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Math 504 Lecture 10

1. Jordan canonical (aka normal) form (cont’d)

1.1. Step 3: Strictly upper-triangular matrices redux

Let us fill in what we couldn’t back in Lecture 9.
Consider a strictly upper-triangular n× n-matrix A (that is, an upper-triangular

matrix whose diagonal entries are 0 as well).
We want to find a basis (s1, s2, . . . , sn) of Cn such that for each i ∈ [n], the vector

Asi is either si−1 or 0. (When i = 1, this vector has to be 0, since there is no s0.)
In fact, if (s1, s2, . . . , sn) is such a basis, then the matrix S :=

(
s1 s2 · · · sn

)
∈

Cn×n is invertible and satisfies

AS = (a matrix whose i-th column is either si−1 or 0 for each i)

= S


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 (for example) ,
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so that

S−1AS =


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 = (a Jordan matrix) .

So A is similar to a Jordan matrix.
How do we find such a basis (s1, s2, . . . , sn) ?
(The following proof is due to Terence Tao.)
We define an orbit to be a tuple of the form

(
v, Av, A2v, . . . , Akv

)
, where v ∈ Cn

satisfies Ak+1v = 0. Note that for each v ∈ Cn, there is an orbit that starts with v,
since An = 0.

The concatenation of some tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`) and (c1, c2, . . . , cm)
is (a1, a2, . . . , ak, b1, b2, . . . , b`, c1, c2, . . . , cm).

Now, I claim:

Lemma 1.1.1 (orbit basis lemma). There exists a basis of Cn that is a concatena-
tion of orbits.

Once this lemma is proved, we will be done, because reading such a basis back-
wards gives us exactly the basis (s1, s2, . . . , sn) we are looking for. For example, if
our basis that is a concatenation of orbits is(

u, Au, A2u, v, Av, A2v, A3v, w, Aw
)

(with A3u = 0 and A4v = 0 and A2w = 0), then reading it backwards gives(
Aw, w, A3v, A2v, Av, v, A2u, Au, u

)
,

which is a basis (s1, s2, . . . , sn) of Cn such that for each i ∈ [n], the vector Asi is
either si−1 or 0.

Proof of the Lemma. It is easy to find a finite spanning set of Cn that is a concate-
nation of orbits. Indeed, we can start with the standard basis (e1, e2, . . . , en), and
extend it to the list

(e1, Ae1, A2e1, . . . , An−1e1,

e2, Ae2, A2e2, . . . , An−1e2,
. . . ,

en, Aen, A2en, . . . , An−1en).

This is clearly a spanning set of Cn (since e1, e2, . . . , en already span Cn), and also a
concatenation of orbits (since An = 0).

Now, we will gradually shorten this spanning set (i.e., replace it by smaller ones)
until we get a basis. We have to do this in such a way that it remains a spanning set

October 13, 2021



Math 504 notes page 3

throughout the process, and that it remains a concatenation of orbits throughout
the process.

For the sake of concreteness, let us assume that our spanning set is(
x, Ax, y, Ay, A2y, z, Az, A2z, A3z, w

)
,

with A2x = 0 and A3y = 0 and A4z = 0 and Aw = 0. If this spanning set is linearly
independent, then it is already a basis, and we are done. So assume that it isn’t.
Thus, there exists some linear dependence relation – say,

3x + 4Ax + 5Ay + 6A2y + 7A2z + 8w = 0.

Apply A to this relation:

3Ax + 4A2x + 5A2y + 6A3y + 7A3z + 8Aw = 0, i.e.

3Ax + 5A2y + 7A3z = 0.

Apply A to this relation:

3A2x + 5A3y + 7A4z = 0, i.e.
0 = 0.

We have gone too far, so let us revert to the previous equation:

3Ax + 5A2y + 7A3z = 0.

So this is a linear dependence relation between the final vectors of the orbits in our
spanning set. (“Final” means the last vector in the orbit.) Factoring out an A in this
relation, we obtain

A
(

3x + 5Ay + 7A2z
)
= 0.

So the 1-tuple
(
3x + 5Ay + 7A2z

)
is an orbit.

Now, let us replace the orbit (x, Ax) in our spanning set
(
x, Ax, y, Ay, A2y, z, Az, A2z, A3z, w

)
by the orbit

(
3x + 5Ay + 7A2z

)
. We get(

3x + 5Ay + 7A2z, y, Ay, A2y, z, Az, A2z, A3z, w
)

.

This is still a concatenation of orbits, since the 1-tuple
(
3x + 5Ay + 7A2z

)
is an

orbit. Furthermore, this is still a spanning set of Cn; why? Because we removed
the dependent vector Ax (this is a combination of the other vectors, because 3Ax +
5A2y + 7A3z = 0) and we replaced x by 3x + 5Ay + 7A2z (which does not change
the span, because Ay and A2z are still in the spanning set).

This example generalizes. In the general case, you have a spanning set that is a
concatenation of orbits:

(v1, Av1, . . . , Am1v1, v2, Av2, . . . , Am2v2, . . . , vk, Avk, . . . , Amk vk) .
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If it is a basis, you are done. If not, you pick a linear dependence relation:

∑
i,j

λi,j Ajvi = 0.

By multiplying this by A an appropriate amount of times (namely, you keep mul-
tiplying until it becomes 0 = 0, and then you take a step back), you obtain a linear
dependence relation that involves only the final vectors of the orbits (i.e., the vec-
tors Am1v1, Am2v2, . . . , Amk vk). So it will look like this:

µ1Am1v1 + µ2Am2v2 + · · ·+ µk Amk vk = 0.

Assume WLOG that the first p of the µ1, µ2, . . . , µk are nonzero, while the remaining
k− p are 0. So the relation becomes

µ1Am1v1 + µ2Am2v2 + · · ·+ µp Amp vp = 0,

with µ1, µ2, . . . , µp being nonzero. Assume WLOG that m1 = min
{

m1, m2, . . . , mp
}

,
and factor out Am1 from this relation. This yields

Am1
(
µ1v1 + µ2Am2−m1v2 + · · ·+ µp Amp−m1vp

)
= 0.

Now, set w1 = µ1v1 + µ2Am2−m1v2 + · · ·+ µp Amp−m1vp. Thus, Am1w1 = 0. Hence,(
w1, Aw1, A2w1, . . . , Am1−1w1

)
is an orbit of length m1. Now, replace the orbit

(v1, Av1, . . . , Am1v1) in the spanning set

(v1, Av1, . . . , Am1v1, v2, Av2, . . . , Am2v2, . . . , vk, Avk, . . . , Amk vk)

by the shorter orbit
(
w1, Aw1, A2w1, . . . , Am1−1w1

)
. The resulting list(

w1, Aw1, A2w1, . . . , Am1−1w1, v2, Av2, . . . , Am2v2, . . . , vk, Avk, . . . , Amk vk

)
is still a concatenation of orbits. Also, it still spans Cn, because

w1 = µ1︸︷︷︸
6=0

v1 + µ2Am2−m1v2 + · · ·+ µp Amp−m1vp;

Aw1 = µ1︸︷︷︸
6=0

Av1 + µ2Am2−m1+1v2 + · · ·+ µp Amp−m1+1vp;

. . . ;

Am1v1 = −
(
µ2Am2v2 + · · ·+ µp Amp vp

)(
since µ1Am1v1 + µ2Am2v2 + · · ·+ µp Amp vp = 0

)
.

So we have found a spanning set of Cn that is still a concatenation of orbits, but
is shorter (it has one less vector). Doing this repeatedly, we will eventually obtain
a basis (since we cannot keep making a finite list shorter and shorter indefinitely).
This proves the lemma.
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As we said, the lemma gives us a basis (s1, s2, . . . , sn) such that Asi is either si−1
or 0; and that shows that A is similar to a Jordan matrix. This completes the proof
of the existence part of the Jordan canonical form.

Example 1.1.2. Let

A =


0 1 0 −1 1 −1
0 1 1 −2 2 −2
0 1 0 −1 2 −2
0 1 0 −1 2 −2
0 1 0 −1 1 −1
0 1 0 −1 1 −1

 .

This is not strictly upper-triangular, but it is nilpotent, with A3 = 0, so the above
argument goes equally well with this A.

Let us try to find a basis of C6 that is a concatenation of orbits.
We begin with the spanning set(

e1, Ae1, A2e1, e2, Ae2, A2e2, . . . , e6, Ae6, A2e6

)
.

It has lots of linear dependencies. For one, Ae1 = 0. Multiplying it by A gives
A2e1 = 0, so we can replace

(
e1, Ae1, A2e1

)
by (e1, Ae1). So our spanning set

becomes (
e1, Ae1, e2, Ae2, A2e2, . . . , e6, Ae6, A2e6

)
.

One more step of the same form gives(
e1, e2, Ae2, A2e2, . . . , e6, Ae6, A2e6

)
.

Now, observe that Ae3 = e2. That is, e2− Ae3 = 0. Multiplying it by A2, we ob-
tain A2e2 = 0 (since A2 · Ae3 = A3e3 = 0). So we replace the orbit

(
e2, Ae2, A2e2

)
by (e2, Ae2). So we get the spanning set(

e1, e2, Ae2, e3, Ae3, A2e3, e4, Ae4, A2e4, e5, Ae5, A2e5, e6, Ae6, A2e6

)
.

We observe that
Ae2 = e1 + e2 + e3 + e4 + e5 + e6.

In other words,
Ae2 − e1 − e2 − e3 − e4 − e5 − e6 = 0.

Multiplying this by A2, we obtain

−A2e3 − A2e4 − A2e5 − A2e6 = 0.

In other words,
A2 (−e3 − e4 − e5 − e6) = 0.
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Thus, we set w1 := −e3− e4− e5− e6, and we replace
(
e3, Ae3, A2e3

)
by (w1, Aw1).

So we get the spanning set(
e1, e2, Ae2, w1, Aw1, e4, Ae4, A2e4, e5, Ae5, A2e5, e6, Ae6, A2e6

)
.

Keep making these steps. Eventually, there will be no more linear dependencies,
so we will have a basis.
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