vector. Thus, $\sup_{x \in S \cap S'} R(A, x)$ and $\inf_{x \in S \cap S'} R(A, x)$ are well-defined.

$$x \in S \cap S'; \qquad x \in X$$

$$x \neq 0 \qquad x$$

Now,

$$\sup_{\substack{x \in S; \\ x \neq 0}} R(A, x) \ge \sup_{\substack{x \in S \cap S'; \\ x \neq 0}} R(A, x) \ge \inf_{\substack{x \in S \cap S'; \\ x \neq 0}} R(A, x) \ge \inf_{\substack{x \in S'; \\ x \neq 0}} R(A, x) \ge \inf_{\substack{x \in S'; \\ x \neq 0}} R(A, x).$$

However, I claim that $\inf_{\substack{x \in S'; \\ x \neq 0}} R(A, x) = \lambda_k$. Indeed, any $x \in S'$ is a linear combina-

tion $\alpha_k u_k + \alpha_{k+1} u_{k+1} + \cdots + \alpha_n u_n$ and therefore satisfies

$$\langle Ax, x \rangle = \langle A (\alpha_k u_k + \alpha_{k+1} u_{k+1} + \dots + \alpha_n u_n), \alpha_k u_k + \alpha_{k+1} u_{k+1} + \dots + \alpha_n u_n \rangle$$

$$= \langle \alpha_k A u_k + \alpha_{k+1} A u_{k+1} + \dots + \alpha_n A u_n, \alpha_k u_k + \alpha_{k+1} u_{k+1} + \dots + \alpha_n u_n \rangle$$

$$= \langle \alpha_k \lambda_k u_k + \alpha_{k+1} \lambda_{k+1} u_{k+1} + \dots + \alpha_n \lambda_n u_n, \alpha_k u_k + \alpha_{k+1} u_{k+1} + \dots + \alpha_n u_n \rangle$$

$$= \sum_{i=k}^n \alpha_i \overline{\alpha_i} \lambda_i \qquad \text{(since } u_k, u_{k+1}, \dots, u_n \text{ are orthonormal)}$$

$$= \sum_{i=k}^n |\alpha_i|^2 \sum_{\substack{i \ge \lambda_k \\ (\text{since } \lambda_1 \le \lambda_2 \le \dots \le \lambda_n)} \geq \lambda_k \sum_{\substack{i=k \\ = \langle x, x \rangle}}^n |\alpha_i|^2 = \lambda_k \langle x, x \rangle$$

and thus $R(A, x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle} \ge \lambda_k$. So, altogether, we find

$$\sup_{\substack{x \in S; \\ x \neq 0}} R(A, x) \ge \lambda_k.$$

October 29, 2021

Furthermore, this supremum is a maximum, because

$$\sup_{\substack{x \in S; \\ x \neq 0}} R(A, x) = \sup_{\substack{y \in S; \\ ||y|| = 1}} R(A, y) \qquad \left(\text{since } R(A, x) = R(A, y) \text{ where } y = \frac{x}{||x||} \right)$$
$$= \max_{\substack{y \in S; \\ ||y|| = 1}} R(A, y) \qquad \left(\begin{array}{c} \text{since the set of all } y \in S \text{ satisfying } ||y|| = 1 \\ \text{is compact, and since a continuous function} \\ \text{on a compact set always has a maximum} \end{array} \right)$$
$$= \max_{\substack{x \in S; \\ x \neq 0}} R(A, x).$$

So we conclude

$$\max_{\substack{x \in S; \\ x \neq 0}} R(A, x) = \sup_{\substack{x \in S; \\ x \neq 0}} R(A, x) \ge \lambda_k.$$

Forget that we fixed *S*. We thus have shown that if *S* is any *k*-dimensional subspace of \mathbb{C}^n , then $\max_{\substack{x \in S; \\ x \neq 0}} R(A, x)$ exists and satisfies

$$\max_{\substack{x \in S; \\ x \neq 0}} R(A, x) \ge \lambda_k.$$

However, by choosing *S* appropriately, we can achieve equality here; indeed, we have to choose $S = \text{span}(u_1, u_2, \dots, u_k)$ for this. (Why? Because each $x \in \text{span}(u_1, u_2, \dots, u_k)$ can easily be seen to satisfy $\langle Ax, x \rangle \leq \lambda_k \langle x, x \rangle$ by a similar argument to the one we used above.)

So max R(A, x) is $\geq \lambda_k$ for each *S*, but is $= \lambda_k$ for a certain *S*. Therefore, λ_k is $x \neq 0$

the smallest possible value of $\max_{\substack{x \in S; \\ x \neq 0}} R(A, x)$. In other words,

$$\lambda_{k} = \min_{\substack{S \subseteq \mathbb{C}^{n} \text{ is a subspace;} \\ \dim S = k}} \max_{\substack{x \in S; \\ x \neq 0}} R(A, x).$$

It remains to prove the other part of the theorem – i.e., the equality

$$\lambda_{k} = \max_{\substack{S \subseteq \mathbb{C}^{n} \text{ is a subspace;} \\ \dim S = n-k+1 \\ x \neq 0}} \min_{\substack{x \in S; \\ x \neq 0}} R(A, x).$$

One way to prove this is by arguing similarly to the above proof. Alternatively, we can simply apply the already proved equality

$$\lambda_{k} = \min_{\substack{S \subseteq \mathbb{C}^{n} \text{ is a subspace;} \\ \dim S = k}} \max_{\substack{x \in S; \\ x \neq 0}} R(A, x)$$

to -A instead of A, which is a Hermitian matrix with eigenvalues

$$-\lambda_n \leq -\lambda_{n-1} \leq \cdots \leq -\lambda_1.$$

Keep in mind that $-\lambda_k$ is not the *k*-th smallest eigenvalue of -A, but it is the *k*-th largest eigenvalue of -A, and thus the (n - k + 1)-st smallest eigenvalue of -A. Thus, we have to apply the equality to -A and n - k + 1 instead of A and k. Taking negatives turns minima into maxima and vice versa.

The Courant–Fisher theorem can be used to connect the eigenvalues of A + B with the eigenvalues of A and B.

Theorem 1.1.7 (Weyl's theorem). Let *A* and *B* be two Hermitian matrices in $\mathbb{C}^{n \times n}$. Let $i \in [n]$ and $j \in \{0, 1, ..., n - i\}$. (a) Then,

$$\lambda_{i}(A+B) \leq \lambda_{i+j}(A) + \lambda_{n-j}(B).$$

Here, $\lambda_k(C)$ means the *k*-th smallest eigenvalue of a Hermitian matrix *C*.

Moreover, this inequality becomes an equality if and only if there exists a nonzero vector $x \in \mathbb{C}^n$ satisfying

$$Ax = \lambda_{i+i}(A) x,$$
 $Bx = \lambda_{n-i}(B) x,$ $(A+B) x = \lambda_i (A+B) x$

(at the same time).

(b) Furthermore,

$$\lambda_{i-k+1}(A) + \lambda_k(B) \le \lambda_i(A+B)$$
 for any $k \in [i]$.

Proof. Let $(x_1, x_2, ..., x_n)$, $(y_1, y_2, ..., y_n)$ and $(z_1, z_2, ..., z_n)$ be three orthonormal bases of \mathbb{C}^n with

$$Ax_{i} = \lambda_{i}(A) x_{i}, \qquad By_{i} = \lambda_{i}(B) y_{i}, \qquad (A+B) z_{i} = \lambda_{i}(A+B) z_{i}$$

for all $i \in [n]$. (As above, we can find such bases by using the spectral decompositions of *A*, *B* and *A* + *B*.)

Let

$$S_{1} = \text{span} (x_{1}, x_{2}, \dots, x_{i+j});$$

$$S_{2} = \text{span} (y_{1}, y_{2}, \dots, y_{n-j});$$

$$S_{3} = \text{span} (z_{i}, z_{i+1}, \dots, z_{n}).$$

Then,

$$\delta := \underbrace{\dim(S_1)}_{=i+j} + \underbrace{\dim(S_2)}_{=n-j} + \underbrace{\dim(S_3)}_{=n-i+1} - 2n = 1 > 0.$$

$$\lambda_{i}(A+B) \leq \langle (A+B)x, x \rangle = \langle Ax+Bx, x \rangle = \underbrace{\langle Ax, x \rangle}_{\leq \lambda_{i+j}(A)} + \underbrace{\langle Bx, x \rangle}_{\leq \lambda_{n-j}(B)}$$
$$\leq \lambda_{i+j}(A) + \lambda_{n-j}(B).$$

This proves (a).

We leave (**b**) and (**c**) to the reader.