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Math 504 Lecture 6

1. Schur triangularization (cont’d)

1.1. Application: Cayley—Hamilton theorem

Let us recall some properties of the characteristic polynomial of an n x n-matrix A:

Definition 1.1.1. Let [F be a field. Let A € [F"*" be an n x n-matrix over .
The characteristic polynomial p4 of A is defined to be the polynomial

det (tL, — A) € F [{]
~—~—

ring of all polynomials
in the indeterminate ¢
with coefficients in F
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Example 1.1.2. Letn =2 and A = ( Z Z ) Then,

tIn—A:tlz—A:t<(1) ?)—(‘Cz Z)
_(t 0\ [(ab\_[(t—a -—b
-\ 0 ¢t c d ) —c t—d )’

pa = det (t, — A) = det ( t__C” t‘_bd ) = (t—a) (t—d) — (=b) (—c)

=t —(a+d)t+ (ad —bc).

so that

a b c
Example 1.1.3. Let n =3 and A = ( a v ) . Then,

a// b// C//
t—a —=b —C
tly — A=tlz — A= —a t=bv = ,
—a'  —p t—"

so that

t—a —b —c
pa=det| —a t-b -
4y

S - (a+b" +c") 2+ (ab' —ba' +ac” —ca” +b'" = V")t

— (ab'c" —ab"c" —ba'" 4+ ba" " + ca'b" — ca”b') .

By the way, some authors define p4 to be det (A — tI,,) instead of det (tI, — A).
This differs from our definition only by a factor of (—1)", so the difference is in-
significant.

Proposition 1.1.4 (properties of the char. poly.). Let FF be a field. Let A € F"*"
be an n X n-matrix over IF.

(@) The characteristic polynomial p4 is a monic polynomial in t of degree n.
(That is, its leading term is t".)

(b) The constant term of p,4 is (—1)" det A.

(c) The t"~!-coefficient of p4 is — Tr A. (Recall that Tr A is defined to be the
sum of all diagonal entries of A; this is known as the trace of A.)
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Proof. All of this should be more or less clear from the examples. Part (b) fol-

lows from observing that the constant term of p4 is pa (0) = det(0l, — A) =
det (—A) = (—1)" det A.
For details, I'll give references in the notes. O

Theorem 1.1.5 (Cayley—-Hamilton theorem). Let IF be a field. Let A € F**" be an
n X n-matrix. Then,

pa(A)=0.
(The “0” on the RHS is the zero matrix.)

Example 1.1.6. Let n =2 and A = ( i Z ) Then, as we know,

pa =1t — (a+d)t+ (ad —bc).
Thus,

pa(A) =A%~ (a+d) A+ (ad —bc) I

:(i Z)z—(aer)(i Z)+(ad—bc)<é g’)
:(8 8):0.

Remark 1.1.7. You cannot argue that p4 (A) = det(AI, — A) “by substituting
A for t into pg = det(tl, — A)”. Indeed, tI, — A is a matrix whose entries are
polynomials in t. If you substitute A for ¢ into it, it will become a matrix whose
entries are matrices. First of all, it is not quite clear how to take the determinant
of such a matrix; second, this matrix is not AI, — A. For example, for n = 2,
plugging A for t in tI, — A gives

a b
( . d ) —a —b
a b ’
¢ < c d ) —d
which doesn’t quite look like Al, — A (which is the zero matrix). There is a

correct proof of the Cayley—Hamilton theorem along the lines of “substituting A
for t”, but it requires a lot of work.

There are various proofs of the Cayley-Hamilton theorem (I'll give references in
the notes). We will here only prove it for IF = C:

Proof of the Cayley—Hamilton theorem for F = C. Assume that F = C. The Schur tri-
angularization theorem shows that A is unitarily similar to an upper-triangular
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matrix. Hence, A is similar to an upper-triangular matrix (because unitarily simi-
lar matrices always are similar). In other words, there exists an invertible matrix U
and an upper-triangular matrix T such that A = UTU . Consider these U and T.

Now, let A1, Ay, ..., A, be the diagonal entries of T. Then, by Proposition 2.3.4,
these diagonal entries A1, Ay, ..., A, are the eigenvalues of A (with algebraic multi-
pliticies). Hence,

pa=(t=A1)(E=Az)---(t = An)

(since p4 is monic, and the roots of p, are precisely the eigenvalues of A with
algebraic multiplicities).

Now, substituting A for ¢ in the polynomial identity pg = (t — A1) (f — A2) -+ - (£ — Ap),
we obtain

pa(A) = (A—AML) (A—Aly) -+ (A—Auly).

For each i € [n], we have
A -\ L, =utul-Asuul=u(r-ANL)UTL
~ ~—~
=UTu-1 —yuu-1
Hence, the above equality becomes
pA (A) — (A_Alln) (A_AZIn)"'(A_AnIn)

=U(T—ML)U 'U(T = ALy) U™ U (T — Aly) U™
=I,
=U(T - ML) (T = ALy -+ (T — ApL) U

Thus, it suffices to show that

Let us show this on an example for n = 3:

)\1 X *
T = 0 Ap =
0 0 Az

0 * *

= T-MI, = 0 Ay — A4 *
0 * * AM— Ay % *
— (T-ML)(T—AL)=0 A=Ay =« 0 0 =«

0
0 0 x
= 0 0 =«
0 0 =%

0 0 = /\1 —)\3 * *
- (T—)Llln) (T—/\z]n) (T—)L:gln) = 0 0 x 0 Ay — Az % =
0 0 =
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The general proof follows the same pattern: Every time you add a new factor,
one more column of your matrix becomes 0. Formally speaking, this means that
you are proving the following fact by induction on j:

Foreach j € {0,1,...,n}, the first j columns of the matrix

(T — ML) (T = Agly) -+ (T — Ajl)

are 0.
Once this is proved, we can apply this to j = n, and conclude that the first n
columns of the matrix

(T — MIp) (T = Asly) -+ (T — ALy

are 0. But this means that the whole matrix is 0, qed. O

1.2. Sylvester's equation

Definition 1.2.1. Let A € C"*". Then, the spectrum of A is defined to be the set
of all eigenvalues of A. This spectrum is denoted by o (A) (or by spec A).

Theorem 1.2.2. Let A be an n X n-matrix, and let B be an m x m-matrix (both
with complex entries). Let C be an n x m-matrix. Then, the following statements
are equivalent:

* U: There is a unique matrix X € C"*" such that AX — XB = C.
* V: Wehave 0 (A)No (B) = @.

Example 1.2.3. Let us take n = 1 and m = 1. In this case, A, B and C are 1 x 1-
matrices, so we can view them as scalars. Let us therefore write 4, b and ¢ for
them. Then, the theorem says that the following statements are equivalent:

* U: There is a unique complex number x such that ax — xb = c.
e V: We have {a} N {b} = & (that is, a # D).

This is not surprising, because the equation ax — xb = c has a unique solution

(namely, x = ﬁ) when a # b, and otherwise has either none or infinitely

many solution.

The equation AX — XB = C in the Theorem is known as Sylvester’s equation.
Because the X is on different sides in AX and in XB, it cannot be factored out
(matrices do not generally commute).
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Proof of the V == U part of the theorem. First, observe that the matrix space C"*" is
itself a C-vector space of dimension nm.
Consider the map

L:Cnxm _)Cnxm
X — AX — XB.

This map L is linear, because

L(aX+BY)=AX+BY)— (aX+BY)B
— xAX + BAY — aXB — BYB
— a(AX — XB) + B(AY — YB) = aL (X) + BL(Y).

Thus, L is a linear map between two vector spaces that have the same (finite)
dimension. Hence, we have the following equivalence:

(L is surjective (= onto))
<= (L is injective (= one-to-one))
<= (L is bijective (= invertible)) .

Now, statement I/ is saying that the matrix C has a unique preimage under L
(that is, there exists a unique X € C"*" such that L (X) = C). As we know from
general properties of linear maps, this is true whenever L is bijective, and false
otherwise. So statement / is equivalent to L being bijective.

Now, let us prove that V = U. To wit, we will show that L is injective. This
will imply that L is bijective (by the above equivalence), and therefore statement ¢/
will follow.

In order to prove that a linear map is injective, it suffices to show that its kernel
(= nullspace) is 0. So let X € Ker L; we will show that X = 0.

From X € KerL, we get L (X) = 0. Since L(X) = AX — XB, this means that
AX — XB = 0. In other words, AX = XB. Hence,

A’X = A AX = AX B= XBB = XB2.
~— <~
=XB =XB

Similarly,
A3X = XB3, A*X = XB?, ASX = XB®,

That is,
AFX = X Bk for each k € IN.

(Strictly speaking, this is proved by induction on k.)
Therefore, I claim that

f(A)X =Xf(B) for any polynomial f € C[t].

October 1, 2021



Math 504 notes page 7

m
(Indeed, if we write the polynomial f as f = ¥ fit* with f; € C, then
k=0

szm AkX:m XBk:Xm B = X7 (B),
f(A) I;Jfkv k_Zofk ];Ofk f (B)

=XBF 4 _
=f(B)

as desired.)
Apply this claim to f = p4. We obtain

pa(A)X =Xpa(B) =X (B—AMIy) (B—Aply) -+ (B—Auly),
where A1, Ay, ..., Ay are the eigenvalues of A (with algebraic multiplicities), because
pa=(t= M) (E=A2)--- (E—Ay).
Thus,
X(B—MIy) (B—AL,) -+ (B—Anly) = pa(A) X =0.
(by Cayley-Hamilton)

We want to prove that X = 0. This would follow from this equation if we knew
that the factors
B_)Llln, B_)LZI;/[, ceoy B_)Lnln

are invertible (because then we can cancel these factors). However, they are indeed
invertible, because each A; is an eigenvalue of A and therefore not an eigenvalue
of B (since 0 (A) N (B) = @). This completes the proof of V = U. O

Maybe U/ = V will be homework. Also a nice exercise(?):

oc(L)=0(A)—c(B)={A—u | A€o(A) andu o (B)}.
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