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Math 504 Lecture 15

1. Hermitian matrices

Recall: A Hermitian matrix is an n X n-matrix A € C"*" such that A* = A.

Note that this is the complex analogue of real symmetric matrices (A € R"*"
such that AT = A).

If A is a Hermitian matrix, then A;; € Rand A;; = A; .

-1 i 2
For instance, the matrix —i 5 1—1i | is Hermitian.
2 141 O

1.1. Basics

Theorem 1.1.1. Let A € C"*" be an n x n-matrix. Then, the following are equiv-
alent:

e A: The matrix A is Hermitian (i.e., we have A* = A).
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B: We have A = UDU* for some unitary U and some real diagonal D (that
is, D is a diagonal matrix with real entries).

C: The matrix A is normal and its eigenvalues are real.

D: We have (Ax, x) € R for each x € C".
£: The matrix S*AS is Hermitian for all S € C"*k (for all k € IN).

To prove this, we will need a lemma:

Lemma 1.1.2. Let M € C"*" be an n x n-matrix. Assume that (Mx,x) = 0 for
each x € C". Then, M = 0.

Proof. If x € C" has entries x1,xp,...,x,, then

Mj1x1 + Mipxo + - -+ My xy X1
My 1x1 + Mpoxo + - - + My xy X2
(Mx, x) = . o
Mn,lxl + Mn,2x2 + - Mn,nxn Xn

(Mj1x1 + Mipxo + -+ - 4+ M xn) X;

|

N
I
=

n n

n
Z Ml-,jx]-xi = Z M,',]-xix]-.
j=1 i=1 j=1

1

I
I

So this is always = 0 by assumption, no matter what x is. So we have shown that

X1
n n Xo
Z M; ixixj =0 for every x = } e C".
i=1 j=1 :

Xn

In particular:

* We can apply this to x = e; = (1,0,0,.. .,O)T, and we obtain M ; .1-1=0,
which means M; ; = 0. Similarly, we can find M;; = 0 for all i € [n].
e We can apply this to x =e; +e; = (1,1,0,0, .. .,O)T, and we obtain
Ml,l 'T~1—|—M1’2-T-1+M2,1 ~T'1~M2,2 .1-1=0.
This simplifies to
Mg+ Mo+ My + My =0.

However, the previous bullet point yields M;; = 0 and M = 0, so this
simplifies further to
My, + M1 =0.
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e We can apply this to x = e; +ie; = (1,4,0,0,..., O)T, and we obtain
Ml,l 'T-l—{—Mllz'T'i—l—MZ,l 'Z'l'lez i-i=0.
This simplifies to
M1 +iMyp —iMpg+ My = 0.

However, we know that M;; = 0 and M;, = 0, so this simplifies further to
iMip —iMy, = 0.

Thus,
M1,2 — M2,1 =0.

Adding this to
My, + My =0,

we obtain 2M;, = 0. In other words, M, = 0. Similarly, we can show that
M;; = 0 for all i # j.

So we have now shown that all entries of M are 0. In other words, M = 0. This
proves the lemma. N

Now we can prove the theorem:

Proof of Theorem. The implication A = B follows from the spectral theorem. So
does the implication A = C. The implication B = A follows from a corollary
of the spectral theorem. Finally, C = B also follows from the spectral theorem.
So we only need to prove the equivalence A <= D <= €.

* Proof of A = D: Assume that A holds. Thus, A = A*. Now, let x € C".
Then, (Ax,x) = (x, Ax) (by the rules for inner products). However, by the
formula (u,v) = v*u, we have

(Ax, x) = x* Ax and (x, Ax) = (Ax)" x = x* A" x = x*Ax.
—— N~~~
—x*A* =A
Comparing these two equalities, we see that (Ax,x) = (x, Ax). Compar-

ing this with (Ax,x) = (x, Ax), we obtain (x, Ax) = (x, Ax). This entails
(x, Ax) € R (since the only complex numbers z € C that satisfy z = Z are the
real numbers). Therefore, (Ax,x) = (x, Ax) € R. Thus, the statement D is
proved.

* Proof of D = A: Assume that D holds. Thus, (Ax,x) € R for each x € C".
Again, we can see that each x € C" satisfies

(Ax,x) = x*Ax and (x,Ax) = (Ax)"x = x*A*x.
A
—x*A*
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Thus, each x € C" satisfies
x*Ax = (Ax, x) = (Ax, x) (since (Ax,x) € R)
= (x, Ax) = x*A™x,

so that

x*Ax —x*A*x =0,
so that

x* (A*—A)x =0.

Applying our Lemma to M = A* — A, we thus conclude that A* — A = 0. In
other words, A* = A. This proves A.

* Proof of A = &: If A is Hermitian, then A* = A, so that
(S*AS)" = S* A* (S§*)" = S*AS,
M~ e~
=A
and therefore S*AS is again Hermitian. This proves A = £.

* Proof of £ = A: If statement £ holds, then we can apply it to S = I, (and
k = n), and conclude that I;Al, is Hermitian; but this is simply saying that
A is Hermitian. So & = A follows.

The theorem is proved. O

As a reminder: Sums of Hermitian matrices are Hermitian, but products are not
(in general).

1.2. Definiteness

Definition 1.2.1. Let A € C"*" be a Hermitian matrix.
(a) We say that A is positive semidefinite if it satisfies

(Ax,x) >0 for all x € C".
(b) We say that A is positive definite if it satisfies
(Ax,x) >0 for all nonzero x € C".
(c) We say that A is negative semidefinite if it satisfies
(Ax,x) <0 for all x € C".
(d) We say that A is negative definite if it satisfies
(Ax,x) <0 for all nonzero x € C".

(e) We say that A is indefinite if it is neither positive semidefinite nor negative
semidefinite, i.e., if there exist vectors x,y € C" such that

(Ax,x) <0< (Ay,y).
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Here are some examples of definiteness:

11 --- 1
11 --- 1

Example 1.2.2. Let n € IN. Let | = L _ |- This matrix | is real
11 --- 1

symmetric, thus Hermitian. Is it positive definite? Positive semidefinite?
Let x = (xl,xz,...,xn)T € C". Then,

2

So | is positive semidefinite.

n

Is | positive definite? To have (Jx,x) = 0 is equivalent to having ) x; = 0.
i=1

When n =1 (or n = 0), this is equivalent to having x = 0, so | is positive definite

in this case. However, if n > 1, then this is not equivalent to having x = 0, and
in fact the vector e; — e; is an example of a nonzero vector x € C" such that
(Jx,x) = 0. So ] is not positive definite unless n < 1.

Example 1.2.3. Consider a diagonal matrix

Ay 0O -~ 0
0 Ay == 0
D:=diag(A, Ao A) = | ..

with A1, A2, ..., Ay € R. When is D positive semidefinite?
We want (Dx,x) > 0 for all x € C". Let x = (xl,xz,...,xn)T € C". Then,

n n
<DX,X> = ZAix_ixi = Z}\i |xi|2.
i=1 i=1

If A, Ap,...,Ay > 0, then we therefore conclude that (Dx,x) > 0, so that D is
positive semidefinite. Otherwise, D is not positive semidefinite, since we can
pick an x = e; where j satisfies A; < 0. So D is positive semidefinite if and only
if Ay, Ay, ..., Ay > 0. A similar argument shows that D is positive definite if and
only if Ay, Ay, ..., Ay > 0.
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Example 1.2.4. The Hilbert matrix

1 1 1
1 2 n
1 1 1
2 3 n+1
1 1 1
n on+l 2n

(i.e., the n x n-matrix whose (i,j)-th entry is ) is positive definite. In

i+j—1
other words, for any x = (xq,xp,. .., xn)T € C", we have
n X iX;

; ¥z+]—1 -

This is not obvious at all, and will be a HW exercise (with hints). More generally,
if aj,ay,...,a, are positive reals, then the n x n-matrix whose (i, )-th entry is

is positive definite.

ai+a]~

As an application of positive semidefiniteness, the Schoenberg theorem gener-
alizes the triangle inequality. Recall that the triangle inequality says that three
nonnegative real numbers x,y,z are the mutual distances of 3 points in the plane
if and only if x < y+zand y < z+x and z < x +y. In higher dimensions, the
analogous criterion is the following:

Theorem 1.2.5 (Schoenberg’s theorem). Let n € IN and r € IN. Let d;; be a
nonnegative real for each i,j € [n]. Assume that d;; = 0 for all i € [n], and
furthermore d;; = d;; for all i,j € [n]. Then, there exist n points Py, P, ..., P, €
R" satisfying

|P;— Pj| = d; for all i,j € [n]

if and only if the (n — 1) x (n — 1)-matrix whose (i, j)-th entry is

d%n+d}?—,n—d%j foralli,je [n—1]

is positive semidefinite and has rank <.
We will not prove this here.

Remark 1.2.6. If A € R"*" and (Ax,x) > 0 for all x € R", then we cannot
conclude that A is positive semidefinite. The reason is that it does not follow
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DN

that A is symmetric. For example, A = ( ) satisfies
1
2

3
(Ax,x) =262 + 1100 + 223 = = (21 + x2)* + 5 (x% + x%) >0

for each x = ( il ) € R?, but it is not symmetric.
2

Theorem 1.2.7. Let A € C"*" be a Hermitian matrix. Then:

(a) The matrix A is positive semidefinite if and only if all eigenvalues of A are
nonnegative.

(b) The matrix A is positive definite if and only if all eigenvalues of A are
positive.

(Recall that the eigenvalues of A are reals by the spectral theorem.)

Proof. (a) Assume that A is positive semidefinite. Let A be an eigenvalue of A. Let
x # 0 be a corresponding eigenvector. Then, Ax = Ax. However, (Ax, x) > 0 since
A is positive semidefinite. So (Ax,x) > 0. However, (Ax,x) = A (x,x), so that
A {x,x) > 0. We can cancel (x, x) (since (x,x) > 0). Thus, we get A > 0. Therefore,
all eigenvalues of A are > 0.

Conversely, assume that all eigenvalues of A are > 0. By the spectral theorem,
we can write A as

A =UDU", where D = diag (A1, A, ..., Ay),

where Aj, Ay, ..., Ay are the eigenvalues of A. However,

D = diag()\1,)\2,---//\n) = (diag <\/A—1’ \/A_z,---,\//\—n>>2

(the square roots here are well-defined, since the A; are nonnegative by assump-
tion). ............ ]
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