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Math 504 Lecture 10

1. Jordan canonical (aka normal) form (cont’d)

1.1. Step 3: Strictly upper-triangular matrices redux

Let us fill in what we couldn’t back in Lecture 9.

Consider a strictly upper-triangular n X n-matrix A (that is, an upper-triangular
matrix whose diagonal entries are 0 as well).

We want to find a basis (s1, Sy, ...,sx) of C" such that for each i € [n], the vector
As; is either s;_1 or 0. (When i = 1, this vector has to be 0, since there is no sg.)
In fact, if (s1,s2,...,5,) is such a basis, then the matrix S := ( S1 Sp -+ Sy ) €
C™*" is invertible and satisfies

AS = (a matrix whose i-th column is either s;_; or 0 for each i)
01000

000
=S| 000 (for example),

000

000

OO = O
O = OO
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so that
01000
000O00O
S'AS=|[ 00 0 1 0 | = (aJordan matrix).
0 00O01
000O00O

So A is similar to a Jordan matrix.

How do we find such a basis (s1,s2,...,54) ?

(The following proof is due to Terence Tao.)

We define an orbit to be a tuple of the form (v, Av, A%, ..., Akv), where v € C"
satisfies A¥t1v = 0. Note that for each v € C", there is an orbit that starts with v,
since A" = 0.

The concatenation of some tuples (a1, ay,...,a;) and (b1, by, ..., by) and (c1,¢2,...,cm)
is (ay,az,...,a5,b1,b2,...,by,c1,¢0, ..., Cm).

Now, I claim:

Lemma 1.1.1 (orbit basis lemma). There exists a basis of C" that is a concatena-
tion of orbits.

Once this lemma is proved, we will be done, because reading such a basis back-
wards gives us exactly the basis (s1,52,...,5,) we are looking for. For example, if
our basis that is a concatenation of orbits is

(u,Au, Azu, v, Av, sz, A3v, w, Aw)
(with A3u = 0 and A*v = 0 and A%w = 0), then reading it backwards gives
(Aw, w, A3v, sz, Av,v, Azu,Au,u) ,

which is a basis (s1,s2,...,5,) of C" such that for each i € [n], the vector As; is
either s;_1 or 0.

Proof of the Lemma. 1t is easy to find a finite spanning set of C" that is a concate-
nation of orbits. Indeed, we can start with the standard basis (e, ey, ...,¢e,), and
extend it to the list

2 -1
(e1,Aey, A%y, ..., A" teq,

2 -1
ey, Aer, A%er, ..., A" e,

.« ey

2 n—1
en, Aey, A%y, ..., A" ey).

This is clearly a spanning set of C" (since ej, e, ..., e, already span C"), and also a
concatenation of orbits (since A" = 0).

Now, we will gradually shorten this spanning set (i.e., replace it by smaller ones)
until we get a basis. We have to do this in such a way that it remains a spanning set
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throughout the process, and that it remains a concatenation of orbits throughout
the process.
For the sake of concreteness, let us assume that our spanning set is

<x,Ax, y,Ay,Azy, Z,AZ,AZZ,A3Z, w),

with A%2x = 0 and A%y = 0 and A*z = 0 and Aw = 0. If this spanning set is linearly
independent, then it is already a basis, and we are done. So assume that it isn't.
Thus, there exists some linear dependence relation — say,

3x + 4Ax +5Ay + 6A%y +7A%z + 8w = 0.
Apply A to this relation:

3Ax +4A%x +5A% + 6A%y +7A%2 + 8Aw = 0, ie.
y y
3Ax +5A% +7A% = 0.

Apply A to this relation:

3A%x +5A% +7A% =0, ie.
0=0.

We have gone too far, so let us revert to the previous equation:
3Ax +5A%y +7A% = 0.

So this is a linear dependence relation between the final vectors of the orbits in our
spanning set. (“Final” means the last vector in the orbit.) Factoring out an A in this
relation, we obtain

A (3x+54y +74%) =0.

So the 1-tuple (3x + 5Ay + 7A?%z) is an orbit.
Now, let us replace the orbit (x, Ax) in our spanning set (x, Ax, vy, Ay, Azy, z, Az, A%z, A3z, w)
by the orbit (3x +5Ay + 7A%z). We get

(3x +5Ay + 7Azz, y, Ay, Azy, z, Az, Azz, A3z, w) .

This is still a concatenation of orbits, since the 1-tuple (3x +5Ay +7A%z) is an
orbit. Furthermore, this is still a spanning set of C"; why? Because we removed
the dependent vector Ax (this is a combination of the other vectors, because 3Ax +
5A2%y + 7A3z = 0) and we replaced x by 3x + 5Ay + 7A%z (which does not change
the span, because Ay and A?z are still in the spanning set).

This example generalizes. In the general case, you have a spanning set that is a
concatenation of orbits:

(v1, Avy, ..., A0y, vy, Avy, ..., A™0y, ..., v, Avg, ..., AL .
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If it is a basis, you are done. If not, you pick a linear dependence relation:
ZAilejZ)i = 0.
i/j

By multiplying this by A an appropriate amount of times (namely, you keep mul-
tiplying until it becomes 0 = 0, and then you take a step back), you obtain a linear
dependence relation that involves only the final vectors of the orbits (i.e., the vec-
tors A™Mv, A™v,, ..., A"™v;). So it will look like this:

U1 A™Mo + up Aoy + -+ e Ao = 0.

Assume WLOG that the first p of the yy, yp, . . ., px are nonzero, while the remaining
k — p are 0. So the relation becomes

ylAmlvl + ]/lemZUZ + -+ }/lpAmpUp =0,

with py, po, . .., jip being nonzero. Assume WLOG that 77 = min {ml, my, ..., My },
and factor out A™! from this relation. This yields

A™ (py01 + A" Moy 4 - 4 pp, AT My, ) = 0.

Now, set wy = p1v1 + pp A" Moy + -+ - + up A"r~ "y, Thus, A"w; = 0. Hence,
(w1, Awy, A%wy, ..., A™1w,) is an orbit of length m;. Now, replace the orbit
(v1, Avq, ..., A™vq) in the spanning set

(Z)l,AUl,...,Aml’Ul, Uz,sz,...,Amzvz, ey Uk,AZ)k,...,AmkUk)

by the shorter orbit (wl, Awq, A%ws, ..., A”’l_lwl). The resulting list
(wl, Awq, A%wy, ..., A" Ywy, vy, Avy, ..., A™0y, ..., vk, Avg, .., Amkvk)
is still a concatenation of orbits. Also, it still spans C", because

w1 = p1 01+ up A" Moy - pp, AT My,
—~—
#0
Awq = M1 Avy + ‘lezAmz_ml—HZ)z —+ -+ ],{pAmP_m1+1z)p;
~—
£0
A™Mvy = — (ppA™vy + -+ pp AMoyp)
(since p1 A0y + pa A™0y + -+ pp Ao, = 0).
So we have found a spanning set of C" that is still a concatenation of orbits, but
is shorter (it has one less vector). Doing this repeatedly, we will eventually obtain

a basis (since we cannot keep making a finite list shorter and shorter indefinitely).
This proves the lemma. O

October 13, 2021



Math 504 notes page 5

As we said, the lemma gives us a basis (51,52, ...,5,) such that As; is either s;_;
or 0; and that shows that A is similar to a Jordan matrix. This completes the proof
of the existence part of the Jordan canonical form.

Example 1.1.2. Let

010 -11 -1
011 -22 =2
010 -1 2 -2
A= 010 -1 2 =2
010 -11 -1
010 -11 -1

This is not strictly upper-triangular, but it is nilpotent, with A® = 0, so the above
argument goes equally well with this A.

Let us try to find a basis of C° that is a concatenation of orbits.

We begin with the spanning set

2 2 2
(61,A€1,A €1, 82,A€2,A €, ..., 66,A€6,A €6> .

It has lots of linear dependencies. For one, Ae; = 0. Multiplying it by A gives
A?e; = 0, so we can replace (el,Ael,Azel) by (e1, Ae1). So our spanning set
becomes

<€1,A€1, e, Aez, A2€2, ..., €g, A€6, A2€6> .

One more Step Of the Ssame form gives
1, 27 27 27 ey 6/ 67 6) -

Now, observe that Ae3 = ep. Thatis, e — Aez = 0. Multiplying it by A?, we ob-
tain A%e; = 0 (since A% - Aes = A3e3 = 0). So we replace the orbit (ep, Aey, A%e;)
by (e, Aey). So we get the spanning set

2 2 2 2
(el, ey, Aey, e3, Aez, A%e3, ey, Aeq, A%ey, es5,Aes, A%es, eg, Aeg, A e6>-

We observe that
Aey = e1+er +e3+ ey + es + e.

In other words,
A€2—€1—€2—€3—€4—€5—€6:0.

Multiplying this by A2, we obtain
—A%e3 — A%ey — A2es — A%eq = 0.

In other words,

A% (—e3 — ey —e5—eg) = 0.
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Thus, we set wy := —e3 — 4 — 5 — ¢, and we replace (e3, Aes, A%e3) by (wy, Awy).
So we get the spanning set

2 2 2
(ell €2, AeZ/ w1y, Awl/ €4, A€4,A €4, €5, A€5,A €5, €6, Ae61A 66) .

Keep making these steps. Eventually, there will be no more linear dependencies,
so we will have a basis.
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