Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

October 13, 2021 (unfinished!)

Contents

1.	Jordan canonical (aka normal) form (cont'd)	1
	1.1. Step 3: Strictly upper-triangular matrices redux	1

Math 504 Lecture 10

1. Jordan canonical (aka normal) form (cont'd)

1.1. Step 3: Strictly upper-triangular matrices redux

Let us fill in what we couldn't back in Lecture 9.

Consider a strictly upper-triangular $n \times n$ -matrix A (that is, an upper-triangular matrix whose diagonal entries are 0 as well).

We want to find a basis $(s_1, s_2, ..., s_n)$ of \mathbb{C}^n such that for each $i \in [n]$, the vector As_i is either s_{i-1} or 0. (When i = 1, this vector has to be 0, since there is no s_0 .) In fact, if $(s_1, s_2, ..., s_n)$ is such a basis, then the matrix $S := (s_1 \ s_2 \ \cdots \ s_n) \in \mathbb{C}^{n \times n}$ is invertible and satisfies

$$AS = (a \text{ matrix whose } i\text{-th column is either } s_{i-1} \text{ or } 0 \text{ for each } i)$$

*Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

so that

So *A* is similar to a Jordan matrix.

How do we find such a basis (s_1, s_2, \ldots, s_n) ?

(The following proof is due to Terence Tao.)

We define an **orbit** to be a tuple of the form $(v, Av, A^2v, ..., A^kv)$, where $v \in \mathbb{C}^n$ satisfies $A^{k+1}v = 0$. Note that for each $v \in \mathbb{C}^n$, there is an orbit that starts with v, since $A^n = 0$.

The **concatenation** of some tuples $(a_1, a_2, ..., a_k)$ and $(b_1, b_2, ..., b_\ell)$ and $(c_1, c_2, ..., c_m)$ is $(a_1, a_2, ..., a_k, b_1, b_2, ..., b_\ell, c_1, c_2, ..., c_m)$.

Now, I claim:

Lemma 1.1.1 (orbit basis lemma). There exists a basis of \mathbb{C}^n that is a concatenation of orbits.

Once this lemma is proved, we will be done, because reading such a basis backwards gives us exactly the basis $(s_1, s_2, ..., s_n)$ we are looking for. For example, if our basis that is a concatenation of orbits is

$$(u, Au, A^2u, v, Av, A^2v, A^3v, w, Aw)$$

(with $A^3u = 0$ and $A^4v = 0$ and $A^2w = 0$), then reading it backwards gives

$$\left(Aw, w, A^{3}v, A^{2}v, Av, v, A^{2}u, Au, u\right),$$

which is a basis $(s_1, s_2, ..., s_n)$ of \mathbb{C}^n such that for each $i \in [n]$, the vector As_i is either s_{i-1} or 0.

Proof of the Lemma. It is easy to find a finite **spanning set** of \mathbb{C}^n that is a concatenation of orbits. Indeed, we can start with the standard basis (e_1, e_2, \ldots, e_n) , and extend it to the list

$$(e_1, Ae_1, A^2e_1, \dots, A^{n-1}e_1, e_2, Ae_2, A^2e_2, \dots, A^{n-1}e_2, \dots, e_n, Ae_n, A^2e_n, \dots, A^{n-1}e_n).$$

This is clearly a spanning set of \mathbb{C}^n (since e_1, e_2, \ldots, e_n already span \mathbb{C}^n), and also a concatenation of orbits (since $A^n = 0$).

Now, we will gradually shorten this spanning set (i.e., replace it by smaller ones) until we get a basis. We have to do this in such a way that it remains a spanning set

throughout the process, and that it remains a concatenation of orbits throughout the process.

For the sake of concreteness, let us assume that our spanning set is

$$(x, Ax, y, Ay, A^2y, z, Az, A^2z, A^3z, w),$$

with $A^2x = 0$ and $A^3y = 0$ and $A^4z = 0$ and Aw = 0. If this spanning set is linearly independent, then it is already a basis, and we are done. So assume that it isn't. Thus, there exists some linear dependence relation – say,

$$3x + 4Ax + 5Ay + 6A^2y + 7A^2z + 8w = 0.$$

Apply *A* to this relation:

$$3Ax + 4A^{2}x + 5A^{2}y + 6A^{3}y + 7A^{3}z + 8Aw = 0,$$
 i.e.
 $3Ax + 5A^{2}y + 7A^{3}z = 0.$

Apply *A* to this relation:

$$3A^2x + 5A^3y + 7A^4z = 0,$$
 i.e.
 $0 = 0.$

We have gone too far, so let us revert to the previous equation:

$$3Ax + 5A^2y + 7A^3z = 0.$$

So this is a linear dependence relation between the **final** vectors of the orbits in our spanning set. ("Final" means the last vector in the orbit.) Factoring out an *A* in this relation, we obtain

$$A\left(3x+5Ay+7A^2z\right)=0.$$

So the 1-tuple $(3x + 5Ay + 7A^2z)$ is an orbit.

Now, let us replace the orbit (x, Ax) in our spanning set $(x, Ax, y, Ay, A^2y, z, Az, A^2z, A^3z, w)$ by the orbit $(3x + 5Ay + 7A^2z)$. We get

$$(3x + 5Ay + 7A^2z, y, Ay, A^2y, z, Az, A^2z, A^3z, w).$$

This is still a concatenation of orbits, since the 1-tuple $(3x + 5Ay + 7A^2z)$ is an orbit. Furthermore, this is still a spanning set of \mathbb{C}^n ; why? Because we removed the dependent vector Ax (this is a combination of the other vectors, because $3Ax + 5A^2y + 7A^3z = 0$) and we replaced x by $3x + 5Ay + 7A^2z$ (which does not change the span, because Ay and A^2z are still in the spanning set).

This example generalizes. In the general case, you have a spanning set that is a concatenation of orbits:

$$(v_1, Av_1, \ldots, A^{m_1}v_1, v_2, Av_2, \ldots, A^{m_2}v_2, \ldots, v_k, Av_k, \ldots, A^{m_k}v_k).$$

If it is a basis, you are done. If not, you pick a linear dependence relation:

$$\sum_{i,j} \lambda_{i,j} A^j v_i = 0.$$

By multiplying this by *A* an appropriate amount of times (namely, you keep multiplying until it becomes 0 = 0, and then you take a step back), you obtain a linear dependence relation that involves only the **final** vectors of the orbits (i.e., the vectors $A^{m_1}v_1$, $A^{m_2}v_2$, ..., $A^{m_k}v_k$). So it will look like this:

$$\mu_1 A^{m_1} v_1 + \mu_2 A^{m_2} v_2 + \dots + \mu_k A^{m_k} v_k = 0.$$

Assume WLOG that the first *p* of the $\mu_1, \mu_2, ..., \mu_k$ are nonzero, while the remaining k - p are 0. So the relation becomes

$$\mu_1 A^{m_1} v_1 + \mu_2 A^{m_2} v_2 + \dots + \mu_p A^{m_p} v_p = 0,$$

with $\mu_1, \mu_2, \ldots, \mu_p$ being nonzero. Assume WLOG that $m_1 = \min \{m_1, m_2, \ldots, m_p\}$, and factor out A^{m_1} from this relation. This yields

$$A^{m_1}\left(\mu_1v_1+\mu_2A^{m_2-m_1}v_2+\cdots+\mu_pA^{m_p-m_1}v_p\right)=0.$$

Now, set $w_1 = \mu_1 v_1 + \mu_2 A^{m_2 - m_1} v_2 + \cdots + \mu_p A^{m_p - m_1} v_p$. Thus, $A^{m_1} w_1 = 0$. Hence, $(w_1, Aw_1, A^2 w_1, \dots, A^{m_1 - 1} w_1)$ is an orbit of length m_1 . Now, replace the orbit $(v_1, Av_1, \dots, A^{m_1} v_1)$ in the spanning set

$$(v_1, Av_1, \ldots, A^{m_1}v_1, v_2, Av_2, \ldots, A^{m_2}v_2, \ldots, v_k, Av_k, \ldots, A^{m_k}v_k)$$

by the shorter orbit $(w_1, Aw_1, A^2w_1, \dots, A^{m_1-1}w_1)$. The resulting list

$$(w_1, Aw_1, A^2w_1, \ldots, A^{m_1-1}w_1, v_2, Av_2, \ldots, A^{m_2}v_2, \ldots, v_k, Av_k, \ldots, A^{m_k}v_k)$$

is still a concatenation of orbits. Also, it still spans \mathbb{C}^n , because

$$w_{1} = \underbrace{\mu_{1}}_{\neq 0} v_{1} + \mu_{2} A^{m_{2}-m_{1}} v_{2} + \dots + \mu_{p} A^{m_{p}-m_{1}} v_{p};$$

$$Aw_{1} = \underbrace{\mu_{1}}_{\neq 0} Av_{1} + \mu_{2} A^{m_{2}-m_{1}+1} v_{2} + \dots + \mu_{p} A^{m_{p}-m_{1}+1} v_{p};$$

$$\dots;$$

$$A^{m_{1}} v_{1} = -(\mu_{2} A^{m_{2}} v_{2} + \dots + \mu_{p} A^{m_{p}} v_{p})$$

$$(since \ \mu_{1} A^{m_{1}} v_{1} + \mu_{2} A^{m_{2}} v_{2} + \dots + \mu_{p} A^{m_{p}} v_{p} = 0).$$

So we have found a spanning set of \mathbb{C}^n that is still a concatenation of orbits, but is shorter (it has one less vector). Doing this repeatedly, we will eventually obtain a basis (since we cannot keep making a finite list shorter and shorter indefinitely). This proves the lemma.

As we said, the lemma gives us a basis $(s_1, s_2, ..., s_n)$ such that As_i is either s_{i-1} or 0; and that shows that A is similar to a Jordan matrix. This completes the proof of the existence part of the Jordan canonical form.

Example 1.1.2. Let

$$A = \begin{pmatrix} 0 & 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & 1 & -2 & 2 & -2 \\ 0 & 1 & 0 & -1 & 2 & -2 \\ 0 & 1 & 0 & -1 & 2 & -2 \\ 0 & 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & -1 \end{pmatrix}.$$

This is not strictly upper-triangular, but it is nilpotent, with $A^3 = 0$, so the above argument goes equally well with this *A*.

Let us try to find a basis of \mathbb{C}^6 that is a concatenation of orbits.

We begin with the spanning set

$$(e_1, Ae_1, A^2e_1, e_2, Ae_2, A^2e_2, \ldots, e_6, Ae_6, A^2e_6).$$

It has lots of linear dependencies. For one, $Ae_1 = 0$. Multiplying it by A gives $A^2e_1 = 0$, so we can replace (e_1, Ae_1, A^2e_1) by (e_1, Ae_1) . So our spanning set becomes

$$(e_1, Ae_1, e_2, Ae_2, A^2e_2, \ldots, e_6, Ae_6, A^2e_6).$$

One more step of the same form gives

$$(e_1, e_2, Ae_2, A^2e_2, \ldots, e_6, Ae_6, A^2e_6).$$

Now, observe that $Ae_3 = e_2$. That is, $e_2 - Ae_3 = 0$. Multiplying it by A^2 , we obtain $A^2e_2 = 0$ (since $A^2 \cdot Ae_3 = A^3e_3 = 0$). So we replace the orbit (e_2, Ae_2, A^2e_2) by (e_2, Ae_2) . So we get the spanning set

$$(e_1, e_2, Ae_2, e_3, Ae_3, A^2e_3, e_4, Ae_4, A^2e_4, e_5, Ae_5, A^2e_5, e_6, Ae_6, A^2e_6).$$

We observe that

$$Ae_2 = e_1 + e_2 + e_3 + e_4 + e_5 + e_6.$$

In other words,

$$Ae_2 - e_1 - e_2 - e_3 - e_4 - e_5 - e_6 = 0.$$

Multiplying this by A^2 , we obtain

$$-A^2e_3 - A^2e_4 - A^2e_5 - A^2e_6 = 0.$$

In other words,

$$A^2 \left(-e_3 - e_4 - e_5 - e_6 \right) = 0.$$

Thus, we set $w_1 := -e_3 - e_4 - e_5 - e_6$, and we replace (e_3, Ae_3, A^2e_3) by (w_1, Aw_1) . So we get the spanning set

$$(e_1, e_2, Ae_2, w_1, Aw_1, e_4, Ae_4, A^2e_4, e_5, Ae_5, A^2e_5, e_6, Ae_6, A^2e_6).$$

Keep making these steps. Eventually, there will be no more linear dependencies, so we will have a basis.