Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

October 18, 2021 (unfinished!)

Contents

1.	Jordan canonical (aka normal) form (cont'd)		1
	1.1.	The minimal polynomial (cont'd)	1
	1.2.	Application of functions to matrices	4
	1.3.	The companion matrix	6

Math 504 Lecture 12

1. Jordan canonical (aka normal) form (cont'd)

1.1. The minimal polynomial (cont'd)

Recall from last lecture:

Definition 1.1.1. Let $A \in \mathbb{C}^{n \times n}$ be an $n \times n$ -matrix. The preceding theorem shows that there is a **unique** monic polynomial $q_A(t)$ of minimum degree that annihilates A. This unique polynomial will be denoted $q_A(t)$ and will be called the **minimal polynomial** of A.

Theorem 1.1.2. Let $A \in \mathbb{C}^{n \times n}$ be an $n \times n$ -matrix. Let $f(t) \in \mathbb{C}[t]$ be any polynomial. Then, f annihilates A if and only if f is a multiple of q_A (that is, $f(t) = q_A(t) \cdot g(t)$ for some polynomial $g(t) \in \mathbb{C}[t]$).

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

Corollary 1.1.3. Let $A \in \mathbb{C}^{n \times n}$ be a matrix. Then, $q_A(t) \mid p_A(t)$.

Proposition 1.1.4. If $\lambda \in \sigma(A)$, then $q_A(\lambda) = 0$.

Combining the Corollary with the Proposition, we see that the roots of $q_A(t)$ are precisely the eigenvalues of A; we just don't know yet with which multiplicities they appear as roots. In other words, we have

$$q_A(t) = (t - \lambda_1)^{k_1} (t - \lambda_2)^{k_2} \cdots (t - \lambda_p)^{k_p}$$
,

where $\lambda_1, \lambda_2, ..., \lambda_p$ are the distinct eigenvalues of A, and the $k_1, k_2, ..., k_p$ are positive integers; but we don't know these $k_1, k_2, ..., k_p$ yet. So let us find them. We will use some lemmas for this.

Lemma 1.1.5. Let *A* and *B* be two similar $n \times n$ -matrices. Then, $q_A(t) = q_B(t)$.

Proof. This is obvious from the viewpoint of endomorphisms. For a pedestrian proof, you can just argue that a polynomial f annihilates A if and only if it annihilates B. But this is easy: We have $A = SBS^{-1}$ for some invertible S (since A and B are similar), and therefore every polynomial f satisfies

$$f(A) = f\left(SBS^{-1}\right) = Sf(B)S^{-1}$$

and therefore f(A) = 0 holds if and only if f(B) = 0.

We recall the notion of the lcm (= least common multiple) of several polynomials. It is defined as one would expect: If $p_1, p_2, ..., p_m$ are *m* nonzero polynomials (in a single indeterminate *t*), then lcm $(p_1, p_2, ..., p_m)$ is the monic polynomial of smallest degree that is a common multiple of $p_1, p_2, ..., p_m$. For example,

$$\operatorname{lcm}\left(t^{2}-1, t^{3}-1\right) = \operatorname{lcm}\left(\left(t-1\right)\left(t+1\right), \left(t-1\right)\left(t^{2}+t+1\right)\right)$$
$$= \left(t-1\right)\left(t+1\right)\left(t+t^{2}+1\right) = t^{4}+t^{3}-t-1.$$

(Again, the lcm of several polynomials is unique. This can be shown in the same way that we used to prove uniqueness of the minimal polynomial.)

Lemma 1.1.6. Let A_1, A_2, \ldots, A_m be *m* square matrices. Let

$$A = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_m \end{pmatrix}.$$

 $q_A = \text{lcm}(q_{A_1}, q_{A_2}, \dots, q_{A_m}).$

Then,

Proof. For any polynomial $f \in \mathbb{C}[t]$, we have

$$f(A) = f \begin{pmatrix} A_1 & & \\ & A_2 & \\ & & \ddots & \\ & & & A_m \end{pmatrix} = \begin{pmatrix} f(A_1) & & \\ & f(A_2) & & \\ & & & \ddots & \\ & & & & f(A_m) \end{pmatrix}$$

(indeed, the last equality follows from

$$\begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_m \end{pmatrix}^k = \begin{pmatrix} A_1^k & & & \\ & A_2^k & & \\ & & A_2^k & & \\ & & & \ddots & \\ & & & & A_m^k \end{pmatrix}$$

and from the fact that a polynomial *f* is just a \mathbb{C} -linear combination of t^k s). Thus, f(A) = 0 holds if and only if

$$f(A_1) = 0$$
 and $f(A_2) = 0$ and \cdots and $f(A_m) = 0$.

However, f(A) = 0 holds if and only if f is a multiple of q_A , whereas $f(A_i) = 0$ holds if and only if f is a multiple of q_{A_i} . Thus, the previous sentence says that f is a multiple of q_A if and only if f is a multiple of all of the q_{A_i} s. In other words, the multiples of q_A are precisely the common multiple of all the q_{A_i} s. But this is the universal property of the lcm. So q_A is the lcm of the q_{A_i} s.

Lemma 1.1.7. Let k > 0 and $\lambda \in \mathbb{C}$. Let $A = J_k(\lambda)$. Then, $q_A = (t - \lambda)^k$.

Proof. It is easy to see that $q_A = q_{A-\lambda I_k}(t-\lambda)$, because for a polynomial f to annihilate $A - \lambda I_k$ is the same as for the polynomial $f(t-\lambda)$ to annihilate A. So we need to find $q_{A-\lambda I_k}$. Recall that

$$A - \lambda I_k = J_k \left(0 \right) = \left(\begin{array}{ccc} 1 & & \\ & 1 & \\ & & \\ & & \ddots \\ & & & \end{array} \right).$$

Therefore, for any polynomial $f = f_0 t^0 + f_1 t^1 + f_2 t^2 + \cdots$, we have

$$f(A - \lambda I_k) = \begin{pmatrix} f_0 & f_1 & f_2 & \cdots & f_{k-1} \\ f_0 & f_1 & \cdots & f_{k-2} \\ & f_0 & \cdots & f_{k-3} \\ & & \ddots & \vdots \\ & & & & f_0 \end{pmatrix}.$$

October 18, 2021

So $f(A - \lambda I_k) = 0$ if and only if $f_0 = f_1 = \cdots = f_{k-1} = 0$, i.e., if and only if the first *k* coefficients of *f* are 0. Now, the monic polynomial of smallest degree whose first *k* coefficients are 0 is the polynomial t^k . So the monic polynomial *f* of smallest degree that satisfies $f(A - \lambda I_k) = 0$ is t^k . In other words, $q_{A-\lambda I_k} = t^k$.

Now, recall that $q_A = q_{A-\lambda I_k} (t - \lambda) = (t - \lambda)^k$ (since $q_{A-\lambda I_k} = t^k$). Qed.

Theorem 1.1.8. Let $A \in \mathbb{C}^{n \times n}$ be an $n \times n$ -matrix. Let J be the Jordan canonical form of A. Let $\lambda_1, \lambda_2, \ldots, \lambda_p$ be the distinct eigenvalues of A. Then,

$$q_A = (t - \lambda_1)^{k_1} (t - \lambda_2)^{k_2} \cdots (t - \lambda_p)^{k_p}$$
,

where k_i is the size of the largest Jordan cell at eigenvalue λ_i in J.

Example 1.1.9. Let *A* have Jordan canonical form

$$J = \begin{pmatrix} 5 & 1 & & & \\ 5 & 1 & & & \\ 5 & 1 & & & \\ 5 & 5 & & & \\ & 5 & 1 & & \\ & 5 & 1 & & \\ & 5 & 1 & & \\ & & 5 & 1 & \\ & & 5 & 1 & \\ & & & 2 & \\ & & & 2 & 1 \\ & & & & 2 \end{pmatrix}$$

Then,

$$q_A = (t-5)^3 (t-2)^2.$$

Proof of the Theorem. We have $A \sim J$, so that $q_A = q_J$ (by our first lemma).

Recall that *J* is a Jordan matrix, i.e., a block-diagonal matrix whose diagonal blocks are Jordan cells $J_1, J_2, ..., J_m$. Thus, by our second lemma, we have

$$q_{J} = \operatorname{lcm} (q_{J_{1}}, q_{J_{2}}, \dots, q_{J_{m}}) = \operatorname{lcm} \left((t - \lambda_{J_{1}})^{k_{J_{1}}}, (t - \lambda_{J_{2}})^{k_{J_{2}}}, \dots, (t - \lambda_{J_{m}})^{k_{J_{m}}} \right),$$

where each J_i has eigenvalue λ_{J_i} and size k_{J_i} (by our third lemma). This lcm must be divisible by each $t - \lambda$ at least as often as each of the $(t - \lambda_{J_i})^{k_{J_i}}$ s is; i.e., it must be divisible by $(t - \lambda)^k$, where k is the largest size of a Jordan cell of J at eigenvalue λ . So the lcm is the product of these $(t - \lambda)^k$ s. But this is precisely our claim. \Box

1.2. Application of functions to matrices

Consider a square matrix $A \in \mathbb{C}^{n \times n}$. We have already defined what it means to apply a polynomial *f* to *A*: We just write *f* as $\sum_{i} f_i t^i$, and substitute *A* for *t*.

Can we do the same with non-polynomial functions f? For example, can we define exp A or sin A?

One option to do so is to follow the same rule as for polynomials, but using the Taylor series for *f*. For example, since exp has Taylor series $\exp t = \sum_{i \in \mathbb{N}} \frac{t^i}{i!}$, we can set

$$\exp A = \sum_{i \in \mathbb{N}} \frac{A^i}{i!}.$$

This indeed works for exp and for sin, as the sums you get always converge. But it doesn't generally work, e.g., for $f = \tan t$, since its Taylor series only converges in a certain neighborhood of 0. Is this the best we can do?

There is a different approach that gives a more general definition.

Lemma 1.2.1. Let k > 0 and $\lambda \in \mathbb{C}$. Let $A = J_k(\lambda)$. Then, for any polynomial $f \in \mathbb{C}[t]$, we have

$$f(A) = \begin{pmatrix} \frac{f(\lambda)}{0!} & \frac{f'(\lambda)}{1!} & \frac{f''(\lambda)}{2!} & \cdots & \frac{f^{(k-1)}(\lambda)}{(k-1)!} \\ & \frac{f(\lambda)}{0!} & \frac{f'(\lambda)}{1!} & \cdots & \frac{f^{(k-2)}(\lambda)}{(k-2)!} \\ & & \frac{f(\lambda)}{0!} & \cdots & \frac{f^{(k-3)}(\lambda)}{(k-3)!} \\ & & \ddots & \vdots \\ & & & \frac{f(\lambda)}{0!} \end{pmatrix}$$

Proof. Exercise.

Now, we aim to define f(A) by the above formula, at least when A is a Jordan cell. This only requires f to be (k - 1)-times differentiable at λ .

Definition 1.2.2. Let $A \in \mathbb{C}^{n \times n}$ be an $n \times n$ -matrix that has minimal polynomial

$$q_A(t) = (t - \lambda_1)^{k_1} (t - \lambda_2)^{k_2} \cdots (t - \lambda_p)^{k_p}$$
,

where the $\lambda_1, \lambda_2, \ldots, \lambda_p$ are the distinct eigenvalues of *A*.

Let *f* be a function from \mathbb{C} to \mathbb{C} that is defined at each of the numbers $\lambda_1, \lambda_2, \ldots, \lambda_p$ and is holomorphic at each of them, or at least $(k_i - 1)$ -times differentiable at each λ_i if λ_i is real. Then, we can define an $n \times n$ -matrix $f(A) \in \mathbb{C}^{n \times n}$ as follows: Write $A = SJS^{-1}$, where *J* is a Jordan matrix and *S* is invertible. Write

page 6

 $J \operatorname{as} \begin{pmatrix} J_1 \\ J_2 \\ \ddots \\ J_m \end{pmatrix}, \text{ where the } f_1, f_2, \dots, f_m \text{ are Jordan cells. Then, we set}$ $f(A) := Sf(J) S^{-1}, \quad \text{where}$ $f(J) := \begin{pmatrix} f(J_1) \\ f(J_2) \\ \ddots \\ f(J_m) \end{pmatrix}, \quad \text{where}$ $f(J_m) \end{pmatrix}, \quad \text{where}$ $\begin{pmatrix} \frac{f(\lambda)}{0!} & \frac{f'(\lambda)}{1!} & \frac{f''(\lambda)}{2!} & \cdots & \frac{f^{(k-1)}(\lambda)}{(k-1)!} \\ \frac{f(\lambda)}{0!} & \frac{f'(\lambda)}{1!} & \cdots & \frac{f^{(k-2)}(\lambda)}{(k-2)!} \\ & \frac{f(\lambda)}{0!} & \cdots & \frac{f^{(k-3)}(\lambda)}{(k-3)!} \\ & \ddots & \vdots \\ & & \frac{f(\lambda)}{0!} & 0! \end{pmatrix}.$

Theorem 1.2.3. This definition is actually well-defined. That is, the value f(A) does not depend on the choice of *S* and *J*.

Exercise 1.2.1. Prove this.

1.3. The companion matrix

For each $n \times n$ -matrix A, we have defined its characteristic polynomial p_A and its minimal polynomial q_A . What variety of polynomials do we get this way? Do all characteristic polynomials share some property, or can any monic polynomial be a characteristic polynomial? The same question for minimal polynomials?