Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

October 25, 2021 (unfinished!)

Contents

1.	Hermitian matrices			
	1.1.	Basics	1	
	1.2.	Definiteness	4	

Math 504 Lecture 15

1. Hermitian matrices

Recall: A **Hermitian matrix** is an $n \times n$ -matrix $A \in \mathbb{C}^{n \times n}$ such that $A^* = A$.

Note that this is the complex analogue of real symmetric matrices ($A \in \mathbb{R}^{n \times n}$ such that $A^T = A$).

If *A* is a Hermitian matrix, then $A_{i,i} \in \mathbb{R}$ and $A_{i,j} = \overline{A_{j,i}}$.

For instance, the matrix $\begin{pmatrix} -1 & i & 2 \\ -i & 5 & 1-i \\ 2 & 1+i & 0 \end{pmatrix}$ is Hermitian.

1.1. Basics

Theorem 1.1.1. Let $A \in \mathbb{C}^{n \times n}$ be an $n \times n$ -matrix. Then, the following are equivalent:

• A: The matrix *A* is Hermitian (i.e., we have $A^* = A$).

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

- *B*: We have *A* = *UDU*^{*} for some unitary *U* and some real diagonal *D* (that is, *D* is a diagonal matrix with real entries).
- *C*: The matrix *A* is normal and its eigenvalues are real.
- \mathcal{D} : We have $\langle Ax, x \rangle \in \mathbb{R}$ for each $x \in \mathbb{C}^n$.
- \mathcal{E} : The matrix S^*AS is Hermitian for all $S \in \mathbb{C}^{n \times k}$ (for all $k \in \mathbb{N}$).

To prove this, we will need a lemma:

Lemma 1.1.2. Let $M \in \mathbb{C}^{n \times n}$ be an $n \times n$ -matrix. Assume that $\langle Mx, x \rangle = 0$ for each $x \in \mathbb{C}^n$. Then, M = 0.

Proof. If $x \in \mathbb{C}^n$ has entries x_1, x_2, \ldots, x_n , then

$$\langle Mx, x \rangle = \left\langle \begin{pmatrix} M_{1,1}x_1 + M_{1,2}x_2 + \dots + M_{1,n}x_n \\ M_{2,1}x_1 + M_{2,2}x_2 + \dots + M_{2,n}x_n \\ \vdots \\ M_{n,1}x_1 + M_{n,2}x_2 + \dots + M_{n,n}x_n \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \right\rangle$$
$$= \sum_{i=1}^n \left(M_{i,1}x_1 + M_{i,2}x_2 + \dots + M_{i,n}x_n \right) \overline{x_i}$$
$$= \sum_{i=1}^n \sum_{j=1}^n M_{i,j}x_j\overline{x_i} = \sum_{i=1}^n \sum_{j=1}^n M_{i,j}\overline{x_i}x_j.$$

So this is always = 0 by assumption, no matter what *x* is. So we have shown that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} M_{i,j} \overline{x_i} x_j = 0 \quad \text{for every } x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^n.$$

In particular:

- We can apply this to $x = e_1 = (1, 0, 0, \dots, 0)^T$, and we obtain $M_{1,1} \cdot \overline{1} \cdot 1 = 0$, which means $M_{1,1} = 0$. Similarly, we can find $M_{i,i} = 0$ for all $i \in [n]$.
- We can apply this to $x = e_1 + e_2 = (1, 1, 0, 0, \dots, 0)^T$, and we obtain

$$M_{1,1} \cdot \overline{1} \cdot 1 + M_{1,2} \cdot \overline{1} \cdot 1 + M_{2,1} \cdot \overline{1} \cdot 1 \cdot M_{2,2} \cdot \overline{1} \cdot 1 = 0.$$

This simplifies to

$$M_{1,1} + M_{1,2} + M_{2,1} + M_{2,2} = 0.$$

However, the previous bullet point yields $M_{1,1} = 0$ and $M_{2,2} = 0$, so this simplifies further to

$$M_{1,2} + M_{2,1} = 0.$$

• We can apply this to $x = e_1 + ie_2 = (1, i, 0, 0, \dots, 0)^T$, and we obtain

$$M_{1,1} \cdot \overline{1} \cdot 1 + M_{1,2} \cdot \overline{1} \cdot i + M_{2,1} \cdot \overline{i} \cdot 1 \cdot M_{2,2} \cdot \overline{i} \cdot i = 0.$$

This simplifies to

$$M_{1,1} + iM_{1,2} - iM_{2,1} + M_{2,2} = 0.$$

However, we know that $M_{1,1} = 0$ and $M_{2,2} = 0$, so this simplifies further to

$$iM_{1,2} - iM_{2,1} = 0.$$

Thus,

$$M_{1,2} - M_{2,1} = 0.$$

Adding this to

$$M_{1,2} + M_{2,1} = 0$$
,

we obtain $2M_{1,2} = 0$. In other words, $M_{1,2} = 0$. Similarly, we can show that $M_{i,j} = 0$ for all $i \neq j$.

So we have now shown that all entries of *M* are 0. In other words, M = 0. This proves the lemma.

Now we can prove the theorem:

Proof of Theorem. The implication $\mathcal{A} \Longrightarrow \mathcal{B}$ follows from the spectral theorem. So does the implication $\mathcal{A} \Longrightarrow \mathcal{C}$. The implication $\mathcal{B} \Longrightarrow \mathcal{A}$ follows from a corollary of the spectral theorem. Finally, $\mathcal{C} \Longrightarrow \mathcal{B}$ also follows from the spectral theorem. So we only need to prove the equivalence $\mathcal{A} \Longleftrightarrow \mathcal{D} \Longleftrightarrow \mathcal{E}$.

• *Proof of* $A \implies D$: Assume that A holds. Thus, $A = A^*$. Now, let $x \in \mathbb{C}^n$. Then, $\langle Ax, x \rangle = \overline{\langle x, Ax \rangle}$ (by the rules for inner products). However, by the formula $\langle u, v \rangle = v^* u$, we have

$$\langle Ax, x \rangle = x^*Ax$$
 and $\langle x, Ax \rangle = \underbrace{(Ax)^*}_{=x^*A^*} x = x^*\underbrace{A^*}_{=A} x = x^*Ax.$

Comparing these two equalities, we see that $\langle Ax, x \rangle = \langle x, Ax \rangle$. Comparing this with $\langle Ax, x \rangle = \overline{\langle x, Ax \rangle}$, we obtain $\langle x, Ax \rangle = \overline{\langle x, Ax \rangle}$. This entails $\langle x, Ax \rangle \in \mathbb{R}$ (since the only complex numbers $z \in \mathbb{C}$ that satisfy $z = \overline{z}$ are the real numbers). Therefore, $\langle Ax, x \rangle = \langle x, Ax \rangle \in \mathbb{R}$. Thus, the statement \mathcal{D} is proved.

• *Proof of* $\mathcal{D} \Longrightarrow \mathcal{A}$: Assume that \mathcal{D} holds. Thus, $\langle Ax, x \rangle \in \mathbb{R}$ for each $x \in \mathbb{C}^n$. Again, we can see that each $x \in \mathbb{C}^n$ satisfies

$$\langle Ax, x \rangle = x^*Ax$$
 and $\langle x, Ax \rangle = \underbrace{(Ax)^*}_{=x^*A^*} x = x^*A^*x.$

Thus, each $x \in \mathbb{C}^n$ satisfies

$$x^*Ax = \langle Ax, x \rangle = \overline{\langle Ax, x \rangle} \qquad (\text{since } \langle Ax, x \rangle \in \mathbb{R}) \\ = \langle x, Ax \rangle = x^*A^*x,$$

so that

$$x^*Ax - x^*A^*x = 0,$$

so that

 $x^* \left(A^* - A \right) x = 0.$

Applying our Lemma to $M = A^* - A$, we thus conclude that $A^* - A = 0$. In other words, $A^* = A$. This proves A.

• *Proof of* $\mathcal{A} \Longrightarrow \mathcal{E}$: If A is Hermitian, then $A^* = A$, so that

$$(S^*AS)^* = S^* \underbrace{A^*}_{=A} \underbrace{(S^*)^*}_{=S} = S^*AS,$$

and therefore S^*AS is again Hermitian. This proves $\mathcal{A} \Longrightarrow \mathcal{E}$.

• *Proof of* $\mathcal{E} \Longrightarrow \mathcal{A}$: If statement \mathcal{E} holds, then we can apply it to $S = I_n$ (and k = n), and conclude that $I_n^* A I_n$ is Hermitian; but this is simply saying that A is Hermitian. So $\mathcal{E} \Longrightarrow \mathcal{A}$ follows.

The theorem is proved.

As a reminder: Sums of Hermitian matrices are Hermitian, but products are not (in general).

1.2. Definiteness

Definition 1.2.1. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. (a) We say that A is **positive semidefinite** if it satisfies

 $\langle Ax, x \rangle \ge 0$ for all $x \in \mathbb{C}^n$.

(b) We say that *A* is **positive definite** if it satisfies

 $\langle Ax, x \rangle > 0$ for all nonzero $x \in \mathbb{C}^n$.

(c) We say that *A* is **negative semidefinite** if it satisfies

 $\langle Ax, x \rangle \leq 0$ for all $x \in \mathbb{C}^n$.

(d) We say that *A* is **negative definite** if it satisfies

 $\langle Ax, x \rangle < 0$ for all nonzero $x \in \mathbb{C}^n$.

(e) We say that *A* is **indefinite** if it is neither positive semidefinite nor negative semidefinite, i.e., if there exist vectors $x, y \in \mathbb{C}^n$ such that

 $\langle Ax,x\rangle < 0 < \langle Ay,y\rangle$.

Here are some examples of definiteness:

Example 1.2.2. Let
$$n \in \mathbb{N}$$
. Let $J = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$. This matrix J is real

symmetric, thus Hermitian. Is it positive definite? Positive semidefinite? Let $x = (x_1, x_2, ..., x_n)^T \in \mathbb{C}^n$. Then,

$$\langle Jx, x \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{x_i} x_j = \left(\sum_{i=1}^{n} \overline{x_i}\right) \left(\sum_{j=1}^{n} x_j\right) = \left(\overline{\sum_{i=1}^{n} x_i}\right) \left(\sum_{j=1}^{n} x_j\right)$$
$$= \left(\overline{\sum_{i=1}^{n} x_i}\right) \left(\sum_{i=1}^{n} x_i\right) = \left|\sum_{i=1}^{n} x_i\right|^2 \ge 0.$$

So *J* is positive semidefinite.

Is *J* positive definite? To have $\langle Jx, x \rangle = 0$ is equivalent to having $\sum_{i=1}^{n} x_i = 0$. When n = 1 (or n = 0), this is equivalent to having x = 0, so *J* is positive definite in this case. However, if n > 1, then this is not equivalent to having x = 0, and in fact the vector $e_1 - e_2$ is an example of a nonzero vector $x \in \mathbb{C}^n$ such that $\langle Jx, x \rangle = 0$. So *J* is not positive definite unless $n \le 1$.

Example 1.2.3. Consider a diagonal matrix

$$D := \operatorname{diag} (\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

with $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$. When is *D* positive semidefinite?

We want $\langle Dx, x \rangle \ge 0$ for all $x \in \mathbb{C}^n$. Let $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{C}^n$. Then,

$$\langle Dx, x \rangle = \sum_{i=1}^n \lambda_i \overline{x_i} x_i = \sum_{i=1}^n \lambda_i |x_i|^2.$$

If $\lambda_1, \lambda_2, ..., \lambda_n \ge 0$, then we therefore conclude that $\langle Dx, x \rangle \ge 0$, so that *D* is positive semidefinite. Otherwise, *D* is not positive semidefinite, since we can pick an $x = e_j$ where *j* satisfies $\lambda_i < 0$. So *D* is positive semidefinite if and only if $\lambda_1, \lambda_2, ..., \lambda_n \ge 0$. A similar argument shows that *D* is positive definite if and only if $\lambda_1, \lambda_2, ..., \lambda_n > 0$.

Example 1.2.4. The Hilbert matrix

$$\begin{pmatrix} \frac{1}{1} & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n} \end{pmatrix}$$

(i.e., the $n \times n$ -matrix whose (i, j)-th entry is $\frac{1}{i+j-1}$) is positive definite. In other words, for any $x = (x_1, x_2, ..., x_n)^T \in \mathbb{C}^n$, we have

$$\sum_{i=1}^n \sum_{j=1}^n \frac{\overline{x_i} x_j}{i+j-1} \ge 0.$$

This is not obvious at all, and will be a HW exercise (with hints). More generally, if $a_1, a_2, ..., a_n$ are positive reals, then the $n \times n$ -matrix whose (i, j)-th entry is $\frac{1}{a_i + a_j}$ is positive definite.

As an application of positive semidefiniteness, the Schoenberg theorem generalizes the triangle inequality. Recall that the triangle inequality says that three nonnegative real numbers x, y, z are the mutual distances of 3 points in the plane if and only if $x \le y + z$ and $y \le z + x$ and $z \le x + y$. In higher dimensions, the analogous criterion is the following:

Theorem 1.2.5 (Schoenberg's theorem). Let $n \in \mathbb{N}$ and $r \in \mathbb{N}$. Let $d_{i,j}$ be a nonnegative real for each $i, j \in [n]$. Assume that $d_{i,i} = 0$ for all $i \in [n]$, and furthermore $d_{i,j} = d_{j,i}$ for all $i, j \in [n]$. Then, there exist n points $P_1, P_2, \ldots, P_n \in \mathbb{R}^r$ satisfying

 $|P_i - P_j| = d_{i,j}$ for all $i, j \in [n]$

if and only if the $(n-1) \times (n-1)$ -matrix whose (i, j)-th entry is

$$d_{i,n}^2 + d_{j,n}^2 - d_{i,j}^2$$
 for all $i, j \in [n-1]$

is positive semidefinite and has rank $\leq r$.

We will not prove this here.

Remark 1.2.6. If $A \in \mathbb{R}^{n \times n}$ and $\langle Ax, x \rangle \geq 0$ for all $x \in \mathbb{R}^n$, then we **cannot** conclude that *A* is positive semidefinite. The reason is that it does not follow

that *A* is symmetric. For example, $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ satisfies

$$\langle Ax, x \rangle = 2x_1^2 + x_1x_2 + 2x_2^2 = \frac{1}{2}(x_1 + x_2)^2 + \frac{3}{2}(x_1^2 + x_2^2) \ge 0$$

for each $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$, but it is not symmetric.

Theorem 1.2.7. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Then:

(a) The matrix *A* is positive semidefinite if and only if all eigenvalues of *A* are nonnegative.

(b) The matrix A is positive definite if and only if all eigenvalues of A are positive.

(Recall that the eigenvalues of *A* are reals by the spectral theorem.)

Proof. (a) Assume that *A* is positive semidefinite. Let λ be an eigenvalue of *A*. Let $x \neq 0$ be a corresponding eigenvector. Then, $Ax = \lambda x$. However, $\langle Ax, x \rangle \geq 0$ since *A* is positive semidefinite. So $\langle \lambda x, x \rangle \geq 0$. However, $\langle \lambda x, x \rangle = \lambda \langle x, x \rangle$, so that $\lambda \langle x, x \rangle \geq 0$. We can cancel $\langle x, x \rangle$ (since $\langle x, x \rangle > 0$). Thus, we get $\lambda \geq 0$. Therefore, all eigenvalues of *A* are ≥ 0 .

Conversely, assume that all eigenvalues of *A* are \geq 0. By the spectral theorem, we can write *A* as

 $A = UDU^*$, where $D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$,

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of *A*. However,

$$D = \operatorname{diag} \left(\lambda_1, \lambda_2, \dots, \lambda_n\right) = \left(\operatorname{diag} \left(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n}\right)\right)^2$$

(the square roots here are well-defined, since the λ_i are nonnegative by assumption).