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Math 504 Lecture 9

1. Jordan canonical (aka normal) form (cont’d)

1.1. Step 3: Strictly upper-triangular matrices

Last time, we have proved the uniqueness of the JCF (Jordan canonical form) of a

matrix A € C"*".
We also started proving its existence. The first 2 steps we made were:

¢ We brought A to an upper-triangular form with diagonal entries in contigu-
ous blocks. (This was just careful Schur triangularization.)
) B,

N % %

1 %
* We cleaned out the space “between” distinct diagonal entries: ( 1
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Thus, after these steps, our matrix has become a block-diagonal matrix

where each A; is an upper-triangular matrix with all its diagonal entries equal.

Now it remains to decompose each A; into Jordan cells. To be precise, we want
to show that each A; is similar to a Jordan matrix. (Indeed, this will easily cause
the total matrix to be similar to a Jordan matrix.)

For each i € [k], the matrix A; has all its diagonal entries equal. Let’s say they
all equal y;. Thus, A; — u;l is a strictly upper-triangular matrix. (Recall: a strictly
upper-triangular matrix is an upper-triangular matrix whose diagonal entries are
0.)

So we need to find a way to decompose a strictly upper-triangular matrix into
Jordan cells.

Call the upper-triangular matrix A instead of A; — u;I. Forget about the big
matrix.

So we have a strictly upper-triangular matrix A € C"*". We want to prove that
A is similar to a Jordan matrix.
We begin by trying some examples:

0 a
00

We are looking for an invertible matrix S € C?*? such that S™1AS is a Jordan

matrix.
< J1(0)

Example 1.1.1. Let n = 2. Then, A = < ) for some a € C.

If a = 0, then this is obvious (just take S = I,), since A = is

J1(0) )

already a Jordan matrix.

Now assume a # 0.

Consider our unknown invertible matrix S. Let s; and s, be its columns.
Then, s; and s, are linearly independent (since S is invertible). Moreover, we

want ST1AS = < 8 (1) ) In other words, we want AS = S ( 8 (1) > However,
01

S = (s1 s ) (in block-matrix notation), so S ( 00 ) = (0 s1 ). Thus our

equation AS = S ( 8 (1) ) is equivalent to

(Asy Asy ) =(0 s1).
In other words, As; = 0 and Asy = s;.

So we are looking for two linearly independent vectors si,s; € C? such that
ASl =0and A52 = 51.
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One way to do so is to pick some nonzero vector s; € Ker A, and then define s,
to be some preimage of s; under A. (It can be shown that such preimage exists.)
This way, however, does not generalize to higher n.

Another (better) way is to start by picking s, € C?\ Ker A and then setting
s1 = Asp. We claim that s; and s; are linearly independent, and that As; = 0.

To show that As; = 0, we just observe that As; = éﬁl/ s, = 0.

—A2=(

To show that s; and s; are linearly independent, we argue as follows: Let
A, Ay € C be such that Ays; + Axsp = 0. Applying A to this, we obtain A -
(A151 4+ Asp) = A -0 = 0. However,

A - ()\151 + /\252) = A1 Asy +Ay Asy = Apsy,
< =~

=0 =51

so this becomes Ays1 = 0. However, s; # 0 (because s; = Asp but s, ¢ Ker A).
Hence, Ay = 0. Now, Ays51 + A2sp = 0 becomes Ays; = 0. Since s; # 0, this yields
A1 = 0. Now both A;s are 0, ged.

11
Example 1.1.2. Let n =3 and A = 0

Our first method above doesn’t work, because most vectors in Ker A do not
have preimages under A.
However, our second method can be made to work:
0
We pick a vector s3 ¢ Ker A. To wit, we picks3 =e3 = | 0 |. Then, As3 = ey.
1
Set s, = Asz = e7. Note that s, € Ker A. Let s; be another nonzero vector in
Ker A, namely ey — e3. These three vectors sy, s, s3 are linearly independent and
satisfy As; = 0 and Asy; = 0 and As3 = s;.

0 10 0 00
SoS = 1 0 0 |.Andindeed, S'AS=| 0 0 1 | isaJordan matrix.
-1 0 1 000

So what is the general algorithm here? Can we always find 7 linearly indepen-
dent vectors sq, sy, . ..,S, such that each As; is either 0 or s;_1 ?

To approach this question, we recall a theorem from basic linear algebra:

Theorem 1.1.3. Let V be a finite-dimensional vector space. Let (v1,vy,...,vx) be
any linearly independent tuple of vectors in V. Then, this tuple can be extended
to a basis of V. In other words, we can define further vectors vy 1, Vxi2,...,0m
(where m = dim V) such that (v1,vy,...,vy) is a basis of V.

Now, we are considering a strictly upper-triangular matrix A € C"*".
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The “entries ballooning upwards” argument shows that A" = 0. Thus,
0 = Ker (AO> C Ker (Al) C Ker (A2> C..-CKer <A”_1) CKer(A") =C".

This is a chain of subspaces of C" (although some of the C inclusions can be equal-
ities).

Now, we begin by picking a basis (v1, v, v3, .. .) of Ker (A"~1) (this list is actually
finite; we just don’t want to give a name to its last entry), and extending it to
a basis (v1,02,03,...,511,512,513, - -.) of Ker (A") (by the theorem above, since it
is a linearly independent list of vectors in Ker (A")). Now we throw away the
01,02, 03, ... and only keep the s, 1,5,2,543, - - ..

Then, Asy1, Aspp, Asp3, . .. belong to Ker (A"!) (indeed, more generally, if w €
Ker (A¥), then Aw € Ker (A¥1)), and are linearly independent (to be proved later).
Extend the list (Asy, 1, Asy2, ASy3,...) to

==> TO BE CONTINUED NEXT WEDNESDAY

Now to something completely different...

1.2. The Cauchy—Schwarz inequality

Recall the inner product (u,v) = v*u = w101 + U0y + - - - + U, 0, of two vectors
u,v e C"

Theorem 1.2.1 (Cauchy-Schwarz inequality). Let x € C" and y € C" be two
vectors. Then:
(a) The inequality

[yl = [{x, y)] holds.

(b) This inequality becomes an equality if and only if the pair (x,y) is linearly
dependent.

Proof. If x = 0, then this is obvious. So WLOG assume that x # 0. Thus, (x, x) > 0.
Let
a=(x,x)=||x|]* e R and b= (y,x)€C.

Now, recall that (u,u) > 0 for any u € C". Thus,

(bx —ay, bx —ay) > 0.
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Since
(bx —ay, bx —ay) = (bx —ay, bx) — (bx — ay, ay)
= (bx, bx) — (ay, bx) — (bx, ay) + (ay, ay)
= bb (x,x) —ab (y,x) — ba (x,y) +aa (y,y)
= bb (x,x) —ab (y,x) —ba (x,y) +aa (y,vy)
—— ——

=a =b :E
(since (x,y)=(yx))
(since a € R and thus @ = a)

= bba — abb — bab + aa (y,y) = a (a (v,y) — bE) ,

this rewrites as

a (a (v, y) — bE) > 0.

We can divide by a (since 2 = ||x||* > 0), and obtain a (y,y) — bb > 0. In other
words,

alyy) = bb=[bf = |(xy)?  (sinceb=(y,x) = (%))
Since a = (x,x) = |x||*> and (y,y) = ||y||2, this rewrites as

el Hlyll® > [ )

Now take square roots and be done with (a).
(b) Take a look at the above proof of (a) and think about it. See notes for details
(81.1). O

Corollary 1.2.2 (triangle inequality). For any x,y € C", we have ||x|| + ||y|| >
[lx+yll-

Proof. Exercise 1.1.2. O
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