Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

October 20, 2021 (unfinished!)

Contents

1.	Jordan canonical (aka normal) form (cont'd)		1
	1.1.	The companion matrix	1
	1.2.	The Jordan–Chevalley decomposition	4
	1.3.	The real Jordan canonical form	7

Math 504 Lecture 13

1. Jordan canonical (aka normal) form (cont'd)

1.1. The companion matrix

For each $n \times n$ -matrix A, we have defined its characteristic polynomial p_A and its minimal polynomial q_A . What variety of polynomials do we get this way? Do all characteristic polynomials share some property, or can any monic polynomial be a characteristic polynomial? The same question for minimal polynomials?

Poll:

- 1. Any monic polynomial can be a characteristic polynomial.
- 2. Characteristic polynomials have some special property among monic polynomials.

The answer is 1.

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

Definition 1.1.1. Let \mathbb{F} be a field, and let $n \in \mathbb{N}$.

Let $p(t) = t^n + p_{n-1}t^{n-1} + p_{n-2}t^{n-2} + \cdots + p_1t^1 + p_0t^0$ be a monic polynomial of degree *n* with coefficients in **F**. Then, the **companion matrix** of p(t) is defined to be the matrix

$$C_p := \begin{pmatrix} 0 & \cdots & -p_0 \\ 1 & 0 & \cdots & -p_1 \\ & 1 & 0 & \cdots & -p_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ & & \cdots & 0 & -p_{n-2} \\ & & & \cdots & 1 & -p_{n-1} \end{pmatrix} \in \mathbb{F}^{n \times n}.$$

This is the $n \times n$ -matrix whose first n - 1 columns are the standard basis vectors e_2, e_3, \ldots, e_n , and whose last column is $(-p_0, -p_1, \ldots, -p_{n-1})^T$.

Proposition 1.1.2. For any monic polynomial p(t), we have

$$p_{C_{p}}(t) = q_{C_{p}}(t) = p(t).$$

(The two *p*'s in " p_{C_p} " stand for different things: The first stands for "characteristic polynomial", while the second is the *p*(*t*) we have given.)

Proof. Let us first show that $p_{C_{p}}(t) = p(t)$. To do so, we induct on *n*. Recall that

$$p_{C_p}(t) = \det (tI_n - C_p)$$

=
$$\det \begin{pmatrix} t & \cdots & p_0 \\ -1 & t & \cdots & p_1 \\ & -1 & t & \cdots & p_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ & & \cdots & t & p_{n-2} \\ & & & \cdots & -1 & t + p_{n-1} \end{pmatrix}.$$

We compute this determinant by Laplace expansion along the first row:

$$\det \begin{pmatrix} t & \cdots & p_{0} \\ -1 & t & \cdots & p_{1} \\ -1 & t & \cdots & p_{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ & \cdots & t & p_{n-2} \\ & \cdots & -1 & t + p_{n-1} \end{pmatrix}$$

$$= t \det \begin{pmatrix} t & \cdots & p_{1} \\ -1 & t & \cdots & p_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ & \cdots & t & p_{n-2} \\ & \cdots & -1 & t + p_{n-1} \end{pmatrix} + (-1)^{n+1} p_{0} \det \begin{pmatrix} -1 & t & \cdots \\ -1 & t & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ & \cdots & t & p_{n-2} \\ & \cdots & -1 & t + p_{n-1} \end{pmatrix}$$

$$= t \begin{pmatrix} t^{n-1} + p_{n-1}t^{n-2} + \cdots + p_{2}t^{1} + p_{1}t^{0} \end{pmatrix} + \underbrace{(-1)^{n+1} p_{0} (-1)^{n-1}}_{=p_{0}}$$

$$= t \begin{pmatrix} t^{n-1} + p_{n-1}t^{n-2} + \cdots + p_{2}t^{1} + p_{1}t^{0} \end{pmatrix} + \underbrace{(-1)^{n+1} p_{0} (-1)^{n-1}}_{=p_{0}}$$

$$= t \begin{pmatrix} t^{n-1} + p_{n-1}t^{n-2} + \cdots + p_{2}t^{1} + p_{1}t^{0} \end{pmatrix} + p_{0}$$

$$= t^{n} + p_{n-1}t^{n-1} + p_{2}t^{2} + p_{1}t^{1} + p_{0} = p(t).$$

Thus, $p_{C_{v}}(t) = p(t)$ is proved.

Now, let us show that $q_{C_p}(t) = p(t)$. Indeed, both $q_{C_p}(t)$ and p(t) are monic polynomials, and we know from last lecture that $q_{C_p}(t) | p_{C_p}(t) = p(t)$. Hence, if $q_{C_p}(t) \neq p(t)$, then $q_{C_p}(t)$ is a proper divisor of p(t), thus has degree < n (since p(t) has degree n). So we just need to rule out the possibility that $q_{C_p}(t)$ has degree < n.

Indeed, assume (for the sake of contradiction) that $q_{C_p}(t)$ has degree < n. Thus, $q_{C_p}(t) = a_k t^k + a_{k-1} t^{k-1} + \cdots + a_0 t^0$ with k < n and $a_k = 1$ (since q_{C_p} is monic of degree < n). However, the definition of q_{C_p} yields $q_{C_p}(C_p) = 0$. In other words,

$$a_k C_p^k + a_{k-1} C_p^{k-1} + \dots + a_0 C_p^0 = 0.$$

However, let us look at what C_p does to the standard basis vector $e_1 = (1, 0, 0, 0, ..., 0)^T$. We have

$$C_p^0 e_1 = e_1;$$

 $C_p^1 e_1 = C_p e_1 = e_2;$
 $C_p^2 e_1 = C_p e_2 = e_3;$
...;
 $C_p^{n-1} e_1 = e_n.$

Thus, applying our equality

$$a_k C_p^k + a_{k-1} C_p^{k-1} + \dots + a_0 C_p^0 = 0$$

to e_1 , we obtain

$$a_k e_{k+1} + a_{k-1} e_k + \dots + a_0 e_1 = 0$$
 (since $k < n$).

But this is absurd, since $e_1, e_2, ..., e_n$ are linearly independent. So we found a contradiction, and thus we conclude that $q_{C_p}(t)$ has degree $\ge n$. So, by the above, we obtain $q_{C_p}(t) = p(t)$.

Remark 1.1.3. For algebraists: The companion matrix C_p has a natural meaning. To wit, consider the quotient ring $\mathbb{F}[t] / (p(t))$ as an *n*-dimensional \mathbb{F} -vector space with basis $(\overline{t^0}, \overline{t^1}, \dots, \overline{t^{n-1}})$. Then, the companion matrix C_p represents the endomorphism "multiply by t" (that is, the endomorphism that sends each $\overline{f(t)}$ to $\overline{t \cdot f(t)}$) in this basis.

1.2. The Jordan–Chevalley decomposition

Recall that:

- A matrix A ∈ C^{n×n} is said to be diagonalizable if it is similar to a diagonal matrix.
- A matrix $A \in \mathbb{C}^{n \times n}$ is said to be **nilpotent** if some power of it is the zero matrix (i.e., if $A^k = 0$ for some $k \in \mathbb{N}$). Actually (this will be a HW problem), for an $n \times n$ -matrix A to be nilpotent, it is necessary and sufficient that $A^n = 0$.

Theorem 1.2.1 (Jordan–Chevalley decomposition). Let $A \in \mathbb{C}^{n \times n}$ be an $n \times n$ -matrix.

(a) Then, there exists a unique pair (*D*, *N*) consisting of

- a diagonalizable matrix $D \in \mathbb{C}^{n \times n}$ and
- a nilpotent matrix $N \in \mathbb{C}^{n \times n}$

such that DN = ND and A = D + N.

(b) Both *D* and *N* in this pair can be written as polynomials in *A*. In other words, there exist two polynomials $f, g \in \mathbb{C}[t]$ such that D = f(A) and N = g(A).

The pair (D, N) in this theorem is known as the **Jordan–Chevalley decomposition** (or the **Dunford decomposition**) of A.

Partial proof. We will show the following two claims:

Claim 2: The D and N in this particular pair can be written as polynomials in A.

To prove both Claims 1 and 2, we can WLOG assume that *A* is a Jordan matrix. Indeed, if $A = SJS^{-1}$ for some invertible *S*, and if (D', N') is a Jordan–Chevalley decomposition of *J*, then $(SD'S^{-1}, SN'S^{-1})$ is a Jordan–Chevalley decomposition of *A*. Conjugation of matrices preserves all the properties we need (such as being a polynomial, commuting, etc.), so we only need to prove the claims for *J*.

So we WLOG assume that *A* is a Jordan matrix. Thus,

$$A = \begin{pmatrix} J_{k_1}(\lambda_1) & & & \\ & J_{k_2}(\lambda_2) & & \\ & & \ddots & \\ & & & J_{k_p}(\lambda_p) \end{pmatrix}$$

for some $\lambda_1, \lambda_2, ..., \lambda_p$ and some $k_1, k_2, ..., k_p$. Now, we want to decompose this *A* as D + N with *D* diagonal and *N* nilpotent and DN = ND. We do this by setting

$$D := \begin{pmatrix} \lambda_1 I_{k_1} & & & \\ & \lambda_2 I_{k_2} & & \\ & & \ddots & \\ & & & \lambda_p I_{k_p} \end{pmatrix} \quad \text{and} \quad N := \begin{pmatrix} J_{k_1}(0) & & & \\ & J_{k_2}(0) & & \\ & & \ddots & \\ & & & J_{k_p}(0) \end{pmatrix}$$

It is easy to check that A = D + N and DN = ND (since block-diagonal matrices can be multiplied block by block). Clearly, D is diagonalizable (since D is diagonal) and N is nilpotent (since N is strictly upper-triangular). Thus, Claim 1 is proved.

Now, we need to prove Claim 2 – i.e., we need to prove that *D* and *N* can be written as polynomials in *A*. Since A = D + N, it suffices to show this for *D* (since N = A - D).

Our above construction of *D* shows that *D* is simply *A* with its non-diagonal entries removed. Let $\mu_1, \mu_2, \ldots, \mu_m$ be the **distinct** eigenvalues (i.e., diagonal entries) of *A*. For each $i \in [m]$, let ℓ_i be the size of the largest Jordan block of *A* at eigenvalue μ_i . (Thus, the minimal polynomial of *A* is $\prod_{i=1}^{m} (t - \mu_i)^{\ell_i}$.)

Now, define the polynomial

$$f(t) := \sum_{i=1}^{m} \mu_i \prod_{j \neq i} \left(\frac{t - \mu_j}{\mu_i - \mu_j} \right)^{\ell_j} \in \mathbb{C}[t],$$

where the product sign $\prod_{j \neq i}$ means a product over all $j \in [m]$ except for j = i. We claim that f(A) = D. In other words, we claim that applying f to A has the effect

of cleaning out all off-diagonal entries (while the diagonal entries remain as they are).

To prove this claim, we recall that

$$A = \begin{pmatrix} J_{k_1}(\lambda_1) & & & \\ & J_{k_2}(\lambda_2) & & \\ & & \ddots & \\ & & & J_{k_p}(\lambda_p) \end{pmatrix}.$$

Hence,

$$f(A) = \begin{pmatrix} f\left(J_{k_{1}}\left(\lambda_{1}\right)\right) & & & \\ & f\left(J_{k_{2}}\left(\lambda_{2}\right)\right) & & \\ & & \ddots & \\ & & & f\left(J_{k_{p}}\left(\lambda_{p}\right)\right) \end{pmatrix}.$$

So we need to show that

$$f(J_{k_u}(\lambda_u)) = \lambda_u I_{k_u}$$
 for each $u \in [p]$.

To prove this, we fix a $u \in [p]$, and we set $B := J_{k_u}(\lambda_u)$. Thus, $B = J_k(\mu_v)$ for some $v \in [p]$ and some positive $k \leq \ell_v$.

Substituting *B* for *t* into

$$f(t) := \sum_{i=1}^{m} \mu_i \prod_{j \neq i} \left(\frac{t - \mu_j}{\mu_i - \mu_j} \right)^{\ell_j},$$

we obtain

$$f(B) = \sum_{i=1}^{m} \mu_i \prod_{j \neq i} \left(\frac{B - \mu_j I}{\mu_i - \mu_j} \right)^{\ell_j}.$$

We take a closer look at the addends of the sum. For each $i \in [m]$ that is distinct from v, the product $\prod_{j \neq i} \left(\frac{B - \mu_j I}{\mu_i - \mu_j} \right)^{\ell_j}$ contains a factor $\left(\frac{B - \mu_v I}{\mu_i - \mu_v} \right)^{\ell_v} = 0$, because the $k \times k$ -matrix $\frac{B - \mu_v I}{\mu_i - \mu_v}$ is strictly upper-triangular and $k \leq \ell_v$. So the entire addend $\mu_i \prod_{j \neq i} \left(\frac{B - \mu_j I}{\mu_i - \mu_j} \right)^{\ell_j}$ is 0 whenever i is distinct from v. Thus, all these addends

disappear except for the addend for i = v. So the above formula for f(B) simplifies to

$$f(B) = \mu_v \prod_{j \neq v} \left(\frac{B - \mu_j I}{\mu_v - \mu_j} \right)^{\ell_j}.$$

This should be $\mu_v I$.

I'm just seeing this isn't exactly the case. TODO: Fix this.

[Alternatively, use the Chinese Remainder Theorem for polynomials to find a polynomial *f* that satisfies $f(J_{k_u}(\lambda_u)) = \lambda_u I_{k_u}$. This polynomial *f* should satisfy $f \equiv (t - \lambda_u)^{k_u} + \lambda_u$ for each *u*.]

1.3. The real Jordan canonical form

Given a matrix $A \in \mathbb{R}^{n \times n}$ with real entries, its Jordan canonical form doesn't necessarily have real entries. Indeed, the eigenvalues of A don't have to be real. Sometimes, we want to find a "simple" form for A that does have real entries. What follows is a way to tweak the Jordan canonical form to this use case.

We observe the following:

Lemma 1.3.1. Let $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{C}$. Then, the "Jordan structure of A at λ " (meaning the multiset of the sizes of the Jordan blocks of A at λ) equals the Jordan structure of A at $\overline{\lambda}$. In other words, for each p > 0, we have

(the number of Jordan blocks of *A* at λ having size *p*)

= (the number of Jordan blocks of *A* at $\overline{\lambda}$ having size *p*).

In other words, Jordan blocks at λ and Jordan blocks at $\overline{\lambda}$ come in pairs of equal sizes.

Proof. HW.

So we can try to combine each Jordan block at λ with an equally sized Jordan block at $\overline{\lambda}$ and hope that something real comes out somehow, in the same way as $(t - \lambda) (t - \overline{\lambda}) = t^2 - 2 \operatorname{Re} \lambda + |\lambda|^2 \in \mathbb{R} [t].$

How to do this?

where *L* is the 2 × 2-matrix $\begin{pmatrix} \lambda \\ & \overline{\lambda} \end{pmatrix}$. However,

$$\left(\begin{array}{cc}\lambda\\&\overline{\lambda}\end{array}\right)\sim\left(\begin{array}{cc}a&b\\-b&a\end{array}\right),$$

where $a = \operatorname{Re} \lambda$ and $b = \operatorname{Im} \lambda$ (so that $\lambda = a + bi$). (HW!) So our matrix is similar to