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Math 504 Lecture 7

1. Schur triangularization (cont’d)

1.1. Sylvester’s equation (cont’d)

Last time, we proved the V =⇒ U direction of the following fact:

Theorem 1.1.1. Let A be an n × n-matrix, and let B be an m × m-matrix (both
with complex entries). Let C be an n×m-matrix. Then, the following statements
are equivalent:

• U : There is a unique matrix X ∈ Cn×m such that AX− XB = C.

• V : We have σ (A) ∩ σ (B) = ∅.
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Here, σ (A) denotes the spectrum of a matrix A (that is, the set of all eigenvalues
of A).

Today, we shall derive a corollary from the above theorem:

Corollary 1.1.2. Let A ∈ Cn×n, B ∈ Cm×m and C ∈ Cn×m be three matrices such
that σ (A) ∩ σ (B) = ∅. Then, the two (n + m)× (n + m)-matrices(

A C
0 B

)
and

(
A 0
0 B

)
(written in block-matrix notation) are similar.

Example 1.1.3. Let A =

(
1 3
0 1

)
and B =

(
2
)

and C =

(
7
9

)
. Then, the

corollary says that the matrices 1 3 7
0 1 9
0 0 2

 and

 1 3 0
0 1 0
0 0 2


are similar.

Proof of Corollary. We know from the previous theorem (specifically, from its V =⇒
U direction) that there exists a matrix X ∈ Cn×m such that AX−XB = C. Consider
this X.

Now, let S =

(
In X
0 Im

)
. Now I claim that S is invertible and that(

A 0
0 B

)
= S

(
A C
0 B

)
S−1.

Once this claim is proved, the corollary will follow.
To see that S is invertible, we construct an inverse. Namely, we claim that(
In −X
0 Im

)
is an inverse for S. To show this, we just check that

S
(

In −X
0 Im

)
=

(
In X
0 Im

)(
In −X
0 Im

)
=

(
In In + X · 0 In (−X) + XIm
0In + Im0 0 (−X) + Im Im

)
=

(
In 0
0 Im

)
= In+m

and (
In −X
0 Im

)
S = In+m (similarly) .

So we have shown that S is invertible. It remains to check that(
A 0
0 B

)
= S

(
A C
0 B

)
S−1.

October 4, 2021



Math 504 notes page 3

To do so, we check the equivalent identity(
A 0
0 B

)
S = S

(
A C
0 B

)
.

This we do by computing both sides and comparing:(
A 0
0 B

)
S =

(
A 0
0 B

)(
In X
0 Im

)
=

(
A AX
0 B

)
and

S
(

A C
0 B

)
=

(
In X
0 Im

)(
A C
0 B

)
=

(
A C + XB
0 B

)
=

(
A AX
0 B

)
(since AX− XB = C entails C + XB = AX) .

We are done.

2. Jordan canonical (aka normal) form

2.1. Similarity redux

Definition 2.1.1. Let A and B be two n× n-matrices. We write A ∼ B to say “A
is similar to B”.

We recall some properties of similar matrices: Similarity is an equivalence relation.
Furthermore:

Proposition 2.1.2. Let A and B be two n× n-matrices that satisfy A ∼ B. Then:
(a) Ak ∼ Bk for each k ∈N.
(b) A− λIn ∼ B− λIn for each λ ∈ C.
(c) (A− λIn)

k ∼ (B− λIn)
k for each λ ∈ C and k ∈N.

(d) pA = pB. (Recall that pM stands for the characteristic polynomial of M.)
(e) dim Ker A = dim Ker B.
(f) dim Ker

(
(A− λIn)

k
)
= dim Ker

(
(B− λIn)

k
)

for each λ ∈ C and k ∈N.

Recall the concepts of algebraic and geometric multiplicities:

Definition 2.1.3. Let A be an n× n-matrix, and let λ ∈ C.
(a) The algebraic multiplicity of λ as an eigenvalue of A is defined to be the

multiplicity of λ as a root of pA. (If λ is not an eigenvalue of A, then this is 0.)
(b) The geometric multiplicity of λ as an eigenvalue of A is defined to be

dim Ker (A− λIn). In other words, it is the maximum number of linearly inde-
pendent eigenvectors for eigenvalue λ. (If λ is not an eigenvalue of A, then this
is 0.)
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The geometric multiplicity is always ≤ to the algebraic multiplicity. Sometimes,
it is strictly smaller. For instance, the matrix 1 0 0

0 1 2
0 0 1


has only 1 as its eigenvalue, with algebraic multiplicity 3 and geometric multiplicity
is 2.

2.2. Jordan cells

Definition 2.2.1. A Jordan cell is a k× k-matrix of the form
λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 for some k > 0 and some λ ∈ C.

So its diagonal entries are λ; its entries directly above the diagonal are 1; all its
other entries are 0. In formal terms, it is the k × k-matrix A whose entries are
given by the rule

Ai,j =


λ, if i = j;
1, if i = j− 1;
0, otherwise.

Specifically, this matrix is called the Jordan cell of size k at eigenvalue λ. It is
denoted by Jk (λ).

For example, the Jordan cell of size 3 at eigenvalue −5 is −5 1 0
0 −5 1
0 0 −5

 .

Proposition 2.2.2. Let k > 0 and λ ∈ C. The only eigenvalue of Jk (λ) is λ, and it
has algebraic multiplicity k and geometric multiplicity 1.

Proof. Look at the matrix:

Jk (λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 .
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This matrix is upper-triangular, so its characteristic polynomial is

pJk(λ)
= (t− λ) (t− λ) · · · (t− λ) = (t− λ)k .

Thus, its only eigenvalue is λ, and this eigenvalue has algebraic multiplicity k. Its
geometric multiplicity is

dim Ker (Jk (λ)− λIk) = dim Ker


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 = 1.

Proposition 2.2.3. Let k > 0 and λ ∈ C. Let B = Jk (λ)− λIk. For any p ∈N, we
have

dim Ker (Bp) =

{
p, if p ≤ k;
k, if p > k.

.

Proof. As we have just seen,

B =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 .
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For example, if k = 4, then

B =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



=⇒ B2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



=⇒ B3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



=⇒ B4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


=⇒ Bp = 0 for all p ≥ 4.

This generalizes to arbitrary k. Indeed, it is easy to see (by induction on p) that

(Bp)i,j =

{
1, if i = j− p;
0, otherwise

for all i, j.

Now, the claim about dim Ker (Bp) easily follows.

2.3. The Jordan canonical form (aka Jordan normal form)

Definition 2.3.1. A Jordan matrix is a block-diagonal matrix whose diagonal
blocks are Jordan cells. In other words, it is a matrix of the form

Jn1 (λ1) 0 · · · 0
0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 ,

where n1, n2, . . . , nk are positive integers and λ1, λ2, . . . , λk are scalars in C (not
necessarily distinct, but not necessarily equal either).

We claim the following:
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Theorem 2.3.2 (existence of the Jordan canonical form). Every n× n-matrix over
C is similar to a Jordan matrix.

This theorem is useful partly (but not only) because it allows to reduce questions
about general square matrices to questions about Jordan matrices. And the latter
can usually further be reduced to questions about Jordan cells, because a block-
diagonal matrix “behaves like its diagonal blocks are separate”.

The above existence theorem has a matching uniqueness statement:

Theorem 2.3.3 (Jordan canonical form theorem). Let A be an n× n-matrix over
C. Then, there exists a Jordan matrix J such that A ∼ J. Furthermore, this J is
unique up to the order of the diagonal blocks.

Definition 2.3.4. The matrix J in this theorem is called a Jordan canonical form
of A (or a Jordan normal form of A).

Example 2.3.5. The Jordan canonical form of

 1 2 3
0 2 5
0 0 1

 is

 2 0 0
0 1 1
0 0 1

. In-

deed,

 2 0 0
0 1 1
0 0 1

 is a Jordan matrix (it can be written as
(

J1 (2) 0
0 J2 (1)

)
)

and it can be checked that 1 2 3
0 2 5
0 0 1

 ∼
 2 0 0

0 1 1
0 0 1

 .

We can, of course, swap the two Jordan cells in this Jordan matrix, and obtain
another Jordan canonical form of the same matrix.

Example 2.3.6. The Jordan canonical form of In is In itself. Indeed, each of its
diagonal entries is itself a little Jordan cell J1 (1), so it is already a Jordan matrix.

Now, we shall approach the proof of the Jordan canonical form theorem step by
step, beginning with the uniqueness part.

Example 2.3.7. Suppose that A ∼ J with

J =

 J2 (1) 0 0
0 J3 (1) 0
0 0 J2 (2)

 =



1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 1
0 0 0 0 0 0 2


.

What can we say about A ?
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First, since A ∼ J, we have σ (A) = σ (J) = {1, 2} (since J is upper-triangular).
Actually, from A ∼ J, we also obtain

pA = pJ = (t− 1)5 (t− 2)2
(

since J and therefore also tIn − J
is upper-triangular

)
.

Thus, the algebraic multiplicities of the eigenvalues 1 and 2 of A are 5 and 2,
respectively.

Now, what about the geometric multiplicities? What is dim Ker (A− 1In) ?
In general, if B1, B2, . . . , Bk are square matrices, then

dim Ker


B1 0 · · · 0
0 B2 · · · 0
...

... . . . ...
0 0 · · · Bk

 = dim Ker B1 + dim Ker B2 + · · ·+ dim Ker Bk,

since a block-structured vector


v1
v2
...

vk

 lies in Ker


B1 0 · · · 0
0 B2 · · · 0
...

... . . . ...
0 0 · · · Bk

 if and

only if each of its pieces vi lies in Ker Bi. Thus,

dim Ker (A− 1In)

= dim Ker (J − 1In) (since A ∼ J)

= dim Ker

 J2 (1) 0 0
0 J3 (1) 0
0 0 J2 (2)

− 1In


= dim Ker

 J2 (1)− 1I2 0 0
0 J3 (1)− 1I3 0
0 0 J2 (2)− 1I2


= dim Ker (J2 (1)− 1I2)︸ ︷︷ ︸

=1
(by proposition above)

+dim Ker (J3 (1)− 1I3)︸ ︷︷ ︸
=1

(by proposition above)

+ dim Ker (J2 (2)− 1I2)︸ ︷︷ ︸
=0

(since J2(2)−1I2=

(
1 1
0 1

)
)

= 1 + 1 + 0 = 2.

In general, this reasoning yields the following:

Proposition 2.3.8. Let A be an n × n-matrix, and let J =
Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 be its Jordan canonical form. Then:
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(a) We have σ (A) = {λ1, λ2, . . . , λk}.
(b) The geometric multiplicity of an eigenvalue λ of A is the number of Jordan

cells of A at eigenvalue λ. In other words, it is the number of i ∈ [k] satisfying
λi = λ.

(c) The algebraic multiplicity of an eigenvalue λ of A is the sum of the sizes of
all Jordan cells of A at eigenvalue λ. In other words, it is ∑

i∈[k];
λi=λ

ni.
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