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Math 504 Lecture 9

1. Jordan canonical (aka normal) form (cont’d)

1.1. Step 3: Strictly upper-triangular matrices

Last time, we have proved the uniqueness of the JCF (Jordan canonical form) of a
matrix A ∈ Cn×n.

We also started proving its existence. The first 2 steps we made were:

• We brought A to an upper-triangular form with diagonal entries in contigu-
ous blocks. (This was just careful Schur triangularization.)

• We cleaned out the space “between” distinct diagonal entries:

 1 ∗ ∗
1 ∗

2

→ 1 ∗
1

2

.
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Thus, after these steps, our matrix has become a block-diagonal matrix


A1

A2
. . .

Ak

,

where each Ai is an upper-triangular matrix with all its diagonal entries equal.
Now it remains to decompose each Ai into Jordan cells. To be precise, we want

to show that each Ai is similar to a Jordan matrix. (Indeed, this will easily cause
the total matrix to be similar to a Jordan matrix.)

For each i ∈ [k], the matrix Ai has all its diagonal entries equal. Let’s say they
all equal µi. Thus, Ai − µi I is a strictly upper-triangular matrix. (Recall: a strictly
upper-triangular matrix is an upper-triangular matrix whose diagonal entries are
0.)

So we need to find a way to decompose a strictly upper-triangular matrix into
Jordan cells.

Call the upper-triangular matrix A instead of Ai − µi I. Forget about the big
matrix.

So we have a strictly upper-triangular matrix A ∈ Cn×n. We want to prove that
A is similar to a Jordan matrix.

We begin by trying some examples:

Example 1.1.1. Let n = 2. Then, A =

(
0 a
0 0

)
for some a ∈ C.

We are looking for an invertible matrix S ∈ C2×2 such that S−1AS is a Jordan
matrix.

If a = 0, then this is obvious (just take S = I2), since A =

(
J1 (0)

J1 (0)

)
is

already a Jordan matrix.
Now assume a 6= 0.
Consider our unknown invertible matrix S. Let s1 and s2 be its columns.

Then, s1 and s2 are linearly independent (since S is invertible). Moreover, we

want S−1AS =

(
0 1
0 0

)
. In other words, we want AS = S

(
0 1
0 0

)
. However,

S =
(

s1 s2
)

(in block-matrix notation), so S
(

0 1
0 0

)
=
(

0 s1
)
. Thus our

equation AS = S
(

0 1
0 0

)
is equivalent to

(
As1 As2

)
=
(

0 s1
)

.

In other words, As1 = 0 and As2 = s1.
So we are looking for two linearly independent vectors s1, s2 ∈ C2 such that

As1 = 0 and As2 = s1.
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One way to do so is to pick some nonzero vector s1 ∈ Ker A, and then define s2
to be some preimage of s1 under A. (It can be shown that such preimage exists.)
This way, however, does not generalize to higher n.

Another (better) way is to start by picking s2 ∈ C2 \ Ker A and then setting
s1 = As2. We claim that s1 and s2 are linearly independent, and that As1 = 0.

To show that As1 = 0, we just observe that As1 = AA︸︷︷︸
=A2=0

s2 = 0.

To show that s1 and s2 are linearly independent, we argue as follows: Let
λ1, λ2 ∈ C be such that λ1s1 + λ2s2 = 0. Applying A to this, we obtain A ·
(λ1s1 + λ2s2) = A · 0 = 0. However,

A · (λ1s1 + λ2s2) = λ1 As1︸︷︷︸
=0

+λ2 As2︸︷︷︸
=s1

= λ2s1,

so this becomes λ2s1 = 0. However, s1 6= 0 (because s1 = As2 but s2 /∈ Ker A).
Hence, λ2 = 0. Now, λ1s1 + λ2s2 = 0 becomes λ1s1 = 0. Since s1 6= 0, this yields
λ1 = 0. Now both λis are 0, qed.

Example 1.1.2. Let n = 3 and A =

 1 1
0

.

Our first method above doesn’t work, because most vectors in Ker A do not
have preimages under A.

However, our second method can be made to work:

We pick a vector s3 /∈ Ker A. To wit, we pick s3 = e3 =

 0
0
1

. Then, As3 = e1.

Set s2 = As3 = e1. Note that s2 ∈ Ker A. Let s1 be another nonzero vector in
Ker A, namely e2 − e3. These three vectors s1, s2, s3 are linearly independent and
satisfy As1 = 0 and As2 = 0 and As3 = s2.

So S =

 0 1 0
1 0 0
−1 0 1

. And indeed, S−1AS =

 0 0 0
0 0 1
0 0 0

 is a Jordan matrix.

So what is the general algorithm here? Can we always find n linearly indepen-
dent vectors s1, s2, . . . , sn such that each Asi is either 0 or si−1 ?

To approach this question, we recall a theorem from basic linear algebra:

Theorem 1.1.3. Let V be a finite-dimensional vector space. Let (v1, v2, . . . , vk) be
any linearly independent tuple of vectors in V. Then, this tuple can be extended
to a basis of V. In other words, we can define further vectors vk+1, vk+2, . . . , vm
(where m = dim V) such that (v1, v2, . . . , vm) is a basis of V.

Now, we are considering a strictly upper-triangular matrix A ∈ Cn×n.
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The “entries ballooning upwards” argument shows that An = 0. Thus,

0 = Ker
(

A0
)
⊆ Ker

(
A1
)
⊆ Ker

(
A2
)
⊆ · · · ⊆ Ker

(
An−1

)
⊆ Ker (An) = Cn.

This is a chain of subspaces of Cn (although some of the ⊆ inclusions can be equal-
ities).

Now, we begin by picking a basis (v1, v2, v3, . . .) of Ker
(

An−1) (this list is actually
finite; we just don’t want to give a name to its last entry), and extending it to
a basis (v1, v2, v3, . . . , sn,1, sn,2, sn,3, . . .) of Ker (An) (by the theorem above, since it
is a linearly independent list of vectors in Ker (An)). Now we throw away the
v1, v2, v3, . . . and only keep the sn,1, sn,2, sn,3, . . ..

Then, Asn,1, Asn,2, Asn,3, . . . belong to Ker
(

An−1) (indeed, more generally, if w ∈
Ker

(
Ak), then Aw ∈ Ker

(
Ak−1)), and are linearly independent (to be proved later).

Extend the list (Asn,1, Asn,2, Asn,3, . . .) to
==> TO BE CONTINUED NEXT WEDNESDAY

Now to something completely different...

1.2. The Cauchy–Schwarz inequality

Recall the inner product 〈u, v〉 = v∗u = u1v1 + u2v2 + · · · + unvn of two vectors
u, v ∈ Cn.

Theorem 1.2.1 (Cauchy–Schwarz inequality). Let x ∈ Cn and y ∈ Cn be two
vectors. Then:

(a) The inequality

||x|| · ||y|| ≥ |〈x, y〉| holds.

(b) This inequality becomes an equality if and only if the pair (x, y) is linearly
dependent.

Proof. If x = 0, then this is obvious. So WLOG assume that x 6= 0. Thus, 〈x, x〉 > 0.
Let

a = 〈x, x〉 = ||x||2 ∈ R and b = 〈y, x〉 ∈ C.

Now, recall that 〈u, u〉 ≥ 0 for any u ∈ Cn. Thus,

〈bx− ay, bx− ay〉 ≥ 0.
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Since

〈bx− ay, bx− ay〉 = 〈bx− ay, bx〉 − 〈bx− ay, ay〉
= 〈bx, bx〉 − 〈ay, bx〉 − 〈bx, ay〉+ 〈ay, ay〉
= bb 〈x, x〉 − ab 〈y, x〉 − ba 〈x, y〉+ aa 〈y, y〉
= bb 〈x, x〉︸ ︷︷ ︸

=a

−ab 〈y, x〉︸ ︷︷ ︸
=b

−ba 〈x, y〉︸ ︷︷ ︸
=b

(since 〈x,y〉=〈y,x〉)

+aa 〈y, y〉

(since a ∈ R and thus a = a)

= bba− abb− bab + aa 〈y, y〉 = a
(

a 〈y, y〉 − bb
)

,

this rewrites as
a
(

a 〈y, y〉 − bb
)
≥ 0.

We can divide by a (since a = ||x||2 > 0), and obtain a 〈y, y〉 − bb ≥ 0. In other
words,

a 〈y, y〉 ≥ bb = |b|2 = |〈x, y〉|2
(

since b = 〈y, x〉 = 〈x, y〉
)

.

Since a = 〈x, x〉 = ||x||2 and 〈y, y〉 = ||y||2, this rewrites as

||x||2 · ||y||2 ≥ |〈x, y〉|2 .

Now take square roots and be done with (a).
(b) Take a look at the above proof of (a) and think about it. See notes for details

(§1.1).

Corollary 1.2.2 (triangle inequality). For any x, y ∈ Cn, we have ||x|| + ||y|| ≥
||x + y||.

Proof. Exercise 1.1.2.
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