Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

September 29, 2021 (unfinished!)

Contents

1.	Schu	ur triangularization (cont'd)	1
	1.1.	Normal matrices	1
	1.2.	The spectral theorem	4

Math 504 Lecture 5

1. Schur triangularization (cont'd)

1.1. Normal matrices

Definition 1.1.1. A square matrix $A \in \mathbb{C}^{n \times n}$ is said to be **normal** if $AA^* = A^*A$.

In other words, a square matrix is normal if it commutes with its own conjugate transpose. Here are some examples:

Example 1.1.2. (a) Let $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Then, $A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ and $AA^* = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and $A^*A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, so that $AA^* = A^*A$. Thus, A is normal. (b) Let $B = \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}$. Then, $B^* = \begin{pmatrix} 0 & 0 \\ -i & 0 \end{pmatrix}$ and $BB^* = \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B^*B = \begin{pmatrix} 0 & 0 \\ -i & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, so that $BB^* \neq B^*B$. Thus, B is normal.

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

(c) For any $a, b \in \mathbb{C}$, the matrix $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$ is normal.

The class of normal matrices includes several known classes. Recall:

- A square matrix $A \in \mathbb{C}^{n \times n}$ is unitary if and only if $AA^* = A^*A = I_n$.
- A square matrix $A \in \mathbb{C}^{n \times n}$ is **Hermitian** if and only if $A^* = A$.
- A square matrix $A \in \mathbb{C}^{n \times n}$ is **skew-Hermitian** if and only if $A^* = -A$.

Proposition 1.1.3. (a) Every Hermitian matrix is normal.

- (b) Every skew-Hermitian matrix is normal.
- (c) Every unitary matrix is normal.
- (d) Every diagonal matrix is normal.

Proof. (a) If A is Hermitian, then $A^* = A$, so that

$$A\underbrace{A^*}_{=A} = \underbrace{A}_{=A^*} A = A^*A,$$

so that *A* is normal.

(b) Similar.(c) Trivial.(d) LTTR.

Unlike the unitary matrices, the normal matrices are not closed under multiplication (i.e., *A* and *B* can be unitary without *AB* being unitary).

Here are two more ways to construct normal matrices out of existing normal matrices:

Proposition 1.1.4. Let $A \in \mathbb{C}^{n \times n}$ be a normal matrix. (a) If $\lambda \in \mathbb{C}$ is arbitrary, then $\lambda I_n + A$ is normal. (b) If $U \in \mathbb{C}^{n \times n}$ is a unitary matrix, then the matrix UAU^* is normal.

Proof. We have $AA^* = A^*A$ (since A is normal). (a) Let $\lambda \in \mathbb{C}$. Then,

$$(\lambda I_n + A)^* = (\lambda I_n)^* + A^* = \overline{\lambda} I_n + A^*.$$

Hence,

$$(\lambda I_n + A) (\lambda I_n + A)^* = (\lambda I_n + A) (\overline{\lambda} I_n + A^*) = \lambda \overline{\lambda} I_n + \lambda A^* + \overline{\lambda} A + A A^*$$

and similarly

$$(\lambda I_n + A)^* (\lambda I_n + A) = \overline{\lambda} \lambda I_n + \lambda A^* + \overline{\lambda} A + A^* A.$$

The right hand sides are equal, since $\lambda \overline{\lambda} = \overline{\lambda} \lambda$ and $AA^* = A^*A$. Thus, the left hand sides are equal, too. In other words,

$$(\lambda I_n + A) (\lambda I_n + A)^* = (\lambda I_n + A)^* (\lambda I_n + A) + (\lambda I_n + A)^* (\lambda I_n + A) + (\lambda I_n + A)^* (\lambda I_n + A)^* (\lambda I_n + A)^* = (\lambda I_n + A)^* (\lambda I_n + A)^$$

So $\lambda I_n + A$ is normal.

(b) Let *U* be a unitary matrix. Then, $U^*U = UU^* = I_n$. Now,

$$(UAU^*)^* = \underbrace{(U^*)^*}_{=U} A^*U^* = UA^*U^*.$$

Thus,

$$(UAU^*)(UAU^*)^* = (UAU^*)(UA^*U^*) = UA\underbrace{U^*U}_{=I_n}A^*U^* = UAA^*U^*.$$

Similarly,

$$(UAU^*)^*(UAU^*) = UA^*AU^*.$$

Again, the right hand sides are equal, since $AA^* = A^*A$. So the left hand sides are equal, and this shows that UAU^* is normal.

We will now show the following:

Lemma 1.1.5. Let $T \in \mathbb{C}^{n \times n}$ be a triangular matrix. Then, *T* is normal if and only if *T* is diagonal.

Proof. \Leftarrow : If *T* is diagonal, then *T* is normal, as we have already seen.

 \implies : Assume that *T* is normal. We must show that *T* is diagonal.

WLOG assume that T is upper-triangular (since the other case is analogous). Write T in the form

$$T = \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,n} \\ & t_{2,2} & \cdots & t_{2,n} \\ & & \ddots & \vdots \\ & & & t_{n,n} \end{pmatrix},$$

where the invisible entries are 0's. (We can do this, since T is upper-triangular.) Thus,

$$T^* = \begin{pmatrix} \frac{\overline{t_{1,1}}}{\overline{t_{1,2}}} & & \\ \vdots & \overline{t_{2,2}} & \\ \vdots & \vdots & \ddots & \\ \frac{1}{\overline{t_{1,n}}} & \frac{1}{\overline{t_{2,n}}} & \cdots & \overline{t_{n,n}} \end{pmatrix}$$

Since *T* is normal, we have $TT^* = T^*T$. Now let's look at the entries of this matrix. We have

$$(TT^*)_{1,1} = t_{1,1}\overline{t_{1,1}} + t_{1,2}\overline{t_{1,2}} + \dots + t_{1,n}\overline{t_{1,n}} = |t_{1,1}|^2 + |t_{1,2}|^2 + \dots + |t_{1,n}|^2, \qquad \text{but}$$

$$(T^*T)_{1,1} = \overline{t_{1,1}}t_{1,1} = |t_{1,1}|^2.$$

However, the left hand sides of these must be equal, since $TT^* = T^*T$. Thus, the right hand sides are equal too. That is,

$$|t_{1,1}|^2 + |t_{1,2}|^2 + \dots + |t_{1,n}|^2 = |t_{1,1}|^2$$

Thus, $|t_{1,2}|^2 + \cdots + |t_{1,n}|^2 = 0$, so that $t_{1,2} = t_{1,3} = \cdots = t_{1,n} = 0$ (because $|t_{1,i}|^2 \ge 0$ for all *i*).

We continue with the 2, 2-entries:

$$(TT^*)_{2,2} = t_{2,2}\overline{t_{2,2}} + t_{2,3}\overline{t_{2,3}} + \dots + t_{2,n}\overline{t_{2,n}} = |t_{2,2}|^2 + |t_{2,3}|^2 + \dots + |t_{2,n}|^2 \quad \text{and} \\ (T^*T)_{2,2} = \overline{t_{1,2}}t_{1,2} + \overline{t_{2,2}}t_{2,2} = \underbrace{|t_{1,2}|^2}_{(\text{since } t_{1,2}=0)} + |t_{2,2}|^2 = |t_{2,2}|^2.$$

Comparing these equalities, we get

$$|t_{2,2}|^2 + |t_{2,3}|^2 + \cdots + |t_{2,n}|^2 = |t_{2,2}|^2.$$

As before, this lets us conclude that $t_{2,3} = t_{2,4} = \cdots = t_{2,n} = 0$.

Keep going like this to prove that

$$t_{i,j} = 0$$
 for all $i < j$.

Strictly speaking, this is a strong induction on *i*. In the induction step, use the fact that $t_{k,i} = 0$ for all k < i (this follows from the induction hypothesis).

This shows that *T* is a diagonal matrix, qed.

1.2. The spectral theorem

The spectral theorem provides an answer to the question "what are normal matrices **really**?".

Theorem 1.2.1 (spectral theorem for normal matrices). Let $A \in \mathbb{C}^{n \times n}$ be a normal matrix. Then:

(a) There exists a unitary matrix $U \in U_n(\mathbb{C})$ and a diagonal matrix $D \in \mathbb{C}^{n \times n}$ such that

$$A = UDU^*.$$

In other words, *A* is unitarily similar to a diagonal matrix.

(b) Let $U \in U_n(\mathbb{C})$ be a unitary matrix and $D \in \mathbb{C}^{n \times n}$ be a diagonal matrix such that $A = UDU^*$. Then, the diagonal entries of D are the eigenvalues of A. Moreover, the columns of U are eigenvectors of A. Thus, there exists an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A.

Proof. (a) The Schur triangularization theorem tells us that we can write A in the form

$$A = UTU^*$$

 \square

for a unitary matrix U and an upper-triangular matrix T. Consider these U and T. If we can show that *T* is diagonal, then we are done.

From $A = UTU^*$, we see that A is unitarily equivalent to T. Thus, T is unitarily equivalent to A. Hence, our proposition above yields that T is normal, since A is normal. Now, the Lemma we just proved yields that T is diagonal (because T is triangular and normal). So part (a) is proven.

(b) The matrix D is unitarily similar to A (since $A = UDU^*$), thus similar to A. Hence, D has the same eigenvalues as A. However, D is a diagonal matrix, so its eigenvalues are its diagonal entries. So the diagonal entries of D must be the eigenvalues of A.

What about *U* ? The columns of *U* are Ue_1, Ue_2, \ldots, Ue_n , where (e_1, e_2, \ldots, e_n) is the standard basis of \mathbb{C}^n .

[In general, for example,
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} e_2 = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} b \\ e \\ h \end{pmatrix}$$
.]
Now I claim that each *lle*; is an eigenvector of *A*. Indeed

Now, I claim that each Ue_i is an eigenvector of A. Indeed,

$$\underbrace{A}_{=UDU^{*}} \cdot Ue_{i} = UD \underbrace{U^{*}U}_{=I_{n}} e_{i} = U \underbrace{De_{i}}_{=\lambda e_{i}} = U \cdot \lambda e_{i} = \lambda \cdot Ue_{i}.$$
where λ is the (i,i) -th entry of D
(since D is diagonal)

Thus, we conclude that the *n* columns of *U* are eigenvectors of *A*.

Since U is unitary, these n columns form an orthonormal basis of \mathbb{C}^n . Thus, we have found an orthonormal basis of \mathbb{C}^n that consists of eigenvectors of A. Qed.

The decomposition $A = UDU^*$ in the spectral theorem (or, to be more precise, the pair (U, D) is called a **spectral decomposition** of A.

Only normal matrices have a spectral decomposition:

Corollary 1.2.2. An $n \times n$ -matrix $A \in \mathbb{C}^{n \times n}$ is normal if and only if it is unitarily similar to a diagonal matrix.

Proof. \implies : This is just part (a) of the spectral theorem.

 \Leftarrow : Assume that A is unitarily similar to a diagonal matrix. Thus, A is unitarily similar to a normal matrix (since diagonal matrices are normal), and thus itself normal. Qed.

We can similarly characterize Hermitian matrices:

Proposition 1.2.3. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, and let (U, D) be a spectral decomposition of A. Then, the diagonal entries of D are real.

Proof. We have $A = UDU^*$, thus $A^* = (UDU^*)^* = UD^*U^*$. However, since A is Hermitian, we have $A^* = A$. In other words, $UD^*U^* = UDU^*$. We can cancel U and U^* from this equality (since U is unitary), and get $D^* = D$. Since D is diagonal, this is simply saying that each diagonal entry of D equals its own conjugate, i.e., is real.

Corollary 1.2.4. An $n \times n$ -matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if it is unitarily similar to a diagonal matrix with real entries.

Proof. \implies : Follows from the preceding proposition + the spectral theorem. \Leftarrow : If *A* is unitarily similar to a diagonal matrix with real entries, then *A* = *UDU*^{*} where *D* is a diagonal matrix with real entries. Thus, $A^* = UD^*U^*$. However, $D^* = D$. So it follows that $A^* = A$, so *A* is Hermitian.

The corollary we just proved is the complex analogue of the classical "real spectral theorem", which says that a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is similar to a diagonal matrix with real entries via an orthogonal matrix with real entries. Similarly, we can handle skew-Hermitian matrices:

Proposition 1.2.5. Let $A \in \mathbb{C}^{n \times n}$ be a skew-Hermitian matrix, and let (U, D) be a spectral decomposition of A. Then, the diagonal entries of D are purely imaginary.

Corollary 1.2.6. An $n \times n$ -matrix $A \in \mathbb{C}^{n \times n}$ is skew-Hermitian if and only if it is unitarily similar to a diagonal matrix with purely imaginary entries.

Likewise, we can handle unitary matrices:

Proposition 1.2.7. Let $A \in \mathbb{C}^{n \times n}$ be a unitary matrix, and let (U, D) be a spectral decomposition of A. Then, the diagonal entries of D are complex numbers with absolute value 1.

Corollary 1.2.8. An $n \times n$ -matrix $A \in \mathbb{C}^{n \times n}$ is unitary if and only if it is unitarily similar to a diagonal matrix whose diagonal entries have absolute value 1.