Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

September 24, 2021 (unfinished!)

Contents

1.	Unitary matrices ([HorJoh13, §2.1]) (cont'd)					
	1.1.	Unitary matrices	1			
		1.1.1. Block matrices	4			
	1.2.	The Gram–Schmidt process	5			

Math 504 Lecture 2

1. Unitary matrices ([HorJoh13, §2.1]) (cont'd)

Recall:

- An $n \times k$ -matrix A is said to be an **isometry** if $A^*A = I_k$. (The notation I_k means the $k \times k$ identity matrix.)
- An *n* × *k*-matrix *A* is an isometry if and only if its columns form an orthonormal tuple of vectors.

1.1. Unitary matrices

Definition 1.1.1. A matrix $U \in \mathbb{C}^{n \times k}$ is said to be **unitary** if both U and U^* are isometries.

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

Example 1.1.2. (a) The matrix $A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ is unitary. Indeed, it is easy to see that *A* is an isometry, but A^* is therefore also an isometry, since $A^* = A$. Thus, *A* is unitary.

(b) A 1 × 1-matrix (λ) is unitary if and only if $|\lambda| = 1$.

(c) For any $n \in \mathbb{N}$, the identity matrix I_n is an isometry and thus unitary.

(d) Let $n \in \mathbb{N}$. Let σ be a permutation of $[n] = \{1, 2, ..., n\}$. That is, σ is a bijective map from [n] to [n].

Let P_{σ} be the **permutation matrix** of σ ; this is the $n \times n$ -matrix whose $(\sigma(j), j)$ th entry is 1 for all $j \in [n]$, and whose all other entries are 0.

For instance, if
$$n = 3$$
 and $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, then

$$P_{\sigma} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

The permutation matrix P_{σ} is always unitary (for any *n* and any σ). Indeed, the inverse of P_{σ} is $P_{\sigma^{-1}}$, but the conjugate transpose of P_{σ} is also $P_{\sigma^{-1}}$. Thus, $P_{\sigma}^* = P_{\sigma}^{-1}$, so $P_{\sigma}^* P_{\sigma} = I_n$. This shows that P_{σ} is an isometry. Similarly, $P_{\sigma}P_{\sigma}^* = I_n$, so that P_{σ}^* is an isometry, and thus P_{σ} is unitary.

(e) A diagonal matrix diag
$$(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 is unitary

if and only if

$$|\lambda_1| = |\lambda_2| = \cdots = |\lambda_n| = 1.$$

Indeed,

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}^* \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \begin{pmatrix} |\lambda_1|^2 & 0 & \cdots & 0 \\ 0 & |\lambda_2|^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |\lambda_n|^2 \end{pmatrix}.$$

Theorem 1.1.3. Let $U \in \mathbb{C}^{n \times k}$ be a matrix. The following six statements are equivalent:

- \mathcal{A} : The matrix U is unitary.
- \mathcal{B} : The matrices U and U^* are isometries.
- C: We have $UU^* = I_n$ and $U^*U = I_k$.
- \mathcal{D} : The matrix U is square (that is, n = k) and invertible and satisfies $U^{-1} = U^*$.
- \mathcal{E} : The columns of *U* form an orthonormal basis of \mathbb{C}^n .
- \mathcal{F} : The matrix *U* is square (that is, n = k) and is an isometry.

Proof. $\mathcal{A} \iff \mathcal{B}$ follows from the def of "unitary".

 $\mathcal{B} \iff \mathcal{C}$ follows from the def of "isometry", since $(U^*)^* = U$.

 $\mathcal{D} \Longrightarrow \mathcal{C}$ is obvious.

 $\mathcal{C} \Longrightarrow \mathcal{D}$ follows from the fact that any invertible matrix is square. The other implications are a bit harder:

- $\mathcal{D} \implies \mathcal{E}$: Assume that \mathcal{D} holds. Thus, U is an isometry (since $U^*U = I_k$). So, from a result from last time, we see that the columns of U form an orthonormal tuple of vectors. But they also form a basis of \mathbb{C}^n , because U is invertible. So \mathcal{E} holds.
- *E* ⇒ *D*: Assume that *E* holds. Then, the columns of *U* form an orthonormal basis, hence an orthonormal tuple. Thus, *U* is an isometry (by what we know from last lecture). Furthermore, the columns of *U* form a basis, so there are precisely *n* of them (since any basis of Cⁿ has *n* vectors). This shows that *U* is square. Finally, *U* is invertible, since its columns form a basis. So *D* holds.
- $\mathcal{D} \Longrightarrow \mathcal{F}$: Easy.
- *F* ⇒ *D*: It is known that a square matrix *A* that is left invertible (i.e., there is a matrix *B* such that *BA* = *I*) is always invertible. Since *U* is an isometry, we have *U*^{*}*U* = *I_k*, so that *U* is left-invertible. Thus, *U* is invertible, and its inverse is *U*⁻¹ = *U*^{*}. So *D* holds.

This proves $\mathcal{A} \iff \mathcal{B} \iff \mathcal{C} \iff \mathcal{D} \iff \mathcal{E} \iff \mathcal{F}$.

This theorem shows that any unitary matrix is square. In contrast, an isometry can be a tall matrix (but not a wide matrix).

The set of all unitary $n \times n$ -matrices is called the *n*-th unitary group, and is denoted U_n (C). It is a group under multiplication.

If *U* is a unitary matrix, then $|\det U| = 1$ and any eigenvalue λ of *U* has $|\lambda| = 1$.

1.1.1. Block matrices

Definition 1.1.4. Let $A \in \mathbb{C}^{n \times p}$, $B \in \mathbb{C}^{n \times q}$, $C \in \mathbb{C}^{m \times p}$, $D \in \mathbb{C}^{m \times q}$ be four matrices. Then, $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ means the matrix $\begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & B_{1,1} & B_{1,2} & \cdots \\ A_{2,1} & A_{2,2} & \cdots & B_{2,1} & B_{2,2} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ C_{1,1} & C_{1,2} & \cdots & D_{1,1} & D_{1,2} & \cdots \\ C_{2,1} & C_{2,2} & \cdots & D_{2,1} & D_{2,2} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \end{pmatrix} \in \mathbb{C}^{(n+m) \times (p+q)}$

(where $M_{i,j}$ means the (i, j)-th entry of a matrix M).

This matrix is called the **block matrix** formed of *A*, *B*, *C* and *D*.

Similar notations will be used to glue together more than 4 matrices.

This block matrix notation is more than just a convenient notation. Indeed, multiplication of matrices plays along with it:

Proposition 1.1.5. For any matrices A, B, C, D, A', B', C', D', we have

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix},$$

provided that the block matrices and the products make sense.

Again, a similar rule holds for larger block matrices.

A particularly well-behaved family of block matrices are the **block-diagonal matrices**. These are the block matrices of the form

1	A(1,1)	0	• • •	0	
	0	A (2,2)	• • •	0	
	÷	:	·	÷	/
	0	0	• • •	A(n,n))

where each A(i,i) is a square matrix, and where the 0's mean zero matrices of appropriate dimension.

These block-diagonal matrices can be muliplied "diagonal block by diagonal

block":

$$\begin{pmatrix} A(1,1) & 0 & \cdots & 0 \\ 0 & A(2,2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A(n,n) \end{pmatrix} \begin{pmatrix} B(1,1) & 0 & \cdots & 0 \\ 0 & B(2,2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B(n,n) \end{pmatrix}$$
$$= \begin{pmatrix} A(1,1)B(1,1) & 0 & \cdots & 0 \\ 0 & A(2,2)B(2,2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A(n,n)B(n,n) \end{pmatrix},$$

provided that

size of A(i,i) = size of B(i,i) for each *i*.

Example:
$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{pmatrix} \begin{pmatrix} a' & 0 & 0 \\ 0 & b' & c' \\ 0 & d' & e' \end{pmatrix} = \begin{pmatrix} aa' & 0 & 0 \\ 0 & cd' + bb' & ce' + bc' \\ 0 & d'e + db' & e'e + dc' \end{pmatrix}$$

Non-example: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 8 & 6 & 3 \\ 4 & 3 & 4 \end{pmatrix}$

Proposition 1.1.6. Let A_1, A_2, \ldots, A_u be a bunch of square matrices. Then, the block-diagonal matrix $\begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A \end{pmatrix}$ is unitary if and only

1.2. The Gram–Schmidt process

Theorem 1.2.1 (Gram–Schmidt process). Let (v_1, v_2, \ldots, v_m) be a linearly independent tuple of vectors in \mathbb{C}^n .

Then, there is an orthogonal tuple $(z_1, z_2, ..., z_m)$ of vectors in \mathbb{C}^n that satisfies

span $\{v_1, v_2, ..., v_j\}$ = span $\{z_1, z_2, ..., z_j\}$ for all $j \in [m]$.

Furthermore, such a tuple $(z_1, z_2, ..., z_m)$ can be constructed by the following recursive process:

• For each $p \in [m]$, if the first p-1 entries $z_1, z_2, \ldots, z_{p-1}$ of this tuple have already been constructed, then we define the *p*-th entry z_p by

$$z_p = v_p - \sum_{k=1}^{p-1} \frac{\langle v_p, z_k \rangle}{\langle z_k, z_k \rangle} z_k.$$

(Note that when p = 1, the sum on the RHS is an empty sum, so this equality simply becomes $z_1 = v_1$.)

Roughly speaking, the claim of this theorem is that if we start with any linearly independent tuple $(v_1, v_2, ..., v_m)$ of vectors in \mathbb{C}^n , then we can make this tuple orthogonal by tweaking it as follows:

- we leave *v*¹ unchanged;
- we modify v_2 by subtracting an appropriate scalar multiple of v_1 ;
- we modify v_3 by subtracting an appropriate linear combination of v_1 and v_2 ;
- and so on.

The above recursive formula tells us which scalar multiples / linear combinations to take.

Example 1.2.2.

$$z_{1} = v_{1};$$

$$z_{2} = v_{2} - \frac{\langle v_{2}, z_{1} \rangle}{\langle z_{1}, z_{1} \rangle} z_{1};$$

$$z_{3} = v_{3} - \frac{\langle v_{3}, z_{1} \rangle}{\langle z_{1}, z_{1} \rangle} z_{1} - \frac{\langle v_{3}, z_{2} \rangle}{\langle z_{2}, z_{2} \rangle} z_{2};$$
...