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Math 504 Lecture 8

1. Jordan canonical (aka normal) form (cont’d)

1.1. The Jordan canonical form (aka Jordan normal form)
(cont’d)

Recall from last lecture:

Definition 1.1.1. A Jordan cell is a m×m-matrix of the form
λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 for some m > 0 and some λ ∈ C.
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So its diagonal entries are λ; its entries directly above the diagonal are 1; all its
other entries are 0. In formal terms, it is the m×m-matrix A whose entries are
given by the rule

Ai,j =


λ, if i = j;
1, if i = j− 1;
0, otherwise.

Specifically, this matrix is called the Jordan cell of size m at eigenvalue λ. It
is denoted by Jm (λ).

Definition 1.1.2. A Jordan matrix is a block-diagonal matrix whose diagonal
blocks are Jordan cells. In other words, it is a matrix of the form

Jn1 (λ1) 0 · · · 0
0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 ,

where n1, n2, . . . , nk are positive integers and λ1, λ2, . . . , λk are scalars in C (not
necessarily distinct, but not necessarily equal either).

We claimed:

Theorem 1.1.3 (Jordan canonical form theorem). Let A be an n× n-matrix over
C. Then, there exists a Jordan matrix J such that A ∼ J. Furthermore, this J is
unique up to the order of the diagonal blocks.

Definition 1.1.4. The matrix J in this theorem is called a Jordan canonical form
of A (or a Jordan normal form of A).

Proposition 1.1.5. Let A be an n × n-matrix, and let J =
Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 be its Jordan canonical form. Then:

(a) We have σ (A) = {λ1, λ2, . . . , λk}.
(b) The geometric multiplicity of an eigenvalue λ of A is the number of Jordan

cells of A at eigenvalue λ. In other words, it is the number of i ∈ [k] satisfying
λi = λ.

(c) The algebraic multiplicity of an eigenvalue λ of A is the sum of the sizes of
all Jordan cells of A at eigenvalue λ. In other words, it is ∑

i∈[k];
λi=λ

ni.
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Now, let us improve on this result somewhat:

Proposition 1.1.6. Let A be an n × n-matrix, and let J =
Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 be its Jordan canonical form. Let λ ∈ C

and m ≥ 1. Then,

(the number of i ∈ [k] such that λi = λ and ni ≥ m)

= dim
(
Ker

(
(A− λIn)

m))− dim
(

Ker
(
(A− λIn)

m−1
))

.

This proposition gives us a way to tell how many Jordan blocks of the Jordan
form of A have eigenvalue λ and size ≥ m. As a consequence, this number is
uniquely determined by A and λ. Hence, the whole structure of J is determined
uniquely by A, up to the order of the Jordan blocks. This shows the “uniqueness”
part of the Jordan canonical form theorem, as long as we can prove the proposition.

Example 1.1.7. Let A be an 8× 8-matrix. Assume that we know that A has

• 1 Jordan block of size ≥ 1 for eigenvalue 17;

• 0 Jordan blocks of size ≥ 2 for eigenvalue 17;

• 3 Jordan blocks of size ≥ 1 for eigenvalue 35;

• 1 Jordan block of size ≥ 2 for eigenvalue 35;

• 0 Jordan blocks of size ≥ 3 for eigenvalue 35;

• 1 Jordan block of size ≥ 1 for eigenvalue 59;

• 1 Jordan block of size ≥ 2 for eigenvalue 59;

• 1 Jordan block of size ≥ 3 for eigenvalue 59;

• 0 Jordan blocks of size ≥ 4 for eigenvalue 59;

• 0 Jordan blocks of size ≥ 1 for eigenvalue λ whenever λ /∈ {17, 35, 59}.
(This is the sort of information you can obtain from A using the preceding

proposition.)
How does the Jordan canonical form of A look like? It is the block-diagonal

matrix 
J1 (17)

J2 (35)
J1 (35)

J1 (35)
J3 (59)


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(where all invisible entries are 0s), or one that is obtained from it by permuting
the diagonal blocks.

Let us prove the proposition:

Proof of Proposition. We have A ∼ J, so that A−λIn ∼ J−λIn, so that (A− λIn)
m ∼

(J − λIn)
m and therefore

dim
(
Ker

(
(A− λIn)

m)) = dim
(
Ker

(
(J − λIn)

m)) .

However

J − λIn =


Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

− λIn

=


Jn1 (λ1 − λ) 0 · · · 0

0 Jn2 (λ2 − λ) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk − λ)

 ,

so that

(J − λIn)
m =


Jn1 (λ1 − λ) 0 · · · 0

0 Jn2 (λ2 − λ) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk − λ)


m

=


(Jn1 (λ1 − λ))m 0 · · · 0

0 (Jn2 (λ2 − λ))m · · · 0
...

... . . . ...
0 0 · · · (Jnk (λk − λ))m


(

because multiplication of block-diagonal matrices
means that respective blocks get multiplied

)
.
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Thus,

dim
(
Ker

(
(J − λIn)

m))

= dim

Ker


(Jn1 (λ1 − λ))m 0 · · · 0

0 (Jn2 (λ2 − λ))m · · · 0
...

... . . . ...
0 0 · · · (Jnk (λk − λ))m




= dim
(
Ker

(
(Jn1 (λ1 − λ))m))+ dim

(
Ker

(
(Jn2 (λ2 − λ))m))+ · · ·+ dim

(
Ker

(
(Jnk (λk − λ))m))

=
k

∑
i=1

dim
(
Ker

(
(Jni (λi − λ))m)) .

Now, fix i ∈ [k]. If λi 6= λ, then Jni (λi − λ) is a triangular matrix with nonzero
entries on the diagonal (in fact, the diagonal entries are all λi − λ 6= 0), and thus
has determinant 6= 0 and therefore is invertible. Hence, in this case, its power
(Jni (λi − λ))m is also invertible, so it has nullity 0. Thus,

if λi 6= λ, then dim
(
Ker

(
(Jni (λi − λ))m)) = 0.

Now consider the case when λi = λ. Then, Jni (λi − λ) = Jni (0) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

.

Let me call this matrix B. From last time, we know that

dim (Ker (Bm)) =

{
m, if m ≤ ni;
ni, if m > ni.

Thus,

dim
(
Ker

(
(Jni (λi − λ))m)) = {m, if m ≤ ni;

ni, if m > ni
in this case.

Now let us see what this means for our sum:

k

∑
i=1

dim
(
Ker

(
(Jni (λi − λ))m))

= ∑
i∈[k];
λi=λ

{
m, if m ≤ ni;
ni, if m > ni.
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So

dim
(
Ker

(
(A− λIn)

m))
= dim

(
Ker

(
(J − λIn)

m))
=

k

∑
i=1

dim
(
Ker

(
(Jni (λi − λ))m))

= ∑
i∈[k];
λi=λ

{
m, if m ≤ ni;
ni, if m > ni.

The same argument, applied to m− 1 instead of m, yields

dim
(

Ker
(
(A− λIn)

m−1
))

= ∑
i∈[k];
λi=λ

{
m− 1; if m− 1 ≤ ni;
ni, if m− 1 > ni.

Subtracting these two equalities, we obtain

dim
(
Ker

(
(A− λIn)

m))− dim
(

Ker
(
(A− λIn)

m−1
))

= ∑
i∈[k];
λi=λ

{
m, if m ≤ ni;
ni, if m > ni

− ∑
i∈[k];
λi=λ

{
m− 1; if m− 1 ≤ ni;
ni, if m− 1 > ni

= ∑
i∈[k];
λi=λ

({
m, if m ≤ ni;
ni, if m > ni

−
{

m− 1; if m− 1 ≤ ni;
ni, if m− 1 > ni

)
︸ ︷︷ ︸

=

1, if m ≤ ni;
0, if m > ni

(this can be directly checked in each
of the three cases m≤ni and m=ni+1 and m>ni+1)

= ∑
i∈[k];
λi=λ

{
1, if m ≤ ni;
0, if m > ni

= (the number of i ∈ [k] such that λi = λ and m ≤ ni)

= (the number of i ∈ [k] such that λi = λ and ni ≥ m) .

Thus, the proposition follows.

So we are done proving the uniqueness part of the JCF theorem. (“JCF” is short
for “Jordan Canonical Form”.)

Let us now approach the existence part.
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1.2. Proof of the existence part of the JCF

1.2.1. Step 1: Schur triangularization

We have an n× n-matrix A ∈ Cn×n, and we want to make it into a Jordan matrix
by conjugation.

First, we make it upper-triangular by conjugation. We know that this is possible
by the Schur triangularization theorem, but we are a bit pickier now. To wit, we
want the triangular matrix T to have the property that equal eigenvalues form
contiguous blocks on the main diagonal. For instance, we don’t want

T =


1 ∗ ∗ ∗

2 ∗ ∗
1 ∗

2

 .

Instead, we want

T =


1 ∗ ∗ ∗

1 ∗ ∗
2 ∗

2

 .

To this purpose, we need a stronger version of Schur triangularization:

Theorem 1.2.1 (Schur triangularization with perscribed diagonal). Let A ∈ Cn×n

be an n× n-matrix. Let λ1, λ2, . . . , λn be its eigenvalues (listed with their alge-
braic multiplicities). Then, there exists an upper-triangular matrix T such that
A us∼ T (this means “A is unitarily similar to T”) and such that the diagonal
entries of T are λ1, λ2, . . . , λn in this order.

Proof. We proceed as in the proof of the original Schur triangularization theorem,
but we pay some attention to the eigenvectors that we pick. That proof constructed
T recursively, starting by picking an eigenvalue λ of A and a corresponding λ-
eigenvector x 6= 0, and then finding a unitary matrix U such that

U∗AU =

(
λ p
0 B

)
for some p ∈ C1×(n−1) and B ∈ C(n−1)×(n−1).

Then, the algorithm was applied recursively to B.
Now, we perform this algorithm, but we make sure to pick λ = λ1. Thus,

U∗AU =

(
λ1 p
0 B

)
,

which is a good start. Now we want to apply the IH (= induction hypothesis) to B.
To that purpose, we need to know that the eigenvalues of B are λ2, λ3, . . . , λn (with
algebraic multiplicities). In other words, we need to know that

pB (t) = (t− λ2) (t− λ3) · · · (t− λn) .

Now, I need a lemma about determinants:
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Lemma 1.2.2. Let F be a field. Let X ∈ Fn×n, Y ∈ Fn×m and Z ∈ Fm×m be three
matrices. Then,

det
(

X Y
0 Z

)
= det X · det Z.

For example,

det


a b c d
a′ b′ c′ d′

0 0 c′′ d′′

0 0 c′′′ d′′′

 = det
(

a b
a′ b′

)
· det

(
c′′ d′′

c′′′ d′′′

)
.

Now, since U is unitary, we have A us∼ U∗AU and thus A ∼ U∗AU. Thus,

pA = pU∗AU = det (tIn −U∗AU) = det
(

tIn −
(

λ1 p
0 B

))
(

since U∗AU =

(
λ1 p
0 B

))
= det

(
t− λ1 −p

0 tIn−1 − B

)
= det

(
t− λ1

)︸ ︷︷ ︸
t−λ1

·det (tIn−1 − B)︸ ︷︷ ︸
=pB

(
by the lemma, or by Laplace

expansion along the 1st column

)
= (t− λ1) · pB,

so that
(t− λ1) · pB = pA = (t− λ1) (t− λ2) · · · (t− λn) .

Now, we can cancel t− λ1 (since this is a nonzero polynomial), and this becomes

pB = (t− λ2) (t− λ3) · · · (t− λn) ,

exactly as we wanted to show.

1.3. Step 2: Separating distinct eigenvalues

Recall the corollary from last time:

Corollary 1.3.1. Let A ∈ Cn×n, B ∈ Cm×m and C ∈ Cn×m be three matrices such
that σ (A) ∩ σ (B) = ∅. Then, the two (n + m)× (n + m)-matrices(

A C
0 B

)
and

(
A 0
0 B

)
(written in block-matrix notation) are similar.
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Let us use this corollary to show that for any numbers a, b, c, . . . , p ∈ C, we have

1 a b c d e
1 f g h i

2 j k `
2 m n

2 p
3

 ∼


1 a
1

2 j k
2 m

2
3


(where invisible cells contain 0s). Indeed, the triangular matrices

(
1 a

1

)
and

2 j k `
2 m n

2 p
3

 have disjoint spectra (i.e., they have no eigenvalues in common),

because their diagonals have no entries in common. So, by the corollary,

1 a b c d e
1 f g h i

2 j k `
2 m n

2 p
3

 ∼


1 a
1

2 j k `
2 m n

2 p
3

 .

Now, the triangular matrices


1 a

1
2 j k

2 m
2

 and
(

3
)

have disjoint spectra,

so the corollary yields
1 a

1
2 j k `

2 m n
2 p

3

 ∼


1 a
1

2 j k
2 m

2
3

 .

Since ∼ is an equivalence relation, we can combine the two similarities, and my
claim follows.

So when we have a triangular matrix where the diagonal has no interleaving
values (i.e., there is never a µ between two λ’s on the diagonal when µ 6= λ), we
can “clean out” all the above-diagonal entries that correspond to different diagonal
entries (i.e., that lie above a different diagonal entry than they stand to the right of)
by conjugating with an appropriate matrix.

Now, combining this with the Schur triangularization theorem (in its above-
stated stronger version), we obtain the following:
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Proposition 1.3.2. Let A ∈ Cn×n be an n × n-matrix. Then, A is similar to a
block-diagonal matrix of the form

B1
B2

. . .
Bk

 ,

where each Bi is an upper-triangular matrix with all entries on its diagonal being
equal.

This is not yet a Jordan canonical form, but it is already somewhat close. At least,
we have separated out all the distinct eigenvalues of A. We now only need to care
about the matrices B1, B2, . . . , Bk, each of which has only one distinct eigenvalue.
Our next goal is to break up these matrices B1, B2, . . . , Bk into Jordan cells (using
conjugation).
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