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Math 504 Lecture 1

Chris volunteered to scribe Lecture 3.

1. Unitary matrices ([HorJoh13, §2.1])

1.1. Inner product

For any z ∈ C, we let z be the complex conjugate of z. So a + bi = a− bi if a, b ∈ R.

Definition 1.1.1. For any two vectors u =


u1
u2
...

un

 ∈ Cn and v =


v1
v2
...

vn

 ∈ Cn,

we define the scalar

〈u, v〉 := u1v1 + u2v2 + · · ·+ unvn ∈ C.
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This scalar 〈u, v〉 is called the inner product (or dot product) of u and v.

For example,〈(
1 + i

2 + 3i

)
,
(
−i

4 + i

)〉
= (1 + i) (−i) + (2 + 3i) (4 + i)

= (1 + i) i + (2 + 3i) (4− i) = · · · = 10 + 11i.

Definition 1.1.2. For any column vector v =


v1
v2
...

vn

 ∈ Cn, we define the row

vector
v∗ :=

(
v1 v2 · · · vn

)
.

Proposition 1.1.3. Let u, v ∈ Cn. Then:
(a) We have 〈u, v〉 = 〈v, u〉.
(b) We have 〈u, v〉 = v∗u.
(c) We have 〈u + u′, v〉 = 〈u, v〉+ 〈u′, v〉 for any u′ ∈ Cn.
(d) We have 〈u, v + v′〉 = 〈u, v〉+ 〈u, v′〉 for any v′ ∈ Cn.
(e) We have 〈λu, v〉 = λ 〈u, v〉 for any λ ∈ C.
(f) We have 〈u, λv〉 = λ 〈u, v〉 for any λ ∈ C.

Proposition 1.1.4. Let x ∈ Cn. Then:
(a) The number 〈x, x〉 is a nonnegative real.
(b) If x is nonzero, then 〈x, x〉 is a positive real.

Proof.

〈x, x〉 = x1x1 + x2x2 + · · ·+ xnxn = |x1|2 + |x2|2 + · · ·+ |xn|2 ,

since zz = |z|2 for any z ∈ C. Note that |x1| , |x2| , . . . , |xn| are reals. Thus, |x1|2 +
|x2|2 + · · ·+ |xn|2 is clearly a nonnegative real. Furthermore, if x is nonzero, then
at least one xi is nonzero, and therefore |x1|2 + |x2|2 + · · ·+ |xn|2 is positive.

Definition 1.1.5. Let x ∈ Cn. We define the length (aka norm) of x to be the
nonnegative real number

||x|| :=
√
〈x, x〉.

For example, if x = (1, 1), then 〈x, x〉 = 11 + 11 = 2, so ||x|| =
√

2.
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Proposition 1.1.6. For any λ ∈ C and x ∈ Cn, we have ||λx|| = |λ| · ||x||.

1.2. Orthogonality and orthonormality

Definition 1.2.1. Let x ∈ Cn and y ∈ Cn be two vectors. We say that x is
orthogonal to y if and only if 〈x, y〉 = 0. The shorthand for this is “x ⊥ y”.
(\perp)

The relation ⊥ is symmetric:

Proposition 1.2.2. Let x ∈ Cn and y ∈ Cn be two vectors. Then, x ⊥ y if and only
if y ⊥ x.

Proof. Recall that 〈u, v〉 = 〈v, u〉.

Definition 1.2.3. Let (u1, u2, . . . , uk) be a tuple of vectors in Cn. Then:
(a) We say that the tuple (u1, u2, . . . , uk) is orthogonal if we have

up ⊥ uq for all p 6= q.

(b) We say that the tuple (u1, u2, . . . , uk) is orthonormal if it is orthogonal and

||u1|| = ||u2|| = · · · = ||uk|| = 1.

Example 1.2.4. (a) The tuple 1
0
0

 ,

 0
1
0

 ,

 0
0
1


is orthonormal.

(b) More generally: Let n ∈N. Let e1, e2, . . . , en ∈ Cn be the vectors defined by

ei =



0
0
...
0
1
0
0
...
0


with the 1 being in the i-th position.

Then, the tuple (e1, e2, . . . , en) is orthonormal. It is furthermore a basis of Cn, and
is known as the standard basis.
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(c) The pair

 1
−i
2

 ,

 0
2i
1

 of vectors in C3 is orthogonal, but not

orthonormal.

(d) The pair

 1√
6

 1
−i
2

 ,
1√
5

 0
2i
1

 of vectors in C3 is orthonormal.

Proposition 1.2.5. Let (u1, u2, . . . , uk) be an orthogonal tuple of nonzero vectors
in Cn. Then, the tuple(

1
||u1||

u1,
1
||u2||

u2, . . . ,
1
||uk||

uk

)
is orthonormal.

Proposition 1.2.6. Any orthogonal tuple of nonzero vectors in Cn is linearly in-
dependent.

Proof. See notes.

Lemma 1.2.7. Let k < n. Let a1, a2, . . . , ak be k vectors in Cn. Then, there exists a
nonzero vector b that is orthogonal to each of a1, a2, . . . , ak.

Proof. (See notes for details.) Write each vector ai as ai =


ai,1
ai,2

...
ai,n

. Let b =


b1
b2
...

bn

 ∈ Cn be a vector whose entries are so far undetermined. To ensure that b

is orthogonal to ai, we need 〈b, ai〉 = 0. In other words, we need

b1ai,1 + b2ai,2 + · · ·+ bnai,n = 0.

This has to hold for each i ∈ [k] := {1, 2, . . . , k}. This is a system of k homogeneous
linear equations in the n unknowns b1, b2, . . . , bn. Since there are fewer equations
than there are unknowns, there exists a nonzero solution. IOW, there exists a
nonzero vector b orthogonal to all of ai.

1.3. Conjugate transposes

Generalizing our notation v∗, we can define A∗ for any matrix A:

September 24, 2021



Math 504 notes page 5

Definition 1.3.1. Let A =

 a1,1 · · · a1,m
... . . . ...

an,1 · · · an,m

 be any matrix. Then, we define

the matrix

A∗ =

 a1,1 · · · an,1
... . . . ...

a1,m · · · an,m

 .

This matrix A∗ is called the conjugate transpose of A.

IOW, A∗ is obtained from A by transposing the matrix and conjugating all en-
tries.

Example 1.3.2.

(
1 + i 2− 3i i

6 0 10 + i

)∗
=

 1− i 6
2 + 3i 0
−i 10− i

 .

Proposition 1.3.3. (a) If A, B ∈ Cn×m are two matrices, then (A + B)∗ = A∗+ B∗.
(b) If A is a matrix and λ ∈ C, then (λA)∗ = λA∗.
(c) If A and B are two matrices that can be multiplied, then (AB)∗ = B∗A∗.
(d) If A is any matrix, then (A∗)∗ = A.

1.4. Isometries

Definition 1.4.1. An n× k-matrix A is said to be an isometry if A∗A = Ik. (The
notation Ik means the k× k identity matrix.)

Proposition 1.4.2. An n × k-matrix A is an isometry if and only if its columns
form an orthonormal tuple of vectors.

Proof. Let A be an n× k-matrix, and let a1, a2, . . . , ak be its k columns. Thus,

A =

 | |
a1 · · · ak
| |

 and therefore A∗ =

 − a∗1 −
...

− a∗k −

 .
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Hence,

A∗A =

 − a∗1 −
...

− a∗k −


 | |

a1 · · · ak
| |



=

 a∗1a1 · · · a∗1ak
... . . . ...

a∗k a1 · · · a∗k ak

 =


||a1||2 · · · 〈a1, ak〉

... . . . ...
〈ak, a1〉 · · · ||ak||2

 .

On the other hand,

Ik =

 1 · · · 0
... . . . ...
0 · · · 1

 .

Thus, A∗A = Ik holds if and only if we have〈
ap, aq

〉
= 0 for all p 6= q

and ∣∣∣∣ap
∣∣∣∣2 = 1 for each p.

IOW, it holds if and only if we have

ap ⊥ aq for all p 6= q

and
||a1|| = ||a2|| = · · · = ||ak|| = 1.

IOW, it holds if and only if (a1, a2, . . . , ak) is orthonormal. Qed.

Isometries are called isometries because they preserve lengths:

Proposition 1.4.3. Let A ∈ Cn×k be an isometry. Then, each x ∈ Ck satisfies
||Ax|| = ||x||.

Proof. We have A∗A = Ik (since A is an isometry). Let x ∈ Ck. By definition,
||Ax|| =

√
〈Ax, Ax〉, so that

||Ax||2 = 〈Ax, Ax〉 = (Ax)∗︸ ︷︷ ︸
=x∗A∗

Ax (since 〈u, v〉 = v∗u)

= x∗ A∗A︸︷︷︸
=Ik

x = x∗x = 〈x, x〉 = ||x||2 .

Hence, ||Ax|| = ||x||.

1.5. Unitary matrices
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Definition 1.5.1. A matrix U ∈ Cn×k is said to be unitary if both U and U∗ are
isometries.

Example 1.5.2. (a) The matrix A =
1√
2

(
1 1
1 −1

)
is unitary. Indeed, it is easy

to see that A is an isometry, but A∗ is therefore also an isometry, since A∗ = A.
Thus, A is unitary.

(b) A 1× 1-matrix
(

λ
)

is unitary if and only if |λ| = 1.
(c) For any n ∈N, the identity matrix In is an isometry and thus unitary.
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