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Math 504 Lecture 13

1. Jordan canonical (aka normal) form (cont’d)

1.1. The companion matrix

For each n× n-matrix A, we have defined its characteristic polynomial pA and its
minimal polynomial qA. What variety of polynomials do we get this way? Do all
characteristic polynomials share some property, or can any monic polynomial be a
characteristic polynomial? The same question for minimal polynomials?

Poll:

1. Any monic polynomial can be a characteristic polynomial.

2. Characteristic polynomials have some special property among monic polyno-
mials.

The answer is 1.

*Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA
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Definition 1.1.1. Let F be a field, and let n ∈N.
Let p (t) = tn + pn−1tn−1 + pn−2tn−2 + · · ·+ p1t1 + p0t0 be a monic polynomial

of degree n with coefficients in F. Then, the companion matrix of p (t) is defined
to be the matrix

Cp :=



0 · · · −p0
1 0 · · · −p1

1 0 · · · −p2
...

...
... . . . ...

...
· · · 0 −pn−2
· · · 1 −pn−1


∈ Fn×n.

This is the n× n-matrix whose first n− 1 columns are the standard basis vectors
e2, e3, . . . , en, and whose last column is (−p0,−p1, . . . ,−pn−1)

T.

Proposition 1.1.2. For any monic polynomial p (t), we have

pCp (t) = qCp (t) = p (t) .

(The two p’s in “pCp” stand for different things: The first stands for “character-
istic polynomial”, while the second is the p (t) we have given.)

Proof. Let us first show that pCp (t) = p (t). To do so, we induct on n. Recall that

pCp (t) = det
(
tIn − Cp

)

= det



t · · · p0
−1 t · · · p1

−1 t · · · p2
...

...
... . . . ...

...
· · · t pn−2
· · · −1 t + pn−1


.
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We compute this determinant by Laplace expansion along the first row:

det



t · · · p0
−1 t · · · p1

−1 t · · · p2
...

...
... . . . ...

...
· · · t pn−2
· · · −1 t + pn−1



= t det


t · · · p1
−1 t · · · p2

...
... . . . ...

...
· · · t pn−2
· · · −1 t + pn−1


︸ ︷︷ ︸

=tn−1+pn−1tn−2+···+p2t1+p1t0

(by the induction hypothesis)

+ (−1)n+1 p0 det


−1 t · · ·

−1 t · · ·
...

...
... . . . ...
· · · t
· · · −1


︸ ︷︷ ︸

=(−1)n−1

(since this matrix is upper-triangular
of size n−1)

= t
(

tn−1 + pn−1tn−2 + · · ·+ p2t1 + p1t0
)
+ (−1)n+1 p0 (−1)n−1︸ ︷︷ ︸

=p0

= t
(

tn−1 + pn−1tn−2 + · · ·+ p2t1 + p1t0
)
+ p0

= tn + pn−1tn−1 + p2t2 + p1t1 + p0 = p (t) .

Thus, pCp (t) = p (t) is proved.
Now, let us show that qCp (t) = p (t). Indeed, both qCp (t) and p (t) are monic

polynomials, and we know from last lecture that qCp (t) | pCp (t) = p (t). Hence, if
qCp (t) 6= p (t), then qCp (t) is a proper divisor of p (t), thus has degree < n (since
p (t) has degree n). So we just need to rule out the possibility that qCp (t) has degree
< n.

Indeed, assume (for the sake of contradiction) that qCp (t) has degree < n. Thus,
qCp (t) = aktk + ak−1tk−1 + · · ·+ a0t0 with k < n and ak = 1 (since qCp is monic of
degree < n). However, the definition of qCp yields qCp

(
Cp
)
= 0. In other words,

akCk
p + ak−1Ck−1

p + · · ·+ a0C0
p = 0.

However, let us look at what Cp does to the standard basis vector e1 = (1, 0, 0, 0, . . . , 0)T.
We have

C0
pe1 = e1;

C1
pe1 = Cpe1 = e2;

C2
pe1 = Cpe2 = e3;

. . . ;

Cn−1
p e1 = en.
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Thus, applying our equality

akCk
p + ak−1Ck−1

p + · · ·+ a0C0
p = 0

to e1, we obtain

akek+1 + ak−1ek + · · ·+ a0e1 = 0 (since k < n) .

But this is absurd, since e1, e2, . . . , en are linearly independent. So we found a
contradiction, and thus we conclude that qCp (t) has degree ≥ n. So, by the above,
we obtain qCp (t) = p (t).

Remark 1.1.3. For algebraists: The companion matrix Cp has a natural meaning.
To wit, consider the quotient ring F [t] / (p (t)) as an n-dimensional F-vector
space with basis

(
t0, t1, . . . , tn−1

)
. Then, the companion matrix Cp represents the

endomorphism “multiply by t” (that is, the endomorphism that sends each f (t)
to t · f (t)) in this basis.

1.2. The Jordan–Chevalley decomposition

Recall that:

• A matrix A ∈ Cn×n is said to be diagonalizable if it is similar to a diagonal
matrix.

• A matrix A ∈ Cn×n is said to be nilpotent if some power of it is the zero
matrix (i.e., if Ak = 0 for some k ∈N). Actually (this will be a HW problem),
for an n×n-matrix A to be nilpotent, it is necessary and sufficient that An = 0.

Theorem 1.2.1 (Jordan–Chevalley decomposition). Let A ∈ Cn×n be an n × n-
matrix.

(a) Then, there exists a unique pair (D, N) consisting of

• a diagonalizable matrix D ∈ Cn×n and

• a nilpotent matrix N ∈ Cn×n

such that DN = ND and A = D + N.
(b) Both D and N in this pair can be written as polynomials in A. In other

words, there exist two polynomials f , g ∈ C [t] such that D = f (A) and N =
g (A).

The pair (D, N) in this theorem is known as the Jordan–Chevalley decomposi-
tion (or the Dunford decomposition) of A.

Partial proof. We will show the following two claims:
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Claim 1: There exists a pair (D, N) as in part (a) of the theorem.

Claim 2: The D and N in this particular pair can be written as polyno-
mials in A.

To prove both Claims 1 and 2, we can WLOG assume that A is a Jordan matrix.
Indeed, if A = SJS−1 for some invertible S, and if (D′, N′) is a Jordan–Chevalley
decomposition of J, then

(
SD′S−1, SN′S−1) is a Jordan–Chevalley decomposition

of A. Conjugation of matrices preserves all the properties we need (such as being
a polynomial, commuting, etc.), so we only need to prove the claims for J.

So we WLOG assume that A is a Jordan matrix. Thus,

A =


Jk1 (λ1)

Jk2 (λ2)
. . .

Jkp

(
λp
)


for some λ1, λ2, . . . , λp and some k1, k2, . . . , kp. Now, we want to decompose this A
as D + N with D diagonal and N nilpotent and DN = ND. We do this by setting

D :=


λ1 Ik1

λ2 Ik2

. . .
λp Ikp

 and N :=


Jk1 (0)

Jk2 (0)
. . .

Jkp (0)

 .

It is easy to check that A = D + N and DN = ND (since block-diagonal matrices
can be multiplied block by block). Clearly, D is diagonalizable (since D is diagonal)
and N is nilpotent (since N is strictly upper-triangular). Thus, Claim 1 is proved.

Now, we need to prove Claim 2 – i.e., we need to prove that D and N can be
written as polynomials in A. Since A = D + N, it suffices to show this for D (since
N = A− D).

Our above construction of D shows that D is simply A with its non-diagonal
entries removed. Let µ1, µ2, . . . , µm be the distinct eigenvalues (i.e., diagonal en-
tries) of A. For each i ∈ [m], let `i be the size of the largest Jordan block of A at

eigenvalue µi. (Thus, the minimal polynomial of A is
m
∏
i=1

(t− µi)
`i .)

Now, define the polynomial

f (t) :=
m

∑
i=1

µi ∏
j 6=i

(
t− µj

µi − µj

)`j

∈ C [t] ,

where the product sign ∏
j 6=i

means a product over all j ∈ [m] except for j = i. We

claim that f (A) = D. In other words, we claim that applying f to A has the effect
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of cleaning out all off-diagonal entries (while the diagonal entries remain as they
are).

To prove this claim, we recall that

A =


Jk1 (λ1)

Jk2 (λ2)
. . .

Jkp

(
λp
)
 .

Hence,

f (A) =


f
(

Jk1 (λ1)
)

f
(

Jk2 (λ2)
)

. . .

f
(

Jkp

(
λp
))

 .

So we need to show that

f (Jku (λu)) = λu Iku for each u ∈ [p] .

To prove this, we fix a u ∈ [p], and we set B := Jku (λu). Thus, B = Jk (µv) for some
v ∈ [p] and some positive k ≤ `v.

Substituting B for t into

f (t) :=
m

∑
i=1

µi ∏
j 6=i

(
t− µj

µi − µj

)`j

,

we obtain

f (B) =
m

∑
i=1

µi ∏
j 6=i

(
B− µj I
µi − µj

)`j

.

We take a closer look at the addends of the sum. For each i ∈ [m] that is distinct

from v, the product ∏
j 6=i

(
B− µj I
µi − µj

)`j

contains a factor
(

B− µv I
µi − µv

)`v

= 0, because

the k× k-matrix
B− µv I
µi − µv

is strictly upper-triangular and k ≤ `v. So the entire ad-

dend µi ∏
j 6=i

(
B− µj I
µi − µj

)`j

is 0 whenever i is distinct from v. Thus, all these addends

disappear except for the addend for i = v. So the above formula for f (B) simplifies
to

f (B) = µv ∏
j 6=v

(
B− µj I
µv − µj

)`j

.
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This should be µv I.
I’m just seeing this isn’t exactly the case. TODO: Fix this.
[Alternatively, use the Chinese Remainder Theorem for polynomials to find a

polynomial f that satisfies f (Jku (λu)) = λu Iku . This polynomial f should satisfy
f ≡ (t− λu)

ku + λu for each u.]

1.3. The real Jordan canonical form

Given a matrix A ∈ Rn×n with real entries, its Jordan canonical form doesn’t nec-
essarily have real entries. Indeed, the eigenvalues of A don’t have to be real. Some-
times, we want to find a “simple” form for A that does have real entries. What
follows is a way to tweak the Jordan canonical form to this use case.

We observe the following:

Lemma 1.3.1. Let A ∈ Rn×n and λ ∈ C. Then, the “Jordan structure of A at
λ” (meaning the multiset of the sizes of the Jordan blocks of A at λ) equals the
Jordan structure of A at λ. In other words, for each p > 0, we have

(the number of Jordan blocks of A at λ having size p)

=
(
the number of Jordan blocks of A at λ having size p

)
.

In other words, Jordan blocks at λ and Jordan blocks at λ come in pairs of
equal sizes.

Proof. HW.

So we can try to combine each Jordan block at λ with an equally sized Jordan
block at λ and hope that something real comes out somehow, in the same way as
(t− λ)

(
t− λ

)
= t2 − 2 Re λ + |λ|2 ∈ R [t].
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How to do this?

λ 1

λ
. . .
. . . 1

λ

λ 1

λ
. . .
. . . 1

λ



∼



λ 1
λ 1

λ 1
λ 1

. . .
. . .

λ

λ


=


L I2

L I2
. . .

L

 ,

where L is the 2× 2-matrix
(

λ

λ

)
. However,

(
λ

λ

)
∼
(

a b
−b a

)
,

where a = Re λ and b = Im λ (so that λ = a + bi). (HW!) So our matrix is similar
to 

a b 1
−b a 1

a b 1
−b a 1

. . .
. . .

a b
−b a


.
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