
Math 504: Advanced Linear
Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

September 24, 2021 (unfinished!)

Contents

1. Unitary matrices ([HorJoh13, §2.1]) (cont’d) 1
1.1. Unitary matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Block matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. The Gram–Schmidt process . . . . . . . . . . . . . . . . . . . . . . . . 5

Math 504 Lecture 2

1. Unitary matrices ([HorJoh13, §2.1]) (cont’d)

Recall:

• An n × k-matrix A is said to be an isometry if A∗A = Ik. (The notation Ik
means the k× k identity matrix.)

• An n× k-matrix A is an isometry if and only if its columns form an orthonor-
mal tuple of vectors.

1.1. Unitary matrices

Definition 1.1.1. A matrix U ∈ Cn×k is said to be unitary if both U and U∗ are
isometries.
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Example 1.1.2. (a) The matrix A =
1√
2

(
1 1
1 −1

)
is unitary. Indeed, it is easy

to see that A is an isometry, but A∗ is therefore also an isometry, since A∗ = A.
Thus, A is unitary.

(b) A 1× 1-matrix
(

λ
)

is unitary if and only if |λ| = 1.
(c) For any n ∈N, the identity matrix In is an isometry and thus unitary.
(d) Let n ∈ N. Let σ be a permutation of [n] = {1, 2, . . . , n}. That is, σ is a

bijective map from [n] to [n].
Let Pσ be the permutation matrix of σ; this is the n× n-matrix whose (σ (j) , j)-

th entry is 1 for all j ∈ [n], and whose all other entries are 0.

For instance, if n = 3 and σ =

(
1 2 3
2 3 1

)
, then

Pσ =

 0 0 1
1 0 0
0 1 0

 .

The permutation matrix Pσ is always unitary (for any n and any σ). Indeed,
the inverse of Pσ is Pσ−1 , but the conjugate transpose of Pσ is also Pσ−1 . Thus,
P∗σ = P−1

σ , so P∗σ Pσ = In. This shows that Pσ is an isometry. Similarly, PσP∗σ = In,
so that P∗σ is an isometry, and thus Pσ is unitary.

(e) A diagonal matrix diag (λ1, λ2, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 is unitary

if and only if
|λ1| = |λ2| = · · · = |λn| = 1.

Indeed,
λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn


∗

λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn



=


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn




λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn



=


λ1λ1 0 · · · 0

0 λ2λ2 · · · 0
...

... . . . ...
0 0 · · · λnλn

 =


|λ1|2 0 · · · 0

0 |λ2|2 · · · 0
...

... . . . ...
0 0 · · · |λn|2

 .
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Theorem 1.1.3. Let U ∈ Cn×k be a matrix. The following six statements are
equivalent:

• A: The matrix U is unitary.

• B: The matrices U and U∗ are isometries.

• C: We have UU∗ = In and U∗U = Ik.

• D: The matrix U is square (that is, n = k) and invertible and satisfies
U−1 = U∗.

• E : The columns of U form an orthonormal basis of Cn.

• F : The matrix U is square (that is, n = k) and is an isometry.

Proof. A ⇐⇒ B follows from the def of “unitary”.
B ⇐⇒ C follows from the def of “isometry”, since (U∗)∗ = U.
D =⇒ C is obvious.
C =⇒ D follows from the fact that any invertible matrix is square.
The other implications are a bit harder:

• D =⇒ E : Assume that D holds. Thus, U is an isometry (since U∗U =
Ik). So, from a result from last time, we see that the columns of U form an
orthonormal tuple of vectors. But they also form a basis of Cn, because U is
invertible. So E holds.

• E =⇒ D: Assume that E holds. Then, the columns of U form an orthonormal
basis, hence an orthonormal tuple. Thus, U is an isometry (by what we know
from last lecture). Furthermore, the columns of U form a basis, so there are
precisely n of them (since any basis of Cn has n vectors). This shows that U
is square. Finally, U is invertible, since its columns form a basis. So D holds.

• D =⇒ F : Easy.

• F =⇒ D: It is known that a square matrix A that is left invertible (i.e., there
is a matrix B such that BA = I) is always invertible. Since U is an isometry,
we have U∗U = Ik, so that U is left-invertible. Thus, U is invertible, and its
inverse is U−1 = U∗. So D holds.

This proves A ⇐⇒ B ⇐⇒ C ⇐⇒ D ⇐⇒ E ⇐⇒ F .

This theorem shows that any unitary matrix is square. In contrast, an isometry
can be a tall matrix (but not a wide matrix).

The set of all unitary n × n-matrices is called the n-th unitary group, and is
denoted Un (C). It is a group under multiplication.

If U is a unitary matrix, then |det U| = 1 and any eigenvalue λ of U has |λ| = 1.
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1.1.1. Block matrices

Definition 1.1.4. Let A ∈ Cn×p, B ∈ Cn×q, C ∈ Cm×p, D ∈ Cm×q be four matrices.

Then,
(

A B
C D

)
means the matrix



A1,1 A1,2 · · · B1,1 B1,2 · · ·
A2,1 A2,2 · · · B2,1 B2,2 · · ·

...
... . . . ...

... . . .
C1,1 C1,2 · · · D1,1 D1,2 · · ·
C2,1 C2,2 · · · D2,1 D2,2 · · ·

...
... . . . ...

... . . .


∈ C(n+m)×(p+q)

(where Mi,j means the (i, j)-th entry of a matrix M).
This matrix is called the block matrix formed of A, B, C and D.

Similar notations will be used to glue together more than 4 matrices.
This block matrix notation is more than just a convenient notation. Indeed, mul-

tiplication of matrices plays along with it:

Proposition 1.1.5. For any matrices A, B, C, D, A′, B′, C′, D′, we have(
A B
C D

)(
A′ B′

C′ D′

)
=

(
AA′ + BC′ AB′ + BD′

CA′ + DC′ CB′ + DD′

)
,

provided that the block matrices and the products make sense.

Again, a similar rule holds for larger block matrices.
A particularly well-behaved family of block matrices are the block-diagonal ma-

trices. These are the block matrices of the form
A (1, 1) 0 · · · 0

0 A (2, 2) · · · 0
...

... . . . ...
0 0 · · · A (n, n)

 ,

where each A (i, i) is a square matrix, and where the 0’s mean zero matrices of
appropriate dimension.

These block-diagonal matrices can be muliplied “diagonal block by diagonal
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block”:
A (1, 1) 0 · · · 0

0 A (2, 2) · · · 0
...

... . . . ...
0 0 · · · A (n, n)




B (1, 1) 0 · · · 0
0 B (2, 2) · · · 0
...

... . . . ...
0 0 · · · B (n, n)



=


A (1, 1) B (1, 1) 0 · · · 0

0 A (2, 2) B (2, 2) · · · 0
...

... . . . ...
0 0 · · · A (n, n) B (n, n)

 ,

provided that
size of A (i, i) = size of B (i, i) for each i.

Example:

 a 0 0
0 b c
0 d e

 a′ 0 0
0 b′ c′

0 d′ e′

 =

 aa′ 0 0
0 cd′ + bb′ ce′ + bc′

0 d′e + db′ e′e + dc′


Non-example:

 1 0 0
0 2 3
0 1 4

 1 2 0
4 3 0
0 0 1

 =

 1 2 0
8 6 3
4 3 4


Proposition 1.1.6. Let A1, A2, . . . , Au be a bunch of square matrices. Then,

the block-diagonal matrix


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au

 is unitary if and only

A1, A2, . . . , Au are unitary.

1.2. The Gram–Schmidt process

Theorem 1.2.1 (Gram–Schmidt process). Let (v1, v2, . . . , vm) be a linearly inde-
pendent tuple of vectors in Cn.

Then, there is an orthogonal tuple (z1, z2, . . . , zm) of vectors in Cn that satisfies

span
{

v1, v2, . . . , vj
}
= span

{
z1, z2, . . . , zj

}
for all j ∈ [m] .

Furthermore, such a tuple (z1, z2, . . . , zm) can be constructed by the following
recursive process:

• For each p ∈ [m], if the first p− 1 entries z1, z2, . . . , zp−1 of this tuple have
already been constructed, then we define the p-th entry zp by

zp = vp −
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk.
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(Note that when p = 1, the sum on the RHS is an empty sum, so this
equality simply becomes z1 = v1.)

Roughly speaking, the claim of this theorem is that if we start with any linearly
independent tuple (v1, v2, . . . , vm) of vectors in Cn, then we can make this tuple
orthogonal by tweaking it as follows:

• we leave v1 unchanged;

• we modify v2 by subtracting an appropriate scalar multiple of v1;

• we modify v3 by subtracting an appropriate linear combination of v1 and v2;

• and so on.

The above recursive formula tells us which scalar multiples / linear combinations
to take.

Example 1.2.2.

z1 = v1;

z2 = v2 −
〈v2, z1〉
〈z1, z1〉

z1;

z3 = v3 −
〈v3, z1〉
〈z1, z1〉

z1 −
〈v3, z2〉
〈z2, z2〉

z2;

. . .
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