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Math 504 Lecture 16

1. Hermitian matrices (cont’d)

Recall: A Hermitian matrix is an n× n-matrix A ∈ Cn×n such that A∗ = A.
A Hermitian matrix A is positive semidefinite if it satisfies

〈Ax, x〉 ≥ 0 for all x ∈ Cn.

A Hermitian matrix A is positive definite if it satisfies

〈Ax, x〉 > 0 for all nonzero x ∈ Cn.

1.1. The Cholesky decomposition

Theorem 1.1.1 (Cholesky decomposition for positive definite matrices). Let A ∈
Cn×n be a positive definite Hermitian matrix. Then, A has a unique factorization
of the form

A = LL∗,

where L ∈ Cn×n is a lower-triangular matrix whose diagonal entries are positive
reals.
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Example 1.1.2. For n = 1, the theorem is trivial: In this case, A =
(

a
)

for some

a ∈ R, and this a is > 0 because A is positive definite. Thus, setting L =
( √

a
)

,
then A = LL∗. Moreover, this is clearly the only choice.

Example 1.1.3. Let us manually check the theorem for n = 2. Let A =

(
a b
c d

)
be a positive definite Hermitian matrix. We are looking for a lower-triangular

matrix L =

(
λ 0
x δ

)
whose diagonal entries λ and δ are positive reals that

satisfies A = LL∗.
So we need(

a b
c d

)
= A = LL∗ =

(
λ 0
x δ

)(
λ 0
x δ

)∗
=

(
λ 0
x δ

)(
λ x
0 δ

)
(since λ, δ are real)

=

(
λ2 λx
λx xx + δ2

)
=

(
λ2 λx
λx |x|2 + δ2

)
.

So we need to solve the system of equations
a = λ2;
b = λx;
c = λx;

d = |x|2 + δ2.

First, we solve the equation a = λ2 by setting λ =
√

a. Since A is positive
definite, we have a = 〈Ae1, e1〉 > 0, so that

√
a is well-defined, and we get a

positive real λ. Next, we solve the equation c = λx by setting x =
c
λ

. Next, the
equation b = λx is automatically satisfied, since the Hermitianness of A entails
b = c = λx = λx (since λ is real). Finally, we solve the equation d = |x|2 + δ2

by setting δ =
√

d− |x|2. Here, we need to convince ourselves that d− |x|2 is a

positive real, i.e., that d > |x|2. Why is this the case?

I claim that this follows from applying 〈Az, z〉 ≥ 0 to the vector z =

(
b
−a

)
.

Indeed, setting z =

(
b
−a

)
, we obtain

Az =

(
a b
c d

)(
b
−a

)
=

(
0

bc− ad

)
,

so that

〈Az, z〉 =
〈(

0
bc− ad

)
,
(

b
−a

)〉
= (bc− ad)−a = a (ad− bc)
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and thus a (ad− bc) = 〈Az, z〉 > 0 (by the positive definiteness of A, since z 6= 0).
We can divide this inequality by a (since a > 0), and obtain ad− bc > 0. Now,
recall that x =

c
λ

and λ =
√

a. Hence,

d− |x|2 = d−
∣∣∣ c
λ

∣∣∣2 = d− cc
λ2 = d− cb

a

(
since c = b and λ2 = a

)
=

ad− bc
a

> 0 (since ad− bc > 0 and a > 0) .

This is what we need. So the theorem is proved for n = 2.

To prove the theorem in general, we need a lemma that essentially generalizes our
above argument for d− |x|2 > 0:

Lemma 1.1.4. Let Q ∈ Cn×n be a invertible matrix. Let x ∈ Cn be some column
vector. Let d ∈ R. Let

A :=
(

QQ∗ Qx
(Qx)∗ d

)
∈ C(n+1)×(n+1).

Assume that A is positive definite. Then, ||x||2 < d.

Proof. Set Q−∗ :=
(
Q−1)∗ = (Q∗)−1. (This is well-defined, since Q is invertible.)

Set u =

(
Q−∗x
−1

)
∈ Cn+1. (This is in block-matrix notation. Explicitly, this is the

column vector obtained by appending the extra entry −1 at the bottom of Q−∗x.)
Then,

Au =

(
QQ∗ Qx
(Qx)∗ d

)(
Q−∗x
−1

)
=

(
QQ∗Q−∗x + Qx (−1)
(Qx)∗ Q−∗x + d (−1)

)

=

(
0

x∗Q∗Q−∗x− d

)
=

(
0

x∗x− d

)
=

(
0

||x||2 − d

)

(since x∗x = 〈x, x〉 = ||x||2). Hence,

〈Au, u〉 =
〈(

0
||x||2 − d

)
,
(

Q−∗x
−1

)〉
=
(
||x||2 − d

) (
−1
)
= d− ||x||2 .

However, the vector u is nonzero (since its last entry is −1), and the matrix A is
positive definite (by assumption). Thus, 〈Au, u〉 > 0. Since 〈Au, u〉 = d− ||x||2, we
thus obtain d− ||x||2 > 0. In other words, d > ||x||2. This proves the lemma.

Now, let us prove the Cholesky factorization theorem:
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Proof of the Theorem. We proceed by induction on n.
The base cases n = 0 and n = 1 are essentially obvious (n = 1 was done in an

example).
Induction step: Assume that the theorem holds for some n. We must prove that it

holds for n + 1 as well.
Let A ∈ C(n+1)×(n+1) be a positive definite Hermitian matrix. Write A in the

form

A =

(
B b
b∗ d

)
,

where B ∈ Cn×n and b ∈ Cn. Note that the b∗ on the bottom of the right hand
side is because A is Hermitian, so all entries in the last row of A are the complex
conjugates of the corresponding entries in the last column of A. Also, d = d∗ for
the same reason, so d ∈ R. Moreover, B is Hermitian (since A is Hermitian).

Next, we claim that B is positive definite. Indeed, for any nonzero vector x ∈ Cn,

we have 〈Bx, x〉 = 〈Ax′, x′〉, where x′ =
(

x
0

)
. Thus, positive definiteness of B

follows from positive definiteness of A. (More generally, any principal submatrix
of a positive definite matrix is positive definite.)

Therefore, by the induction hypothesis, we can apply the theorem to B instead
of A. We conclude that B can be uniquely written as a product B = QQ∗, where
Q ∈ Cn×n is a lower-triangular matrix whose diagonal entries are positive reals.

Now, we want to find a vector x ∈ Cn and a positive real δ such that if we set

L :=
(

Q 0
x∗ δ

)
,

then A = LL∗. If we can find such x and δ, then at least the existence part of the
theorem will be settled.

So let us set L :=
(

Q 0
x∗ δ

)
, and see what conditions A = LL∗ places on x and

δ. We want(
B b
b∗ d

)
= A = LL∗ =

(
Q 0
x∗ δ

)(
Q∗ (x∗)∗

0 δ

)

=

(
Q 0
x∗ δ

)(
Q∗ x
0 δ

) (
since δ ∈ R =⇒ δ = δ

)
=

(
QQ∗ Qx
x∗Q∗ x∗x + δ2

)
.

In other words, we want 
B = QQ∗;
b = Qx;

b∗ = x∗Q∗;
d = x∗x + δ2.
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The first of these four equations is already satisfied (we know that B = QQ∗).
The second equation will be satisfied if we set x = Q−1b. We can indeed set
x = Q−1b, since the matrix Q is invertible (since Q is a lower-triangular matrix
with positive reals on its diagonal). The third equation follows automatically from
the second (b = Qx =⇒ b∗ = (Qx)∗ = x∗Q∗). Finally, the fourth equation rewrites

as d = ||x||2 + δ2. We can satisfy it by setting δ =
√

d− ||x||2, as long as we

can show that d − ||x||2 > 0. Fortunately, we can indeed show this, because our
Lemma yields that ||x||2 < d. Thus, we have found x and δ, and constructed
a lower-triangular matrix L whose diagonal entries are positive reals and which
satisfies A = LL∗.

It remains to show that this L is unique. Indeed, we can basically read our
argument above backwards. If L ∈ C(n+1)×(n+1) is a lower-triangular matrix whose
diagonal entries are positive reals and which satisfies A = LL∗, then we can write

A in the form A =

(
Q 0
x∗ δ

)
for some Q ∈ Cn×n and x ∈ Cn and some positive

real δ, where Q is lower-triangular with diagonal entries being real. The equation
A = LL∗ rewrites as (

B b
b∗ d

)
=

(
QQ∗ Qx
x∗Q∗ x∗x + δ2

)
.

Thus, B = QQ∗. By the induction hypothesis, the Q is unique, so this Q is exactly
the Q that was constructed above. Moreover, b = Qx, so that x = Q−1b, so again

our new x is our old x. Finally, d = x∗x + δ2 entails δ =
√

d− ||x||2, because δ has
to be positive. So our δ is our old δ. Thus, our L is the L that we constructed above.
This proves the uniqueness of the L. The theorem is proved.

Exercise 1.1.1. Let A ∈ Cn×n be a positive definite Hermitian matrix. Then, det A
is a positive real.

Exercise 1.1.2. Let A and B be two positive definite Hermitian matrices in Cn×n.
Then, Tr (AB) ≥ 0.

There is a version of Cholesky decomposition for positive semidefinite matrices,
but this will be left to the exercises.

1.2. Rayleigh quotients

Definition 1.2.1. Let A ∈ Cn×n be a Hermitian matrix, and x ∈ Cn be a nonzero
vector. Then, the Rayleigh quotient for A and x is defined to be the real number

R (A, x) :=
〈Ax, x〉
〈x, x〉 =

x∗Ax
x∗x

=
x∗Ax

||x||2
= y∗Ay,

where y =
x
||x|| .
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Let us explore what Rayleigh quotients can tell us about the eigenvalues of a Her-
mitian matrix.

Let A ∈ Cn×n be a Hermitian matrix with n > 0. By the spectral theorem, we
have A = UDU∗ for some unitary U and some real diagonal matrix D. Consider
these U and D. We have D = diag (λ1, λ2, . . . , λn), where λ1, λ2, . . . , λn are the
eigenvalues of A. We WLOG that

λ1 ≤ λ2 ≤ · · · ≤ λn

(indeed, we can always achieve this by permuting rows/columns of D and inte-
grating the permutation matrices into U). We set

λmin (A) := λ1 and λmax (A) := λn.

We will also write λmin and λmax without the “(A)” part.
Let us now pick some vector x ∈ Cn of length 1 (that is, ||x|| = 1). Set z = U∗x.

Then, writing z as


z1
z2
...

zn

, we have

x∗Ax = x∗U︸︷︷︸
=(U∗x)∗=z∗

D U∗x︸︷︷︸
=z

= z∗Dz =
n

∑
k=1

λkzkzk =
n

∑
k=1

λk |zk|2 .

We note that ||z|| = 1 (indeed, since U is unitary, the matrix U∗ is also unitary, so

||U∗x|| = ||x|| = 1, which means ||z|| = 1). In other words,
n
∑

k=1
|zk|2 = 1 (since

||z|| =
√

n
∑

k=1
|zk|2). Now,

x∗Ax =
n

∑
k=1

λk︸︷︷︸
≤λn

|zk|2 ≤
n

∑
k=1

λn |zk|2 = λn

n

∑
k=1
|zk|2︸ ︷︷ ︸
=1

= λn.

So we have shown that each vector x ∈ Cn of length 1 satisfies x∗Ax ≤ λn. This
inequality becomes an equality at least for one vector x: namely, for the vector
x = Uen (because for this vector, we have z = U∗U︸︷︷︸

=In

en = en, so that zk = 0 for all

k < n, and therefore the inequality
n
∑

k=1
λk |zk|2 ≤

n
∑

k=1
λn |zk|2 becomes an equality).

Thus,

λn = max {x∗Ax | x ∈ Cn is a vector of length 1}

= max
{

x∗Ax
x∗x

| x ∈ Cn is nonzero
}

= max {R (A, x) | x ∈ Cn is nonzero} .
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Since λn = λmax (A), we thus have proved the following fact:

Proposition 1.2.2. Let A ∈ Cn×n be a Hermitian matrix with n > 0. Then, the
largest eigenvalue of A is

λmax (A) = max {x∗Ax | x ∈ Cn is a vector of length 1}
= max {R (A, x) | x ∈ Cn is nonzero} .

Similarly:

Proposition 1.2.3. Let A ∈ Cn×n be a Hermitian matrix with n > 0. Then, the
smallest eigenvalue of A is

λmax (A) = min {x∗Ax | x ∈ Cn is a vector of length 1}
= min {R (A, x) | x ∈ Cn is nonzero} .

What about the other eigenvalues? Can we characterize λ2 (for example) in terms
of Rayleigh quotients?

Theorem 1.2.4 (Courant–Fisher theorem). Let A ∈ Cn×n be a Hermitian matrix.
Let λ1, λ2, . . . , λn be the eigenvalues of A, with λ1 ≤ λ2 ≤ · · · ≤ λn. Then, for
each k ∈ [n], we have

λk = min {max {R (A, x) | x ∈ S nonzero} | S ⊆ Cn is a k-dimensional subspace}
= min

S⊆Cn is a subspace;
dim S=k

max
x∈S;
x 6=0

R (A, x)

and

λk = max {min {R (A, x) | x ∈ S nonzero} | S ⊆ Cn is a (n− k + 1) -dimensional subspace}
= max

S⊆Cn is a subspace;
dim S=n−k+1

min
x∈S;
x 6=0

R (A, x) .

We will prove this next time.
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