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Math 504 Lecture 15

1. Hermitian matrices

Recall: A Hermitian matrix is an n× n-matrix A ∈ Cn×n such that A∗ = A.
Note that this is the complex analogue of real symmetric matrices (A ∈ Rn×n

such that AT = A).
If A is a Hermitian matrix, then Ai,i ∈ R and Ai,j = Aj,i.

For instance, the matrix

 −1 i 2
−i 5 1− i
2 1 + i 0

 is Hermitian.

1.1. Basics

Theorem 1.1.1. Let A ∈ Cn×n be an n× n-matrix. Then, the following are equiv-
alent:

• A: The matrix A is Hermitian (i.e., we have A∗ = A).
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• B: We have A = UDU∗ for some unitary U and some real diagonal D (that
is, D is a diagonal matrix with real entries).

• C: The matrix A is normal and its eigenvalues are real.

• D: We have 〈Ax, x〉 ∈ R for each x ∈ Cn.

• E : The matrix S∗AS is Hermitian for all S ∈ Cn×k (for all k ∈N).

To prove this, we will need a lemma:

Lemma 1.1.2. Let M ∈ Cn×n be an n× n-matrix. Assume that 〈Mx, x〉 = 0 for
each x ∈ Cn. Then, M = 0.

Proof. If x ∈ Cn has entries x1, x2, . . . , xn, then

〈Mx, x〉 =
〈

M1,1x1 + M1,2x2 + · · ·+ M1,nxn
M2,1x1 + M2,2x2 + · · ·+ M2,nxn

...
Mn,1x1 + Mn,2x2 + · · ·+ Mn,nxn

 ,


x1
x2
...

xn


〉

=
n

∑
i=1

(Mi,1x1 + Mi,2x2 + · · ·+ Mi,nxn) xi

=
n

∑
i=1

n

∑
j=1

Mi,jxjxi =
n

∑
i=1

n

∑
j=1

Mi,jxixj.

So this is always = 0 by assumption, no matter what x is. So we have shown that

n

∑
i=1

n

∑
j=1

Mi,jxixj = 0 for every x =


x1
x2
...

xn

 ∈ Cn.

In particular:

• We can apply this to x = e1 = (1, 0, 0, . . . , 0)T, and we obtain M1,1 · 1 · 1 = 0,
which means M1,1 = 0. Similarly, we can find Mi,i = 0 for all i ∈ [n].

• We can apply this to x = e1 + e2 = (1, 1, 0, 0, . . . , 0)T, and we obtain

M1,1 · 1 · 1 + M1,2 · 1 · 1 + M2,1 · 1 · 1 ·M2,2 · 1 · 1 = 0.

This simplifies to
M1,1 + M1,2 + M2,1 + M2,2 = 0.

However, the previous bullet point yields M1,1 = 0 and M2,2 = 0, so this
simplifies further to

M1,2 + M2,1 = 0.
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• We can apply this to x = e1 + ie2 = (1, i, 0, 0, . . . , 0)T, and we obtain

M1,1 · 1 · 1 + M1,2 · 1 · i + M2,1 · i · 1 ·M2,2 · i · i = 0.

This simplifies to
M1,1 + iM1,2 − iM2,1 + M2,2 = 0.

However, we know that M1,1 = 0 and M2,2 = 0, so this simplifies further to

iM1,2 − iM2,1 = 0.

Thus,
M1,2 −M2,1 = 0.

Adding this to
M1,2 + M2,1 = 0,

we obtain 2M1,2 = 0. In other words, M1,2 = 0. Similarly, we can show that
Mi,j = 0 for all i 6= j.

So we have now shown that all entries of M are 0. In other words, M = 0. This
proves the lemma.

Now we can prove the theorem:

Proof of Theorem. The implication A =⇒ B follows from the spectral theorem. So
does the implication A =⇒ C. The implication B =⇒ A follows from a corollary
of the spectral theorem. Finally, C =⇒ B also follows from the spectral theorem.
So we only need to prove the equivalence A ⇐⇒ D ⇐⇒ E .

• Proof of A =⇒ D: Assume that A holds. Thus, A = A∗. Now, let x ∈ Cn.
Then, 〈Ax, x〉 = 〈x, Ax〉 (by the rules for inner products). However, by the
formula 〈u, v〉 = v∗u, we have

〈Ax, x〉 = x∗Ax and 〈x, Ax〉 = (Ax)∗︸ ︷︷ ︸
=x∗A∗

x = x∗ A∗︸︷︷︸
=A

x = x∗Ax.

Comparing these two equalities, we see that 〈Ax, x〉 = 〈x, Ax〉. Compar-
ing this with 〈Ax, x〉 = 〈x, Ax〉, we obtain 〈x, Ax〉 = 〈x, Ax〉. This entails
〈x, Ax〉 ∈ R (since the only complex numbers z ∈ C that satisfy z = z are the
real numbers). Therefore, 〈Ax, x〉 = 〈x, Ax〉 ∈ R. Thus, the statement D is
proved.

• Proof of D =⇒ A: Assume that D holds. Thus, 〈Ax, x〉 ∈ R for each x ∈ Cn.
Again, we can see that each x ∈ Cn satisfies

〈Ax, x〉 = x∗Ax and 〈x, Ax〉 = (Ax)∗︸ ︷︷ ︸
=x∗A∗

x = x∗A∗x.
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Thus, each x ∈ Cn satisfies

x∗Ax = 〈Ax, x〉 = 〈Ax, x〉 (since 〈Ax, x〉 ∈ R)

= 〈x, Ax〉 = x∗A∗x,

so that
x∗Ax− x∗A∗x = 0,

so that
x∗ (A∗ − A) x = 0.

Applying our Lemma to M = A∗ − A, we thus conclude that A∗ − A = 0. In
other words, A∗ = A. This proves A.

• Proof of A =⇒ E : If A is Hermitian, then A∗ = A, so that

(S∗AS)∗ = S∗ A∗︸︷︷︸
=A

(S∗)∗︸ ︷︷ ︸
=S

= S∗AS,

and therefore S∗AS is again Hermitian. This proves A =⇒ E .

• Proof of E =⇒ A: If statement E holds, then we can apply it to S = In (and
k = n), and conclude that I∗n AIn is Hermitian; but this is simply saying that
A is Hermitian. So E =⇒ A follows.

The theorem is proved.

As a reminder: Sums of Hermitian matrices are Hermitian, but products are not
(in general).

1.2. Definiteness

Definition 1.2.1. Let A ∈ Cn×n be a Hermitian matrix.
(a) We say that A is positive semidefinite if it satisfies

〈Ax, x〉 ≥ 0 for all x ∈ Cn.

(b) We say that A is positive definite if it satisfies

〈Ax, x〉 > 0 for all nonzero x ∈ Cn.

(c) We say that A is negative semidefinite if it satisfies

〈Ax, x〉 ≤ 0 for all x ∈ Cn.

(d) We say that A is negative definite if it satisfies

〈Ax, x〉 < 0 for all nonzero x ∈ Cn.

(e) We say that A is indefinite if it is neither positive semidefinite nor negative
semidefinite, i.e., if there exist vectors x, y ∈ Cn such that

〈Ax, x〉 < 0 < 〈Ay, y〉 .
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Here are some examples of definiteness:

Example 1.2.2. Let n ∈ N. Let J =


1 1 · · · 1
1 1 · · · 1
...

... . . . ...
1 1 · · · 1

. This matrix J is real

symmetric, thus Hermitian. Is it positive definite? Positive semidefinite?
Let x = (x1, x2, . . . , xn)

T ∈ Cn. Then,

〈Jx, x〉 =
n

∑
i=1

n

∑
j=1

xixj =

(
n

∑
i=1

xi

)(
n

∑
j=1

xj

)
=

(
n

∑
i=1

xi

)(
n

∑
j=1

xj

)

=

(
n

∑
i=1

xi

)(
n

∑
i=1

xi

)
=

∣∣∣∣∣ n

∑
i=1

xi

∣∣∣∣∣
2

≥ 0.

So J is positive semidefinite.

Is J positive definite? To have 〈Jx, x〉 = 0 is equivalent to having
n
∑

i=1
xi = 0.

When n = 1 (or n = 0), this is equivalent to having x = 0, so J is positive definite
in this case. However, if n > 1, then this is not equivalent to having x = 0, and
in fact the vector e1 − e2 is an example of a nonzero vector x ∈ Cn such that
〈Jx, x〉 = 0. So J is not positive definite unless n ≤ 1.

Example 1.2.3. Consider a diagonal matrix

D := diag (λ1, λ2, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn


with λ1, λ2, . . . , λn ∈ R. When is D positive semidefinite?

We want 〈Dx, x〉 ≥ 0 for all x ∈ Cn. Let x = (x1, x2, . . . , xn)
T ∈ Cn. Then,

〈Dx, x〉 =
n

∑
i=1

λixixi =
n

∑
i=1

λi |xi|2 .

If λ1, λ2, . . . , λn ≥ 0, then we therefore conclude that 〈Dx, x〉 ≥ 0, so that D is
positive semidefinite. Otherwise, D is not positive semidefinite, since we can
pick an x = ej where j satisfies λi < 0. So D is positive semidefinite if and only
if λ1, λ2, . . . , λn ≥ 0. A similar argument shows that D is positive definite if and
only if λ1, λ2, . . . , λn > 0.
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Example 1.2.4. The Hilbert matrix

1
1

1
2

· · · 1
n

1
2

1
3

· · · 1
n + 1

...
... . . . ...

1
n

1
n + 1

· · · 1
2n


(i.e., the n × n-matrix whose (i, j)-th entry is

1
i + j− 1

) is positive definite. In

other words, for any x = (x1, x2, . . . , xn)
T ∈ Cn, we have

n

∑
i=1

n

∑
j=1

xixj

i + j− 1
≥ 0.

This is not obvious at all, and will be a HW exercise (with hints). More generally,
if a1, a2, . . . , an are positive reals, then the n × n-matrix whose (i, j)-th entry is

1
ai + aj

is positive definite.

As an application of positive semidefiniteness, the Schoenberg theorem gener-
alizes the triangle inequality. Recall that the triangle inequality says that three
nonnegative real numbers x, y, z are the mutual distances of 3 points in the plane
if and only if x ≤ y + z and y ≤ z + x and z ≤ x + y. In higher dimensions, the
analogous criterion is the following:

Theorem 1.2.5 (Schoenberg’s theorem). Let n ∈ N and r ∈ N. Let di,j be a
nonnegative real for each i, j ∈ [n]. Assume that di,i = 0 for all i ∈ [n], and
furthermore di,j = dj,i for all i, j ∈ [n]. Then, there exist n points P1, P2, . . . , Pn ∈
Rr satisfying ∣∣Pi − Pj

∣∣ = di,j for all i, j ∈ [n]

if and only if the (n− 1)× (n− 1)-matrix whose (i, j)-th entry is

d2
i,n + d2

j,n − d2
i,j for all i, j ∈ [n− 1]

is positive semidefinite and has rank ≤ r.

We will not prove this here.

Remark 1.2.6. If A ∈ Rn×n and 〈Ax, x〉 ≥ 0 for all x ∈ Rn, then we cannot
conclude that A is positive semidefinite. The reason is that it does not follow
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that A is symmetric. For example, A =

(
2 1
0 2

)
satisfies

〈Ax, x〉 = 2x2
1 + x1x2 + 2x2

2 =
1
2
(x1 + x2)

2 +
3
2

(
x2

1 + x2
2

)
≥ 0

for each x =

(
x1
x2

)
∈ R2, but it is not symmetric.

Theorem 1.2.7. Let A ∈ Cn×n be a Hermitian matrix. Then:
(a) The matrix A is positive semidefinite if and only if all eigenvalues of A are

nonnegative.
(b) The matrix A is positive definite if and only if all eigenvalues of A are

positive.
(Recall that the eigenvalues of A are reals by the spectral theorem.)

Proof. (a) Assume that A is positive semidefinite. Let λ be an eigenvalue of A. Let
x 6= 0 be a corresponding eigenvector. Then, Ax = λx. However, 〈Ax, x〉 ≥ 0 since
A is positive semidefinite. So 〈λx, x〉 ≥ 0. However, 〈λx, x〉 = λ 〈x, x〉, so that
λ 〈x, x〉 ≥ 0. We can cancel 〈x, x〉 (since 〈x, x〉 > 0). Thus, we get λ ≥ 0. Therefore,
all eigenvalues of A are ≥ 0.

Conversely, assume that all eigenvalues of A are ≥ 0. By the spectral theorem,
we can write A as

A = UDU∗, where D = diag (λ1, λ2, . . . , λn) ,

where λ1, λ2, . . . , λn are the eigenvalues of A. However,

D = diag (λ1, λ2, . . . , λn) =
(

diag
(√

λ1,
√

λ2, . . . ,
√

λn

))2

(the square roots here are well-defined, since the λi are nonnegative by assump-
tion). ............
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