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Math 504 Lecture 16

1. Hermitian matrices (cont’d)

Recall: A Hermitian matrix is an 7 X n-matrix A € C"*" such that A* = A.
A Hermitian matrix A is positive semidefinite if it satisfies

(Ax,x) >0 for all x € C".
A Hermitian matrix A is positive definite if it satisfies

(Ax,x) >0 for all nonzero x € C".

1.1. The Cholesky decomposition

of the form
A=LL"

reals.
“Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

Theorem 1.1.1 (Cholesky decomposition for positive definite matrices). Let A €
C™*" be a positive definite Hermitian matrix. Then, A has a unique factorization

where L € C"*" is a lower-triangular matrix whose diagonal entries are positive
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Example 1.1.2. For n = 1, the theorem is trivial: In this case, A = ( a ) for some

a € R, and this 2 is > 0 because A is positive definite. Thus, setting L = ( Vva ),
then A = LL*. Moreover, this is clearly the only choice.

Example 1.1.3. Let us manually check the theorem for n = 2. Let A = ( ch Z >

be a positive definite Hermitian matrix. We are looking for a lower-triangular

matrix L = ;\ g ) whose diagonal entries A and ¢ are positive reals that

satisfies A = LL*.
So we need

0
0
) (since A, are real)

x

)
[ A2 Ax (A Ax
A @+ )\ Ax [x)P+82 )

So we need to solve the system of equations

a= A%
b= Ax;
c= Ax;

d = |x|* + 6%

First, we solve the equation a = A? by setting A = /a. Since A is positive
definite, we have a = (Ae,e1) > 0, so that v/a is well-defined, and we get a

‘e . . c
positive real A. Next, we solve the equation ¢ = Ax by setting x = T Next, the

equation b = AX is automatically satisfied, since the Hermitianness of A entails
b =T = Ax = A¥ (since A is real). Finally, we solve the equation d = |x|* + 62

by setting 6 = \/d — |x|%. Here, we need to convince ourselves that d — |x|* is a
positive real, i.e., that d > |x|*. Why is this the case?

I claim that this follows from applying (Az,z) > 0 to the vector z = ( _ba )

2= (0a) ()= (ol )
so that
(Az,z):<( bcfad)( ’ )>:(bc—ad)—_a:a(ad—bc)
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Indeed, setting z = ( ), we obtain
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and thus a (ad — bc) = (Az,z) > 0 (by the positive definiteness of A, since z # 0).
We can divide this inequality by a (since a > 0), and obtain ad — bc > 0. Now,

recall that x = — and A = va. Hence,

A
2 c|? cc cb . 5
d— |x| :d—’ﬂ :d—ﬁ:d—; (smcec:bandA :a>
:ad;bc>0 (since ad —bc > 0and a > 0).

This is what we need. So the theorem is proved for n = 2.

To prove the theorem in general, we need a lemma that essentially generalizes our
above argument for d — |x|* > 0:

Lemma 1.1.4. Let Q € C"*" be a invertible matrix. Let x € C" be some column
vector. Let d € R. Let

- QQ" Qx (n+1)x(n+1)
=gy T )

Assume that A is positive definite. Then, ||x||* < d.

Proof. Set Q~* = (Q71)" = (Q* )1 (This is well-defined, since Q is invertible.)

Set u = ( Q__ 1x ) € C"*1. (This is in block-matrix notation. Explicitly, this is the

column vector obtained by appending the extra entry —1 at the bottom of Q™ *x.)
Then,

Q) d -1 (Qx)" Q *x+d (~1)

~(roatnma) = (eata) = (e
T\ Q' Q'x—d )\ xx—d )\ ||x|P—4d

(since x*x = (x,x) = ||x||?). Hence,

(Au,u) = <( (P ) (9 )> = (2~ d) (=1) = d = |}zl

However, the vector u is nonzero (since its last entry is —1), and the matrix A is
positive definite (by assumption). Thus, (Au, u) > 0. Since (Au,u) = d — ||x||?, we
thus obtain d — ||x||* > 0. In other words, d > ||x||*. This proves the lemma.  [J

Ay — ( (QQ* Qx ) ( Q *x ) _ ( QQ*Q *x + Qx (~1) )

Now, let us prove the Cholesky factorization theorem:
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Proof of the Theorem. We proceed by induction on 7.

The base cases n = 0 and n = 1 are essentially obvious (n = 1 was done in an
example).

Induction step: Assume that the theorem holds for some n. We must prove that it
holds for n + 1 as well.

Let A € C"+1)x("+1) be a positive definite Hermitian matrix. Write A in the

form
B b
4= ()

where B € C"*" and b € C". Note that the b* on the bottom of the right hand
side is because A is Hermitian, so all entries in the last row of A are the complex
conjugates of the corresponding entries in the last column of A. Also, d = d* for
the same reason, so d € IR. Moreover, B is Hermitian (since A is Hermitian).

Next, we claim that B is positive definite. Indeed, for any nonzero vector x € C",

0
follows from positive definiteness of A. (More generally, any principal submatrix
of a positive definite matrix is positive definite.)

Therefore, by the induction hypothesis, we can apply the theorem to B instead
of A. We conclude that B can be uniquely written as a product B = QQ*, where
Q € C"*" is a lower-triangular matrix whose diagonal entries are positive reals.

Now, we want to find a vector x € C" and a positive real J such that if we set

_( Q0
L'—(x* 5)/

then A = LL*. If we can find such x and J, then at least the existence part of the
theorem will be settled.

we have (Bx,x) = (Ax/,x’), where x' = ( N ) Thus, positive definiteness of B

So letus set L := S* ), and see what conditions A = LL* places on x and

)
0. We want

<Ifi Z)ZA:LL*:<S< g)(gﬁ* (x;)*)

:(Q 0>(Q* x) (since 6 € R = 3 = 4)

In other words, we want

B = QQ%
b= Qx;
d = x*x + 62

October 27, 2021
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The first of these four equations is already satisfied (we know that B = QQ%).
The second equation will be satisfied if we set x = Q~!'b. We can indeed set
x = Q7 b, since the matrix Q is invertible (since Q is a lower-triangular matrix
with positive reals on its diagonal). The third equation follows automatically from
the second (b = Qx = b* = (Qx)" = x*Q*). Finally, the fourth equation rewrites

as d = ||x||* + 6% We can satisfy it by setting 6 = \/d — ||x||>, as long as we
can show that d — ||x||> > 0. Fortunately, we can indeed show this, because our
Lemma yields that ||x||* < d. Thus, we have found x and 6, and constructed
a lower-triangular matrix L whose diagonal entries are positive reals and which
satisfies A = LL".

It remains to show that this L is unique. Indeed, we can basically read our

argument above backwards. If L € C(*+1)*(#+1) is 3 lower-triangular matrix whose
diagonal entries are positive reals and which satisfies A = LL*, then we can write

Q

A in the form A = ( o for some Q € C"*" and x € C" and some positive

0
0
real 6, where Q is lower-triangular with diagonal entries being real. The equation

A = LL* rewrites as
B b\ [(QQ" Qx
bt d - X*Q* x*x+(52 :

Thus, B = QQ*. By the induction hypothesis, the Q is unique, so this Q is exactly
the Q that was constructed above. Moreover, b = Qx, so that x = Q~!b, so again

our new x is our old x. Finally, d = x*x + 62 entails 6 = {/d — ||x||, because ¢ has
to be positive. So our ¢ is our old J. Thus, our L is the L that we constructed above.
This proves the uniqueness of the L. The theorem is proved. O

Exercise 1.1.1. Let A € C"*" be a positive definite Hermitian matrix. Then, det A
is a positive real.

Exercise 1.1.2. Let A and B be two positive definite Hermitian matrices in C"*".
Then, Tr (AB) > 0.

There is a version of Cholesky decomposition for positive semidefinite matrices,
but this will be left to the exercises.

1.2. Rayleigh quotients

Definition 1.2.1. Let A € C"*" be a Hermitian matrix, and x € C" be a nonzero
vector. Then, the Rayleigh quotient for A and x is defined to be the real number
(Ax,x)  x*Ax  x*Ax

R (A = = =
A= T e T e

= y* Ay,

x
where y = e
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Let us explore what Rayleigh quotients can tell us about the eigenvalues of a Her-
mitian matrix.

Let A € C"*" be a Hermitian matrix with n > 0. By the spectral theorem, we
have A = UDU* for some unitary U and some real diagonal matrix D. Consider
these U and D. We have D = diag(Aq,A,...,Ay), where Aj, Ay, ..., Ay, are the
eigenvalues of A. We WLOG that

MS A< <Ay

(indeed, we can always achieve this by permuting rows/columns of D and inte-
grating the permutation matrices into U). We set

We will also write Apin and Amax without the “(A)” part.
Let us now pick some vector x € C" of length 1 (that is, ||x|| = 1). Set z = U*x.

21

22
Then, writing z as ) , we have

Zn

n n 5
x*Ax = x*U DU'x=z'Dz= Z Mezrzr = Z Ak |zk|”-
=(U*x)*=z* =z k=1 k=1
We note that ||z|| = 1 (indeed, since U is unitary, the matrix U* is also unitary, so
n

|[U*x|| = ||x|| = 1, which means ||z|| = 1). In other words, }_ |z|* = 1 (since

n 2
z]| =4/ X |zx|")- Now,
k=1

n n n
Ax =Y M |zl < Y Az = An Yzl = A
k=1 " k=1 k=1

S)\n N——
=1

So we have shown that each vector x € C" of length 1 satisfies x*Ax < A,. This
inequality becomes an equality at least for one vector x: namely, for the vector
x = Ue, (because for this vector, we have z = U*U e, = e, so that z; = 0 for all

:IVI

n n
k < n, and therefore the inequality ) Ay |zk|2 < Y Ay |zk|2 becomes an equality).
k=1 k=1
Thus,
Ay =max {x*Ax | x € C" is a vector of length 1}

x*Ax "
=max{ —— | x € C" is nonzero
x*x

=max {R (A, x) | x € C" is nonzero} .
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Since A, = Amax (A), we thus have proved the following fact:

Proposition 1.2.2. Let A € C"*" be a Hermitian matrix with n > 0. Then, the
largest eigenvalue of A is

Amax (A) = max {x*Ax | x € C" is a vector of length 1}
=max {R (A,x) | x € C" is nonzero} .

Similarly:

Proposition 1.2.3. Let A € C"*" be a Hermitian matrix with n > 0. Then, the
smallest eigenvalue of A is

Amax (A) =min {x*Ax | x € C" is a vector of length 1}
=min{R (A,x) | x € C" is nonzero} .

What about the other eigenvalues? Can we characterize A; (for example) in terms
of Rayleigh quotients?

Theorem 1.2.4 (Courant-Fisher theorem). Let A € C"*" be a Hermitian matrix.
Let A1, Ay, ..., Ay be the eigenvalues of A, with A; < Ay < --- < A,. Then, for
each k € [n], we have

Ar = min {max {R (A, x) | x € Snonzero} | S C C" is a k-dimensional subspace}

= min max R (A, x)
SCC" is a subspace; x€S;
dim S=k x#0

and

A =max {min{R (A, x) | x € Snonzero} | SC C"isa (n—k+ 1)-dimensional subspace}
= max min R (A, x).
SCC" is a subspace; x€S;
dim S=n—k+1 x#0

We will prove this next time.
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