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Math 504 Lecture 3

1. Unitary matrices ([HorJoh13, §2.1]) (cont’d)

1.1. Administrativa

Next topics after today:

• Normal matrices and the spectral thm for them (lec 4) <– Scribe: Phil (on
Monday)

• The Cayley–Hamilton theorem (lec 5) <– Scribe: Atharv (on Wednesday)

• Sylvester’s equation AX− XB = C (lec 5–6) <– Scribe: Hunter (on Friday)

*Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA
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• Jordan canonical form (lec 6–7) <– Scribe: Juliane

Who scribes?

1.2. The Gram–Schmidt process (cont’d)

Theorem 1.2.1 (Gram–Schmidt process). Let (v1, v2, . . . , vm) be a linearly inde-
pendent tuple of vectors in Cn.

Then, there is an orthogonal tuple (z1, z2, . . . , zm) of vectors in Cn that satisfies

span
{

v1, v2, . . . , vj
}
= span

{
z1, z2, . . . , zj

}
for all j ∈ [m] .

Furthermore, such a tuple (z1, z2, . . . , zm) can be constructed by the following
recursive process:

• For each p ∈ [m], if the first p− 1 entries z1, z2, . . . , zp−1 of this tuple have
already been constructed, then we define the p-th entry zp by

zp = vp −
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk.

(Note that when p = 1, the sum on the RHS is an empty sum, so this
equality simply becomes z1 = v1.)

Roughly speaking, the claim of this theorem is that if we start with any linearly
independent tuple (v1, v2, . . . , vm) of vectors in Cn, then we can make this tuple
orthogonal by tweaking it as follows:

• we leave v1 unchanged;

• we modify v2 by subtracting an appropriate scalar multiple of v1;

• we modify v3 by subtracting an appropriate linear combination of v1 and v2;

• and so on.

The above recursive formula tells us which scalar multiples / linear combinations
to take.
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Example 1.2.2.

z1 = v1;

z2 = v2 −
〈v2, z1〉
〈z1, z1〉

z1;

z3 = v3 −
〈v3, z1〉
〈z1, z1〉

z1 −
〈v3, z2〉
〈z2, z2〉

z2;

. . .

See the notes for an actual example (with numbers).

Proof. We must show three things:

1. The z1, z2, . . . , zm constructed by the recursive process exist.

2. They satisfy span
{

v1, v2, . . . , vj
}
= span

{
z1, z2, . . . , zj

}
for all j ∈ [m].

3. The tuple (z1, z2, . . . , zm) is orthogonal.

We will first prove statements 1 and 2 in lockstep:

Claim 1: For each p ∈ {0, 1, . . . , m}, the vectors z1, z2, . . . , zp are well-
defined and satisfy

span
{

v1, v2, . . . , vp
}
= span

{
z1, z2, . . . , zp

}
.

[Proof of Claim 1: We induct on p. The base case (p = 0) is obvious.
For the induction step, we fix p ∈ [m], and we assume that the claim holds for

p− 1. In other words, we assume that the vectors z1, z2, . . . , zp−1 are well-defined
and satisfy

span
{

v1, v2, . . . , vp−1
}
= span

{
z1, z2, . . . , zp−1

}
. (1)

We must show that the vectors z1, z2, . . . , zp are well-defined and satisfy

span
{

v1, v2, . . . , vp
}
= span

{
z1, z2, . . . , zp

}
. (2)

First, we use (1) to conclude that
(
z1, z2, . . . , zp−1

)
is linearly independent, since

their span has dimension p− 1. Thus, in particular, for each k ∈ [p− 1], we have
zk 6= 0, so that 〈zk, zk〉 > 0. Thus, in the equality

zp = vp −
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk, (3)

the denominators are nonzero, so that zp is well-defined. Thus, z1, z2, . . . , zp are
well-defined.

Now, (2) follows from (1) and (3). (See the notes for details.) So the induction is
complete, and Claim 1 is proven.]

Now it remains to prove statement 3:
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Claim 2: For any j ∈ {0, 1, . . . , m}, the tuple
(
z1, z2, . . . , zj

)
is orthogonal.

[Proof of Claim 2: Induct on j. The base case is trivial.
Induction step: Let p ∈ [m]. Assume (as the IH) that Claim 2 holds for j = p− 1.

We must show that it holds for j = p.
By our IH, the tuple

(
z1, z2, . . . , zp−1

)
is orthogonal. It thus remains to show

that zp is orthogonal to each za with a ∈ [p− 1]. To that purpose, we fix some
a ∈ [p− 1], and we shall show that

〈
zp, za

〉
= 0. To wit:

〈
zp, za

〉
=

〈
vp −

p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk, za

〉 (
since zp = vp −

p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk

)

=
〈
vp, za

〉
−

p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

〈zk, za〉︸ ︷︷ ︸
=0 unless k=a

(because the tuple (z1,z2,...,zp−1)
is orthogonal)

=
〈
vp, za

〉
−
〈
vp, za

〉
〈za, za〉

〈za, za〉 = 0,

so that zp ⊥ za, as desired. This completes the induction.]
With Claim 1 and Claim 2 proved, the proof of the theorem is complete.

What if the original tuple (v1, v2, . . . , vm) is not linearly independent? We can
adapt our above theorem to this case:

Theorem 1.2.3 (Gram–Schmidt process, take 2). Let (v1, v2, . . . , vm) be any tuple
of vectors in Cn with m ≤ n.

Then, there is an orthogonal tuple (z1, z2, . . . , zm) of nonzero vectors in Cn that
satisfies

span
{

v1, v2, . . . , vj
}
⊆ span

{
z1, z2, . . . , zj

}
for all j ∈ [m] .

Furthermore, such a tuple (z1, z2, . . . , zm) can be constructed by the following
recursive process:

• For each p ∈ [m], if the first p− 1 entries z1, z2, . . . , zp−1 of this tuple have
already been constructed, then we define the p-th entry zp as follows:

– If vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk 6= 0, then we set

zp := vp −
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk.
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– If vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk = 0, then we pick an arbitrary nonzero vector b

that is orthogonal to all of z1, z2, . . . , zp−1 (such a b exists, as previously
shown), and we set

zp := b.

Proof. This requires a variant of the proof of the previous theorem; see the notes.

Corollary 1.2.4. Let (v1, v2, . . . , vm) be any tuple of vectors in Cn with m ≤ n.
Then, there is an orthonormal tuple (z1, z2, . . . , zm) of nonzero vectors in Cn

that satisfies

span
{

v1, v2, . . . , vj
}
⊆ span

{
z1, z2, . . . , zj

}
for all j ∈ [m] .

Proof. Use the previous theorem to obtain an orthogonal tuple (z1, z2, . . . , zm) with

this property. Then, replace it by
(

1
||z1||

z1,
1
||z2||

z2, . . . ,
1
||zm||

zm

)
.

1.3. QR factorization

Recall that an isometry is a matrix whose columns form an orthonormal tuple.

Theorem 1.3.1 (QR factorization, isometry version). Let A ∈ Cn×m satisfy n ≥ m.
Then, there exists an isometry Q ∈ Cn×m and an upper-triangular matrix R ∈
Cm×m such that A = QR.

The pair (Q, R) in this theorem is called a QR factorization of A.

Example 1.3.2. Let

A =


1 0 1 2
1 −2 0 2
1 0 1 0
1 −2 0 0

 ∈ C4×4.

Then, one QR factorization of A is

A =


1/2 1/2 1/2 1/2
1/2 −1/2 1/2 −1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 −1/2 1/2


︸ ︷︷ ︸

=Q


2 −2 1 0
0 2 1 2
0 0 0 0
0 0 0 2


︸ ︷︷ ︸

=R

.

There are others.
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Proof of Theorem. Let A•,1, A•,2, . . . , A•,m denote the m columns of A.
Applying the previous corollary to (v1, v2, . . . , vm) = (A•,1, A•,2, . . . , A•,m), we

conclude that there exists an orthonormal tuple (q1, q2, . . . , qm) of vectors in Cn

such that

span
{

A•,1, A•,2, . . . , A•,j
}
⊆ span

{
q1, q2, . . . , qj

}
for all j ∈ [m] .

Consider this tuple. Let Q ∈ Cn×m be the matrix whose columns are q1, q2, . . . , qm.
Then, Q is an isometry.

Now, I claim that A = QR for some upper-triangular R. Indeed, for each j ∈ [m],
we have

A•,j ∈ span
{

A•,1, A•,2, . . . , A•,j
}
⊆ span

{
q1, q2, . . . , qj

}
,

so that

A•,j = r1,jq1 + r2,jq2 + · · ·+ rj,jqj for some r1,j, r2,j, . . . , rj,j ∈ C.

This shows that A = QR for the upper-triangular matrix

R =


r1,1 r1,2 · · · r1,m
0 r2,2 · · · r2,m
...

... . . . ...
0 0 · · · rm,m

 .

2. Schur triangularization

2.1. Similarity of matrices

Definition 2.1.1. Let F be a field. Let A and B be two n× n-matrices over F. We
say that A is similar to B if there exists an invertible matrix W ∈ Fn×n such that
B = WAW−1.

Example 2.1.2. The matrix
(

1 1
1 1

)
is similar to the matrix

(
2 0
0 0

)
, since

(
2 0
0 0

)
= W

(
1 1
1 1

)
W−1 for W =

(
1 1
−1 1

)
.

Remark 2.1.3. If you think of matrices as representing linear maps, then simi-
larity has a much more fundamental meaning: A matrix is similar to another if
and only if the two matrices represent the same endomorphism of Fn (i.e., linear
map Fn → Fn) with respect to two bases.

The relation “similar” is an equivalence relation: i.e., it is
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• reflexive: Any matrix A ∈ Fn×n is similar to itself.

• symmetric: If A is similar to B, then B is similar to A.

• transitive: If A is similar to B, and B is similar to C, then A is similar to C.

To check these, recall that (UV)−1 = V−1U−1.
Because of the symmetry of the relation “similar”, we often say “A and B are

similar” instead of saying “A is similar to B”.
Similar matrices have a lot in common:

Proposition 2.1.4. Let A and B be two similar matrices. Then:
(a) A and B have the same rank.
(b) A and B have the same nullity.
(c) A and B have the same determinant.
(d) A and B have the same characteristic polynomial.
(e) A and B have the same eigenvalues, with the same algebraic multiplicities

and the same geometric multiplicities.
(f) For any k ∈N, the matrices Ak and Bk are similar.

Proof. See notes.

There is a notation A ∼ B for “A and B are similar”.

2.2. Unitary similarity

Definition 2.2.1. Let A and B be two matrices in Cn×n. We say that A is unitary
similar to B if there exists a unitary matrix W ∈ Un (C) such that B = WA W∗︸︷︷︸

=W−1

.

We write “A us∼ B” for “A is unitary similar to B”.

Example 2.2.2. The matrix
(

1 1
1 1

)
is unitary similar to the matrix

(
2 0
0 0

)
,

since(
2 0
0 0

)
= W

(
1 1
1 1

)
W∗ for W =

1√
2

(
1 1
−1 1

)
∈ U2 (C) .

It is clear that any two unitary similar matrices are similar. The converse is not true
(exercise).

“Unitary similar”, just like “similar”, is an equivalence relation.
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2.3. Schur triangularization

We are now ready for one more matrix decomposition, the so-called Schur trian-
gularization (aka Schur decomposition):

Theorem 2.3.1 (Schur triangularization theorem). Let A ∈ Cn×n. Then, there
exists a unitary matrix U ∈ Un (C) and an upper-triangular matrix T ∈ Cn×n

such that A = UTU∗.
In other words, A is unitary similar to some upper-triangular matrix.

Example 2.3.2. Let A =

(
1 3
−3 7

)
. Then, a Schur triangularization of A is

A = UTU∗, where

U =
1√
2

(
1 −1
1 1

)
and T =

(
4 6
0 4

)
.

Proof. Next time.
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