Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

October 27, 2021 (unfinished!)

Contents

1.	Hermitian matrices (cont'd)		
	1.1.	The Cholesky decomposition	1
	1.2.	Rayleigh quotients	5

Math 504 Lecture 16

1. Hermitian matrices (cont'd)

Recall: A **Hermitian matrix** is an $n \times n$ -matrix $A \in \mathbb{C}^{n \times n}$ such that $A^* = A$. A Hermitian matrix A is **positive semidefinite** if it satisfies

 $\langle Ax, x \rangle \ge 0$ for all $x \in \mathbb{C}^n$.

A Hermitian matrix *A* is **positive definite** if it satisfies

 $\langle Ax, x \rangle > 0$ for all nonzero $x \in \mathbb{C}^n$.

1.1. The Cholesky decomposition

Theorem 1.1.1 (Cholesky decomposition for positive definite matrices). Let $A \in \mathbb{C}^{n \times n}$ be a positive definite Hermitian matrix. Then, *A* has a unique factorization of the form

$$A=LL^*,$$

where $L \in \mathbb{C}^{n \times n}$ is a lower-triangular matrix whose diagonal entries are positive reals.

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

Example 1.1.2. For n = 1, the theorem is trivial: In this case, A = (a) for some $a \in \mathbb{R}$, and this a is > 0 because A is positive definite. Thus, setting $L = (\sqrt{a})$, then $A = LL^*$. Moreover, this is clearly the only choice.

Example 1.1.3. Let us manually check the theorem for n = 2. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a positive definite Hermitian matrix. We are looking for a lower-triangular matrix $L = \begin{pmatrix} \lambda & 0 \\ x & \delta \end{pmatrix}$ whose diagonal entries λ and δ are positive reals that satisfies $A = LL^*$.

So we need

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = A = LL^* = \begin{pmatrix} \lambda & 0 \\ x & \delta \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ x & \delta \end{pmatrix}^*$$
$$= \begin{pmatrix} \lambda & 0 \\ x & \delta \end{pmatrix} \begin{pmatrix} \lambda & \overline{x} \\ 0 & \delta \end{pmatrix} \quad (\text{since } \lambda, \delta \text{ are real})$$
$$= \begin{pmatrix} \lambda^2 & \lambda \overline{x} \\ \lambda x & x\overline{x} + \delta^2 \end{pmatrix} = \begin{pmatrix} \lambda^2 & \lambda \overline{x} \\ \lambda x & |x|^2 + \delta^2 \end{pmatrix}.$$

So we need to solve the system of equations

$$\begin{cases} a = \lambda^2; \\ b = \lambda \overline{x}; \\ c = \lambda x; \\ d = |x|^2 + \delta^2. \end{cases}$$

First, we solve the equation $a = \lambda^2$ by setting $\lambda = \sqrt{a}$. Since *A* is positive definite, we have $a = \langle Ae_1, e_1 \rangle > 0$, so that \sqrt{a} is well-defined, and we get a positive real λ . Next, we solve the equation $c = \lambda x$ by setting $x = \frac{c}{\lambda}$. Next, the equation $b = \lambda \overline{x}$ is automatically satisfied, since the Hermitianness of *A* entails $b = \overline{c} = \overline{\lambda x} = \lambda \overline{x}$ (since λ is real). Finally, we solve the equation $d = |x|^2 + \delta^2$ by setting $\delta = \sqrt{d - |x|^2}$. Here, we need to convince ourselves that $d - |x|^2$ is a positive real, i.e., that $d > |x|^2$. Why is this the case?

I claim that this follows from applying $\langle Az, z \rangle \ge 0$ to the vector $z = \begin{pmatrix} b \\ -a \end{pmatrix}$. Indeed, setting $z = \begin{pmatrix} b \\ -a \end{pmatrix}$, we obtain

$$Az = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} b \\ -a \end{pmatrix} = \begin{pmatrix} 0 \\ bc - ad \end{pmatrix},$$

so that

$$\langle Az, z \rangle = \left\langle \left(\begin{array}{c} 0 \\ bc - ad \end{array} \right), \left(\begin{array}{c} b \\ -a \end{array} \right) \right\rangle = (bc - ad) \overline{-a} = a (ad - bc)$$

and thus $a(ad - bc) = \langle Az, z \rangle > 0$ (by the positive definiteness of A, since $z \neq 0$). We can divide this inequality by a (since a > 0), and obtain ad - bc > 0. Now, recall that $x = \frac{c}{\lambda}$ and $\lambda = \sqrt{a}$. Hence,

$$d - |x|^{2} = d - \left|\frac{c}{\lambda}\right|^{2} = d - \frac{c\overline{c}}{\lambda^{2}} = d - \frac{cb}{a} \qquad \left(\text{since } \overline{c} = b \text{ and } \lambda^{2} = a\right)$$
$$= \frac{ad - bc}{a} > 0 \qquad \left(\text{since } ad - bc > 0 \text{ and } a > 0\right).$$

This is what we need. So the theorem is proved for n = 2.

To prove the theorem in general, we need a lemma that essentially generalizes our above argument for $d - |x|^2 > 0$:

Lemma 1.1.4. Let $Q \in \mathbb{C}^{n \times n}$ be a invertible matrix. Let $x \in \mathbb{C}^n$ be some column vector. Let $d \in \mathbb{R}$. Let

$$A := \begin{pmatrix} QQ^* & Qx \\ (Qx)^* & d \end{pmatrix} \in \mathbb{C}^{(n+1) \times (n+1)}.$$

Assume that *A* is positive definite. Then, $||x||^2 < d$.

Proof. Set $Q^{-*} := (Q^{-1})^* = (Q^*)^{-1}$. (This is well-defined, since Q is invertible.) Set $u = \begin{pmatrix} Q^{-*}x \\ -1 \end{pmatrix} \in \mathbb{C}^{n+1}$. (This is in block-matrix notation. Explicitly, this is the column vector obtained by appending the extra entry -1 at the bottom of $Q^{-*}x$.) Then,

$$Au = \begin{pmatrix} QQ^* & Qx \\ (Qx)^* & d \end{pmatrix} \begin{pmatrix} Q^{-*}x \\ -1 \end{pmatrix} = \begin{pmatrix} QQ^*Q^{-*}x + Qx(-1) \\ (Qx)^*Q^{-*}x + d(-1) \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ x^*Q^*Q^{-*}x - d \end{pmatrix} = \begin{pmatrix} 0 \\ x^*x - d \end{pmatrix} = \begin{pmatrix} 0 \\ ||x||^2 - d \end{pmatrix}$$

(since $x^*x = \langle x, x \rangle = ||x||^2$). Hence,

$$\langle Au, u \rangle = \left\langle \left(\begin{array}{c} 0\\ ||x||^2 - d \end{array} \right), \left(\begin{array}{c} Q^{-*}x\\ -1 \end{array} \right) \right\rangle = \left(||x||^2 - d \right) \left(\overline{-1} \right) = d - ||x||^2.$$

However, the vector *u* is nonzero (since its last entry is -1), and the matrix *A* is positive definite (by assumption). Thus, $\langle Au, u \rangle > 0$. Since $\langle Au, u \rangle = d - ||x||^2$, we thus obtain $d - ||x||^2 > 0$. In other words, $d > ||x||^2$. This proves the lemma.

Now, let us prove the Cholesky factorization theorem:

Proof of the Theorem. We proceed by induction on *n*.

The *base cases* n = 0 and n = 1 are essentially obvious (n = 1 was done in an example).

Induction step: Assume that the theorem holds for some n. We must prove that it holds for n + 1 as well.

Let $A \in \mathbb{C}^{(n+1)\times(n+1)}$ be a positive definite Hermitian matrix. Write A in the form

$$A = \left(\begin{array}{cc} B & b \\ b^* & d \end{array}\right),$$

where $B \in \mathbb{C}^{n \times n}$ and $b \in \mathbb{C}^n$. Note that the b^* on the bottom of the right hand side is because A is Hermitian, so all entries in the last row of A are the complex conjugates of the corresponding entries in the last column of A. Also, $d = d^*$ for the same reason, so $d \in \mathbb{R}$. Moreover, B is Hermitian (since A is Hermitian).

Next, we claim that *B* is positive definite. Indeed, for any nonzero vector $x \in \mathbb{C}^n$, we have $\langle Bx, x \rangle = \langle Ax', x' \rangle$, where $x' = \begin{pmatrix} x \\ 0 \end{pmatrix}$. Thus, positive definiteness of *B* follows from positive definiteness of *A*. (More generally, any principal submatrix of a positive definite matrix is positive definite.)

Therefore, by the induction hypothesis, we can apply the theorem to *B* instead of *A*. We conclude that *B* can be uniquely written as a product $B = QQ^*$, where $Q \in \mathbb{C}^{n \times n}$ is a lower-triangular matrix whose diagonal entries are positive reals.

Now, we want to find a vector $x \in \mathbb{C}^n$ and a positive real δ such that if we set

$$L:=\left(\begin{array}{cc}Q&0\\x^*&\delta\end{array}\right),$$

then $A = LL^*$. If we can find such *x* and δ , then at least the existence part of the theorem will be settled.

So let us set $L := \begin{pmatrix} Q & 0 \\ x^* & \delta \end{pmatrix}$, and see what conditions $A = LL^*$ places on x and δ . We want

$$\begin{pmatrix} B & b \\ b^* & d \end{pmatrix} = A = LL^* = \begin{pmatrix} Q & 0 \\ x^* & \delta \end{pmatrix} \begin{pmatrix} Q^* & (x^*)^* \\ 0 & \overline{\delta} \end{pmatrix}$$
$$= \begin{pmatrix} Q & 0 \\ x^* & \delta \end{pmatrix} \begin{pmatrix} Q^* & x \\ 0 & \delta \end{pmatrix} \qquad (\text{since } \delta \in \mathbb{R} \Longrightarrow \overline{\delta} = \delta)$$
$$= \begin{pmatrix} QQ^* & Qx \\ x^*Q^* & x^*x + \delta^2 \end{pmatrix}.$$

In other words, we want

$$\begin{cases} B = QQ^*; \\ b = Qx; \\ b^* = x^*Q^*; \\ d = x^*x + \delta^2 \end{cases}$$

The first of these four equations is already satisfied (we know that $B = QQ^*$). The second equation will be satisfied if we set $x = Q^{-1}b$. We can indeed set $x = Q^{-1}b$, since the matrix Q is invertible (since Q is a lower-triangular matrix with positive reals on its diagonal). The third equation follows automatically from the second ($b = Qx \Longrightarrow b^* = (Qx)^* = x^*Q^*$). Finally, the fourth equation rewrites as $d = ||x||^2 + \delta^2$. We can satisfy it by setting $\delta = \sqrt{d - ||x||^2}$, as long as we can show that $d - ||x||^2 > 0$. Fortunately, we can indeed show this, because our Lemma yields that $||x||^2 < d$. Thus, we have found x and δ , and constructed a lower-triangular matrix L whose diagonal entries are positive reals and which satisfies $A = LL^*$.

It remains to show that this *L* is unique. Indeed, we can basically read our argument above backwards. If $L \in \mathbb{C}^{(n+1)\times(n+1)}$ is a lower-triangular matrix whose diagonal entries are positive reals and which satisfies $A = LL^*$, then we can write *A* in the form $A = \begin{pmatrix} Q & 0 \\ x^* & \delta \end{pmatrix}$ for some $Q \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^n$ and some positive real δ , where *Q* is lower-triangular with diagonal entries being real. The equation $A = LL^*$ rewrites as

$$\left(\begin{array}{cc} B & b \\ b^* & d \end{array}\right) = \left(\begin{array}{cc} QQ^* & Qx \\ x^*Q^* & x^*x + \delta^2 \end{array}\right).$$

Thus, $B = QQ^*$. By the induction hypothesis, the Q is unique, so this Q is exactly the Q that was constructed above. Moreover, b = Qx, so that $x = Q^{-1}b$, so again our new x is our old x. Finally, $d = x^*x + \delta^2$ entails $\delta = \sqrt{d - ||x||^2}$, because δ has to be positive. So our δ is our old δ . Thus, our L is the L that we constructed above. This proves the uniqueness of the L. The theorem is proved.

Exercise 1.1.1. Let $A \in \mathbb{C}^{n \times n}$ be a positive definite Hermitian matrix. Then, det A is a positive real.

Exercise 1.1.2. Let *A* and *B* be two positive definite Hermitian matrices in $\mathbb{C}^{n \times n}$. Then, Tr (*AB*) ≥ 0 .

There is a version of Cholesky decomposition for positive semidefinite matrices, but this will be left to the exercises.

1.2. Rayleigh quotients

Definition 1.2.1. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, and $x \in \mathbb{C}^n$ be a nonzero vector. Then, the **Rayleigh quotient** for *A* and *x* is defined to be the real number

$$R(A,x) := \frac{\langle Ax,x \rangle}{\langle x,x \rangle} = \frac{x^*Ax}{x^*x} = \frac{x^*Ax}{||x||^2} = y^*Ay,$$

where $y = \frac{x}{||x||}$.

Let us explore what Rayleigh quotients can tell us about the eigenvalues of a Hermitian matrix.

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix with n > 0. By the spectral theorem, we have $A = UDU^*$ for some unitary U and some real diagonal matrix D. Consider these U and D. We have $D = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$, where $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A. We WLOG that

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

(indeed, we can always achieve this by permuting rows/columns of D and integrating the permutation matrices into U). We set

$$\lambda_{\min}(A) := \lambda_1$$
 and $\lambda_{\max}(A) := \lambda_n$.

We will also write λ_{\min} and λ_{\max} without the "(*A*)" part.

Let us now pick some vector $x \in \mathbb{C}^n$ of length 1 (that is, ||x|| = 1). Set $z = U^*x$.

Then, writing z as $\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$, we have $x^*Ax = \underbrace{x^*U}_{=(U^*x)^*=z^*} D \underbrace{U^*x}_{=z} = z^*Dz = \sum_{k=1}^n \lambda_k \overline{z_k} z_k = \sum_{k=1}^n \lambda_k |z_k|^2.$

We note that ||z|| = 1 (indeed, since U is unitary, the matrix U^* is also unitary, so $||U^*x|| = ||x|| = 1$, which means ||z|| = 1). In other words, $\sum_{k=1}^{n} |z_k|^2 = 1$ (since $||z|| = \sqrt{\sum_{k=1}^{n} |z_k|^2}$). Now, $x^*Ax = \sum_{k=1}^{n} \underbrace{\lambda_k}_{\leq \lambda_n} |z_k|^2 \leq \sum_{k=1}^{n} \lambda_n |z_k|^2 = \lambda_n \underbrace{\sum_{k=1}^{n} |z_k|^2}_{=1} = \lambda_n.$

So we have shown that each vector $x \in \mathbb{C}^n$ of length 1 satisfies $x^*Ax \leq \lambda_n$. This inequality becomes an equality at least for one vector x: namely, for the vector $x = Ue_n$ (because for this vector, we have $z = \underbrace{U^*U}_{=I_n}e_n = e_n$, so that $z_k = 0$ for all k < n, and therefore the inequality $\sum_{k=1}^n \lambda_k |z_k|^2 \leq \sum_{k=1}^n \lambda_n |z_k|^2$ becomes an equality).

Thus,

$$\lambda_n = \max \{ x^* A x \mid x \in \mathbb{C}^n \text{ is a vector of length } 1 \}$$
$$= \max \left\{ \frac{x^* A x}{x^* x} \mid x \in \mathbb{C}^n \text{ is nonzero} \right\}$$
$$= \max \{ R(A, x) \mid x \in \mathbb{C}^n \text{ is nonzero} \}.$$

Since $\lambda_n = \lambda_{\max}(A)$, we thus have proved the following fact:

Proposition 1.2.2. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix with n > 0. Then, the largest eigenvalue of A is

$$\lambda_{\max}(A) = \max \{ x^* A x \mid x \in \mathbb{C}^n \text{ is a vector of length } 1 \}$$
$$= \max \{ R(A, x) \mid x \in \mathbb{C}^n \text{ is nonzero} \}.$$

Similarly:

Proposition 1.2.3. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix with n > 0. Then, the smallest eigenvalue of A is

 $\lambda_{\max}(A) = \min \{ x^* A x \mid x \in \mathbb{C}^n \text{ is a vector of length } 1 \}$ = min { $R(A, x) \mid x \in \mathbb{C}^n$ is nonzero}.

What about the other eigenvalues? Can we characterize λ_2 (for example) in terms of Rayleigh quotients?

Theorem 1.2.4 (Courant–Fisher theorem). Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of A, with $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then, for each $k \in [n]$, we have

 $\lambda_{k} = \min \{ \max \{ R(A, x) \mid x \in S \text{ nonzero} \} \mid S \subseteq \mathbb{C}^{n} \text{ is a } k\text{-dimensional subspace} \}$ $= \min_{\substack{S \subseteq \mathbb{C}^{n} \text{ is a subspace;} \\ \dim S = k}} \max_{\substack{x \in S; \\ x \neq 0}} R(A, x)$

and

 $\lambda_{k} = \max \{ \min \{ R(A, x) \mid x \in S \text{ nonzero} \} \mid S \subseteq \mathbb{C}^{n} \text{ is a } (n-k+1) \text{-dimensional subspace} \}$ $= \max_{\substack{S \subseteq \mathbb{C}^{n} \text{ is a subspace}; \\ \dim S = n-k+1 }} \min_{\substack{x \in S; \\ x \neq 0}} R(A, x) .$

We will prove this next time.