Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

October 17, 2021 (unfinished!)

Contents

L.	Jord	lan canonical (aka normal) form (cont'd)	1
	1.1.	Step 3: Strictly upper-triangular matrices	1
	1.2.	The Cauchy–Schwarz inequality	4

Math 504 Lecture 9

1. Jordan canonical (aka normal) form (cont'd)

1.1. Step 3: Strictly upper-triangular matrices

Last time, we have proved the uniqueness of the JCF (Jordan canonical form) of a matrix $A \in \mathbb{C}^{n \times n}$.

We also started proving its existence. The first 2 steps we made were:

- We brought *A* to an upper-triangular form with diagonal entries in contiguous blocks. (This was just careful Schur triangularization.)
- We cleaned out the space "between" distinct diagonal entries:

$$\begin{pmatrix} \cdot & * \\ \cdot & * \\ 2 \end{pmatrix} \rightarrow$$

 $\left(\begin{array}{cc}1&*\\&1\\&&2\end{array}\right).$

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

 A_2

Thus, after these steps, our matrix has become a block-diagonal matrix

where each A_i is an upper-triangular matrix with all its diagonal entries equal.

Now it remains to decompose each A_i into Jordan cells. To be precise, we want to show that each A_i is similar to a Jordan matrix. (Indeed, this will easily cause the total matrix to be similar to a Jordan matrix.)

For each $i \in [k]$, the matrix A_i has all its diagonal entries equal. Let's say they all equal μ_i . Thus, $A_i - \mu_i I$ is a strictly upper-triangular matrix. (Recall: a strictly **upper-triangular** matrix is an upper-triangular matrix whose diagonal entries are 0.)

So we need to find a way to decompose a strictly upper-triangular matrix into Jordan cells.

Call the upper-triangular matrix A instead of $A_i - \mu_i I$. Forget about the big matrix.

So we have a strictly upper-triangular matrix $A \in \mathbb{C}^{n \times n}$. We want to prove that *A* is similar to a Jordan matrix.

We begin by trying some examples:

Example 1.1.1. Let
$$n = 2$$
. Then, $A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ for some $a \in \mathbb{C}$.

We are looking for an invertible matrix $S \in \mathbb{C}^{2 \times 2}$ such that $S^{-1}AS$ is a Jordan matrix.

If a = 0, then this is obvious (just take $S = I_2$), since $A = \begin{pmatrix} J_1(0) \\ J_1(0) \end{pmatrix}$ is already a Jordan matrix.

Now assume $a \neq 0$.

Consider our unknown invertible matrix *S*. Let s_1 and s_2 be its columns. Then, s_1 and s_2 are linearly independent (since *S* is invertible). Moreover, we want $S^{-1}AS = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. In other words, we want $AS = S \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. However, $S = \begin{pmatrix} s_1 & s_2 \end{pmatrix}$ (in block-matrix notation), so $S \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & s_1 \end{pmatrix}$. Thus our equation $AS = S \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is equivalent to $\begin{pmatrix} As_1 & As_2 \end{pmatrix} = \begin{pmatrix} 0 & s_1 \end{pmatrix}$.

In other words, $As_1 = 0$ and $As_2 = s_1$.

So we are looking for two linearly independent vectors $s_1, s_2 \in \mathbb{C}^2$ such that $As_1 = 0$ and $As_2 = s_1$.

One way to do so is to pick some nonzero vector $s_1 \in \text{Ker } A$, and then define s_2 to be some preimage of s_1 under A. (It can be shown that such preimage exists.) This way, however, does not generalize to higher n.

Another (better) way is to start by picking $s_2 \in \mathbb{C}^2 \setminus \text{Ker } A$ and then setting $s_1 = As_2$. We claim that s_1 and s_2 are linearly independent, and that $As_1 = 0$.

To show that $As_1 = 0$, we just observe that $As_1 = AA = AA = A^2 = 0$.

To show that s_1 and s_2 are linearly independent, we argue as follows: Let $\lambda_1, \lambda_2 \in \mathbb{C}$ be such that $\lambda_1 s_1 + \lambda_2 s_2 = 0$. Applying *A* to this, we obtain $A \cdot (\lambda_1 s_1 + \lambda_2 s_2) = A \cdot 0 = 0$. However,

$$A \cdot (\lambda_1 s_1 + \lambda_2 s_2) = \lambda_1 \underbrace{As_1}_{=0} + \lambda_2 \underbrace{As_2}_{=s_1} = \lambda_2 s_1,$$

so this becomes $\lambda_2 s_1 = 0$. However, $s_1 \neq 0$ (because $s_1 = As_2$ but $s_2 \notin \text{Ker } A$). Hence, $\lambda_2 = 0$. Now, $\lambda_1 s_1 + \lambda_2 s_2 = 0$ becomes $\lambda_1 s_1 = 0$. Since $s_1 \neq 0$, this yields $\lambda_1 = 0$. Now both λ_i s are 0, qed.

Example 1.1.2. Let
$$n = 3$$
 and $A = \begin{pmatrix} 1 & 1 \\ 0 \end{pmatrix}$

Our first method above doesn't work, because most vectors in Ker A do not have preimages under A.

However, our second method can be made to work:

We pick a vector $s_3 \notin \text{Ker } A$. To wit, we pick $s_3 = e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Then, $As_3 = e_1$.

Set $s_2 = As_3 = e_1$. Note that $s_2 \in \text{Ker } A$. Let s_1 be another nonzero vector in Ker A, namely $e_2 - e_3$. These three vectors s_1, s_2, s_3 are linearly independent and satisfy $As_1 = 0$ and $As_2 = 0$ and $As_3 = s_2$.

So
$$S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
. And indeed, $S^{-1}AS = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ is a Jordan matrix.

So what is the general algorithm here? Can we always find *n* linearly independent vectors s_1, s_2, \ldots, s_n such that each As_i is either 0 or s_{i-1} ?

To approach this question, we recall a theorem from basic linear algebra:

Theorem 1.1.3. Let *V* be a finite-dimensional vector space. Let $(v_1, v_2, ..., v_k)$ be any linearly independent tuple of vectors in *V*. Then, this tuple can be extended to a basis of *V*. In other words, we can define further vectors $v_{k+1}, v_{k+2}, ..., v_m$ (where $m = \dim V$) such that $(v_1, v_2, ..., v_m)$ is a basis of *V*.

Now, we are considering a strictly upper-triangular matrix $A \in \mathbb{C}^{n \times n}$.

The "entries ballooning upwards" argument shows that $A^n = 0$. Thus,

$$0 = \operatorname{Ker}\left(A^{0}\right) \subseteq \operatorname{Ker}\left(A^{1}\right) \subseteq \operatorname{Ker}\left(A^{2}\right) \subseteq \cdots \subseteq \operatorname{Ker}\left(A^{n-1}\right) \subseteq \operatorname{Ker}\left(A^{n}\right) = \mathbb{C}^{n}.$$

This is a chain of subspaces of \mathbb{C}^n (although some of the \subseteq inclusions can be equalities).

Now, we begin by picking a basis $(v_1, v_2, v_3, ...)$ of Ker (A^{n-1}) (this list is actually finite; we just don't want to give a name to its last entry), and extending it to a basis $(v_1, v_2, v_3, ..., s_{n,1}, s_{n,2}, s_{n,3}, ...)$ of Ker (A^n) (by the theorem above, since it is a linearly independent list of vectors in Ker (A^n)). Now we throw away the $v_1, v_2, v_3, ...$ and only keep the $s_{n,1}, s_{n,2}, s_{n,3}, ...$

Then, $As_{n,1}, As_{n,2}, As_{n,3}, \ldots$ belong to Ker (A^{n-1}) (indeed, more generally, if $w \in$ Ker (A^k) , then $Aw \in$ Ker (A^{k-1})), and are linearly independent (to be proved later). Extend the list $(As_{n,1}, As_{n,2}, As_{n,3}, \ldots)$ to

==> TO BE CONTINUED NEXT WEDNESDAY

Now to something completely different...

1.2. The Cauchy–Schwarz inequality

Recall the inner product $\langle u, v \rangle = v^* u = u_1 \overline{v_1} + u_2 \overline{v_2} + \cdots + u_n \overline{v_n}$ of two vectors $u, v \in \mathbb{C}^n$.

Theorem 1.2.1 (Cauchy–Schwarz inequality). Let $x \in \mathbb{C}^n$ and $y \in \mathbb{C}^n$ be two vectors. Then:

(a) The inequality

$$|x|| \cdot ||y|| \ge |\langle x, y \rangle|$$
 holds.

(b) This inequality becomes an equality if and only if the pair (x, y) is linearly dependent.

Proof. If x = 0, then this is obvious. So WLOG assume that $x \neq 0$. Thus, $\langle x, x \rangle > 0$. Let

$$a = \langle x, x \rangle = ||x||^2 \in \mathbb{R}$$
 and $b = \langle y, x \rangle \in \mathbb{C}$.

Now, recall that $\langle u, u \rangle \ge 0$ for any $u \in \mathbb{C}^n$. Thus,

$$\langle bx - ay, bx - ay \rangle \geq 0.$$

Since

$$\langle bx - ay, bx - ay \rangle = \langle bx - ay, bx \rangle - \langle bx - ay, ay \rangle = \langle bx, bx \rangle - \langle ay, bx \rangle - \langle bx, ay \rangle + \langle ay, ay \rangle = b\overline{b} \langle x, x \rangle - a\overline{b} \langle y, x \rangle - b\overline{a} \langle x, y \rangle + a\overline{a} \langle y, y \rangle = b\overline{b} \underbrace{\langle x, x \rangle}_{=a} - a\overline{b} \underbrace{\langle y, x \rangle}_{=b} - ba \underbrace{\langle x, y \rangle}_{=\overline{b}} + aa \langle y, y \rangle (since a \in \mathbb{R} and thus \overline{a} = a) = b\overline{b}a - a\overline{b}b - ba\overline{b} + aa \langle y, y \rangle = a \left(a \langle y, y \rangle - b\overline{b}\right),$$

this rewrites as

$$a\left(a\left\langle y,y\right\rangle -b\overline{b}\right)\geq0.$$

We can divide by *a* (since $a = ||x||^2 > 0$), and obtain $a \langle y, y \rangle - b\overline{b} \ge 0$. In other words,

$$a \langle y, y \rangle \ge b\overline{b} = |b|^2 = |\langle x, y \rangle|^2 \qquad \left(\text{since } b = \langle y, x \rangle = \overline{\langle x, y \rangle} \right).$$

Since $a = \langle x, x \rangle = ||x||^2$ and $\langle y, y \rangle = ||y||^2$, this rewrites as

$$||x||^{2} \cdot ||y||^{2} \ge |\langle x, y \rangle|^{2}.$$

Now take square roots and be done with (a).

(b) Take a look at the above proof of (a) and think about it. See notes for details (§1.1). $\hfill \square$

Corollary 1.2.2 (triangle inequality). For any $x, y \in \mathbb{C}^n$, we have $||x|| + ||y|| \ge ||x + y||$.

Proof. Exercise 1.1.2.