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Math 504 Lecture 4

1. Schur triangularization (cont’d)

1.1. Schur triangularization

We are now ready for one more matrix decomposition, the so-called Schur trian-
gularization (aka Schur decomposition):

Theorem 1.1.1 (Schur triangularization theorem). Let A ∈ Cn×n. Then, there
exists a unitary matrix U ∈ Un (C) and an upper-triangular matrix T ∈ Cn×n

such that A = UTU∗.
In other words, A is unitary similar to some upper-triangular matrix.

Example 1.1.2. Let A =

(
1 3
−3 7

)
. Then, a Schur triangularization of A is

A = UTU∗, where

U =
1√
2

(
1 −1
1 1

)
and T =

(
4 6
0 4

)
.
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Proof. Induction on n.
Base case (n = 0) is trivial.
Induction step: (From n− 1 to n:)
Suppose that we have proved the theorem for (n− 1)× (n− 1)-matrices.
Let us now prove it for n× n-matrices.
So let A ∈ Cn×n. Since n > 0, this matrix A has at least one eigenvalue (by the

FTA).
Fix some eigenvalue λ of A, and let x 6= 0 be an eigenvector for this eigenvalue.

Let u1 =
1
||x||x. Choose vectors u2, u3, . . . , un such that (u1, u2, . . . , un) is an

orthonormal basis of Cn. (We can do this, by a lemma from the lectures before.)
Let U be the matrix with columns u1, u2, . . . , un. Then, U is unitary (by Theorem

1.5.3 E =⇒ A). Hence, U∗ is unitary.
Now, by standard properties of matrix multiplication, we have

(AU)•,1 = A U•,1︸︷︷︸
=u1

= Au1 = λu1

(since u1, being a scalar multiple of x, is an eigenvector of A for eigenvalue λ).
Thus,

(U∗AU)•,1 = U∗ (AU)•,1 = U∗λu1 = λU∗ u1︸︷︷︸
=U•,1

= λ U∗U•,1︸ ︷︷ ︸
=(U∗U)•,1

= λ

U∗U︸︷︷︸
=In


•,1

= λ (In)•,1 .

In other words,

U∗AU =


λ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
... . . . ...

0 ∗ ∗ · · · ∗

 ,

where the asterisk (∗) means an entry that you don’t know or don’t care about.
Let us write this in block-matrix notation:

U∗AU =

(
λ p
0 B

)
,

where p ∈ C1×(n−1) is a row vector and B ∈ C(n−1)×(n−1) is a matrix. (The “0” here
is actually the zero vector in Cn−1.)

Now, by the induction hypothesis, B is unitary similar to an upper-triangular
matrix. In other words, there is a unitary matrix V ∈ C(n−1)×(n−1) and an upper-
triangular S such that VBV∗ = S. Consider these V and S.
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Now, let W =

(
1 0
0 V

)
. This is a block-diagonal matrix, with

(
1
)

and V being

its diagonal blocks. Hence, W∗ =

(
1 0
0 V∗

)
. Moreover, W is a unitary matrix

(since it is a block-diagonal matrix whose diagonal blocks are unitary). Thus, WU∗

is unitary (being the product of the two unitary matrices W and U∗).
Now,

W︸︷︷︸
=

(
1 0
0 V

) U∗AU︸ ︷︷ ︸
=

(
λ p
0 B

) W∗︸︷︷︸
=

(
1 0
0 V∗

)

=

(
1 0
0 V

)(
λ p
0 B

)(
1 0
0 V∗

)
=

(
1 · λ · 1 1 · p ·V∗
V · 0 · 1 V · B ·V∗

)
=

(
λ pV∗

0 VBV∗

)
=

(
λ pV∗

0 S

)
.

This matrix is upper-triangular (since S is upper-triangular). However, WU∗AUW∗

is unitary similar to A, because

WU∗A UW∗︸ ︷︷ ︸
=U∗∗W∗
=(WU∗)∗

= WU∗︸ ︷︷ ︸
unitary

A (WU∗)∗ .

Thus, we have found an upper-triangular matrix (namely, WU∗AUW∗) that is uni-
tary similar to A. Qed.

So much for making a single matrix triangular.
Can we make a whole bunch of matrices triangular simultaneously (using the

same unitary U)?
Recall that two square matrices A and B are said to commute if AB = BA. For

example, any two powers of a single matrix commute (because if A is a square
matrix, then Ak A` = A`Ak).

Lemma 1.1.3. Let n > 0. Let F be a subset of Cn×n. Assume that any two
matrices in F commute (i.e., for any A, B ∈ F , we have AB = BA).

Then, there exists a nonzero x ∈ Cn such that x is an eigenvector of each
A ∈ F .

In short: A family of pairwise commuting matrices always has a common eigen-
vector.

Proof. An F -invariant subspace of Cn shall mean a vector subspace V of Cn such
that

AV ⊆ V for each A ∈ F .

Here,
AV := {Av | v ∈ V} .
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For example, {0} and Cn itself are two F -invariant subspaces. There might be
further F -invariant subspaces between these two.

[Example: If n = 2 and F =

{(
1 a
0 2

)
| a ∈ R

}
, then span (e1) is an F -

invariant subspace.]
Let W be an F -invariant subspace of Cn that has lowest possible positive dimen-

sion.
We will show that each x ∈W is an eigenvector of each A ∈ F .
Indeed, fix any A ∈ F . Then, AW ⊆ W (since W is F -invariant). Thus, A

restricts to a C-linear map A |W : W → W. Since dim W > 0, this C-linear map
A |W has an eigenvalue λ and a corresponding nonzero eigenvector w 6= 0. So
w ∈W is a nonzero vector satisfying Aw = λw.

Let
WA,λ := {y ∈W | Ay = λy} .

This WA,λ is a vector subspace of W. It has positive dimension, because it contains
the nonzero vector w. Furthermore, I claim that this subspace WA,λ is F -invariant.

[Proof: Let B ∈ F be arbitrary. We must prove that BWA,λ ⊆ WA,λ. In other
words, we must prove that Bz ∈WA,λ for each z ∈WA,λ.

Indeed, let z ∈ WA,λ. Then, we must show that Bz ∈ WA,λ. It is clear that
Bz ∈ W, since z ∈WA,λ ⊆ W and because W is F -invariant. Furthermore, we have
ABz = λBz because

AB︸︷︷︸
=BA

z = B Az︸︷︷︸
=λz

(since z∈WA,λ)

= Bλz = λBz.

So we conclude that Bz ∈WA,λ. This shows that WA,λ is F -invariant.]
So WA,λ is an F -invariant subspace of Cn of positive dimension that is a subspace

of W. However, W is an F -invariant subspace of smallest positive dimension. Thus,
WA,λ must have the same dimension as W. Hence, WA,λ = W (since a subspace of
W having the same dimension as W must just be W itself). This shows that any
vector in W is an eigenvector of A (since it belongs to WA,λ = {y ∈W | Ay = λy}).

Forget that we fixed A. We thus have shown that any vector in W is an eigen-
vector of each A ∈ F . Since W has positive dimension, there exists some nonzero
vector in W. Thus, this vector is an eigenvector of each A ∈ F . This proves the
lemma.

Theorem 1.1.4 (Schur triangularization for many commuting matrices). Let F
be a subset of Cn×n. Assume that any two matrices in F commute (i.e., for any
A, B ∈ F , we have AB = BA).

Then, there exists a unitary n× n-matrix U such that

UAU∗ is upper-triangular for all A ∈ F .
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Proof. Same induction as for the previous theorem. But now, instead of picking an
eigenvector of a single matrix A, we pick a common eigenvector for all matrices in
F . The existence of such an eigenvector is guaranteed by the preceding lemma.

Note that the theorem has no converse. Indeed, it is well possible that a set
F of matrices can be simultaneously triangularized by one and the same uni-
tary matrix U, but these matrices do not pairwise commute. For example, F =
 0 1 0

0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0

.
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