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Math 504 Lecture 5

1. Schur triangularization (cont’d)

1.1. Normal matrices

Definition 1.1.1. A square matrix A ∈ Cn×n is said to be normal if AA∗ = A∗A.

In other words, a square matrix is normal if it commutes with its own conjugate
transpose. Here are some examples:

Example 1.1.2. (a) Let A =

(
1 −1
1 1

)
. Then, A∗ =

(
1 1
−1 1

)
and AA∗ =(

1 −1
1 1

)(
1 1
−1 1

)
=

(
2 0
0 2

)
and A∗A =

(
1 1
−1 1

)(
1 −1
1 1

)
=

(
2 0
0 2

)
,

so that AA∗ = A∗A. Thus, A is normal.

(b) Let B =

(
0 i
0 0

)
. Then, B∗ =

(
0 0
−i 0

)
and BB∗ =

(
0 i
0 0

)(
0 0
−i 0

)
=(

1 0
0 0

)
and B∗B =

(
0 0
−i 0

)(
0 i
0 0

)
=

(
0 0
0 1

)
, so that BB∗ 6= B∗B. Thus,

B is not normal.
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(c) For any a, b ∈ C, the matrix
(

a b
b a

)
is normal.

The class of normal matrices includes several known classes. Recall:

• A square matrix A ∈ Cn×n is unitary if and only if AA∗ = A∗A = In.

• A square matrix A ∈ Cn×n is Hermitian if and only if A∗ = A.

• A square matrix A ∈ Cn×n is skew-Hermitian if and only if A∗ = −A.

Proposition 1.1.3. (a) Every Hermitian matrix is normal.
(b) Every skew-Hermitian matrix is normal.
(c) Every unitary matrix is normal.
(d) Every diagonal matrix is normal.

Proof. (a) If A is Hermitian, then A∗ = A, so that

A A∗︸︷︷︸
=A

= A︸︷︷︸
=A∗

A = A∗A,

so that A is normal.
(b) Similar.
(c) Trivial.
(d) LTTR.

Unlike the unitary matrices, the normal matrices are not closed under multipli-
cation (i.e., A and B can be unitary without AB being unitary).

Here are two more ways to construct normal matrices out of existing normal
matrices:

Proposition 1.1.4. Let A ∈ Cn×n be a normal matrix.
(a) If λ ∈ C is arbitrary, then λIn + A is normal.
(b) If U ∈ Cn×n is a unitary matrix, then the matrix UAU∗ is normal.

Proof. We have AA∗ = A∗A (since A is normal).
(a) Let λ ∈ C. Then,

(λIn + A)∗ = (λIn)
∗ + A∗ = λIn + A∗.

Hence,

(λIn + A) (λIn + A)∗ = (λIn + A)
(
λIn + A∗

)
= λλIn + λA∗ + λA + AA∗

and similarly

(λIn + A)∗ (λIn + A) = λλIn + λA∗ + λA + A∗A.
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The right hand sides are equal, since λλ = λλ and AA∗ = A∗A. Thus, the left
hand sides are equal, too. In other words,

(λIn + A) (λIn + A)∗ = (λIn + A)∗ (λIn + A) .

So λIn + A is normal.
(b) Let U be a unitary matrix. Then, U∗U = UU∗ = In. Now,

(UAU∗)∗ = (U∗)∗︸ ︷︷ ︸
=U

A∗U∗ = UA∗U∗.

Thus,

(UAU∗) (UAU∗)∗ = (UAU∗) (UA∗U∗) = UA U∗U︸︷︷︸
=In

A∗U∗ = UAA∗U∗.

Similarly,
(UAU∗)∗ (UAU∗) = UA∗AU∗.

Again, the right hand sides are equal, since AA∗ = A∗A. So the left hand sides are
equal, and this shows that UAU∗ is normal.

We will now show the following:

Lemma 1.1.5. Let T ∈ Cn×n be a triangular matrix. Then, T is normal if and only
if T is diagonal.

Proof. ⇐=: If T is diagonal, then T is normal, as we have already seen.
=⇒: Assume that T is normal. We must show that T is diagonal.
WLOG assume that T is upper-triangular (since the other case is analogous).
Write T in the form

T =


t1,1 t1,2 · · · t1,n

t2,2 · · · t2,n
. . . ...

tn,n

 ,

where the invisible entries are 0’s. (We can do this, since T is upper-triangular.)
Thus,

T∗ =


t1,1

t1,2 t2,2
...

... . . .
t1,n t2,n · · · tn,n

 .

Since T is normal, we have TT∗ = T∗T. Now let’s look at the entries of this
matrix. We have

(TT∗)1,1 = t1,1t1,1 + t1,2t1,2 + · · ·+ t1,nt1,n = |t1,1|2 + |t1,2|2 + · · ·+ |t1,n|2 , but

(T∗T)1,1 = t1,1t1,1 = |t1,1|2 .
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However, the left hand sides of these must be equal, since TT∗ = T∗T. Thus, the
right hand sides are equal too. That is,

|t1,1|2 + |t1,2|2 + · · ·+ |t1,n|2 = |t1,1|2 .

Thus, |t1,2|2 + · · ·+ |t1,n|2 = 0, so that t1,2 = t1,3 = · · · = t1,n = 0 (because |t1,i|2 ≥ 0
for all i).

We continue with the 2, 2-entries:

(TT∗)2,2 = t2,2t2,2 + t2,3t2,3 + · · ·+ t2,nt2,n = |t2,2|2 + |t2,3|2 + · · ·+ |t2,n|2 and

(T∗T)2,2 = t1,2t1,2 + t2,2t2,2 = |t1,2|2︸ ︷︷ ︸
=0

(since t1,2=0)

+ |t2,2|2 = |t2,2|2 .

Comparing these equalities, we get

|t2,2|2 + |t2,3|2 + · · ·+ |t2,n|2 = |t2,2|2 .

As before, this lets us conclude that t2,3 = t2,4 = · · · = t2,n = 0.
Keep going like this to prove that

ti,j = 0 for all i < j.

Strictly speaking, this is a strong induction on i. In the induction step, use the fact
that tk,i = 0 for all k < i (this follows from the induction hypothesis).

This shows that T is a diagonal matrix, qed.

1.2. The spectral theorem

The spectral theorem provides an answer to the question “what are normal matrices
really?”.

Theorem 1.2.1 (spectral theorem for normal matrices). Let A ∈ Cn×n be a normal
matrix. Then:

(a) There exists a unitary matrix U ∈ Un (C) and a diagonal matrix D ∈ Cn×n

such that
A = UDU∗.

In other words, A is unitarily similar to a diagonal matrix.
(b) Let U ∈ Un (C) be a unitary matrix and D ∈ Cn×n be a diagonal matrix

such that A = UDU∗. Then, the diagonal entries of D are the eigenvalues of
A. Moreover, the columns of U are eigenvectors of A. Thus, there exists an
orthonormal basis of Cn consisting of eigenvectors of A.

Proof. (a) The Schur triangularization theorem tells us that we can write A in the
form

A = UTU∗
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for a unitary matrix U and an upper-triangular matrix T. Consider these U and T.
If we can show that T is diagonal, then we are done.

From A = UTU∗, we see that A is unitarily equivalent to T. Thus, T is unitarily
equivalent to A. Hence, our proposition above yields that T is normal, since A is
normal. Now, the Lemma we just proved yields that T is diagonal (because T is
triangular and normal). So part (a) is proven.

(b) The matrix D is unitarily similar to A (since A = UDU∗), thus similar to
A. Hence, D has the same eigenvalues as A. However, D is a diagonal matrix, so
its eigenvalues are its diagonal entries. So the diagonal entries of D must be the
eigenvalues of A.

What about U ? The columns of U are Ue1, Ue2, . . . , Uen, where (e1, e2, . . . , en) is
the standard basis of Cn.

[In general, for example,

 a b c
d e f
g h i

 e2 =

 a b c
d e f
g h i

 0
1
0

 =

 b
e
h

.]

Now, I claim that each Uei is an eigenvector of A. Indeed,

A︸︷︷︸
=UDU∗

·Uei = UD U∗U︸︷︷︸
=In

ei = U Dei︸︷︷︸
=λei

where λ is the (i,i)-th entry of D
(since D is diagonal)

= U · λei = λ ·Uei.

Thus, we conclude that the n columns of U are eigenvectors of A.
Since U is unitary, these n columns form an orthonormal basis of Cn. Thus, we

have found an orthonormal basis of Cn that consists of eigenvectors of A. Qed.

The decomposition A = UDU∗ in the spectral theorem (or, to be more precise,
the pair (U, D)) is called a spectral decomposition of A.

Only normal matrices have a spectral decomposition:

Corollary 1.2.2. An n× n-matrix A ∈ Cn×n is normal if and only if it is unitarily
similar to a diagonal matrix.

Proof. =⇒: This is just part (a) of the spectral theorem.
⇐=: Assume that A is unitarily similar to a diagonal matrix. Thus, A is unitarily

similar to a normal matrix (since diagonal matrices are normal), and thus itself
normal. Qed.

We can similarly characterize Hermitian matrices:

Proposition 1.2.3. Let A ∈ Cn×n be a Hermitian matrix, and let (U, D) be a
spectral decomposition of A. Then, the diagonal entries of D are real.

Proof. We have A = UDU∗, thus A∗ = (UDU∗)∗ = UD∗U∗. However, since A is
Hermitian, we have A∗ = A. In other words, UD∗U∗ = UDU∗. We can cancel U
and U∗ from this equality (since U is unitary), and get D∗ = D. Since D is diagonal,
this is simply saying that each diagonal entry of D equals its own conjugate, i.e., is
real.
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Corollary 1.2.4. An n × n-matrix A ∈ Cn×n is Hermitian if and only if it is
unitarily similar to a diagonal matrix with real entries.

Proof. =⇒: Follows from the preceding proposition + the spectral theorem.
⇐=: If A is unitarily similar to a diagonal matrix with real entries, then A =

UDU∗ where D is a diagonal matrix with real entries. Thus, A∗ = UD∗U∗. How-
ever, D∗ = D. So it follows that A∗ = A, so A is Hermitian.

The corollary we just proved is the complex analogue of the classical “real spec-
tral theorem”, which says that a symmetric matrix A ∈ Rn×n is similar to a diagonal
matrix with real entries via an orthogonal matrix with real entries.

Similarly, we can handle skew-Hermitian matrices:

Proposition 1.2.5. Let A ∈ Cn×n be a skew-Hermitian matrix, and let (U, D)
be a spectral decomposition of A. Then, the diagonal entries of D are purely
imaginary.

Corollary 1.2.6. An n× n-matrix A ∈ Cn×n is skew-Hermitian if and only if it is
unitarily similar to a diagonal matrix with purely imaginary entries.

Likewise, we can handle unitary matrices:

Proposition 1.2.7. Let A ∈ Cn×n be a unitary matrix, and let (U, D) be a spectral
decomposition of A. Then, the diagonal entries of D are complex numbers with
absolute value 1.

Corollary 1.2.8. An n× n-matrix A ∈ Cn×n is unitary if and only if it is unitarily
similar to a diagonal matrix whose diagonal entries have absolute value 1.
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