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Preface

These are lecture notes originally written by Hugo Woerdeman and edited by my-
self for the Math 504 (Advanced Linear Algebra) class at Drexel University in Fall
2021. The website of this class can be found at

http://www.cip.ifi.lmu.de/~grinberg/t/21fala .

This document is a work in progress.
Please report any errors you find to darijgrinberg@gmail.com .

What is this?

This is a second course on linear algebra, meant for (mostly graduate) students
that are already familiar with matrices, determinants and vector spaces. Much of
the prerequisites (but also some of our material, and even some content that goes
beyond our course) is covered by textbooks like [Heffer20], [LaNaSc16], [Taylor20],
[Treil15], [Strick20], [GalQua20, Part I], [Loehr14], [Woerde16]1. The text we will
follow the closest is [HorJoh13].

We will freely use the basic theory of complex numbers, including the Funda-
mental Theorem of Algebra. See [LaNaSc16, Chapters 2–3] or [Korner20, Chapters
9–10] for an introduction to these matters.

Notations

• We let N := {0, 1, 2, . . .}.
1This list is nowhere near complete. (It is biased towards freely available sources, but even in that

category it is probably far from comprehensive.)

January 4, 2022
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• For any n ∈N, we let [n] denote the n-element set {1, 2, . . . , n}.

• If F is a field, and n, m ∈ N, then Fn×m denotes the set (actually, an F-vector
space) of all n×m-matrices over F.

• If F is a field, and n ∈ N, then the space Fn×1 of all n× 1-matrices over F

(that is, column vectors of size n) is also denoted by Fn.

• The n× n identity matrix is denoted by In or by I if the n is clear from the
context.

• The transpose of a matrix A is denoted by AT.

• Zero vectors and zero matrices will be denoted by 0, no matter what their
sizes or ambient spaces are.

• If A is an n×m-matrix, and if i ∈ [n] and j ∈ [m], then:

– we let Ai,j denote the (i, j)-th entry of A (that is, the entry of A in the i-th
row and the j-th column);

– we let Ai,• denote the i-th row of A;

– we let A•,j denote the j-th column of A.

• The letter i usually denotes the complex number
√
−1. Sometimes (e.g. in

the bullet point just above) it also stands for something else (usually an index
that is an integer). I’ll do my best to avoid the latter meaning when there is
any realistic chance that it be confused for the former.

• We use the notation diag (λ1, λ2, . . . , λn) for the diagonal matrix with diago-
nal entries λ1, λ2, . . . , λn.

0.1. Remark on exercises

Each exercise gives a number of “experience points”, which roughly corresponds
to its difficulty (with some adjustment for its relevance). This is the number in the
square (like 3 or 5 ). The harder or more important the exercise, the larger is
the number in the square. A 1 is a warm-up question whose solution you will
probably see right after reading; a 3 typically requires some thinking or work; a
5 requires both; higher values tend to involve some creativity or research.

0.2. Scribes

Parts of these notes were scribed by Math 504 students. I thank the following
students for their help:

scribe sections

Hunter Wages proof of Theorem 2.8.2

January 4, 2022
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1. Unitary matrices ([HorJoh13, §2.1])

In this chapter, n will usually denote a nonnegative integer.

Lecture 1 starts here.

1.1. Inner products

We recall a basic definition regarding complex numbers:

Definition 1.1.1. Let z ∈ C be a complex number. Then, the complex conjugate of
z means the complex number a− bi, where z is written in the form z = a + bi for
some a, b ∈ R. In other words, the complex conjugate of z is obtained from z by
keeping the real part unchanged but flipping the sign of the imaginary part.

The complex conjugate of z is denoted by z.

Complex conjugation is known to preserve all arithmetic operations: i.e., for any
complex numbers z and w, we have

z + w = z + w and z− w = z− w and

z · w = z · w and z/w = z/w.

Also, a complex number z satisfies z = z if and only if z ∈ R. Finally, if z is any
complex number, then zz = |z|2 is a nonnegative real.

Definition 1.1.2. For any two vectors x =


x1
x2
...

xn

 ∈ Cn and y =


y1
y2
...

yn

 ∈ Cn,

we define the scalar

〈x, y〉 := x1y1 + x2y2 + · · ·+ xnyn ∈ C (1)

(where z denotes the complex conjugate of a z ∈ C). This scalar 〈x, y〉 is called
the inner product (or dot product) of x and y.

Example 1.1.3. If x =

(
1 + i

2 + 3i

)
∈ C2 and y =

(
−i

4 + i

)
∈ C2, then

〈x, y〉 = (1 + i)
(
−i
)
+ (2 + 3i)

(
4 + i

)
= (1 + i) i + (2 + 3i) (4− i)
= i− 1 + 8− 2i + 12i + 3 = 10 + 11i.

January 4, 2022
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Some warnings about the literature are in order:

• Some authors (e.g., Treil in [Treil15]) write (x, y) instead of 〈x, y〉 for the inner
product of x and y. This can be rather confusing, since (x, y) also means the
pair consisting of x and y.

• The notation 〈x, y〉, too, can mean something different in certain texts (namely,
the span of x and y); however, it won’t have this second meaning in our
course.

• If I am not mistaken, Definition 1.1.2 is also not the only game in town. Some
authors follow a competing standard, which causes their 〈x, y〉 to be what we
would denote 〈y, x〉.

• Finally, the word “dot product” often means the analogue of 〈x, y〉 that does
not use complex conjugation (i.e., that replaces (1) by 〈x, y〉 := x1y1 + x2y2 +
· · ·+ xnyn). This convention is used mostly in abstract algebra, where com-
plex conjugation is not considered intrinsic to the number system. We will not
use this convention. For vectors with real entries, the distinction disappears,
since λ = λ for any λ ∈ R.

Definition 1.1.4. For any column vector y =


y1
y2
...

yn

 ∈ Cn, we define the row

vector
y∗ :=

(
y1 y2 · · · yn

)
∈ C1×n.

Proposition 1.1.5. Let x ∈ Cn and y ∈ Cn. Then:

(a) We have 〈x, y〉 = y∗x.

(b) We have 〈x, y〉 = 〈y, x〉.
(c) We have 〈x + x′, y〉 = 〈x, y〉+ 〈x′, y〉 for any x′ ∈ Cn.

(d) We have 〈x, y + y′〉 = 〈x, y〉+ 〈x, y′〉 for any y′ ∈ Cn.

(e) We have 〈λx, y〉 = λ 〈x, y〉 for any λ ∈ C.

(f) We have 〈x, λy〉 = λ 〈x, y〉 for any λ ∈ C.

(g) We have 〈x− x′, y〉 = 〈x, y〉 − 〈x′, y〉 for any x′ ∈ Cn.

(h) We have 〈x, y− y′〉 = 〈x, y〉 − 〈x, y′〉 for any y′ ∈ Cn.

(i) We have
〈

k
∑

i=1
λixi, y

〉
=

k
∑

i=1
λi 〈xi, y〉 for any k ∈ N, any x1, x2, . . . , xk ∈ Cn

and any λ1, λ2, . . . , λk ∈ C.

January 4, 2022
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(j) We have
〈

x,
k
∑

i=1
λiyi

〉
=

k
∑

i=1
λi 〈x, yi〉 for any k ∈ N, any y1, y2, . . . , yk ∈ Cn

and any λ1, λ2, . . . , λk ∈ C.

Proof. Parts (a) till (h) are straightforward computations using Definition 1.1.2,
since

• the multiplication in C is commutative;

• we have z = z for any z ∈ C.

Parts (i) and (j) follow from parts (c), (d), (e) and (f) by induction on k.

Proposition 1.1.6. Let x ∈ Cn. Then:

(a) The number 〈x, x〉 is a nonnegative real.

(b) We have 〈x, x〉 > 0 whenever x 6= 0.

Proof. Write x as x =
(

x1 x2 · · · xn
)T. Then, the definition of 〈x, x〉 yields

〈x, x〉 = x1x1 + x2x2 + · · ·+ xnxn

= |x1|2 + |x2|2 + · · ·+ |xn|2 , (2)

since any complex number z satisfies zz = |z|2. Since all the absolute values
|x1| , |x2| , . . . , |xn| are real, this yields immediately that 〈x, x〉 is a nonnegative real.
Thus, Proposition 1.1.6 (a) is proved.

(b) Assume that x 6= 0. Thus, at least one i ∈ [n] satisfies xi 6= 0 and therefore
|xi|2 > 0. This entails 〈x, x〉 = |x1|2 + |x2|2 + · · · + |xn|2 > 0 (because a sum of
nonnegative reals that has at least one positive addend is always > 0). In view of
(2), this rewrites as 〈x, x〉 > 0. This proves Proposition 1.1.6 (b).

Definition 1.1.7. Let x ∈ Cn. We define the length of x to be the nonnegative real
number

||x|| :=
√
〈x, x〉.

This is well-defined, since Proposition 1.1.6 (a) says that 〈x, x〉 is a nonnegative
real.

Example 1.1.8. If x =

(
1 + i

3− 2i

)
∈ C2, then

〈x, x〉 = (1 + i)
(
1 + i

)
+ (3− 2i)

(
3 + 2i

)
= (1 + i) (1− i) + (3− 2i) (3 + 2i)

= 1 + 1 + 9 + 4 = 15

and thus ||x|| =
√
〈x, x〉 =

√
15.
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The length ||x|| of a vector x ∈ Cn is sometimes also called the norm of x (but
beware that other things are called “norms” as well).

A vector x ∈ Cn has zero length if and only if it is 0:

Proposition 1.1.9. Let x ∈ Cn. Then, ||x|| = 0 if and only if x = 0.

Proof. The “if” part follows from ||0|| = 0, which is obvious. To prove the “only if”
part, we assume that ||x|| = 0. Thus, 〈x, x〉 = 0 (since ||x|| =

√
〈x, x〉). However,

if we had x 6= 0, then Proposition 1.1.6 (b) would yield 〈x, x〉 > 0, which would
contradict 〈x, x〉 = 0. Thus, we cannot have x 6= 0. Hence, x = 0. Thus, the “only
if” part is proven.

Proposition 1.1.10. For any λ ∈ C and x ∈ Cn, we have ||λx|| = |λ| · ||x||.

Proof. Straightforward.

Exercise 1.1.1. 3 Let x ∈ Cn and y ∈ Cn. Prove that

||x + y||2 − ||x||2 − ||y||2 = 〈x, y〉+ 〈y, x〉 = 2 · Re 〈x, y〉 .

Here, Re z denotes the real part of any complex number z.

One of the most famous properties of the inner product is the Cauchy–Schwarz
inequality (see [Steele04] for various applications):

Theorem 1.1.11 (Cauchy–Schwarz inequality). Let x ∈ Cn and y ∈ Cn be two
vectors. Then:

(a) The inequality
||x|| · ||y|| ≥ |〈x, y〉|

holds.

(b) This inequality becomes an equality if and only if the pair (x, y) of vectors
is linearly dependent.

Proof of Theorem 1.1.11. If x = 0, then Theorem 1.1.11 is obvious (because the in-
equality in part (a) simplifies to 0 ≥ 0, and since the pair (0, y) of vectors is always
linearly dependent). Hence, for the rest of this proof, we WLOG assume that x 6= 0.

Thus, Proposition 1.1.6 (a) yields that 〈x, x〉 is a nonnegative real, and Proposition
1.1.6 (b) yields 〈x, x〉 > 0. Let a := 〈x, x〉. Then, a = 〈x, x〉 > 0. Furthermore, let
b := 〈y, x〉 ∈ C. Thus, b = 〈y, x〉 = 〈x, y〉 (by Proposition 1.1.5 (b)).

Now, Proposition 1.1.6 (a) (applied to bx− ay instead of x) yields that

〈bx− ay, bx− ay〉 ≥ 0. (3)

January 4, 2022
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Since

〈bx− ay, bx− ay〉
= 〈bx, bx− ay〉︸ ︷︷ ︸

=〈bx,bx〉−〈bx,ay〉
(by Proposition 1.1.5 (h))

− 〈ay, bx− ay〉︸ ︷︷ ︸
=〈ay,bx〉−〈ay,ay〉

(by Proposition 1.1.5 (h))

(by Proposition 1.1.5 (g))

= 〈bx, bx〉 − 〈bx, ay〉 − (〈ay, bx〉 − 〈ay, ay〉)
= 〈bx, bx〉︸ ︷︷ ︸

=b〈x,bx〉
(by Proposition 1.1.5 (e))

+ 〈ay, ay〉︸ ︷︷ ︸
=a〈y,ay〉

(by Proposition 1.1.5 (e))

− 〈bx, ay〉︸ ︷︷ ︸
=b〈x,ay〉

(by Proposition 1.1.5 (e))

− 〈ay, bx〉︸ ︷︷ ︸
=a〈y,bx〉

(by Proposition 1.1.5 (e))

= b 〈x, bx〉︸ ︷︷ ︸
=b〈x,x〉

(by Proposition 1.1.5 (f))

+a 〈y, ay〉︸ ︷︷ ︸
=a〈y,y〉

(by Proposition 1.1.5 (f))

− b 〈x, ay〉︸ ︷︷ ︸
=a〈x,y〉

(by Proposition 1.1.5 (f))

−a 〈y, bx〉︸ ︷︷ ︸
=b〈y,x〉

(by Proposition 1.1.5 (f))

= bb 〈x, x〉︸ ︷︷ ︸
=a

+a a︸︷︷︸
=a

(since a∈R)

〈y, y〉 − b a︸︷︷︸
=a

(since a∈R)

〈x, y〉︸ ︷︷ ︸
=b

−ab 〈y, x〉︸ ︷︷ ︸
=b

= bba + aa︸︷︷︸
=a2

〈y, y〉 − ba︸︷︷︸
=ab

b− abb︸︷︷︸
=bba

= bba + a2 〈y, y〉 − abb− bba = a2 〈y, y〉 − abb = a
(

a 〈y, y〉 − bb
)

,

we can rewrite this as
a
(

a 〈y, y〉 − bb
)
≥ 0.

We can divide both sides of this inequality by a (since a > 0). Thus, we obtain

a 〈y, y〉 − bb ≥ 0.

In other words,
a 〈y, y〉 ≥ bb.

In view of

a = 〈x, x〉 = ||x||2
(

since ||x|| =
√
〈x, x〉 (by the definition of ||x|| )

)
and

〈y, y〉 = ||y||2
(

since ||y|| =
√
〈y, y〉 (by the definition of ||y|| )

)
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and
bb = b b︸︷︷︸

=b

= bb =
∣∣∣b∣∣∣2 (

because zz = |z|2 for any z ∈ C
)

,

we can rewrite this as ||x||2 ||y||2 ≥
∣∣∣b∣∣∣2. Since ||x|| and ||y|| and

∣∣∣b∣∣∣ are nonnegative
reals, we can take square roots on both sides of this inequality, and obtain ||x|| ·
||y|| ≥

∣∣∣b∣∣∣. In other words, ||x|| · ||y|| ≥ |〈x, y〉| (since b = 〈x, y〉). This proves
Theorem 1.1.11 (a).

(b) Our above proof of the inequality ||x|| · ||y|| ≥ |〈x, y〉| shows that this inequal-
ity can only become an equality if 〈bx− ay, bx− ay〉 = 0 (since it was obtained by a
chain of reversible transformations from the inequality (3)). But this happens if and
only if bx− ay = 0 (since Proposition 1.1.6 (b) shows that 〈bx− ay, bx− ay〉 > 0 in
any other case). In turn, bx − ay = 0 entails that the pair (x, y) is linearly depen-
dent (since a > 0). Thus, the inequality ||x|| · ||y|| ≥ |〈x, y〉| can only become an
equality if the pair (x, y) is linearly dependent. Conversely, it is easy to see that if
the pair (x, y) is linearly dependent, then the inequality ||x|| · ||y|| ≥ |〈x, y〉| indeed
becomes an equality (because in light of x 6= 0, the linear dependence of the pair
(x, y) yields that y = λx for some λ ∈ C). Thus, Theorem 1.1.11 (b) is proven.

Using Theorem 1.1.11 and Exercise 1.1.1, we can easily obtain the following:

Theorem 1.1.12 (triangle inequality). Let x ∈ Cn and y ∈ Cn. Then:

(a) The inequality ||x||+ ||y|| ≥ ||x + y|| holds.

(b) This inequality becomes an equality if and only if we have y = 0 or x = λy
for some nonnegative real λ.

Exercise 1.1.2. 3 Prove Theorem 1.1.12.

Theorem 1.1.12 (a) is the reason why the map Cn → R, x 7→ ||x|| is called a
“norm”.

1.2. Orthogonality and orthonormality

We shall now define orthogonality first for two vectors, then for any tuple of vec-
tors.

Definition 1.2.1. Let x ∈ Cn and y ∈ Cn be two vectors. We say that x is
orthogonal to y if and only if 〈x, y〉 = 0. The shorthand notation for this is
“x ⊥ y”.

The relation ⊥ is symmetric:
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Proposition 1.2.2. Let x ∈ Cn and y ∈ Cn be two vectors. Then, x ⊥ y holds if
and only if y ⊥ x.

Proof. Follows from Proposition 1.1.5 (b).

Definition 1.2.3. Let (u1, u2, . . . , uk) be a tuple of vectors in Cn. Then:

(a) We say that the tuple (u1, u2, . . . , uk) is orthogonal if we have

up ⊥ uq whenever p 6= q.

(b) We say that the tuple (u1, u2, . . . , uk) is orthonormal if it is orthogonal and
satisfies

||u1|| = ||u2|| = · · · = ||uk|| = 1.

(c) We note that the orthogonality and the orthonormality of a tuple are pre-
served when the entries of the tuple are permuted. Thus, we can extend both
notions (“orthogonal” and “orthonormal”) to finite sets of vectors in Cn: A set
{u1, u2, . . . , uk} of vectors in Cn (with u1, u2, . . . , uk being distinct) is said to be
orthogonal (or orthonormal, respectively) if and only if the tuple (u1, u2, . . . , uk) is
orthogonal (resp., orthonormal).

(d) Sometimes, we (sloppily) say “the vectors u1, u2, . . . , uk are orthogonal”
when we mean “the tuple (u1, u2, . . . , uk) is orthogonal”. The same applies to
“orthonormal”.

Example 1.2.4. (a) The tuple

 1
0
0

 ,

 0
1
0

 ,

 0
0
1

 of vectors in C3 is or-

thonormal. It is also a basis of C3, and known as the standard basis.

(b) More generally: Let n ∈N. Let e1, e2, . . . , en ∈ Cn be the vectors defined by

ei =
(

0 0 · · · 0 1 0 0 · · · 0
)T︸ ︷︷ ︸

the 1 is in the i-th position;
all other entries are 0

.

Then, (e1, e2, . . . , en) is an orthonormal basis of Cn, and is known as the standard
basis of Cn.

(c) The pair

 1
−i
2

 ,

 0
2i
1

 of vectors in C3 is orthogonal (but not or-

thonormal). Indeed,〈 1
−i
2

 ,

 0
2i
1

〉 = 1 · 0 + (−i) · 2i + 2 · 1 = 0− 2 + 2 = 0.
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(d) The pair

 1√
6

 1
−i
2

 ,
1√
5

 0
2i
1

 of vectors in C3 is orthonormal.

(This is just the previous pair, with each vector scaled so that its length becomes
1.)

Proposition 1.2.5. Let (u1, u2, . . . , uk) be an orthogonal tuple of nonzero vectors
in Cn. Then, the tuple(

1
||u1||

u1,
1
||u2||

u2, . . . ,
1
||uk||

uk

)
is orthonormal.

Proof. Straightforward. (Observe that any two orthogonal vectors remain orthogo-
nal when they are scaled by scalars.)

Proposition 1.2.6. Any orthogonal tuple of nonzero vectors in Cn is linearly in-
dependent.

Proof. Let (u1, u2, . . . , uk) be an orthogonal tuple of nonzero vectors in Cn. We must
prove that it is linearly independent.

Indeed, for any i ∈ [k] and any λ1, λ2, . . . , λk ∈ C, we have

〈λ1u1 + λ2u2 + · · ·+ λkuk, ui〉
= λ1 〈u1, ui〉+ λ2 〈u2, ui〉+ · · ·+ λk 〈uk, ui〉

(by parts (c) and (e) of Proposition 1.1.5)

= λi 〈ui, ui〉+ ∑
j∈[k];
j 6=i

λj
〈
uj, ui

〉︸ ︷︷ ︸
=0

(since uj⊥ui
(because (u1,u2,...,uk) is

an orthogonal tuple))

= λi 〈ui, ui〉 . (4)

For any i ∈ [k], we have ui 6= 0 (since (u1, u2, . . . , uk) is a tuple of nonzero vectors)
and thus

〈ui, ui〉 > 0 (5)

(by Proposition 1.1.6 (b), applied to x = ui).
Now, let λ1, λ2, . . . , λk ∈ C be such that λ1u1 + λ2u2 + · · ·+ λkuk = 0. Then, for

each i ∈ [k], we have

λi 〈ui, ui〉 =
〈

λ1u1 + λ2u2 + · · ·+ λkuk︸ ︷︷ ︸
=0

, ui

〉
(by (4))

= 〈0, ui〉 = 0
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and therefore λi = 0 (indeed, we can divide by 〈ui, ui〉, because of (5)).
Forget that we fixed λ1, λ2, . . . , λk. We thus have shown that if λ1, λ2, . . . , λk ∈ C

are such that λ1u1 + λ2u2 + · · ·+ λkuk = 0, then we have λi = 0 for each i ∈ [k].
In other words, (u1, u2, . . . , uk) is linearly independent. This proves Proposition
1.2.6.

The following simple lemma will be used further below:

Lemma 1.2.7. Let k < n. Let a1, a2, . . . , ak be k vectors in Cn. Then, there exists a
nonzero vector b ∈ Cn that is orthogonal to each of a1, a2, . . . , ak.

Proof. Write each vector ai as ai =
(

ai,1 ai,2 · · · ai,n
)T. Now, consider an arbi-

trary vector b =
(

b1 b2 · · · bn
)T ∈ Cn, whose entries b1, b2, . . . , bn are so far

undetermined. This new vector b is orthogonal to each of a1, a2, . . . , ak if and only
if it satisfies

〈b, ai〉 = 0 for all i ∈ [k] .

In other words, this new vector b is orthogonal to each of a1, a2, . . . , ak if and only
if it satisfies

b1ai,1 + b2ai,2 + · · ·+ bnai,n = 0 for all i ∈ [k]

(since 〈b, ai〉 = b1ai,1 + b2ai,2 + · · ·+ bnai,n for each i ∈ [k]). In other words, this new
vector b is orthogonal to each of a1, a2, . . . , ak if and only if it satisfies the system of
equations 

b1a1,1 + b2a1,2 + · · ·+ bna1,n = 0;
b1a2,1 + b2a2,2 + · · ·+ bna2,n = 0;

· · · ;
b1ak,1 + b2ak,2 + · · ·+ bnak,n = 0.

But this is a system of k homogeneous linear equations in the n unknowns b1, b2, . . . , bn,
and thus (by a classical fact in linear algebra2) has at least one nonzero solu-
tion (since k < n). In other words, there exists at least one nonzero vector b =(

b1 b2 · · · bn
)T ∈ Cn that is orthogonal to each of a1, a2, . . . , ak. This proves

Lemma 1.2.7.

Here is a neater way to state the same argument: We define a map f : Cn → Ck by
setting

f (w) =


〈w, a1〉
〈w, a2〉

...
〈w, ak〉

 for each w ∈ Cn.

2The fact we are using here is the following: If p and q are two integers such that 0 ≤ p < q, then
any system of p homogeneous linear equations in q unknowns has at least one nonzero solution.
Rewritten in terms of matrices, this is saying that if p and q are two integers such that 0 ≤ p < q,
then any p × q-matrix has a nonzero vector in its kernel (= nullspace). For a proof, see, e.g.,
[Strick20, Remark 8.9] or (rewritten in the language of linear maps) [LaNaSc16, Corollary 6.5.3
item 1].
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It is easy to see that this map f is C-linear. (Indeed, Proposition 1.1.5 (c) shows that every
two vectors x, x′ ∈ Cn and every i ∈ [k] satisfy 〈x + x′, ai〉 = 〈x, ai〉 + 〈x′, ai〉; therefore,
every two vectors x, x′ ∈ Cn satisfy f (x + x′) = f (x) + f (x′). Similarly, Proposition 1.1.5
(e) can be used to show that f (λx) = λ f (x) for each λ ∈ C and x ∈ Cn. Hence, f is
C-linear.)

Now, we know that f is a C-linear map from Cn to Ck. Hence, the rank-nullity theorem
(see, e.g., [Treil15, Chapter 2, Theorem 7.2] or [Knapp16, Chapter II, Corollary 2.15] or
[Goodma15, Proposition 3.3.35]) yields that

n = dim (Ker f ) + dim (Im f ) ,

where Ker f denotes the kernel of f (that is, the subspace of Cn that consists of all vectors
v ∈ Cn satisfying f (v) = 0), and where Im f denotes the image3 of f (that is, the subspace
of Ck consisting of all vectors of the form f (v) with v ∈ Cn). Therefore,

dim (Ker f ) = n− dim (Im f ) .

However, Im f is a vector subspace of Ck, and thus has dimension ≤ k. Thus, dim (Im f ) ≤
k < n, so that

dim (Ker f ) = n− dim (Im f )︸ ︷︷ ︸
<n

> n− n = 0.

This shows that the vector space Ker f contains at least one nonzero vector b. Consider this
b. Thus, b ∈ Ker f ⊆ Cn.

However, b ∈ Ker f shows that f (b) = 0. But the definition of f yields f (b) =
〈b, a1〉
〈b, a2〉

...
〈b, ak〉

. Thus,


〈b, a1〉
〈b, a2〉

...
〈b, ak〉

 = f (b) = 0. In other words, each i ∈ [k] satisfies

〈b, ai〉 = 0. In other words, each i ∈ [k] satisfies b ⊥ ai. In other words, b is orthogo-
nal to each of a1, a2, . . . , ak. Thus, we have found a nonzero vector b ∈ Cn that is orthogonal
to each of a1, a2, . . . , ak. This proves Lemma 1.2.7.

Corollary 1.2.8. Let (u1, u2, . . . , uk) be an orthogonal k-tuple of nonzero vectors
in Cn. Then, we have k ≤ n, and we can find n − k further nonzero vectors
uk+1, uk+2, . . . , un such that (u1, u2, . . . , un) is an orthogonal basis of Cn.

Exercise 1.2.1. 2 Prove Corollary 1.2.8.

Corollary 1.2.9. Let (u1, u2, . . . , uk) be an orthonormal k-tuple of vectors in
Cn. Then, we have k ≤ n, and we can find n − k further nonzero vectors
uk+1, uk+2, . . . , un such that (u1, u2, . . . , un) is an orthonormal basis of Cn.

3also known as “range”
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Proof. The k-tuple (u1, u2, . . . , uk) is an orthogonal tuple of nonzero vectors (since
it is orthonormal). Hence, Corollary 1.2.8 yields that we can find n − k further
nonzero vectors uk+1, uk+2, . . . , un such that (u1, u2, . . . , un) is an orthogonal basis
of Cn. Consider these n− k vectors uk+1, uk+2, . . . , un, and replace them by

1
||uk+1||

uk+1,
1

||uk+2||
uk+2, . . . ,

1
||un||

un,

respectively. Then, the orthogonal basis (u1, u2, . . . , un) becomes an orthonormal
basis (since an orthogonal basis remains orthogonal when we scale its entries, and
since the first k vectors u1, u2, . . . , uk already have length 1 by assumption). Thus,
Corollary 1.2.9 is proved.

1.3. Conjugate transposes

The following definition generalizes Definition 1.1.4:

Definition 1.3.1. Let A =

 a1,1 · · · a1,m
... . . . ...

an,1 · · · an,m

 ∈ Cn×m be any n × m-matrix.

Then, we define the m× n-matrix

A∗ :=

 a1,1 · · · an,1
... . . . ...

a1,m · · · an,m

 ∈ Cm×n.

This matrix A∗ is called the conjugate transpose of A.

This conjugate transpose A∗ can thus be obtained from the usual transpose AT

by conjugating all entries.

Example 1.3.2.
(

1 + i 2− 3i 5i
6 2 + 4i 10− i

)∗
=

 1− i 6
2 + 3i 2− 4i
−5i 10 + i

.

In the olden days, the conjugate transpose of a matrix was also known as the
“adjoint” of A. Unsurprisingly, this word has at least one other meaning, which
opens the door to a lot of unwanted confusion; thus we will speak of the “conjugate
transpose” instead.

Some authors use the alternative notation A† (read “A dagger”) for A∗. (The
Wikipedia suggests calling it the “bedaggered matrix A”, although I am not aware
of anyone using this terminology outside of the Wikipedia.)

The following rules for conjugate transposes are straightforward to check:
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Proposition 1.3.3. (a) If A ∈ Cn×m and B ∈ Cn×m are two matrices, then
(A + B)∗ = A∗ + B∗.

(b) If A ∈ Cn×m and λ ∈ C, then (λA)∗ = λA∗.

(c) If A ∈ Cn×m and B ∈ Cm×k are two matrices, then (AB)∗ = B∗A∗.

(d) If A ∈ Cn×m, then (A∗)∗ = A.

1.4. Isometries

Definition 1.4.1. An n× k-matrix A is said to be an isometry if A∗A = Ik.

Proposition 1.4.2. An n × k-matrix A is an isometry if and only if its columns
form an orthonormal tuple of vectors.

Proof. Let A be an n× k-matrix with columns a1, a2, . . . , ak from left to right. There-
fore,

A =

 | |
a1 · · · ak
| |

 and thus A∗ =

 — a∗1 —
...

— a∗k —

 .

Hence,

A∗A =


a∗1a1 a∗1a2 · · · a∗1ak
a∗2a1 a∗2a2 · · · a∗2ak

...
... . . . ...

a∗k a1 a∗k a2 · · · a∗k ak



=


||a1||2 〈a1, a2〉 · · · 〈a1, ak〉
〈a2, a1〉 ||a2||2 · · · 〈a2, ak〉

...
... . . . ...

〈ak, a1〉 〈ak, a2〉 · · · ||ak||2

 .

On the other hand,

Ik =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 .

Thus, A∗A = Ik holds if and only if we have〈
ap, aq

〉
= 0 for all p 6= q
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and ∣∣∣∣ap
∣∣∣∣2 = 1 for each p.

In other words, A∗A = Ik holds if and only if we have

ap ⊥ aq for all p 6= q

and
||a1|| = ||a2|| = · · · = ||ak|| = 1.

In other words, A is an isometry if and only if (a1, a2, . . . , ak) is orthonormal. This
proves Proposition 1.4.2.

Isometries are called isometries because they preserve lengths:

Proposition 1.4.3. Let A ∈ Cn×k be an isometry. Then, each x ∈ Ck satisfies
||Ax|| = ||x||.

Proof. We have A∗A = Ik (since A is an isometry). Let x ∈ Ck. Then, the definition
of ||Ax|| yields ||Ax|| =

√
〈Ax, Ax〉. Hence,

||Ax||2 = 〈Ax, Ax〉
= (Ax)∗︸ ︷︷ ︸

=x∗A∗
(by Proposition 1.3.3 (c))

Ax (by Proposition 1.1.5 (a))

= x∗A∗Ax (6)
= x∗x (since A∗A = Ik)

= 〈x, x〉 (by Proposition 1.1.5 (a))

= ||x||2

(since the definition of ||x|| yields ||x|| =
√
〈x, x〉). In other words, we have

||Ax|| = ||x|| (since ||Ax|| and ||x|| are nonnegative reals). This proves Propo-
sition 1.4.3.

Remark 1.4.4. Another warning on terminology: Some authors (e.g., Conrad in
[Conrad, “Isometries”]) use the word “isometry” in a wider sense than we do.
Namely, they use it for arbitrary maps from Ck to Cn that preserve distances.
Our isometries can be viewed as linear isometries in this wider sense, because a
matrix A ∈ Cn×k corresponds to a linear map from Ck to Cn. However, not all
isometries in this wider sense are linear.

1.5. Unitary matrices

1.5.1. Definition, examples, basic properties
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Definition 1.5.1. A matrix U ∈ Cn×k is said to be unitary if and only if both U
and U∗ are isometries.

Lecture 2 starts here.

Example 1.5.2. (a) The matrix A =
1√
2

(
1 1
1 −1

)
is unitary. Indeed, it is easy

to see that A∗A = I2, so that A is an isometry. Thus, A∗ is an isometry as well,
since A∗ = A. Hence, A is unitary.

(b) A 1× 1-matrix
(

λ
)
∈ C1×1 is unitary if and only if |λ| = 1.

(c) For any n ∈N, the identity matrix In is unitary.

(d) Let n ∈ N, and let σ be a permutation of [n] (that is, a bijective map
from [n] to [n]). Let Pσ be the permutation matrix of σ; this is the n × n-matrix
whose (σ (j) , j)-th entry is 1 for each j ∈ [n], and whose all other entries are 0.
For instance, if n = 3 and if σ is the cyclic permutation sending 1, 2, 3 to 2, 3, 1
(respectively), then

Pσ =

 0 0 1
1 0 0
0 1 0

 .

The permutation matrix Pσ is always unitary (for any n and any permutation
σ). Indeed, its conjugate transpose (Pσ)

∗ is easily seen to be the permutation
matrix Pσ−1 of the inverse permutation σ−1; but this latter permutation matrix
Pσ−1 is also the inverse of Pσ.

(e) A diagonal matrix diag (λ1, λ2, . . . , λn) ∈ Cn×n is unitary if and only if
its diagonal entries λ1, λ2, . . . , λn lie on the unit circle (i.e., their absolute values
|λ1| , |λ2| , . . . , |λn| all equal 1).

Unitary matrices can be characterized in many other ways:

Theorem 1.5.3. Let U ∈ Cn×k be a matrix. The following six statements are
equivalent:

• A: The matrix U is unitary.

• B: The matrices U and U∗ are isometries.

• C: We have UU∗ = In and U∗U = Ik.

• D: The matrix U is square (that is, n = k) and invertible and satisfies
U−1 = U∗.

• E : The columns of U form an orthonormal basis of Cn.

• F : The matrix U is square (that is, n = k) and is an isometry.
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Proof. The equivalence A ⇐⇒ B follows immediately from Definition 1.5.1. The
equivalence B ⇐⇒ C follows immediately from the definition of an isometry (since
(U∗)∗ = U). The implication D =⇒ C is obvious. The implication C =⇒ D
follows from the known fact (see, e.g., [Treil15, Chapter 2, Corollary 3.7]) that every
invertible matrix is square. Let us now prove some of the other implications:

• D =⇒ E : Assume that statement D holds. Then, U∗U = Ik (since U−1 = U∗),
and therefore U is an isometry. Hence, Proposition 1.4.2 shows that the tuple
of columns of U is orthonormal. However, the columns of U form a basis
of Cn (because U is invertible), and this basis is orthonormal (since we have
just shown that the tuple of columns of U is orthonormal). Thus, statement E
holds. We have thus proved the implication D =⇒ E .

• E =⇒ D: Assume that statement E holds. Then, the columns of U form
an orthonormal basis, hence an orthonormal tuple. Thus, Proposition 1.4.2
shows that U is an isometry, so that U∗U = Ik. However, U is invertible
because the columns of U form a basis of Cn. Therefore, from U∗U = Ik, we
obtain U−1 = U∗. Finally, the matrix U is square, since any invertible matrix
is square. Thus, statement D holds. We have thus proved the implication
E =⇒ D.

• D =⇒ F : The implication D =⇒ F is easy (since U−1 = U∗ entails U∗U = Ik,
which shows that U is an isometry).

• F =⇒ D: Assume that statement F holds. Thus, U is an isometry; that is, we
have U∗U = Ik = In (since k = n). However, it is known4 that a square matrix
A that has a left inverse (i.e., a further square matrix B satisfying BA = I)
must be invertible. We can apply this to the square matrix U (which has a left
inverse, since U∗U = In), and thus conclude that U is invertible. Hence, from
U∗U = In, we obtain U−1 = U∗. Therefore, statement D holds. We have thus
proved the implication F =⇒ D.

Altogether, we have thus proved that all six statements A,B, C,D, E ,F are equiv-
alent.

Note that Theorem 1.5.3 (specifically, the implication A =⇒ D) shows that any
unitary matrix is square. In contrast, an isometry can be rectangular – but only tall,
not wide, as the following exercise shows:

Exercise 1.5.1. 1 Let A ∈ Cn×k be an isometry. Show that n ≥ k.

4This is one part of the infamous “inverse matrix theorem” that lists many equivalent conditions
for invertibility. See, for example, [Treil15, Chapter 2, Proposition 3.8].
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Exercise 1.5.2. 3 (a) Prove that the product AB of two isometries A ∈ Cn×m and
B ∈ Cm×k is always an isometry.

(b) Prove that the product AB of two unitary matrices A ∈ Cn×n and B ∈ Cn×n

is always unitary.

(c) Prove that the inverse of a unitary matrix A ∈ Cn×n is always unitary.

Exercise 1.5.2 shows that the set of all unitary n× n-matrices over C (for a given
n ∈ N) is a group under multiplication. This group is known as the n-th unitary
group, and is denoted by Un (C).

Exercise 1.5.3. 2 Let U ∈ Cn×n be a unitary matrix.

(a) Prove that |det U| = 1.

(b) Prove that any eigenvalue λ of U satisfies |λ| = 1.

1.5.2. Various constructions of unitary matrices

The next two exercises show some ways to generate unitary matrices:

Exercise 1.5.4. 3 Let w ∈ Cn be a nonzero vector. Then, w∗w = 〈w, w〉 > 0 (by
Proposition 1.1.6 (b)). Thus, we can define an n× n-matrix

Uw := In − 2 (w∗w)−1 ww∗ ∈ Cn×n.

This is called a Householder matrix.
Show that this matrix Uw is unitary and satisfies U∗w = Uw.

The next exercise uses the notion of a skew-Hermitian matrix:

Definition 1.5.4. A matrix S ∈ Cn×n is said to be skew-Hermitian if and only if
S∗ = −S.

For instance, the matrix
(

i 1
−1 0

)
is skew-Hermitian.

Exercise 1.5.5. 5 Let S ∈ Cn×n be a skew-Hermitian matrix.

(a) Prove that the matrix In − S is invertible.

[Hint: Show first that the matrix In + S∗S is invertible, since each nonzero
vector v ∈ Cn satisfies v∗ (In + S∗S) v = 〈v, v〉︸ ︷︷ ︸

>0

+ 〈Sv, Sv〉︸ ︷︷ ︸
≥0

> 0. Then, expand the

product (In − S∗) (In − S).]

(b) Prove that the matrices In + S and (In − S)−1 commute (i.e., satisfy
(In + S) · (In − S)−1 = (In − S)−1 · (In + S)).
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(c) Prove that the matrix U := (In − S)−1 · (In + S) is unitary.

(d) Prove that the matrix U + In is invertible.

(e) Prove that S = (U − In) · (U + In)
−1.

Exercise 1.5.5 constructs a map5{
skew-Hermitian matrices in Cn×n}→ {U ∈ Un (C) | U + In is invertible} ,

S 7→ (In − S)−1 · (In + S) .

This map is known as the Cayley parametrization of the unitary matrices (and can be
seen as an n-dimensional generalization of the stereographic projection from the
imaginary axis to the unit circle – which is what it does for n = 1). Exercise 1.5.5
(e) shows that it is injective. It is not hard to check that it is surjective, too.

How close is the set {U ∈ Un (C) | U + In is invertible} to the whole unitary
group Un (C) ? The answer is that it is almost the entire group Un (C). Here is a
rigorous way to state this:

Exercise 1.5.6. 3 Let A ∈ Cn×n be a matrix. Prove the following:

(a) If A is unitary, then the matrix λA is unitary for each λ ∈ C satisfying
|λ| = 1.

(b) The matrix λA + In is invertible for all but finitely many λ ∈ C.

[Hint: The determinant det (λA + In) is a polynomial function in λ.]

(c) The set {U ∈ Un (C) | U + In is invertible} is dense in Un (C). (That is,
each unitary matrix in Un (C) can be written as a limit lim

k→∞
Uk of a sequence of

unitary matrices Uk such that Uk + In is invertible for each k.)

Thus, if the Cayley parametrization does not hit a unitary matrix, then at least it
comes arbitrarily close.

Remark 1.5.5. A square matrix A ∈ Cn×n satisfying AAT = AT A = In is called
orthogonal. Thus, unitary matrices differ from orthogonal matrices only in the
use of the conjugate transpose A∗ instead of the transpose AT. In particular, a
matrix A ∈ Rn×n (with real entries) is orthogonal if and only if it is unitary.

Exercise 1.5.7. 5 A Pythagorean triple is a triple (p, q, r) of positive integers sat-
isfying p2 + q2 = r2. (In other words, it is a triple of positive integers that are
the sides of a right-angled triangle.) Two famous Pythagorean triples are (3, 4, 5)
and (5, 12, 13).

5Recall that Un (C) denotes the n-th unitary group (i.e., the set of all unitary n× n-matrices).
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(a) Prove that a triple (p, q, r) of positive integers is Pythagorean if and only if

the matrix
(

p/r −q/r
q/r p/r

)
is unitary.

(b) Let
(

a b
c d

)
be any unitary matrix with rational entries. Assume that a

and c are positive, and write a and c as p/r and q/r for some positive integers
p, q, r. Show that (p, q, r) is a Pythagorean triple.

(c) Find infinitely many Pythagorean triples that are pairwise non-
proportional (i.e., no two of them are obtained from one another just by mul-
tiplying all three entries by the same number).

[Hint: Use the S 7→ U construction from Exercise 1.5.5.]

We shall soon see one more way to construct unitary matrices from smaller ones,
using the notion of block matrices, which we shall now introduce.

Incidentally, here is another simple but useful property of skew-Hermitian ma-
trices:

Exercise 1.5.8. 2 Let A, B ∈ Cn×n be two skew-Hermitian matrices. Show that
AB− BA is again skew-Hermitian.

1.6. Block matrices

1.6.1. Definition

Definition 1.6.1. Let F be a field. Let n, m, p, q ∈ N. Let A ∈ Fn×p, B ∈ Fn×q,

C ∈ Fm×p and D ∈ Fm×q be four matrices. Then,
(

A B
C D

)
shall denote the

(n + m) × (p + q)-matrix obtained by “gluing” the four matrices A, B, C, D to-
gether in the manner suggested by the notation (i.e., we glue B to the right edge
of A, we glue C to the bottom edge of A, and we glue D to the right edge of C
and to the bottom edge of B). In other words, we set

(
A B
C D

)
:=



A1,1 A1,2 · · · A1,p B1,1 B1,2 · · · B1,q

A2,1 A2,2 · · · A2,p B2,1 B2,2 · · · B2,q
...

... . . . ...
...

... . . . ...
An,1 An,2 · · · An,p Bn,1 Bn,2 · · · Bn,q

C1,1 C1,2 · · · C1,p D1,1 D1,2 · · · D1,q

C2,1 C2,2 · · · C2,p D2,1 D2,2 · · · D2,q
...

... . . . ...
...

... . . . ...
Cm,1 Cm,2 · · · Cm,p Dm,1 Dm,2 · · · Dm,q


(where, as we recall, the notation Mi,j denotes the (i, j)-th entry of a matrix M).
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Example 1.6.2. If A =

(
a a′

a′′ a′′′

)
and B =

(
b
b′

)
and C =

(
c c′

)
and

D =
(

d
)
, then

(
A B
C D

)
=

 a a′ b
a′′ a′′′ b′

c c′ d

.

The notation introduced in Definition 1.6.1 is called block matrix notation, and can
be generalized to more than four matrices:

Definition 1.6.3. Let F be a field. Let u, v ∈ N. Let n1, n2, . . . , nu ∈ N and
p1, p2, . . . , pv ∈ N. For each i ∈ [u] and j ∈ [v], let A (i, j) ∈ Fni×pj be a matrix.
(We denote it by A (i, j) instead of Ai,j to avoid mistaking it for a single entry.)
Then, 

A (1, 1) A (1, 2) · · · A (1, v)
A (2, 1) A (2, 2) · · · A (2, v)

...
... . . . ...

A (u, 1) A (u, 2) · · · A (u, v)

 (7)

shall denote the (n1 + n2 + · · ·+ nu) × (p1 + p2 + · · ·+ pv)-matrix obtained by
“gluing” the matrices A (i, j) together in the manner suggested by the notation.
In other words, 

A (1, 1) A (1, 2) · · · A (1, v)
A (2, 1) A (2, 2) · · · A (2, v)

...
... . . . ...

A (u, 1) A (u, 2) · · · A (u, v)


shall denote the (n1 + n2 + · · ·+ nu) × (p1 + p2 + · · ·+ pv)-matrix whose(
n1 + n2 + · · ·+ ni−1 + k, p1 + p2 + · · ·+ pj−1 + `

)
-th entry is (A (i, j))k,` for all

i ∈ [u] and j ∈ [v] and k ∈ [ni] and ` ∈
[
pj
]
.

Alternatively, this matrix can be defined abstractly using direct sums of vector
spaces; see [Bourba74, Chapter II, §10, section 2] for this definition.

Example 1.6.4. Let 02×2 denote the zero matrix of size 2× 2. Then,

 02×2 I2 02×2
I2 02×2 02×2

02×2 −I2 I2

 =


0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1

 .

In Definition 1.6.3, the big matrix (7) is called the block matrix formed out of the
matrices A (i, j); the single matrices A (i, j) are called its blocks.
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1.6.2. Multiplying block matrices

One of the most useful properties of block matrices is that they can be multiplied
“as if the blocks were numbers” (i.e., by the same formula as for regular matrices),
provided that the products make sense. Let us state this more precisely – first for
the case of four blocks:

Proposition 1.6.5. Let F be a field. Let n, n′, m, m′, ` and `′ be six nonnegative
integers. Let A ∈ Fn×m, B ∈ Fn×m′ , C ∈ Fn′×m, D ∈ Fn′×m′ , A′ ∈ Fm×`,
B′ ∈ Fm×`′ , C′ ∈ Fm′×` and D′ ∈ Fm′×`′ . Then,(

A B
C D

)(
A′ B′

C′ D′

)
=

(
AA′ + BC′ AB′ + BD′

CA′ + DC′ CB′ + DD′

)
.

For comparison, here is the formula for the product of two 2× 2-matrices (con-
sisting of numbers, not blocks):(

a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
(for any a, b, c, d, a′, b′, c′, d′ ∈ F). Thus, Proposition 1.6.5 is saying that the same
formula can be used to multiply block matrices made of appropriately sized blocks.
Thus, roughly speaking, we can multiply block matrices “as if the blocks were
numbers”. To be fully honest, two caveats apply here:

• In the formula for
(

a b
c d

)(
a′ b′

c′ d′

)
, we can write the right hand side in

many different ways: e.g., we can replace aa′ by a′a, because multiplication
of numbers is commutative. In contrast, multiplication of matrices is not
commutative, so that we cannot replace AA′ by A′A in Proposition 1.6.5.
Thus, we can multiply block matrices “as if the blocks were numbers”, but
we have to keep the blocks in the correct order (viz., in the order in which
they appear on the left hand side).

• We cannot use Proposition 1.6.5 to multiply two arbitrary block matrices;
indeed, Proposition 1.6.5 requires the blocks to have “matching” dimensions.
For example, A must have as many columns as A′ has rows (this is enforced
by the assumptions A ∈ Fn×m and A′ ∈ Fm×`). If this wasn’t the case, then
the product AA′ on the right hand side wouldn’t even make sense!

Proof of Proposition 1.6.5. Just check that each entry on the left hand side equals
the corresponding entry on the right. This is a straightforward computation that
is made painful by the notational load and the need to distinguish between four
cases (depending on which block our entry lies in). Do one of the four cases to
convince yourself that there is nothing difficult here. (See [Grinbe15] for all the
gory details.)
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Unsurprisingly, Proposition 1.6.5 generalizes to the multi-block case:

Proposition 1.6.6. Let F be a field. Let u, v, w ∈ N. Let n1, n2, . . . , nu ∈ N

and p1, p2, . . . , pv ∈ N and q1, q2, . . . , qw ∈ N. For each i ∈ [u] and j ∈ [v], let
A (i, j) ∈ Fni×pj be a matrix. For each j ∈ [v] and k ∈ [w], let B (j, k) ∈ Fpj×qk be
a matrix. Then,

A (1, 1) A (1, 2) · · · A (1, v)
A (2, 1) A (2, 2) · · · A (2, v)

...
... . . . ...

A (u, 1) A (u, 2) · · · A (u, v)




B (1, 1) B (1, 2) · · · B (1, w)
B (2, 1) B (2, 2) · · · B (2, w)

...
... . . . ...

B (v, 1) B (v, 2) · · · B (v, w)



=



v
∑

j=1
A (1, j) B (j, 1)

v
∑

j=1
A (1, j) B (j, 2) · · ·

v
∑

j=1
A (1, j) B (j, w)

v
∑

j=1
A (2, j) B (j, 1)

v
∑

j=1
A (2, j) B (j, 2) · · ·

v
∑

j=1
A (2, j) B (j, w)

...
... . . . ...

v
∑

j=1
A (u, j) B (j, 1)

v
∑

j=1
A (u, j) B (j, 2) · · ·

v
∑

j=1
A (u, j) B (j, w)


.

Proof. Just like Proposition 1.6.5, but with more indices. In short, fun!

1.6.3. Block-diagonal matrices

Definition 1.6.7. Block-diagonal matrices are block matrices of the form (7), where

• we have u = v,

• all matrices A (i, i) are square (i.e., we have ni = pi for all i ∈ [u]), and

• all A (i, j) with i 6= j are zero matrices.

In other words, block-diagonal matrices are block matrices of the form
A (1, 1) 0 · · · 0

0 A (2, 2) · · · 0
...

... . . . ...
0 0 · · · A (u, u)

 ,

where A (1, 1) , A (2, 2) , . . . , A (u, u) are arbitrary square matrices, and where
each “0” means a zero matrix of appropriate dimensions.
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As an easy consequence of Proposition 1.6.6, we obtain a multiplication rule for
block-diagonal matrices that looks exactly like multiplication of usual diagonal
matrices:

Corollary 1.6.8. Let u ∈ N. Let n1, n2, . . . , nu ∈ N. For each i ∈ [u], let A (i, i)
and B (i, i) be two ni × ni-matrices. Then,

A (1, 1) 0 · · · 0
0 A (2, 2) · · · 0
...

... . . . ...
0 0 · · · A (u, u)




B (1, 1) 0 · · · 0
0 B (2, 2) · · · 0
...

... . . . ...
0 0 · · · B (u, u)



=


A (1, 1) B (1, 1) 0 · · · 0

0 A (2, 2) B (2, 2) · · · 0
...

... . . . ...
0 0 · · · A (u, u) B (u, u)

 .

(Here, each “0” means a zero matrix of appropriate dimensions.)

Example 1.6.9. Let u = 2 and n1 = 1 and n2 = 2. Let A (1, 1) =
(

a
)

and

A (2, 2) =
(

b c
d e

)
and B (1, 1) =

(
a′
)

and B (2, 2) =
(

b′ c′

d′ e′

)
. Then, Corol-

lary 1.6.8 says that(
A (1, 1) 0

0 A (2, 2)

)(
B (1, 1) 0

0 B (2, 2)

)
=

(
A (1, 1) B (1, 1) 0

0 A (2, 2) B (2, 2)

)
,

i.e., that  a 0 0
0 b c
0 d e

 a′ 0 0
0 b′ c′

0 d′ e′

 =

 aa′ 0 0
0 bb′ + cd′ bc′ + ce′

0 db′ + ed′ dc′ + ee′

 .

Corollary 1.6.8 can be stated (somewhat imprecisely) as follows: To multiply
two block-diagonal matrices, we just multiply respective blocks with each other.
The same applies to addition instead of multiplication. Thus, one can think of the
diagonal blocks in a block-diagonal matrix as separate matrices, which are stuck
together in a block-diagonal shape but don’t interfere with each other.

Taking powers of block-diagonal matrices follows the same paradigm:

Corollary 1.6.10. Let u ∈ N. Let n1, n2, . . . , nu ∈ N. For each i ∈ [u], let A (i, i)
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be an ni × ni-matrix. Then,
A (1, 1) 0 · · · 0

0 A (2, 2) · · · 0
...

... . . . ...
0 0 · · · A (u, u)


k

=


(A (1, 1))k 0 · · · 0

0 (A (2, 2))k · · · 0
...

... . . . ...
0 0 · · · (A (u, u))k


for any k ∈N. (Here, each “0” means a zero matrix of appropriate dimensions.)

Proof. Straightforward induction on k. The base case (k = 0) says that

In1+n2+···+nu =


In1 0 · · · 0
0 In2 · · · 0
...

... . . . ...
0 0 · · · Inu

 ,

which should be fairly clear. The induction step is an easy application of Corollary
1.6.8.

Finally, the “diagonal blocks stuck together” philosophy for block-diagonal ma-
trices holds for nullities as well. To wit, the nullity of a block-diagonal matrix is
the sum of the nullities of its diagonal blocks. In other words:

Proposition 1.6.11. Let u ∈ N. Let n1, n2, . . . , nu ∈ N. For each i ∈ [u], let Ai be
an ni × ni-matrix. Then,

dim

Ker


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au




= dim (Ker (A1)) + dim (Ker (A2)) + · · ·+ dim (Ker (Au)) . (8)

Proof. Let F be the field that our matrices are defined over. If v〈1〉, v〈2〉, . . . , v〈u〉

are u column vectors (of whatever sizes), then


v〈1〉
v〈2〉

...
v〈u〉

 shall mean the big col-

umn vector obtained by stacking these u column vectors v〈1〉, v〈2〉, . . . , v〈u〉 atop one
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another. (This is the particular case of the block matrix notation from Definition
1.6.3 for v = 1 and p1 = 1.) It is easy to see (e.g., using Proposition 1.6.6) that if
v〈1〉, v〈2〉, . . . , v〈u〉 are u column vectors with v〈i〉 ∈ Fni for each i ∈ [u], then

A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au




v〈1〉
v〈2〉

...
v〈u〉

 =


A1v〈1〉
A2v〈2〉

...
Auv〈u〉

 . (9)

Let N := n1 + n2 + · · · + nu. Any vector v ∈ FN can be uniquely written in

block-matrix notation as


v〈1〉
v〈2〉

...
v〈u〉

, where each v〈i〉 is a vector in Fni . (To wit, we

just subdivide v into blocks of sizes n1, n2, . . . , nu from top to bottom; the topmost
block will be v〈1〉, the second-topmost will be v〈2〉, and so on. Formally speaking,
for each i ∈ [u], we set Ni := n1 + n2 + · · ·+ ni−1, and we let v〈i〉 be the column
vector in Fni whose entries are the (Ni + 1)-st, (Ni + 2)-nd, . . ., (Ni + ni)-th entries
of v.)

Now, consider a vector v ∈ FN that is written in block-matrix notation


v〈1〉
v〈2〉

...
v〈u〉

,

where each v〈i〉 is a vector in Fni . Then,
A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au

 v =


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au




v〈1〉
v〈2〉

...
v〈u〉



=


A1v〈1〉
A2v〈2〉

...
Auv〈u〉

 (by (9)) .

Hence,


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au

 v = 0 holds if and only if Aiv〈i〉 = 0 holds for each
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i ∈ [u]. In other words, v ∈ Ker


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au

 holds if and only if v〈i〉 ∈

Ker (Ai) holds for each i ∈ [u]. In other words, the vectors in Ker


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au



are precisely the vectors of the form


v〈1〉
v〈2〉

...
v〈u〉

, where v〈i〉 ∈ Ker (Ai) for each

i ∈ [u]. Thus,

Ker


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au

 ∼= Ker (A1)⊕Ker (A2)⊕ · · · ⊕Ker (Au)

as vector spaces. By taking dimensions on both sides, this yields (8).

1.6.4. Unitarity

Now, we claim that a block-diagonal matrix is unitary if and only if its diagonal
blocks are unitary:

Proposition 1.6.12. Let u ∈ N. Let n1, n2, . . . , nu ∈ N. For each i ∈ [u], let

Ai ∈ Cni×ni be a matrix. Then, the block-diagonal matrix


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au


is unitary if and only if all u matrices A1, A2, . . . , Au are unitary.

Proof. Let N = n1 + n2 + · · ·+ nu. Let

A =


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au

 . (10)

Thus, we must prove that A is unitary if and only if all u matrices A1, A2, . . . , Au
are unitary.
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It is easy to see that

A∗ =


A∗1 0 · · · 0
0 A∗2 · · · 0
...

... . . . ...
0 0 · · · A∗u

 .

Multiplying this equality by (10), we obtain

A∗A =


A∗1 0 · · · 0
0 A∗2 · · · 0
...

... . . . ...
0 0 · · · A∗u




A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Au



=


A∗1 A1 0 · · · 0

0 A∗2 A2 · · · 0
...

... . . . ...
0 0 · · · A∗u Au

 (by Corollary 1.6.8) .

On the other hand, it is again easy to see that

IN =


In1 0 · · · 0
0 In2 · · · 0
...

... . . . ...
0 0 · · · Inu


(since N = n1 + n2 + · · ·+ nu). In light of these two equalities, we see that A∗A =
IN holds if and only if

A∗1 A1 0 · · · 0
0 A∗2 A2 · · · 0
...

... . . . ...
0 0 · · · A∗u Au

 =


In1 0 · · · 0
0 In2 · · · 0
...

... . . . ...
0 0 · · · Inu


holds, i.e., if and only if we have A∗i Ai = Ini for each i ∈ [u]. Likewise, we can see
that AA∗ = IN holds if and only if we have Ai A∗i = Ini for each i ∈ [u]. Hence, we
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have the following chain of equivalences:

(A is unitary)
⇐⇒ (AA∗ = IN and A∗A = IN)

(by the equivalence A ⇐⇒ C in Theorem 1.5.3)
⇐⇒ (we have Ai A∗i = Ini and A∗i Ai = Ini for each i ∈ [u])

since we have shown that AA∗ = IN holds if and only if
we have Ai A∗i = Ini for each i ∈ [u] , and since we have

shown that A∗A = IN holds if and only if
we have A∗i Ai = Ini for each i ∈ [u]


⇐⇒ (the matrix Ai is unitary for each i ∈ [u])

(by the equivalence C ⇐⇒ A in Theorem 1.5.3)
⇐⇒ (all u matrices A1, A2, . . . , Au are unitary) .

But this is precisely what we need to show. Thus, Proposition 1.6.12 is proven.

1.7. The Gram–Schmidt process

Lecture 3 starts here.

We now come to one of the most crucial algorithms in linear algebra.

Theorem 1.7.1 (Gram–Schmidt process). Let (v1, v2, . . . , vm) be a linearly inde-
pendent tuple of vectors in Cn.

Then, there is an orthogonal tuple (z1, z2, . . . , zm) of vectors in Cn that satisfies

span
{

v1, v2, . . . , vj
}
= span

{
z1, z2, . . . , zj

}
for all j ∈ [m] .

Furthermore, such a tuple (z1, z2, . . . , zm) can be constructed by the following
recursive process:

• For each p ∈ [m], if the first p− 1 entries z1, z2, . . . , zp−1 of this tuple have
already been constructed, then we define the p-th entry zp by the equality

zp = vp −
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk. (11)

(Note that the sum on the right hand side of (11) is an empty sum when
p = 1; thus, (11) simplifies to z1 = v1 in this case.)

Roughly speaking, the claim of Theorem 1.7.1 is that if we start with any linearly
independent tuple (v1, v2, . . . , vm) of vectors in Cn, then we can make this tuple
orthogonal by tweaking it as follows:
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• leave v1 unchanged;

• modify v2 by subtracting some scalar multiple of v1;

• modify v3 by subtracting some linear combination of v1 and v2;

• modify v4 by subtracting some linear combination of v1, v2, v3;

• and so on.

Specifically, the equation (11) tells us (recursively) the precise multiples (and linear
combinations) that we need to subtract. This recursive tweaking process is known
as Gram–Schmidt orthogonalization or the Gram–Schmidt process.

Example 1.7.2. Here is how the equalities (11) in Theorem 1.7.1 look like for
p ∈ {1, 2, 3, 4}:

z1 = v1;

z2 = v2 −
〈v2, z1〉
〈z1, z1〉

z1;

z3 = v3 −
〈v3, z1〉
〈z1, z1〉

z1 −
〈v3, z2〉
〈z2, z2〉

z2;

z4 = v4 −
〈v4, z1〉
〈z1, z1〉

z1 −
〈v4, z2〉
〈z2, z2〉

z2 −
〈v4, z3〉
〈z3, z3〉

z3.

Example 1.7.3. Let us try out the recursive construction of (z1, z2, . . . , zm) from
Theorem 1.7.1 on an example. Let n = 4 and m = 3 and

v1 =


1
1
1
1

 , v2 =


0
−2
0
−2

 , v3 =


2
−2
0
0

 .
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Then, (11) becomes

z1 = v1 =


1
1
1
1

 ;

z2 = v2 −
〈v2, z1〉
〈z1, z1〉

z1 =


0
−2
0
−2

− −4
4


1
1
1
1

 =


1
−1
1
−1

 ;

z3 = v3 −
〈v3, z1〉
〈z1, z1〉

z1 −
〈v3, z2〉
〈z2, z2〉

z2

=


2
−2
0
0

− 0
4


1
1
1
1

− 4
4


1
−1
1
−1

 =


1
−1
−1
1

 .

So

(z1, z2, z3) =




1
1
1
1

 ,


1
−1
1
−1

 ,


1
−1
−1
1




is an orthogonal tuple of vectors.
According to Proposition 1.2.5, we thus obtain an orthonormal tuple

(
1
||z1||

z1,
1
||z2||

z2,
1
||z3||

z3

)
=




1/2
1/2
1/2
1/2

 ,


1/2
−1/2
1/2
−1/2

 ,


1/2
−1/2
−1/2
1/2


 .

(We are in luck with this example; normally we would get square roots at this
step.)

For more examples of the Gram–Schmidt process, see [Bartle14, Week 3, §4].
(These examples all use vectors in Rn rather than Cn, which allows for visualization
and saves one the trouble of complex conjugates.)

Our proof of Theorem 1.7.1 will require a simple lemma from elementary linear
algebra:

Lemma 1.7.4. Let V be a vector space over some field. Let v1, v2, . . . , vk be some
vectors in V. Let x and y be two further vectors in V. Assume that x − y ∈
span {v1, v2, . . . , vk}. Then,

span {v1, v2, . . . , vk, x} = span {v1, v2, . . . , vk, y} .
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Proof of Lemma 1.7.4. Set

S := span {v1, v2, . . . , vk} ;
X := span {v1, v2, . . . , vk, x} ;
Y := span {v1, v2, . . . , vk, y} .

These three sets S, X and Y are vector subspaces of V (since a span is always
a vector subspace). By assumption, we have x − y ∈ span {v1, v2, . . . , vk} = S.
Therefore, − (x− y) ∈ S as well (since S is a vector subspace of V). In other words,
y− x ∈ S (since − (x− y) = y− x). Hence, x and y play symmetric roles in our
situation.

However, x− y ∈ S = span {v1, v2, . . . , vk} shows that x− y is a linear combina-
tion of v1, v2, . . . , vk. In other words,

x− y = λ1v1 + λ2v2 + · · ·+ λkvk, (12)

where λ1, λ2, . . . , λk are some scalars (i.e., elements of the base field). Consider
these scalars. Solving the equality (12) for x, we obtain

x = λ1v1 + λ2v2 + · · ·+ λkvk + y.

This shows that x is a linear combination of v1, v2, . . . , vk, y. In other words, x ∈
span {v1, v2, . . . , vk, y}. In other words, x ∈ Y (since Y = span {v1, v2, . . . , vk, y}).
On the other hand, each i ∈ [k] satisfies

vi ∈ {v1, v2, . . . , vk, y} ⊆ span {v1, v2, . . . , vk, y} = Y.

In other words, the k vectors v1, v2, . . . , vk belong to Y. Since we also know that
x ∈ Y, we thus conclude that all k + 1 vectors v1, v2, . . . , vk, x belong to Y. Since Y
is a vector subspace of V, this entails that any linear combination of v1, v2, . . . , vk, x
must belong to Y. In other words,

span {v1, v2, . . . , vk, x} ⊆ Y

(since span {v1, v2, . . . , vk, x} is the set of all linear combinations of v1, v2, . . . , vk, x).
In other words, X ⊆ Y (since X = span {v1, v2, . . . , vk, x}).

However, as we explained, x and y play symmetric roles in our situation. Swap-
ping x with y results in the exchange of X with Y. Thus, just as we have proved
X ⊆ Y, we can show that Y ⊆ X. Combining these two inclusions, we obtain
X = Y. In view of X = span {v1, v2, . . . , vk, x} and Y = span {v1, v2, . . . , vk, y}, this
rewrites as

span {v1, v2, . . . , vk, x} = span {v1, v2, . . . , vk, y} .

This proves Lemma 1.7.4.

Proof of Theorem 1.7.1. We define a tuple (z1, z2, . . . , zm) recursively by (11). First, we
need to show that this tuple is actually well-defined – i.e., that the denominators
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〈zk, zk〉 in the equality (11) never become 0 in the process (which would render (11)
meaningless and therefore prevent zp from being well-defined). Second, we need
to show that the resulting tuple does indeed satisfy

span
{

v1, v2, . . . , vj
}
= span

{
z1, z2, . . . , zj

}
for all j ∈ [m] .

Finally, we need to show that the resulting tuple is orthogonal.
Let us prove the first two of these three claims in lockstep, by showing the fol-

lowing claim:

Claim 1: For each p ∈ {0, 1, . . . , m}, the vectors z1, z2, . . . , zp are well-
defined and satisfy

span
{

v1, v2, . . . , vp
}
= span

{
z1, z2, . . . , zp

}
.

[Proof of Claim 1: We induct on p.
Induction base: Claim 1 is obviously true for p = 0 (since span {} = span {}).
Induction step: Fix some p ∈ [m], and assume that the vectors z1, z2, . . . , zp−1 are

well-defined and satisfy

span
{

v1, v2, . . . , vp−1
}
= span

{
z1, z2, . . . , zp−1

}
. (13)

We now need to show that the vectors z1, z2, . . . , zp are well-defined and satisfy

span
{

v1, v2, . . . , vp
}
= span

{
z1, z2, . . . , zp

}
. (14)

The tuple
(
v1, v2, . . . , vp

)
is linearly independent (since the tuple (v1, v2, . . . , vm)

is linearly independent). Thus, the span span
{

v1, v2, . . . , vp−1
}

is (p− 1)-dimensional
and we have vp /∈ span

{
v1, v2, . . . , vp−1

}
. Hence,

vp /∈ span
{

v1, v2, . . . , vp−1
}
= span

{
z1, z2, . . . , zp−1

}
(by (13)) .

Now, recall that the span span
{

v1, v2, . . . , vp−1
}

is (p− 1)-dimensional. In view
of (13), we can rewrite this as follows: The span span

{
z1, z2, . . . , zp−1

}
is (p− 1)-

dimensional. In other words, the tuple
(
z1, z2, . . . , zp−1

)
is linearly independent.

Hence, for each k ∈ [p− 1], we have zk 6= 0 and therefore 〈zk, zk〉 > 0 (by Propo-
sition 1.1.6 (b)), so that 〈zk, zk〉 6= 0. Thus, the denominators on the right hand
side of (11) are nonzero, so that zp is well-defined. Hence, the vectors z1, z2, . . . , zp
are well-defined (since we already know that the vectors z1, z2, . . . , zp−1 are well-
defined).

It remains to prove that

span
{

v1, v2, . . . , vp
}
= span

{
z1, z2, . . . , zp

}
.

But this is easy: From (11), we obtain

vp − zp =
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk ∈ span
{

z1, z2, . . . , zp−1
}
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(since
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk is clearly a linear combination of z1, z2, . . . , zp−1). Hence, Lemma

1.7.4 (applied to k = p− 1 and x = vp and y = zp) yields6

span
{

v1, v2, . . . , vp−1, vp
}
= span

{
v1, v2, . . . , vp−1, zp

}
= span

{
v1, v2, . . . , vp−1

}︸ ︷︷ ︸
=span{z1,z2,...,zp−1}

+ span
{

zp
}

(
since span (A ∪ B) = span A + span B

for any two sets A and B of vectors

)
= span

{
z1, z2, . . . , zp−1

}
+ span

{
zp
}

= span
{

z1, z2, . . . , zp−1, zp
}(

since span A + span B = span (A ∪ B)
for any two sets A and B of vectors

)
.

In other words, span
{

v1, v2, . . . , vp
}

= span
{

z1, z2, . . . , zp
}

. Thus, the induction
step is complete, so that Claim 1 is proved by induction.]

Claim 1 (applied to p = m) shows that the vectors z1, z2, . . . , zm are well-defined.
In other words, the tuple (z1, z2, . . . , zm) is well-defined. Furthermore, this tuple
satisfies

span
{

v1, v2, . . . , vj
}
= span

{
z1, z2, . . . , zj

}
for all j ∈ [m]

(by Claim 1, applied to p = j). It now remains to show that this tuple is orthogonal.
We shall achieve this by showing the following claim:

Claim 2: For any j ∈ {0, 1, . . . , m}, the tuple
(
z1, z2, . . . , zj

)
is orthogonal.

[Proof of Claim 2: We proceed by induction on j:
Induction base: Claim 2 clearly holds for j = 0, since the (empty) 0-tuple is vacu-

ously orthogonal.
Induction step: Let p ∈ [m]. Assume (as the induction hypothesis) that Claim 2

holds for j = p− 1. We must show that Claim 2 holds for j = p.
Our induction hypothesis says that Claim 2 holds for j = p− 1. In other words,

the tuple
(
z1, z2, . . . , zp−1

)
is orthogonal. In other words, we have

za ⊥ zb whenever a, b ∈ [p− 1] satisfy a 6= b. (15)

6We are here using the following notion: If P and Q are two vector subspaces of a vector space V,
then

P + Q := {p + q | p ∈ P and q ∈ Q} .

This is again a vector subspace of V. (It is, in fact, the smallest subspace that contains both P
and Q as subsets.)
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In other words, we have

〈za, zb〉 = 0 whenever a, b ∈ [p− 1] satisfy a 6= b. (16)

We must show that Claim 2 holds for j = p. In other words, we must show that
the tuple

(
z1, z2, . . . , zp

)
is orthogonal. In other words, we must show that

za ⊥ zb whenever a, b ∈ [p] satisfy a 6= b. (17)

It will clearly suffice to prove (17) in the case when one of a and b equals p (because
in all other cases, we have a, b ∈ [p− 1], and thus za ⊥ zb follows from (15)).

Thus, let a, b ∈ [p] satisfy a 6= b, and assume that one of a and b equals p. We
must prove that za ⊥ zb. Proposition 1.2.2 shows that za ⊥ zb is equivalent to
zb ⊥ za. Thus, a and b play symmetric roles in our claim. Hence, in our proof of
za ⊥ zb, we can WLOG assume that a ≤ b (since otherwise, we can swap a with b).
Assume this. Hence, a < b (since a 6= b). Thus, a < b ≤ p, so that a 6= p. However,
we assumed that one of a and b equals p; hence, b = p (since a 6= p). Also, we have
a ∈ [p− 1] (since a < p).

Now, (11) yields

〈
zp, za

〉
=

〈
vp −

p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk, za

〉
=
〈
vp, za

〉
−
〈

p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk, za

〉

(by Proposition 1.1.5 (h)). In view of〈
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk, za

〉

=
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

〈zk, za〉 (by Proposition 1.1.5 (i))

= ∑
k∈[p−1];

k 6=a

〈
vp, zk

〉
〈zk, zk〉

〈zk, za〉︸ ︷︷ ︸
=0

(by (17), applied to k and a
instead of a and b)

+

〈
vp, za

〉
〈za, za〉

〈za, za〉︸ ︷︷ ︸
=〈vp,za〉(

here, we have split off the addend for k = a
from the sum, since a ∈ [p− 1]

)
= ∑

k∈[p−1];
k 6=a

〈
vp, zk

〉
〈zk, zk〉

0

︸ ︷︷ ︸
=0

+
〈
vp, za

〉
=
〈
vp, za

〉
,

we can rewrite this as 〈
zp, za

〉
=
〈
vp, za

〉
−
〈
vp, za

〉
= 0.
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In view of b = p, this rewrites as 〈zb, za〉 = 0. Thus, zb ⊥ za, so that za ⊥ zb (by
Proposition 1.2.2).

As explained above, this completes our proof of the fact that Claim 2 holds for
j = p. Thus, the induction step is complete, and Claim 2 is proven.]

Now, applying Claim 2 to j = m, we obtain that the tuple (z1, z2, . . . , zm) is
orthogonal. Thus, the proof of Theorem 1.7.1 is complete.

One might wonder how the Gram–Schmidt process could be adapted to a tu-
ple (v1, v2, . . . , vm) of vectors that is not linearly independent. The equality (11)
requires the vectors zk to be nonzero, since the denominators in which they appear
would be 0 otherwise. In Theorem 1.7.1, this requirement is indeed satisfied (as we
have shown in the proof above). However, if we do not assume (v1, v2, . . . , vm) to
be linearly independent, then some of the zk can be zero, and so the construction
of the following zp will fail. There are several ways to adapt the process to this
complication. We will take the most stupid-sounding one: In the cases where the
equality (11) would produce a zero vector zp, we opt to instead pick some nonzero
vector orthogonal to z1, z2, . . . , zp−1 (using Lemma 1.2.7) and declare it to be zp.
This works well as long as m ≤ n; here is the result:

Theorem 1.7.5 (Gram–Schmidt process, take 2). Let (v1, v2, . . . , vm) be any tuple
of vectors in Cn with m ≤ n.

Then, there is an orthogonal tuple (z1, z2, . . . , zm) of nonzero vectors in Cn that
satisfies

span
{

v1, v2, . . . , vj
}
⊆ span

{
z1, z2, . . . , zj

}
for all j ∈ [m] .

Furthermore, such a tuple (z1, z2, . . . , zm) can be constructed by the following
recursive process:

• For each p ∈ [m], if the first p− 1 entries z1, z2, . . . , zp−1 of this tuple have
already been constructed, then we define the p-th entry zp as follows:

– If vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk 6= 0, then we define zp by the equality

zp = vp −
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk. (18)

– If vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk = 0, then we pick an arbitrary nonzero vector

b ∈ Cn that is orthogonal to each of z1, z2, . . . , zp−1 (indeed, such a
vector b exists by Lemma 1.2.7, because p− 1 < p ≤ m ≤ n), and we
set

zp = b. (19)

January 4, 2022



Math 504 notes page 39

Proof of Theorem 1.7.5. We define a tuple (z1, z2, . . . , zm) by the recursive process de-
scribed in Theorem 1.7.5. It is clear that this tuple is actually well-defined (indeed,
the vectors zp are nonzero by their construction, and thus the denominators 〈zk, zk〉
in (18) never become 0, because Proposition 1.1.6 (b) shows that any nonzero vector
z satisfies 〈z, z〉 6= 0). We do, however, need to show that the resulting tuple does
indeed satisfy

span
{

v1, v2, . . . , vj
}
⊆ span

{
z1, z2, . . . , zj

}
for all j ∈ [m] ,

and that this tuple is orthogonal.
Let us prove the first of these two claims:

Claim 1: For each p ∈ {0, 1, . . . , m}, we have span
{

v1, v2, . . . , vp
}
⊆

span
{

z1, z2, . . . , zp
}

.

[Proof of Claim 1: We induct on p:
Induction base: Claim 1 obviously holds for p = 0.
Induction step: Fix some p ∈ [m], and assume that

span
{

v1, v2, . . . , vp−1
}
⊆ span

{
z1, z2, . . . , zp−1

}
. (20)

We now need to show that

span
{

v1, v2, . . . , vp
}
⊆ span

{
z1, z2, . . . , zp

}
. (21)

We shall first show that

vp ∈ span
{

z1, z2, . . . , zp
}

. (22)

Indeed, we recall our definition of zp. This definition distinguishes between two

cases, depending on whether the difference vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk is 6= 0 or = 0. Let

us analyze these two cases separately:

• Case 1: We have vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk 6= 0. In this case, zp is defined by the

equality (18). Solving this equality for vp, we obtain

vp = zp +
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk ∈ span
{

z1, z2, . . . , zp
}

.

Thus, (22) is proved in Case 1.

• Case 2: We have vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk = 0. In this case, we have

vp =
p−1

∑
k=1

〈
vp, zk

〉
〈zk, zk〉

zk ∈ span
{

z1, z2, . . . , zp−1
}
⊆ span

{
z1, z2, . . . , zp

}
.

Hence, (22) is proved in Case 2.
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We have now proved (22) in both cases. However, for each i ∈ [p− 1], we have

vi ∈
{

v1, v2, . . . , vp−1
}
⊆ span

{
v1, v2, . . . , vp−1

}
⊆ span

{
z1, z2, . . . , zp−1

}
(by (20))

⊆ span
{

z1, z2, . . . , zp
}

.

In other words, all p− 1 vectors v1, v2, . . . , vp−1 belong to span
{

z1, z2, . . . , zp
}

. Since
the vector vp also belongs to span

{
z1, z2, . . . , zp

}
(by (22)), we thus conclude that all

p vectors v1, v2, . . . , vp belong to span
{

z1, z2, . . . , zp
}

. Therefore, each linear combi-
nation of these p vectors v1, v2, . . . , vp must also belong to span

{
z1, z2, . . . , zp

}
(be-

cause span
{

z1, z2, . . . , zp
}

is a vector subspace of Cn). In other words, span
{

v1, v2, . . . , vp
}
⊆

span
{

z1, z2, . . . , zp
}

. Thus, the induction step is complete, so that Claim 1 is proved
by induction.]

It now remains to show that the tuple (z1, z2, . . . , zm) is orthogonal. We shall
achieve this by showing the following claim:

Claim 2: For any j ∈ {0, 1, . . . , m}, the tuple
(
z1, z2, . . . , zj

)
is orthogonal.

[Proof of Claim 2: We proceed by induction on j, similarly to the proof of Claim
2 in the proof of Theorem 1.7.1. Only one minor complication emerges in the
induction step:

Induction step: Let p ∈ [m]. Assume (as the induction hypothesis) that Claim 2
holds for j = p− 1. We must show that Claim 2 holds for j = p.

As in the proof of Theorem 1.7.1, we can convince ourselves that it suffices to
show that

za ⊥ zb whenever a, b ∈ [p] satisfy a 6= b. (23)

Moreover, we only need to show this in the case when one of a and b equals p (be-
cause in all other cases, it follows from the induction hypothesis). In other words,
we only need to show that the vector zp is orthogonal to each of z1, z2, . . . , zp−1.

Recall our definition of zp. This definition distinguishes between two cases, de-

pending on whether the difference vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk is 6= 0 or = 0. In the first of

these two cases, the proof proceeds exactly as in the proof of Theorem 1.7.1. Let
us thus WLOG assume that we are in the second case. That is, we assume that

vp −
p−1
∑

k=1

〈
vp, zk

〉
〈zk, zk〉

zk = 0. Hence, zp is defined by (19), where b is a nonzero vector in

Cn that is orthogonal to each of z1, z2, . . . , zp−1. This shows that zp is orthogonal to
each of z1, z2, . . . , zp−1. But as we explained above, this is exactly what we need to
show. Thus, Claim 2 holds for j = p. The induction step is complete, and Claim 2
is proved.]

Now, applying Claim 2 to j = m, we obtain that the tuple (z1, z2, . . . , zm) is
orthogonal. Thus, the proof of Theorem 1.7.5 is complete.
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Corollary 1.7.6. Let (v1, v2, . . . , vm) be any tuple of vectors in Cn with m ≤ n.
Then, there is an orthonormal tuple (q1, q2, . . . , qm) of vectors in Cn that satis-

fies
span

{
v1, v2, . . . , vj

}
⊆ span

{
q1, q2, . . . , qj

}
for all j ∈ [m] .

Proof of Corollary 1.7.6. We have m ≤ n. Hence, Theorem 1.7.5 shows that there is
an orthogonal tuple (z1, z2, . . . , zm) of nonzero vectors in Cn that satisfies

span
{

v1, v2, . . . , vj
}
⊆ span

{
z1, z2, . . . , zj

}
for all j ∈ [m] .

Consider this tuple (z1, z2, . . . , zm). Proposition 1.2.5 (applied to (z1, z2, . . . , zm) in-
stead of (u1, u2, . . . , uk)) then shows that the tuple(

1
||z1||

z1,
1
||z2||

z2, . . . ,
1
||zm||

zm

)
is orthonormal. Moreover, we have

span
{

v1, v2, . . . , vj
}
⊆ span

{
z1, z2, . . . , zj

}
= span

{
1
||z1||

z1,
1
||z2||

z2, . . . ,
1∣∣∣∣zj
∣∣∣∣zj

}

for all j ∈ [m]. Hence, Corollary 1.7.6 is proven (just take qi =
1
||zi||

zi).

1.8. QR factorization

Recall that an isometry is a matrix whose columns form an orthonormal tuple. (We
saw this in Proposition 1.4.2.)

Theorem 1.8.1 (QR factorization, isometry version). Let A ∈ Cn×m satisfy n ≥
m. Then, there exist an isometry Q ∈ Cn×m and an upper-triangular matrix
R ∈ Cm×m such that A = QR.

The pair (Q, R) in Theorem 1.8.1 is called a QR factorization of A. (We are using
the indefinite article, since it is usually not unique.)

Example 1.8.2. Let

A =


1 0 1 2
1 −2 0 2
1 0 1 0
1 −2 0 0

 ∈ C4×4.

Then, one QR factorization of A is given by

A =


1/2 1/2 1/2 1/2
1/2 −1/2 1/2 −1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 −1/2 1/2


︸ ︷︷ ︸

=Q


2 −2 1 0
0 2 1 2
0 0 0 0
0 0 0 2


︸ ︷︷ ︸

=R

.
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Another is given by

A =


1/2 1/2

√
2/2 0

1/2 −1/2 0
√

2/2
1/2 1/2 −

√
2/2 0

1/2 −1/2 0 −
√

2/2


︸ ︷︷ ︸

=Q


2 −2 1 2
0 2 1 0
0 0 0

√
2

0 0 0
√

2


︸ ︷︷ ︸

=R

.

Proof of Theorem 1.8.1. Recall that A•,1, A•,2, . . . , A•,m denote the m columns of the
matrix A. We have m ≤ n (since n ≥ m). Hence, applying Corollary 1.7.6 to
(v1, v2, . . . , vm) = (A•,1, A•,2, . . . , A•,m), we conclude that there is an orthonormal
tuple (q1, q2, . . . , qm) of vectors in Cn that satisfies

span
{

A•,1, A•,2, . . . , A•,j
}
⊆ span

{
q1, q2, . . . , qj

}
(24)

for all j ∈ [m] .

Consider this tuple (q1, q2, . . . , qm). Let Q ∈ Cn×m be the matrix whose columns are
q1, q2, . . . , qm. Then, Q is an isometry (by Proposition 1.4.2, since its columns form
an orthonormal tuple). The definition of Q shows that

Q•,i = qi for each i ∈ [m] . (25)

Now, let j ∈ [m]. Then,

A•,j ∈ span
{

A•,1, A•,2, . . . , A•,j
}
⊆ span

{
q1, q2, . . . , qj

}
(by (24)) .

In other words, there exist scalars r1,j, r2,j, . . . , rj,j ∈ C such that A•,j =
j

∑
i=1

ri,jqi.

Consider these scalars r1,j, r2,j, . . . , rj,j. Also, set

ri,j = 0 for each integer i > j. (26)

Thus,

A•,j =
j

∑
i=1

ri,jqi =
m

∑
i=1

ri,jqi (27)

(since
m
∑

i=1
ri,jqi =

j
∑

i=1
ri,jqi +

m
∑

i=j+1
ri,j︸︷︷︸
=0

(by (26))

qi =
j

∑
i=1

ri,jqi).

Forget that we fixed j. Thus, for each j ∈ [m], we have defined scalars r1,j, r2,j, r3,j, . . . ∈
C that satisfy (26) and (27).
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Now, let R ∈ Cm×m be the m × m-matrix whose (i, j)-th entry is ri,j for each
i, j ∈ [m]. This matrix R is upper-triangular, because of (26). The definition of R
yields7

Ri,j = ri,j for all i, j ∈ [m] . (28)

Furthermore, for each j ∈ [m], we have

A•,j =
m

∑
i=1

ri,j︸︷︷︸
=Ri,j

(by (28))

qi︸︷︷︸
=Q•,i

(by (25))

(by (27))

=
m

∑
i=1

Ri,jQ•,i = (QR)•,j

(by the definition of the product of two matrices8). In other words, A = QR.
Thus, we have found an isometry Q ∈ Cn×m and an upper-triangular matrix

R ∈ Cm×m such that A = QR. This proves Theorem 1.8.1.

Exercise 1.8.1. 4 Let A ∈ Cn×m satisfy n ≥ m and rank A = m. Prove that there
exists exactly one QR factorization (Q, R) of A such that the diagonal entries of
R are positive reals.

Note that there are other variants of QR factorization, such as the following one:

Theorem 1.8.3 (QR factorization, unitary version). Let A ∈ Cn×m. Then, there
exist a unitary matrix Q ∈ Cn×n and an upper-triangular matrix R ∈ Cn×m such
that A = QR. Here, a rectangular matrix R ∈ Cn×m is said to be upper-triangular
if and only if it satisfies

Ri,j = 0 for all i > j.

Exercise 1.8.2. 5 Prove Theorem 1.8.3.
[Hint: Reduce both cases n > m and n < m to the case n = m.]

7Recall that Mi,j is our general notation for the (i, j)-th entry of a matrix M.
8Actually, let’s be a bit more explicit here: The standard definition of the product of two matrices

yields

(QR)k,j =
m

∑
i=1

Qk,iRi,j︸ ︷︷ ︸
=Ri,jQk,i

=
m

∑
i=1

Ri,jQk,i for each k ∈ [n] .

In other words, (QR)•,j =
m
∑

i=1
Ri,jQ•,i, which is precisely what we are claiming.
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2. Schur triangularization ([HorJoh13, Chapter 2])

In this chapter, we will meet Schur triangularization: a way to transform an arbitrary
n× n-matrix with complex entries into an upper-triangular matrix by conjugating
it (i.e., multiplying it by an invertible matrix W on the left and simultaneously by its
inverse W−1 on the right). This is both of theoretical and of practical significance,
but we will focus on the theoretical applications.

Before we get to Schur triangularization, we will have to set some groundwork.

2.0. Reminders on the characteristic polynomial and
eigenvalues

First, let us recall some properties of the characteristic polynomial of an n × n-
matrix A, starting with its definition:

Definition 2.0.1. Let F be a field. Let A ∈ Fn×n be an n× n-matrix over F.
The characteristic polynomial of A is defined to be the polynomial

det (tIn − A) in the indeterminate t with coefficients in F.

(Note that tIn − A is an n× n-matrix whose entries are polynomials in t. Thus,
its determinant det (tIn − A) is itself a polynomial in t.)

The characteristic polynomial of A is denoted by pA.

Example 2.0.2. Let n = 2 and A =

(
a b
c d

)
. Then,

tIn − A = tI2 − A = t
(

1 0
0 1

)
−
(

a b
c d

)
=

(
t 0
0 t

)
−
(

a b
c d

)
=

(
t− a −b
−c t− d

)
,

so that

pA = det (tIn − A) = det
(

t− a −b
−c t− d

)
= (t− a) (t− d)− (−b) (−c)

= t2 − (a + d) t + (ad− bc) .
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Example 2.0.3. Let n = 3 and A =

 a b c
a′ b′ c′

a′′ b′′ c′′

. Then,

tIn − A = tI3 − A = t

 1 0 0
0 1 0
0 0 1

−
 a b c

a′ b′ c′

a′′ b′′ c′′


=

 t− a −b −c
−a′ t− b′ −c′

−a′′ −b′′ t− c′′

 ,

so that

pA = det (tIn − A) = det

 t− a −b −c
−a′ t− b′ −c′

−a′′ −b′′ t− c′′


= t3 −

(
a + b′ + c′′

)
t2 +

(
ab′ − ba′ + ac′′ − ca′′ + b′c′′ − b′′c′

)
t

−
(
ab′c′′ − ab′′c′ − ba′c′′ + ba′′c′ + ca′b′′ − ca′′b′

)
.

Example 2.0.4. If n = 1 and A =
(

a
)
, then tIn − A =

(
t− a

)
and thus

pA = t− a.

Example 2.0.5. If n = 0 and A = (), then tIn − A = () and thus pA = 1 (since
the determinant of the 0× 0-matrix () is defined to be 1).

Remark 2.0.6. (a) Some authors define the characteristic polynomial pA of an
n× n-matrix A to be det (A− tIn) instead of det (tIn − A). This differs from our
definition only by a factor of (−1)n, which is immaterial for most properties of
the characteristic polynomial but still can cause the occasional confusion.

(b) Some other common notations for pA are χA and cA.

The patterns you might have spotted in Example 2.0.2 and in Example 2.0.3
are not accidental. Indeed, the coefficients of the characteristic polynomial of any
square matrix can be expressed explicitly, if you consider sums of determinants to
be explicit:

Proposition 2.0.7. Let F be a field. Let A ∈ Fn×n be an n× n-matrix over F.

(a) The characteristic polynomial pA is a monic polynomial in t of degree n.
(That is, its leading term is tn.)

(b) The constant term of the polynomial pA is (−1)n det A.
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(c) The tn−1-coefficient of the polynomial pA is −Tr A. (Recall that Tr A is
defined to be the sum of all diagonal entries of A; this sum is known as the trace
of A.)

(d) More generally: Let k ∈ {0, 1, . . . , n}. Then, the tn−k-coefficient of the poly-
nomial pA is (−1)k times the sum of all principal k× k-minors of A. (Recall that
a k× k-minor of A means the determinant of a k× k-submatrix of A. This k× k-
minor is said to be principal if the k× k-submatrix is obtained by removing some
n− k rows and the corresponding n− k columns from A. For example, the prin-

cipal 2× 2-minors of a 3× 3-matrix A are det
(

A1,1 A1,2
A2,1 A2,2

)
, det

(
A1,1 A1,3
A3,1 A3,3

)
and det

(
A2,2 A2,3
A3,2 A3,3

)
.) In other words, the tn−k-coefficient of pA is

(−1)k ∑
1≤i1<i2<···<ik≤n

det
(

subi1,i2,...,ik
i1,i2,...,ik

A
)

,

where subi1,i2,...,ik
i1,i2,...,ik

A denotes the k× k-matrix whose (u, v)-th entry is Aiu,iv for all
u, v ∈ [k].

Proof sketch. We have A =


A1,1 A1,2 · · · A1,n
A2,1 A2,2 · · · A2,n

...
... . . . ...

An,1 An,2 · · · An,n

, so that

tIn − A = t


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

−


A1,1 A1,2 · · · A1,n
A2,1 A2,2 · · · A2,n

...
... . . . ...

An,1 An,2 · · · An,n



=


t− A1,1 −A1,2 · · · −A1,n
−A2,1 t− A2,2 · · · −A2,n

...
... . . . ...

−An,1 −An,2 · · · t− An,n

 .

The determinant det (tIn − A) of this matrix is a sum of certain products of its
entries9. One of these products is

(t− A1,1) (t− A2,2) · · · (t− An,n)

= tn − (A1,1 + A2,2 + · · ·+ An,n) tn−1 + (terms with lower powers of t) .

9Here, we are using the Leibniz formula for the determinant of a matrix, which says that det B =
∑

σ∈Sn

(−1)σ B1,σ(1)B2,σ(2) · · · Bn,σ(n) for each n× n-matrix B. (We are applying this to B = tIn− A.)

January 4, 2022



Math 504 notes page 47

None of the other products appearing in this sum includes any power of t higher
than tn−2 (because the product picks out at least two entries of A that lie outside of
the main diagonal, and thus contain no t whatsoever; the remaining factors of the
product contribute at most tn−2). Hence, the entire determinant det (tIn − A) can
be written as

det (tIn − A) = tn− (A1,1 + A2,2 + · · ·+ An,n) tn−1 +(terms with lower powers of t) .

In other words,

pA = tn − (A1,1 + A2,2 + · · ·+ An,n) tn−1 + (terms with lower powers of t)

(since pA = det (tIn − A)). This yields parts (a) and (c) of Proposition 2.0.7.
To prove Proposition 2.0.7 (b), we substitute 0 for t in the polynomial identity

pA = det (tIn − A). We obtain

pA (0) = det (0In − A) = det (−A) = (−1)n det A.

Since pA (0) is the constant term of pA (in fact, if f is any polynomial, then
f (0) is the constant term of f ), we thus conclude that the constant term of pA
is (−1)n det A. This proves Proposition 2.0.7 (b).

Finally, Proposition 2.0.7 (d) can be established through a more accurate com-
binatorial analysis of the products that sum up to det (tIn − A). See [Grinbe21,
Proposition 6.4.29] for the details. (A combinatorially prepared reader might glean
the idea from Example 2.0.3.)

We note that parts (a), (b) and (c) of Proposition 2.0.7 can all be derived from
part (d) as well.

Next, we recall some basic notions around the eigenvalues of a matrix:

Definition 2.0.8. Let F be a field. Let A ∈ Fn×n be an n × n-matrix, and let
λ ∈ F.

(a) We say that λ is an eigenvalue of A if and only if det (λIn − A) = 0. In
other words, λ is an eigenvalue of A if and only if λ is a root of the characteristic
polynomial pA = det (tIn − A).

(b) The λ-eigenspace of A is defined to be the set of all vectors v ∈ Fn satisfying
Av = λv. In other words, it is the kernel Ker (λIn − A) = Ker (A− λIn). Thus,
it is a vector subspace of Fn. The elements of this λ-eigenspace are called the
λ-eigenvectors of A (or the eigenvectors of A for eigenvalue λ). (Some authors
exclude the zero vector 0 from being an eigenvector; we allow it. Thus, 0 is a
λ-eigenvector for any λ, even if λ is not an eigenvalue.)

(c) The algebraic multiplicity of λ as an eigenvalue of A is defined to be the
multiplicity of λ as a root of pA. (If λ is not an eigenvalue of A, then this is 0.)

(d) The geometric multiplicity of λ as an eigenvalue of A is defined to be
dim (Ker (A− λIn)). In other words, it is the dimension of the λ-eigenspace
of A. In other words, it is the maximum number of linearly independent λ-
eigenvectors. (If λ is not an eigenvalue of A, then this is 0.)
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It can be shown that if A ∈ Fn×n is a matrix and λ ∈ F is arbitrary, then the
geometric multiplicity of λ as an eigenvalue of A is always ≤ to the algebraic
multiplicity of λ as an eigenvalue of A. The two multiplicities can be equal, but
don’t have to be.

Example 2.0.9. Let A =

 1 0 0
0 1 2
0 0 1

 ∈ C3×3. Then, the only eigenvalue of A is

1. Its algebraic multiplicity is 3, while its geometric multiplicity is 2.

Theorem 2.0.10. Let A ∈ Cn×n be an n× n-matrix with complex entries. Then:

(a) Its characteristic polynomial pA factors into n linear terms:

pA = (t− λ1) (t− λ2) · · · (t− λn) , (29)

where λ1, λ2, . . . , λn ∈ C are its roots (with their algebraic multiplicities).

(b) These roots λ1, λ2, . . . , λn are the eigenvalues of A, appearing with their
algebraic multiplicities.

(c) The sum of the algebraic multiplicities of all eigenvalues of A is n.

(d) The sum of all eigenvalues of A (with their algebraic multiplicities) is Tr A
(that is, the trace of A).

(e) The product of all eigenvalues of A (with their algebraic multiplicities) is
det A.

(f) If n > 0, then the matrix A has at least one eigenvalue and at least one
nonzero eigenvector.

Proof. The polynomial pA is a monic polynomial of degree n (by Proposition 2.0.7
(a)), and therefore factors into linear terms (by the Fundamental Theorem of Alge-
bra). This proves Theorem 2.0.10 (a).

(b) This follows from the definition of eigenvalues and algebraic multiplicities.

(c) This follows from part (b).

(d) Let λ1, λ2, . . . , λn be the roots of pA (with their multiplicities). Then, these
roots are the eigenvalues of A, appearing with their algebraic multiplicities (by
Theorem 2.0.10 (b)). Hence, their sum λ1 + λ2 + · · ·+ λn is the sum of the eigen-
values of A (with their algebraic multiplicities). On the other hand, we know from
Theorem 2.0.10 (a) that the equality (29) holds. Comparing the coefficients of tn−1

on both sides of this equality, we obtain(
the coefficient of tn−1 in pA

)
=
(

the coefficient of tn−1 in (t− λ1) (t− λ2) · · · (t− λn)
)

= − (λ1 + λ2 + · · ·+ λn) .
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However, Proposition 2.0.7 (c) yields(
the coefficient of tn−1 in pA

)
= −Tr A.

Comparing these two equalities, we obtain − (λ1 + λ2 + · · ·+ λn) = −Tr A. In
other words, λ1 + λ2 + · · · + λn = Tr A. This proves Theorem 2.0.10 (d) (since
λ1 + λ2 + · · ·+ λn is the sum of the eigenvalues of A).

(e) This is similar to part (d), except that we have to compare the coefficients of
t0 (instead of tn−1) on both sides of (29), and we have to use Proposition 2.0.7 (b)
(instead of Proposition 2.0.7 (c)).

(f) Assume that n > 0. Thus, n ≥ 1. However, Theorem 2.0.10 (b) shows that
A has exactly n eigenvalues, counted with algebraic multiplicities. Hence, A has
at least one eigenvalue λ (since n ≥ 1). Consider this λ. Since λ is an eigenvalue
of A, we have det (λIn − A) = 0. Hence, the n× n-matrix λIn − A is singular, so
that its kernel Ker (λIn − A) is nonzero. In other words, there exists a nonzero
vector v ∈ Ker (λIn − A). This vector v must be a λ-eigenvector of A (since v ∈
Ker (λIn − A)). Hence, the matrix A has a nonzero eigenvector (namely, v). This
completes the proof of Theorem 2.0.10 (f).

Exercise 2.0.1. 1 Let F be a field. Let A ∈ Fn×n be any n× n-matrix.

(a) Prove that pAT = pA, where AT denotes the transpose of the matrix A.

(b) Assume that F = C. Prove that pA∗ = pA, where pA denotes the result of
replacing all coefficients of the polynomial pA by their complex conjugates.

For occasional future use, let us state some properties of traces as exercises:

Exercise 2.0.2. 1 Let F be a field. Let n, m ∈ N. Let A ∈ Fn×m and B ∈ Fm×n

be two matrices. Show that

Tr (AB) = Tr (BA) .

Exercise 2.0.3. 1 Let n, m ∈N. Let A ∈ Cn×m be any matrix.

(a) Show that

Tr (A∗A) =
n

∑
i=1

m

∑
j=1

∣∣Ai,j
∣∣2 .

(b) Show that Tr (A∗A) = 0 if and only if A = 0.

2.1. Similarity of matrices

Next, let us recall the notion of similar matrices:
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Definition 2.1.1. Let F be a field. Let A and B be two matrices in Fn×n. We
say that A is similar to B if there exists an invertible matrix W ∈ Fn×n such that
B = WAW−1.

We write “A ∼ B” for “A is similar to B”.

Example 2.1.2. The matrix
(

1 1
1 1

)
is similar to the matrix

(
2 0
0 0

)
, since(

2 0
0 0

)
= W

(
1 1
1 1

)
W−1 for the invertible matrix W =

(
1 1
−1 1

)
. In

other words, we have
(

1 1
1 1

)
∼
(

2 0
0 0

)
.

The relation ∼ is easily seen to be an equivalence relation:10

Proposition 2.1.3. Let F be a field. Then:

(a) Any matrix A ∈ Fn×n is similar to itself.

(b) If A and B are two matrices in Fn×n such that A is similar to B, then B is
similar to A.

(c) If A, B and C are three matrices in Fn×n such that A is similar to B and
such that B is similar to C, then A is similar to C.

Proof. (a) This follows from A = In AI−1
n .

(b) Let A and B be two matrices in Fn×n such that A is similar to B. Thus,
there exists an invertible matrix W ∈ Fn×n such that B = WAW−1. Consider
this W. From B = WAW−1, we obtain BW = WA, so that W−1BW = A. Thus,
A = W−1B W︸︷︷︸

=(W−1)
−1

= W−1B
(
W−1)−1. Since W−1 is invertible, this shows that B

is similar to A. This proves Proposition 2.1.3 (b).

(c) Let A, B and C be three matrices in Fn×n such that A is similar to B and
such that B is similar to C. Thus, there exists an invertible matrix U ∈ Fn×n such
that B = UAU−1 (since A is similar to B), and there exists an invertible matrix
V ∈ Fn×n such that C = VBV−1 (since B is similar to C). Consider these U and V.

The matrices V and U are invertible. Thus, so is their product VU, and its inverse
is (VU)−1 = U−1V−1. (This is the famous “socks-and-shoes rule” for inverting
products or compositions.) Now,

C = V B︸︷︷︸
=UAU−1

V−1 = VUA U−1V−1︸ ︷︷ ︸
=(VU)−1

= VUA (VU)−1 .

10Algebraists will recognize the relation∼ (for matrices in Fn×n) as just being the conjugacy relation
in the ring Fn×n of all n× n-matrices. (The meaning of the word “conjugacy” here has nothing
to do with conjugates of complex numbers or with the conjugate transpose!)
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In other words, C = WAW−1 for the invertible matrix W = VU (since we know
that VU is invertible). This shows that A is similar to C. This proves Proposition
2.1.3 (c).

Since the relation ∼ is symmetric (by Proposition 2.1.3 (b)), we can make the
following definition:

Definition 2.1.4. Let F be a field. Let A and B be two matrices in Fn×n. We say
that A and B are similar if A is similar to B (or, equivalently, B is similar to A).

Similar matrices have a lot in common. Here is a selection of invariants:

Proposition 2.1.5. Let F be a field. Let A ∈ Fn×n and B ∈ Fn×n be two similar
matrices. Then:

(a) The matrices A and B have the same rank.

(b) The matrices A and B have the same nullity.

(c) The matrices A and B have the same determinant.

(d) The matrices A and B have the same characteristic polynomial.

(e) The matrices A and B have the same eigenvalues, with the same algebraic
multiplicities and with the same geometric multiplicities.

(f) For any k ∈N, the matrix Ak is similar to Bk.

(g) For any λ ∈ F, the matrix λIn − A is similar to λIn − B.

(h) For any λ ∈ F, the matrix A− λIn is similar to B− λIn.

Proof. Since A is similar to B, there exists an invertible matrix W ∈ Fn×n such that
B = WAW−1. Consider this W.

(b) Consider the kernels11 Ker A and Ker B of A and B. For any v ∈ Ker A,
we have Wv ∈ Ker B (because v ∈ Ker A implies Av = 0, so that B︸︷︷︸

=WAW−1

Wv =

WA W−1W︸ ︷︷ ︸
=In

v = W Av︸︷︷︸
=0

= 0 and therefore Wv ∈ Ker B). Thus, we have found a

linear map

Ker A→ Ker B,
v 7→Wv.

This linear map is furthermore injective (because W is invertible, so that Wu = Wv
entails u = v). Hence, we obtain dim (Ker A) ≤ dim (Ker B). But A and B play
symmetric roles in our situation (since the relation “similar” is symmetric), so that
we can use the same reasoning to obtain dim (Ker B) ≤ dim (Ker A). Combining

11Recall that “kernel” is a synonym for “nullspace”.
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these two inequalities, we obtain dim (Ker A) = dim (Ker B). In other words, A
and B have the same nullity. This proves Proposition 2.1.5 (b).

(a) The rank of an n × n-matrix equals n minus its nullity (by the rank-nullity
theorem). Hence, two n× n-matrices that have the same nullity must also have the
same rank. Thus, Proposition 2.1.5 (a) follows from Proposition 2.1.5 (b).

(c) From B = WAW−1, we obtain

det B = det
(

WAW−1
)
= det W · det A · det

(
W−1

)
︸ ︷︷ ︸
=(det W)−1

= det W · det A · (det W)−1 = det A.

This proves Proposition 2.1.5 (c).

(d) The characteristic polynomial of an n×n-matrix M is defined to be det (tIn −M)
(where t is the indeterminate)12. Thus, we must show that det (tIn − A) = det (tIn − B).
However, we have

t In︸︷︷︸
=WW−1

=WInW−1

− B︸︷︷︸
=WAW−1

= tWIn︸ ︷︷ ︸
=W(tIn)

W−1 −WAW−1 = W (tIn)W−1 −WAW−1

= W (tIn − A)W−1.

Thus,

det (tIn − B) = det
(

W (tIn − A)W−1
)
= det W · det (tIn − A) · det

(
W−1

)
︸ ︷︷ ︸
=(det W)−1

= det W · det (tIn − A) · (det W)−1 = det (tIn − A) .

Thus, det (tIn − A) = det (tIn − B), and Proposition 2.1.5 (d) is proven.

(e) The eigenvalues of a matrix, with their algebraic multiplicities, are the roots
of the characteristic polynomial. Thus, from Proposition 2.1.5 (d), we see that the
matrices A and B have the same eigenvalues, with the same algebraic multiplicities.
It remains to show that the geometric multiplicities are also the same.

Let λ be an eigenvalue of A (and therefore also of B, as we have just seen). The
geometric multiplicity of λ as an eigenvalue of A is dim (Ker (A− λIn)). Likewise,
the geometric multiplicity of λ as an eigenvalue of B is dim (Ker (B− λIn)). Hence,
we must show that dim (Ker (A− λIn)) = dim (Ker (B− λIn)).

12At least this is our definition. As we already mentioned in Remark 2.0.6 (a), another popular
definition is det (M− tIn). However, the two definitions differ only in a factor of (−1)n, so they
behave almost completely the same (and our argument works equally well for either of them).
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We have

B︸︷︷︸
=WAW−1

−λ In︸︷︷︸
=WW−1

=WInW−1

= WAW−1 − λWIn︸ ︷︷ ︸
=W(λIn)

W−1 = WAW−1 −W (λIn)W−1

= W (A− λIn)W−1.

This shows that the matrices A− λIn and B− λIn are similar. Hence, Proposition
2.1.5 (b) shows that these two matrices A− λIn and B− λIn have the same nullity.
In other words, dim (Ker (A− λIn)) = dim (Ker (B− λIn)). This is exactly what
we needed to show; thus, Proposition 2.1.5 (e) is proven.

(f) Let k ∈N. We claim that

Bk = WAkW−1. (30)

Once this is proved, it will clearly follow that Ak is similar to Bk.
One way to prove Bk = WAkW−1 is as follows: From B = WAW−1, we obtain

Bk =
(

WAW−1
)k

= WA W−1 ·W︸ ︷︷ ︸
=In

A W−1 ·W︸ ︷︷ ︸
=In

AW−1 · · · · ·WA W−1 ·W︸ ︷︷ ︸
=In

AW−1

= W AA · · · A︸ ︷︷ ︸
k factors

W−1
(

since all the W−1 ·W’s in the middle cancel out
)

= WAkW−1.

(To be precise, this works for k ≥ 1; but the case k = 0 is trivial.)
A less handwavy proof of (30) would proceed by induction on k. As it is com-

pletely straightforward, I leave it to the reader.

(g) Let λ ∈ F. Then,

λ In︸︷︷︸
=WW−1

=WInW−1

− B︸︷︷︸
=WAW−1

= λWIn︸ ︷︷ ︸
=W(λIn)

W−1 −WAW−1 = W (λIn)W−1 −WAW−1

= W (λIn − A)W−1.

This shows that the matrices λIn − A and λIn − B are similar. Thus, Proposition
2.1.5 (g) is proven.

(h) This differs from part (g) only in that the subtrahend and the minuend trade
places. The proof is entirely analogous to part (g).

Note that neither part (a), nor part (b), nor part (c), nor part (d), nor part (e)
of Proposition 2.1.5 is an “if and only if” statement: One can find two n × n-
matrices (for sufficiently large n) that have the same rank, nullity, determinant,
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characteristic polynomial and eigenvalues but are not similar.13 Thus, proving the
similarity of two matrices is not as easy as comparing these data. We will later
learn an algorithmic way to check whether two matrices are similar.

Exercise 2.1.1. 2 Prove that the two matrices


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 and


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 are not similar.

Exercise 2.1.2. 3 Let A ∈ Cn×n be a matrix that is similar to some unitary
matrix. Prove that A−1 is similar to A∗.

Remark 2.1.6. If you are used to thinking of matrices as linear maps, then sim-
ilarity is a rather natural concept: Two n× n-matrices A ∈ Fn×n and B ∈ Fn×n

are similar if and only if they represent one and the same endomorphism
f : Fn → Fn of Fn with respect to two (possibly different) bases of Fn. To
be more precise, A has to represent f with respect to some basis of Fn, while B
has to represent f with respect to a further basis of Fn (possibly the same, but
usually not).

This fact is not hard to prove. Indeed, if A and B represent the same endomor-
phism f with respect to two bases of Fn, then we have B = WAW−1, where W is
the change-of-basis matrix between these two bases. Conversely, if A and B are
similar, then there exists some invertible matrix W satisfying B = WAW−1, and
then A and B represent the same endomorphism f with respect to two bases of
Fn (namely, B represents the endomorphism

Fn → Fn,
v 7→ Bv

with respect to the standard basis (e1, e2, . . . , en), whereas A represents the same
endomorphism with respect to the basis (We1, We2, . . . , Wen)).

Knowing this fact, many properties of similar matrices – including all parts of
Proposition 2.1.5 – become essentially trivial: One just needs to recall that things
like rank, nullity, determinant, eigenvalues etc. are properties of the endomor-
phism rather than properties of the matrix.

Two diagonal matrices are similar whenever they have the same diagonal entries
up to order. In other words:

13Some of these examples are easy to find: For example, the matrices
(

0 1
0 0

)
and

(
0 0
0 0

)
have the same eigenvalues with the same algebraic multiplicities, but are not similar.
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Proposition 2.1.7. Let F be a field. Let n ∈ N. Let λ1, λ2, . . . , λn ∈ F. Let σ be a
permutation of [n] (that is, a bijective map from [n] to [n]). Then,

diag (λ1, λ2, . . . , λn) ∼ diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
.

Example 2.1.8. For n = 3, Proposition 2.1.7 claims that diag (λ1, λ2, λ3) ∼
diag

(
λσ(1), λσ(2), λσ(3)

)
. For example, if σ is the permutation of [3] that

sends 1, 2, 3 to 2, 3, 1, respectively, then this is saying that diag (λ1, λ2, λ3) ∼
diag (λ2, λ3, λ1). In other words, λ1 0 0

0 λ2 0
0 0 λ3

 ∼
 λ3 0 0

0 λ1 0
0 0 λ2

 .

Proof of Proposition 2.1.7. Let Pσ ∈ Fn×n be the permutation matrix of σ (defined as
in Example 1.5.2 (d), but using the field F instead of C). We recall that the (i, j)-th

entry of this matrix Pσ is

{
1, if i = σ (j) ;
0, if i 6= σ (j)

for any i, j ∈ [n].

Now, it is easy to see that

diag (λ1, λ2, . . . , λn) · Pσ = Pσ · diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
. (31)

[Proof of (31): It is straightforward to see that for any i, j ∈ [n], both matrices
diag (λ1, λ2, . . . , λn) · Pσ and Pσ · diag

(
λσ(1), λσ(2), . . . , λσ(n)

)
have the same (i, j)-th

entry, namely

{
λi, if i = σ (j) ;
0, if i 6= σ (j) .

Thus, these two matrices are equal. This proves

(31).]

Since the permutation matrix Pσ is invertible, we can multiply both sides of (31)
by P−1

σ from the right, and thus we obtain

diag (λ1, λ2, . . . , λn) = Pσ · diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
· P−1

σ .

This shows that diag (λ1, λ2, . . . , λn) ∼ diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
. Thus, Propo-

sition 2.1.7 is proven.

Proposition 2.1.7 actually has a converse: If two diagonal matrices are similar,
then they have the same diagonal entries up to order. This follows easily from
Proposition 2.1.5 (e), because the diagonal entries of a diagonal matrix are its eigen-
values (with their algebraic multiplicities).

An analogue of Proposition 2.1.7 holds for block-diagonal matrices:
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Proposition 2.1.9. Let F be a field. Let n ∈ N. For each i ∈ [n], let Ai be
an ni × ni-matrix (for some ni ∈ N). Let σ be a permutation of [n] (that is, a
bijective map from [n] to [n]). Then,

A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · An

 ∼


Aσ(1) 0 · · · 0
0 Aσ(2) · · · 0
...

... . . . ...
0 0 · · · Aσ(n)

 .

Proof. This can be proved similarly to how we proved Proposition 2.1.7, except that
now, instead of the permutation matrix Pσ, we need to use a “block permutation
matrix” Pσ. This matrix Pσ is defined to be the matrix that is written as

P (1, 1) P (1, 2) · · · P (1, n)
P (2, 1) P (2, 2) · · · P (2, n)

...
... . . . ...

P (n, 1) P (n, 2) · · · P (n, n)


in block-matrix notation, where the (i, j)-th block P (i, j) is defined by14

P (i, j) :=

{
Ini , if i = σ (j) ;
0ni×nσ(j) , if i 6= σ (j) .

For example, if n = 2 and if σ is the permutation of [2] that swaps 1 with 2, and if

n1 = 1 and n2 = 2, then Pσ =

(
0 I1
I2 0

)
=

 0 0 1
1 0 0
0 1 0

. The formula analogous

to (31) is
A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · An

 · Pσ = Pσ ·


Aσ(1) 0 · · · 0

0 Aσ(2) · · · 0
...

... . . . ...
0 0 · · · Aσ(n)


this time; its proof is easy with the help of Proposition 1.6.6.

Similarity of block-diagonal matrices can also come from similarity of the respec-
tive blocks:

14We let 0u×v denote the zero matrix of size u× v.
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Proposition 2.1.10. Let F be a field. Let n ∈N. For each i ∈ [n], let Ai and Bi be
two ni × ni-matrices (for some ni ∈N) satisfying Ai ∼ Bi. Then,

A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · An

 ∼


B1 0 · · · 0
0 B2 · · · 0
...

... . . . ...
0 0 · · · Bn

 .

Exercise 2.1.3. 2 Prove Proposition 2.1.10.

Exercise 2.1.4. 1 Let F be a field. Let A ∈ Fn×n and B ∈ Fn×n be two matrices
such that A ∼ B.

(a) Prove that AT ∼ BT. (Recall that CT denotes the transpose of a matrix C.)

(b) Assume that F = C. Prove that A∗ ∼ B∗.

2.2. Unitary similarity

Unitary similarity is a more restrictive form of similarity, even though it is not
immediately obvious from its definition:

Definition 2.2.1. Let A and B be two matrices in Cn×n. We say that A is unitarily
similar to B if there exists a unitary matrix W ∈ Un (C) such that B = WAW∗.

We write “A us∼ B” for “A is unitarily similar to B”.

Example 2.2.2. The matrix
(

1 1
1 1

)
is unitarily similar to the matrix

(
2 0
0 0

)
,

since
(

2 0
0 0

)
= W

(
1 1
1 1

)
W∗ for the unitary matrix W =

1√
2

(
1 1
−1 1

)
.

Exercise 2.2.1. 2 Prove that the matrix
(

1 1
0 2

)
is similar to the matrix(

1 0
0 2

)
, but not unitarily similar to it.

Just like the relation ∼, the relation us∼ is an equivalence relation:

Proposition 2.2.3. (a) Any matrix A ∈ Cn×n is unitarily similar to itself.

(b) If A and B are two matrices in Cn×n such that A is unitarily similar to B,
then B is unitarily similar to A.

(c) If A, B and C are three matrices in Cn×n such that A is unitarily similar to
B and such that B is unitarily similar to C, then A is unitarily similar to C.
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Proof. This is very similar to the proof of Proposition 2.1.3, and therefore left to the
reader. (The only new idea is to use Exercise 1.5.2.)

Definition 2.2.4. Let A and B be two matrices in Cn×n. We say that A and B
are unitarily similar if A is unitarily similar to B (or, equivalently, B is unitarily
similar to A).

As we promised, unitary similarity is a more restrictive version of similarity:

Proposition 2.2.5. Let A and B be two unitarily similar matrices in Cn×n. Then,
A and B are similar.

Proof. There exists a unitary matrix W ∈ Un (C) such that B = WAW∗ (since A is
unitarily similar to B). Consider this W. The matrix W is unitary, and thus (by the
implication A =⇒ D in Theorem 1.5.3) must be square and invertible and satisfy
W−1 = W∗. Hence, B = WA W∗︸︷︷︸

=W−1

= WAW−1. But this shows that A is similar to

B. Thus, Proposition 2.2.5 is proven.

The following proposition is an analogue of Proposition 2.1.10 for unitary simi-
larity:

Proposition 2.2.6. Let n ∈N. For each i ∈ [n], let Ai ∈ Cni×ni and Bi ∈ Cni×ni be
two ni × ni-matrices (for some ni ∈N) satisfying Ai

us∼ Bi. Then,
A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · An

 us∼


B1 0 · · · 0
0 B2 · · · 0
...

... . . . ...
0 0 · · · Bn

 .

Exercise 2.2.2. 1 Prove Proposition 2.2.6.

We note further that the similarity in Proposition 2.1.7 can be upgraded to a
unitary similarity if we work over the field C:

Proposition 2.2.7. Let n ∈ N. Let λ1, λ2, . . . , λn ∈ C. Let σ be a permutation of
[n] (that is, a bijective map from [n] to [n]). Then,

diag (λ1, λ2, . . . , λn)
us∼ diag

(
λσ(1), λσ(2), . . . , λσ(n)

)
.

Proof. Let Pσ ∈ Fn×n be the permutation matrix of σ (defined in Example 1.5.2 (d)).
In the proof of Proposition 2.1.7, we have shown that

diag (λ1, λ2, . . . , λn) = Pσ · diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
· P−1

σ .

January 4, 2022



Math 504 notes page 59

However, the matrix Pσ is unitary (as we have already seen in Example 1.5.2 (d)).
Hence, P−1

σ = P∗σ . Thus,

diag (λ1, λ2, . . . , λn) = Pσ · diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
· P−1

σ︸︷︷︸
=P∗σ

= Pσ · diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
· P∗σ .

This shows that diag (λ1, λ2, . . . , λn)
us∼ diag

(
λσ(1), λσ(2), . . . , λσ(n)

)
. Thus, Propo-

sition 2.2.7 is proven.

Lecture 4 starts here.

2.3. Schur triangularization

2.3.1. The theorems

We are now ready for one more matrix decomposition: the so-called Schur triangu-
larization (aka Schur decomposition):

Theorem 2.3.1 (Schur triangularization theorem). Let A ∈ Cn×n. Then, there
exist a unitary matrix U ∈ Un (C) and an upper-triangular matrix T ∈ Cn×n such
that A = UTU∗. In other words, A is unitarily similar to some upper-triangular
matrix.

The factorization A = UTU∗ in Theorem 2.3.1 (or, to be more precise, the pair
(U, T)) is called a Schur triangularization of A. It is usually not unique.

Example 2.3.2. Let A =

(
1 3
−3 7

)
∈ C2×2. Then, a Schur triangularization of

A is A = UTU∗, where

U =
1√
2

(
1 −1
1 1

)
and T =

(
4 6
0 4

)
.

(We chose A deliberately to obtain “nice” matrices U and T. The Schur triangu-
larization of a typical n× n-matrix will be more complicated, involving roots of
n-th degree polynomials.)

We shall prove a slightly stronger form of Theorem 2.3.1:

Theorem 2.3.3 (Schur triangularization with prescribed diagonal). Let A ∈ Cn×n

be an n× n-matrix. Let λ1, λ2, . . . , λn be its eigenvalues (listed with their alge-
braic multiplicities). Then, there exists an upper-triangular matrix T ∈ Cn×n

such that A us∼ T (this means “A is unitarily similar to T”, as we recall) and such
that the diagonal entries of T are λ1, λ2, . . . , λn in this order.
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Example 2.3.4. Let A =

(
1 −2i
0 3

)
∈ C2×2. Theorem 2.3.1 then says that A is

unitarily similar to some upper-triangular matrix. But this is trivial, since A is
already upper-triangular (and clearly unitarily similar to itself). However, Theo-
rem 2.3.3 can be used to draw a less obvious conclusion. In fact, the eigenvalues
of A are 1 and 3. Let us list them in the order 3, 1. Then, Theorem 2.3.3 (applied
to n = 2 and (λ1, λ2, . . . , λn) = (3, 1)) yields that there exists an upper-triangular
matrix T ∈ C2×2 such that A us∼ T and such that the diagonal entries of T are 3
and 1 in this order. Finding such a T is not all that easy (in particular, A itself
does not qualify, since its diagonal entries are 1 and 3 rather than 3 and 1). The
answer is:

U =
1√
2

(
−i i
1 1

)
and T =

(
3 2
0 1

)
.

Here, U is the unitary matrix satisfying A = UTU∗ (which confirms that A us∼ T).

Actually, the form of the matrix T in this example is no accident; more generally,
we have:

Exercise 2.3.1. 5 Let a, b, c ∈ C. Prove that(
a b
0 c

)
us∼
(

c −b
0 a

)
.

2.3.2. The proofs

The following lemma about characteristic polynomials will help us in our proof of
Theorem 2.3.3:

Lemma 2.3.5. Let F be a field. Let n ∈ N. Let p ∈ F1×n be a row vector,
and let B ∈ Fn×n be an n × n-matrix. Let λ ∈ F be a scalar. Let C be the

(n + 1)× (n + 1)-matrix
(

λ p
0 B

)
∈ F(n+1)×(n+1) (written in block-matrix nota-

tion, where the “λ” stands for the 1× 1-matrix
(

λ
)
, and where the “0” stands

for the zero vector in Fn×1). Then,

pC = (t− λ) · pB.

Proof of Lemma 2.3.5. The definition of a characteristic polynomial yields

pB = det (tIn − B) and pC = det (tIn+1 − C) .
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However, from In+1 =

(
1 0
0 In

)
and C =

(
λ p
0 B

)
we obtain

tIn+1 − C = t
(

1 0
0 In

)
−
(

λ p
0 B

)
=

(
t− λ −p

0 tIn − B

)
.

Thus,

det (tIn+1 − C) = det
(

t− λ −p
0 tIn − B

)
= (t− λ) · det (tIn − B)

(here, we have applied Laplace expansion along the first column to compute the
determinant, noticing that this column has only one nonzero entry). Thus,

pC = det (tIn+1 − C) = (t− λ) · det (tIn − B)︸ ︷︷ ︸
=pB

= (t− λ) · pB.

This proves Lemma 2.3.5.

Let us now prove Theorem 2.3.3:

Proof of Theorem 2.3.3. We proceed by induction on n:
Induction base: For n = 0, Theorem 2.3.3 holds trivially15.
Induction step: Let m be a positive integer. Assume (as the induction hypothesis)

that Theorem 2.3.3 is proved for n = m − 1. We must prove that Theorem 2.3.3
holds for n = m.

So let A ∈ Cm×m be an m × m-matrix, and let λ1, λ2, . . . , λm be its eigenvalues
(listed with their algebraic multiplicities). We must show that there exists an upper-
triangular matrix T ∈ Cm×m such that A us∼ T and such that the diagonal entries of
T are λ1, λ2, . . . , λm in this order.

Since λ1 is an eigenvalue of A, there exists at least one nonzero λ1-eigenvector

x of A. Pick any such x. Set u1 :=
1
||x||x. Then, u1 is still a λ1-eigenvector of

A, but additionally satisfies ||u1|| = 1. Hence, the 1-tuple (u1) of vectors in Cm is
orthonormal.

Thus, Corollary 1.2.9 (applied to k = 1 and n = m) shows that we can find m− 1
vectors u2, u3, . . . , um ∈ Cm such that (u1, u2, . . . , um) is an orthonormal basis of Cm.
Consider these m− 1 vectors u2, u3, . . . , um.

Let U ∈ Cm×m be the m × m-matrix whose columns are u1, u2, . . . , um in this
order. Then, the columns of this matrix form an orthonormal basis of Cm. Hence,
Theorem 1.5.3 (specifically, the implication E =⇒ A in this theorem) yields that the
matrix U is unitary. Therefore, U∗ = U−1. Moreover, since U is unitary, we have
UU∗ = Im and U∗U = Im. Thus, U∗ is unitary as well.

Define an m×m-matrix
C := U∗AU ∈ Cm×m.

15There is only one 0× 0-matrix, and we take T to be this matrix.
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Since U∗ is unitary, we have A us∼ U∗A (U∗)∗. In other words, A us∼ C (since
U∗A (U∗)∗︸ ︷︷ ︸

=U

= U∗AU = C). Hence, A ∼ C (by Proposition 2.2.5). Thus, Proposition

2.1.5 (d) shows that the matrices A and C have the same characteristic polynomial.
In other words, pA = pC.

The definition of U yields U =

 | |
u1 · · · um
| |

 and therefore

U∗ =

 — u∗1 —
...

— u∗m —

 and AU =

 | |
Au1 · · · Aum
| |

 .

Multiplying the latter two equalities, we obtain

U∗AU =


u∗1 Au1 u∗1 Au2 · · · u∗1 Aum
u∗2 Au1 u∗2 Au2 · · · u∗2 Aum

...
... . . . ...

u∗m Au1 u∗m Au2 · · · u∗m Aum

 .

Since C = U∗AU, we can rewrite this as

C =


u∗1 Au1 u∗1 Au2 · · · u∗1 Aum
u∗2 Au1 u∗2 Au2 · · · u∗2 Aum

...
... . . . ...

u∗m Au1 u∗m Au2 · · · u∗m Aum

 . (32)

Hence,

C1,1 = u∗1 Au1︸︷︷︸
=λ1u1

(since u1 is a λ1-eigenvector of A)

= u∗1λ1u1 = λ1 u∗1u1︸︷︷︸
=〈u1,u1〉=||u1||2=1

(since ||u1||=1)

= λ1. (33)

Moreover, for each i ∈ {2, 3, . . . , m}, we have

Ci,1 = u∗i Au1︸︷︷︸
=λ1u1

(since u1 is a λ1-eigenvector of A)

(by (32))

= u∗i λ1u1 = λ1 u∗i u1︸︷︷︸
=〈u1,ui〉=0

(since (u1,u2,...,um) is an orthonormal basis,
and thus u1⊥ui)

= 0.
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Combining this with (33), we see that the 1-st column of the matrix C has entries
λ1, 0, 0, . . . , 0 from top to bottom. In other words,

C =


λ1 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
... . . . ...

0 ∗ ∗ · · · ∗

 ,

where each asterisk (∗) means an entry that we don’t know or don’t care about (in
our case, both).

Let us write this in block-matrix notation:

C =

(
λ1 p
0 B

)
, (34)

where p ∈ C1×(m−1) is a row vector and B ∈ C(m−1)×(m−1) is a matrix16. Consider
this p and this B.

We shall now show that the eigenvalues of B are λ2, λ3, . . . , λm. Indeed, Lemma
2.3.5 (applied to F = C and n = m − 1 and λ = λ1) yields pC = (t− λ1) · pB
(because of (34)). Hence,

pA = pC = (t− λ1) · pB.

On the other hand,
pA = (t− λ1) (t− λ2) · · · (t− λm)

(since pA is monic, and the roots of pA are precisely the eigenvalues of A with
algebraic multiplicities, which we know are λ1, λ2, . . . , λm). Comparing these two
equalities, we obtain

(t− λ1) · pB = (t− λ1) (t− λ2) · · · (t− λm) .

We can cancel the factor t−λ1 from both sides of this equality (since the polynomial
ring over C has no zero-divisors). Thus, we obtain

pB = (t− λ2) (t− λ3) · · · (t− λm) .

In other words, the eigenvalues of the (m− 1)× (m− 1)-matrix B are λ2, λ3, . . . , λm
(listed with their algebraic multiplicities).

Hence, by the induction hypothesis, we can apply Theorem 2.3.3 to m− 1, B and
λ2, λ3, . . . , λm instead of n, A and λ1, λ2, . . . , λn. As a result, we conclude that there
exists an upper-triangular matrix S ∈ C(m−1)×(m−1) such that B us∼ S and such that
the diagonal entries of S are λ2, λ3, . . . , λm in this order. Consider this S.

We have B us∼ S. In other words, there is a unitary matrix V ∈ C(m−1)×(m−1) such
that S = VBV∗. Consider this V.
16The “0” here is actually the zero vector in Cm−1.
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Now, let

W :=
(

1 0
0 V

)
∈ Cm×m (in block-matrix notation) .

This is a block-diagonal matrix, with
(

1
)

and V being its diagonal blocks. Hence,

W∗ =

(
1 0
0 V∗

)
. Moreover, W is a unitary matrix (since it is a block-diagonal

matrix whose diagonal blocks are unitary17). Hence, C us∼ WCW∗. Combining
A us∼ C with C us∼WCW∗, we obtain A us∼WCW∗ (by Proposition 2.2.3 (c)).

However,

W︸︷︷︸
=

(
1 0
0 V

) C︸︷︷︸
=

(
λ1 p
0 B

) W∗︸︷︷︸
=

(
1 0
0 V∗

)

=

(
1 0
0 V

)(
λ1 p
0 B

)(
1 0
0 V∗

)
=

(
1 · λ1 · 1 1 · p ·V∗
V · 0 · 1 V · B ·V∗

) (
by using Proposition 1.6.5 twice

and simplifying the 0 addends away

)
=

(
λ1 pV∗

0 VBV∗

)
=

(
λ1 pV∗

0 S

)
(since VBV∗ = S) .

This matrix WCW∗ is therefore upper-triangular (since the bottom-left block is a
zero vector, and since the bottom-right block S is upper-triangular), and its di-
agonal entries are λ1, λ2, . . . , λm in this order (because its first diagonal entry is
visibly λ1, whereas its remaining diagonal entries are the diagonal entries of S and
therefore are λ2, λ3, . . . , λm in this order18).

Thus, there exists an upper-triangular matrix T ∈ Cm×m such that A us∼ T and
such that the diagonal entries of T are λ1, λ2, . . . , λm in this order (namely, WCW∗

is such a matrix, because A us∼WCW∗ and because of what we just said).
Thus, we have shown that Theorem 2.3.3 holds for n = m. This completes the

induction step. The proof of Theorem 2.3.3 is thus complete.

Proof of Theorem 2.3.1. Theorem 2.3.1 follows from Theorem 2.3.3 (and the definition
of unitary similarity).

Exercise 2.3.2. 2 Find a Schur triangularization of the matrix
(

1 0
i 1

)
.

17We are using Proposition 1.6.12 here.
18In fact, we have shown above that the diagonal entries of S are λ2, λ3, . . . , λm in this order.
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Exercise 2.3.3. 3 Find a Schur triangularization of the matrix

 1 1 1
1 1 1
1 1 1

.

2.3.3. The diagonal entries of T

One remark is in order about the T in a Schur triangularization:

Proposition 2.3.6. Let A ∈ Cn×n. Let (U, T) be a Schur triangularization of A.
Then, the diagonal entries of T are the eigenvalues of A (with their algebraic
multiplicities).

Instead of proving this directly, let us show a more general result:

Proposition 2.3.7. Let F be a field. Let A ∈ Fn×n and T ∈ Fn×n be two similar
matrices. Assume that T is upper-triangular. Then, the diagonal entries of T are
the eigenvalues of A (with their algebraic multiplicities).

Proof of Proposition 2.3.7. We have assumed that A and T are similar. In other
words, T is similar to A. Thus, Proposition 2.1.5 (e) shows that the matrices T
and A have the same eigenvalues with the same algebraic multiplicities (and the
same geometric multiplicities, but we don’t need to know this). In other words, the
eigenvalues of T are the eigenvalues of A (with the same algebraic multiplicities).

However, the matrix T is upper-triangular. Thus, the eigenvalues of T (with
algebraic multiplicities) are the diagonal entries of T (this is a well-known fact19).

19Here is a proof: The matrix T is upper-triangular; thus, it has the form

T =


T1,1 T1,2 · · · T1,n

0 T2,2 · · · T2,n
...

...
. . .

...
0 0 · · · Tn,n

 .

Thus, if t is an indeterminate, then

tIn − T = t


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−


T1,1 T1,2 · · · T1,n
0 T2,2 · · · T2,n
...

...
. . .

...
0 0 · · · Tn,n



=


t− T1,1 −T1,2 · · · −T1,n

0 t− T2,2 · · · −T2,n
...

...
. . .

...
0 0 · · · t− Tn,n

 .

This is still an upper-triangular matrix; thus, its determinant is the product of its diagonal
entries. That is, we have

det (tIn − T) = (t− T1,1) (t− T2,2) · · · (t− Tn,n) .
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Since we know that the eigenvalues of T are the eigenvalues of A (with the same
algebraic multiplicities), we thus conclude that the eigenvalues of A (with algebraic
multiplicities) are the diagonal entries of T. This proves Proposition 2.3.7.

Proof of Proposition 2.3.6. We assumed that (U, T) is a Schur triangularization of A.
Hence, we have A = UTU∗, and the matrix U is unitary whereas the matrix T is
upper-triangular. From A = UTU∗, we conclude that T is unitarily similar to A (by
Definition 2.2.1, since U is unitary). Hence, T is similar to A (by Proposition 2.2.5).
Therefore, Proposition 2.3.7 shows that the diagonal entries of T are the eigenvalues
of A (with their algebraic multiplicities). This proves Proposition 2.3.6.

We will see several applications of Theorem 2.3.1 in this chapter. First, however,
let us see some variants of Schur triangularization.

2.3.4. Triangularization over an arbitrary field

The first variant gives a partial answer to the following natural question: What
becomes of Theorem 2.3.1 if we replace C by an arbitrary field F ? Of course,
Theorem 2.3.1 does not even make sense for an arbitrary field F, since the notion
of a unitary matrix is only defined over C. Even if we take this loss and replace
“unitary” by merely “invertible” (so U∗ becomes U−1, and “unitarily similar” just
becomes “similar”), the theorem will still fail, because (for example) the matrix(

0 −1
1 0

)
is not similar to any triangular matrix over the field R. This is because

its eigenvalues (which are i and −i) are not real.
However, apart from these two issues, things go well. So we can state the follow-

ing weak version of Schur triangularization over an arbitrary field:

Theorem 2.3.8 (triangularization theorem). Let F be a field. Let A ∈ Fn×n. As-
sume that the characteristic polynomial pA of A factors as a product of n linear
factors over F (so A has n eigenvalues in F, counted with algebraic multiplici-
ties). Then, there exist an invertible matrix U ∈ Fn×n and an upper-triangular
matrix T ∈ Fn×n such that A = UTU−1. In other words, A is similar to some
upper-triangular matrix.

This is an analogue of Theorem 2.3.1; a corresponding analogue of Theorem 2.3.3
also exists:

Therefore, T1,1, T2,2, . . . , Tn,n are the roots of the polynomial det (tIn − T) (with multiplicities).
However, det (tIn − T) is the characteristic polynomial of T. Thus, the roots of this polynomial

det (tIn − T) are the eigenvalues of T (with algebraic multiplicities). Since we know that the
roots of this polynomial are T1,1, T2,2, . . . , Tn,n, we thus conclude that T1,1, T2,2, . . . , Tn,n are the
eigenvalues of T (with algebraic multiplicities). In other words, the diagonal entries of T are the
eigenvalues of T (with algebraic multiplicities). Qed.
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Theorem 2.3.9 (triangularization with prescribed diagonal). Let F be a field. Let
A ∈ Fn×n. Assume that the characteristic polynomial pA of A factors as a prod-
uct of n linear factors over F (so A has n eigenvalues in F, counted with algebraic
multiplicities). Let λ1, λ2, . . . , λn be the eigenvalues of A (listed with their alge-
braic multiplicities). Then, there exists an upper-triangular matrix T ∈ Fn×n

such that A ∼ T (this means “A is similar to T”, as we recall) and such that the
diagonal entries of T are λ1, λ2, . . . , λn in this order.

The proofs of Theorem 2.3.8 and Theorem 2.3.9 are fairly similar to the above
proofs of Theorem 2.3.1 and Theorem 2.3.3:

Proof of Theorem 2.3.9. We proceed by induction on n:
Induction base: For n = 0, Theorem 2.3.9 holds trivially20.
Induction step: Let m be a positive integer. Assume (as the induction hypothesis)

that Theorem 2.3.9 is proved for n = m − 1. We must prove that Theorem 2.3.9
holds for n = m.

So let A ∈ Fm×m be an m×m-matrix whose characteristic polynomial pA factors
as a product of m linear factors, and let λ1, λ2, . . . , λm be the eigenvalues of A
(listed with their algebraic multiplicities). We must show that there exists an upper-
triangular matrix T ∈ Fm×m such that A ∼ T and such that the diagonal entries of
T are λ1, λ2, . . . , λm in this order.

Since λ1 is an eigenvalue of A, there exists at least one nonzero λ1-eigenvector x
of A. Pick any such x. Set u1 := x. The 1-tuple (u1) of vectors in Fm is then linearly
independent (since u1 = x is nonzero).

It is well-known that any linearly independent tuple of vectors in Fm can be
extended to a basis of Fm (if you wish, this is an analogue of Corollary 1.2.9). Thus,
in particular, the 1-tuple (u1) of vectors in Fm can be extended to a basis of Fm. In
other words, we can find m− 1 vectors u2, u3, . . . , um ∈ Fm such that (u1, u2, . . . , um)
is a basis of Fm. Consider these m− 1 vectors u2, u3, . . . , um.

Let U ∈ Fm×m be the m × m-matrix whose columns are u1, u2, . . . , um in this
order. Then, the columns of this matrix form a basis of Fm. Hence, the matrix U is
invertible.

Let (e1, e2, . . . , em) be the standard basis of the F-vector space Fm. It is known
that if B is any m×m-matrix, then

the 1-st column of B is Be1. (35)

Applying this to B = U, we see that the 1-st column of U is Ue1. Since we also
know that the 1-st column of U is u1 (by the definition of U), we thus conclude that
Ue1 = u1 = x. However, Ax = λ1x (since x is a λ1-eigenvector of A). In view of
Ue1 = x, this rewrites as AUe1 = λ1Ue1.

Define an m×m-matrix

C := U−1AU ∈ Fm×m.
20There is only one 0× 0-matrix, and we take T to be this matrix.
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Thus, A ∼ C. Hence, Proposition 2.1.5 (d) shows that the matrices A and C have
the same characteristic polynomial. In other words, pA = pC.

Furthermore, (35) shows that the 1-st column of the matrix C is

Ce1 = U−1 AUe1︸ ︷︷ ︸
=λ1Ue1

(
since C = U−1AU

)

= U−1λ1Ue1 = λ1e1 =


λ1
0
0
...
0

 .

In other words, the matrix C has the form

C =


λ1 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
... . . . ...

0 ∗ ∗ · · · ∗

 ,

where each asterisk (∗) means an entry that we don’t know or don’t care about (in
our case, both).

Let us write this in block-matrix notation:

C =

(
λ1 p
0 B

)
, (36)

where p ∈ F1×(m−1) is a row vector and B ∈ F(m−1)×(m−1) is a matrix21. Consider
this p and this B.

We shall now show that the eigenvalues of B are λ2, λ3, . . . , λm. Indeed, Lemma
2.3.5 (applied to n = m− 1 and λ = λ1) yields pC = (t− λ1) · pB (because of (36)).
Hence,

pA = pC = (t− λ1) · pB.

On the other hand,
pA = (t− λ1) (t− λ2) · · · (t− λm)

(since pA is monic, and the roots of pA are precisely the eigenvalues of A with
algebraic multiplicities, which we know are λ1, λ2, . . . , λm). Comparing these two
equalities, we obtain

(t− λ1) · pB = (t− λ1) (t− λ2) · · · (t− λm) .

21The “0” here is actually the zero vector in Fm−1.
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We can cancel the factor t−λ1 from both sides of this equality (since the polynomial
ring over F has no zero-divisors). Thus, we obtain

pB = (t− λ2) (t− λ3) · · · (t− λm) .

In other words, the eigenvalues of the (m− 1)× (m− 1)-matrix B are λ2, λ3, . . . , λm
(listed with their algebraic multiplicities).

Hence, by the induction hypothesis, we can apply Theorem 2.3.9 to m− 1, B and
λ2, λ3, . . . , λm instead of n, A and λ1, λ2, . . . , λn. As a result, we conclude that there
exists an upper-triangular matrix S ∈ F(m−1)×(m−1) such that B ∼ S and such that
the diagonal entries of S are λ2, λ3, . . . , λm in this order. Consider this S.

We have B ∼ S. In other words, there is a invertible matrix V ∈ F(m−1)×(m−1)

such that S = VBV−1. Consider this V.
Now, let

W :=
(

1 0
0 V

)
∈ Fm×m (in block-matrix notation) .

This is a block-diagonal matrix, with
(

1
)

and V being its diagonal blocks. Hence,

W is invertible with W−1 =

(
1 0
0 V−1

)
. Therefore, C ∼ WCW−1. Combining

A ∼ C with C ∼WCW−1, we obtain A ∼WCW−1 (by Proposition 2.1.3 (c)).
However,

W︸︷︷︸
=

(
1 0
0 V

) C︸︷︷︸
=

(
λ1 p
0 B

) W−1︸︷︷︸
=

 1 0
0 V−1


=

(
1 0
0 V

)(
λ1 p
0 B

)(
1 0
0 V−1

)
=

(
1 · λ1 · 1 1 · p ·V−1

V · 0 · 1 V · B ·V−1

) (
by using Proposition 1.6.5 twice

and simplifying the 0 addends away

)

=

(
λ1 pV−1

0 VBV−1

)
=

(
λ1 pV−1

0 S

) (
since VBV−1 = S

)
.

This matrix WCW−1 is therefore upper-triangular (since the bottom-left block is
a zero vector, and since the bottom-right block S is upper-triangular), and its di-
agonal entries are λ1, λ2, . . . , λm in this order (because its first diagonal entry is
visibly λ1, whereas its remaining diagonal entries are the diagonal entries of S and
therefore are λ2, λ3, . . . , λm in this order22).

Thus, there exists an upper-triangular matrix T ∈ Fm×m such that A ∼ T and
such that the diagonal entries of T are λ1, λ2, . . . , λm in this order (namely, WCW−1

is such a matrix, because A ∼WCW−1 and because of what we just said).

22In fact, we have shown above that the diagonal entries of S are λ2, λ3, . . . , λm in this order.
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Thus, we have shown that Theorem 2.3.9 holds for n = m. This completes the
induction step. The proof of Theorem 2.3.9 is thus complete.

Proof of Theorem 2.3.8. Theorem 2.3.8 follows from Theorem 2.3.9 (and the definition
of similarity).

2.4. Commuting matrices

Next, we shall generalize Theorem 2.3.1 from the case of a single matrix to the case
of several matrices that pairwise commute.

Definition 2.4.1. Two n× n-matrices A and B are said to commute if AB = BA.

Examples of commuting matrices are easy to find; e.g., any two powers of a
single matrix commute (i.e., we have Ak A` = A`Ak for any n × n-matrix A and
any k, ` ∈ N). Also, any two diagonal matrices (of the same size) commute. But
there are many more situations in which matrices commute. In this section, we
shall extend Schur triangularization from a single matrix to a family of commuting
matrices.

First, we need a lemma ([HorJoh13, Lemma 1.3.19]) which says that any family
of pairwise commuting matrices in Cn×n has a common eigenvector:

Lemma 2.4.2. Let n > 0. Let F be a subset of Cn×n such that any two matrices
in F commute (i.e., any A ∈ F and B ∈ F satisfy AB = BA).

Then, there exists a nonzero vector x ∈ Cn such that x is an eigenvector of
each A ∈ F .

Proof. We shall use the following conventions:

• An F -eigenvector will mean a vector x ∈ Cn such that x is an eigenvector
of each A ∈ F . Thus, our goal is to show that there exists a nonzero F -
eigenvector.

• A subspace shall mean a C-vector subspace of Cn.

• A subspace W of Cn is said to be nontrivial if it contains a nonzero vector (i.e.,
if its dimension is > 0).

• A subspace W of Cn is said to be F -invariant if every A ∈ F and every w ∈W
satisfy Aw ∈W. (This means that applying a matrix A ∈ F to a vector w ∈W
gives a vector in W again – i.e., that there is no way to “escape” W by applying
matrices A ∈ F .)

[Example: If n = 2 and F =

{(
3 a
0 2

)
| a ∈ R

}
, then span (e1) =

{(
x
0

)
| x ∈ C

}
is an F -invariant subspace, because every A =

(
3 a
0 2

)
∈ F and every
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w =

(
x
0

)
∈ span (e1) satisfy

Aw =

(
3 a
0 2

)(
x
0

)
=

(
3x
0

)
∈ span (e1) .

More generally, if the set F ⊆ Cn×n consists entirely of upper-triangular
matrices, then each of the subspaces

span (e1, e2, . . . , ek) = {x ∈ Cn | the last n− k coordinates of x are 0}

is F -invariant, because the product Ax of an upper-triangular matrix A ∈
Cn×n with a vector x ∈ span (e1, e2, . . . , ek) is always a vector in span (e1, e2, . . . , ek).]

It is clear that the trivial subspace {0} is F -invariant; so is the whole space Cn

itself. The latter shows that there exists at least one nontrivial F -invariant subspace
(namely, Cn).

Now, we shall show the following crucial claim:

Claim 1: Let W be a nontrivial F -invariant subspace. Let w ∈ W. As-
sume that w is not an F -eigenvector. Then, there exists a nontrivial
F -invariant subspace V such that V is a proper subset of W.

Roughly speaking, this claim is saying that if a nontrivial F -invariant subspace
contains a vector w that is not an F -eigenvector, then there is a smaller nontrivial
F -invariant subspace inside it. This fact (once proved) allows us to start with
any nontrivial F -invariant subspace (for instance, Cn itself), and then successively
replace it by smaller and smaller subspaces until we eventually find a nontrivial
F -invariant subspace that consists entirely of F -eigenvectors. This will then yield
the existence of a nonzero F -eigenvector, and thus Lemma 2.4.2 will be proved.
(We shall walk through this argument in more detail after proving Claim 1.)

So let us now prove Claim 1:
[Proof of Claim 1: We know that w is not an F -eigenvector. In other words, there

exists some B ∈ F such that w is not an eigenvector of B. Consider this B.
We have Bv ∈W for each v ∈W (since W is F -invariant). Hence, the map

f : W →W,
v 7→ Bv

is well-defined. This map f is furthermore C-linear (for obvious reasons). Also,
dim W > 0 (because W is nontrivial).

However, it is well-known that any linear map from a finite-dimensional C-vector
space to itself has at least one nonzero eigenvector, provided that this vector space
has dimension > 0. We thus conclude that the linear map f : W → W has at least
one nonzero eigenvector23. Pick such a nonzero eigenvector x, and let λ ∈ C be

23since f is a C-linear map from the finite-dimensional C-vector space W to itself, and since
dim W > 0
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the corresponding eigenvalue. Thus, x ∈ W and v 6= 0 and f (x) = λx. Since
f (x) = Bx (by the definition of f ), we can rewrite the latter equality as Bx = λx.
In contrast, Bw 6= λw (since w is not an eigenvector of B).

Define a subset V of W by

V := {v ∈W | Bv = λv} .

It is easy to see that V is a subspace (since B (u + v) = Bu + Bv and B (µv) = µ · Bv
for any u, v ∈ W and µ ∈ C). Furthermore, this subspace V contains the nonzero
vector x (since Bx = λx), and thus is nontrivial. However, this subspace V does
not contain w (because if it did, then we would have Bw = λw (by the definition
of V), which would contradict Bw 6= λw). Thus, V 6= W (since W does contain w).
Therefore, V is a proper subset of W (since V is a subset of W).

Let us now show that this subspace V is F -invariant. Indeed, let A ∈ F and
v ∈ V be arbitrary. We shall show that Av ∈ V.

We have v ∈ V ⊆ W and therefore Av ∈ W (since W is F -invariant). Moreover,
Bv = λv (since v ∈ V). Furthermore, B and A commute (since any two matrices
in F commute); thus, BA = AB. Hence, BAv = A Bv︸︷︷︸

=λv

= λ · Av. Thus, Av is a

vector z ∈W that satisfies Bz = λz (since Av ∈W). In other words, Av ∈ V (by the
definition of V).

Forget that we fixed A and v. We thus have shown that every A ∈ F and every
v ∈ V satisfy Av ∈ V. In other words, the subspace V is F -invariant.

Thus, we have found a nontrivial F -invariant subspace V such that V is a proper
subset of W. This proves Claim 1.]

Now, we can complete the proof of Lemma 2.4.2 (using the strategy we outlined
above):

We must prove that there exists a nonzero F -eigenvector. Assume the contrary.
Thus, there exists no nonzero F -eigenvector.

We recursively construct a sequence (V0, V1, V2, V3, . . .) of nontrivial F -invariant
subspaces as follows:

• We begin by setting V0 := Cn. (This subspace is indeed F -invariant, and
furthermore is nontrivial because n > 0.)

• For each i ∈ N, if the nontrivial F -invariant subspace Vi has already been
constructed, we define the next subspace Vi+1 as follows: We pick an arbitrary
nonzero vector w ∈ Vi. (Such a w exists, since Vi is nontrivial.) This w cannot
be an F -eigenvector (since there exists no nonzero F -eigenvector). Hence,
Claim 1 (applied to W = Vi) yields that there exists a nontrivial F -invariant
subspace V such that V is a proper subset of Vi. We choose such a V and
define Vi+1 := V.

Thus, we obtain a sequence (V0, V1, V2, V3, . . .) of subspaces such that each sub-
space Vi+1 in this sequence is a proper subset of the preceding subspace Vi. Hence,
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for each i ∈ N, we have dim (Vi+1) < dim (Vi) (since Vi and Vi+1 are finite-
dimensional vector spaces). Equivalently, for each i ∈ N, we have dim (Vi) >
dim (Vi+1). In other words,

dim (V0) > dim (V1) > dim (V2) > · · · .

Hence, the sequence (dim (V0) , dim (V1) , dim (V2) , . . .) is a strictly decreasing
infinite sequence of nonnegative integers. However, this is absurd, since there
exists no strictly decreasing infinite sequence of nonnegative integers24. Thus, we
have obtained a contradiction. This proves Lemma 2.4.2.

We can now generalize Theorem 2.3.1 to families of commuting matrices:

Theorem 2.4.3. Let F be a subset of Cn×n such that any two matrices in F
commute (i.e., any A ∈ F and B ∈ F satisfy AB = BA).

Then, there exists a unitary matrix U ∈ Un (C) such that for each A ∈ F , the
matrix UAU∗ is upper-triangular.

Proof. This can be proved by an induction on n, similarly to Theorem 2.3.3. But
now, instead of picking an eigenvector x of a single matrix A, we pick a common
eigenvector for all matrices in F . The existence of such an eigenvector is guaranteed
by Lemma 2.4.2.

Here is the argument in more detail:
We proceed by induction on n:
Induction base: For n = 0, Theorem 2.4.3 holds trivially25.
Induction step: Let m be a positive integer. Assume (as the induction hypothesis)

that Theorem 2.4.3 is proved for n = m − 1. We must prove that Theorem 2.4.3
holds for n = m.

So let F be a subset of Cm×m such that any two matrices in F commute (i.e., any
A ∈ F and B ∈ F satisfy AB = BA). We must show that there exists a unitary
matrix Q ∈ Um (C) such that for each A ∈ F , the matrix QAQ∗ is upper-triangular.

Lemma 2.4.2 (applied to n = m) shows that there exists a nonzero vector x ∈ Cm

such that x is an eigenvector of each A ∈ F . Pick any such x. Set u1 :=
1
||x||x.

Then, u1 is still an eigenvector of each A ∈ F , but additionally satisfies ||u1|| = 1.
Hence, the 1-tuple (u1) of vectors in Cm is orthonormal.

Thus, Corollary 1.2.9 (applied to k = 1 and n = m) shows that we can find m− 1
vectors u2, u3, . . . , um ∈ Cm such that (u1, u2, . . . , um) is an orthonormal basis of Cm.
Consider these m− 1 vectors u2, u3, . . . , um.

Let U ∈ Cm×m be the m × m-matrix whose columns are u1, u2, . . . , um in this
order. Then, the columns of this matrix form an orthonormal basis of Cm. Hence,
Theorem 1.5.3 (specifically, the implication E =⇒ A in this theorem) yields that the

24This is an example of a “proof by infinite descent”.
25because any 0× 0-matrix is upper-triangular
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matrix U is unitary. Therefore, U∗ = U−1. Moreover, since U is unitary, we have
UU∗ = Im and U∗U = Im. Thus, the matrix U∗ is unitary.

For each A ∈ F , we now define an m×m-matrix

CA := U∗AU ∈ Cm×m.

Now, let A ∈ F be arbitrary. We know that u1 is an eigenvector of A; let λA be
the corresponding eigenvalue. Now, it is not hard to show26 that the matrix CA can
be written in block-matrix notation as

CA =

(
λA pA
0 BA

)
, (37)

where pA ∈ C1×(m−1) is a row vector and BA ∈ C(m−1)×(m−1) is a matrix27. Con-
sider this pA and this BA.

Forget that we fixed A. Thus, for each A ∈ F , we have defined a complex
number λA, a row vector pA ∈ C1×(m−1) and a matrix BA ∈ C(m−1)×(m−1) such that
(37) holds.

Let A ∈ F and A′ ∈ F be arbitrary. We are going to show that BAA′ = BABA′ .
Indeed, we first observe that the definitions of CA and CA′ yield

CA︸︷︷︸
=U∗AU

CA′︸︷︷︸
=U∗A′U

= U∗A UU∗︸︷︷︸
=Im

A′U = U∗AA′U

= CAA′ (38)

(by the definition of CAA′). However, (37) yields

CA =

(
λA pA
0 BA

)
, CA′ =

(
λA′ pA′

0 BA′

)
,

and CAA′ =

(
λAA′ pAA′

0 BAA′

)
.

In view of this, we can rewrite (38) as(
λA pA
0 BA

)(
λA′ pA′

0 BA′

)
=

(
λAA′ pAA′

0 BAA′

)
.

Hence,(
λAA′ pAA′

0 BAA′

)
=

(
λA pA
0 BA

)(
λA′ pA′

0 BA′

)
=

(
λAλA′ λA pA′ + pABA′

0 BABA′

)
26Indeed, this is essentially a carbon copy of the proof of (34) in our above proof of Theorem 2.3.3

(except that C, λ1, p and B are now called CA, λA, pA and BA); thus, we leave the details to the
reader.

27The “0” here is actually the zero vector in Cm−1.
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(by applying Proposition 1.6.5 and simplifying). Comparing the bottom-right blocks
of the block matrices on both sides, we obtain BAA′ = BABA′ .

Similarly, BA′A = BA′BA. However, AA′ = A′A (since any two matrices in F
commute). Thus, BAA′ = BA′A. In view of BAA′ = BABA′ and BA′A = BA′BA, we
can rewrite this as

BABA′ = BA′BA. (39)

Forget that we fixed A and A′. We thus have proved (39) for all A ∈ F and
A′ ∈ F .

Define a set
F ′ := {BA | A ∈ F} ⊆ C(m−1)×(m−1).

Then, (39) shows that any two matrices in F ′ commute.
Hence, by the induction hypothesis, we can apply Theorem 2.4.3 to m − 1 and
F ′ instead of n and F . As a result, we conclude that there exists a unitary matrix
V ∈ Um−1 (C) such that for each B ∈ F ′, the matrix VBV∗ is upper-triangular.
Consider this V.

Now, let

W :=
(

1 0
0 V

)
∈ Cm×m (in block-matrix notation) .

This is a block-diagonal matrix, with
(

1
)

and V being its diagonal blocks. Hence,

W∗ =

(
1 0
0 V∗

)
. Moreover, W is a unitary matrix (since it is a block-diagonal

matrix whose diagonal blocks are unitary28).
Now, let Q be the matrix WU∗. Then, Q is unitary (by Exercise 1.5.2 (b), since

W and U∗ are unitary). We shall show that for each A ∈ F , the matrix QAQ∗ is
upper-triangular.

Indeed, let A ∈ F . Then, BA ∈ F ′ (by the definition of F ′). However, we
know that for each B ∈ F ′, the matrix VBV∗ is upper-triangular. Applying this
to B = BA, we conclude that the matrix VBAV∗ is upper-triangular. On the other

28We are using Proposition 1.6.12 here.
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hand, from Q = WU∗, we obtain

QAQ∗ = WU∗A (WU∗)∗︸ ︷︷ ︸
=(U∗)∗W∗=UW∗

= W U∗AU︸ ︷︷ ︸
=CA

(by the definition of CA)

W∗

= W︸︷︷︸
=

(
1 0
0 V

) CA︸︷︷︸
=

(
λA pA
0 BA

)
(by (37))

W∗︸︷︷︸
=

(
1 0
0 V∗

)

=

(
1 0
0 V

)(
λA pA
0 BA

)(
1 0
0 V∗

)
=

(
1 · λA · 1 1 · pA ·V∗
V · 0 · 1 V · BA ·V∗

) (
by using Proposition 1.6.5 twice and

simplifying the 0 addends away

)
=

(
λA pAV∗

0 VBAV∗

)
.

This matrix QAQ∗ is therefore upper-triangular (since its bottom-right block VBAV∗

is upper-triangular).
Forget that we fixed A. We thus have shown that for each A ∈ F , the matrix

QAQ∗ is upper-triangular. Since Q is unitary, we thus have found a unitary matrix
Q ∈ Um (C) such that for each A ∈ F , the matrix QAQ∗ is upper-triangular.

Thus, we have shown that Theorem 2.4.3 holds for n = m. This completes the
induction step. The proof of Theorem 2.4.3 is thus complete.

Lecture 5 starts here.

2.5. Normal matrices

We next define a fairly wide class of matrices with complex entries that contains
several of our familiar classes as subsets:

Definition 2.5.1. A square matrix A ∈ Cn×n is said to be normal if AA∗ = A∗A.

In other words, a square matrix is normal if it commutes with its own conju-
gate transpose. This is not the most intuitive notion (nor is the word “normal”
particularly expressive), so we shall give some examples:

Example 2.5.2. (a) Let A =

(
1 −1
1 1

)
∈ C2×2. Then, the matrix A is normal.

Indeed, its conjugate transpose is A∗ =

(
1 1
−1 1

)
, and it is easily seen that

AA∗ = A∗A = 2I2.
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(b) Let B =

(
0 i
0 0

)
∈ C2×2. Then, the matrix B is not normal. Indeed,

B∗ =
(

0 0
−i 0

)
and thus BB∗ 6= B∗B, as can easily be verified.

(c) Let a, b ∈ C be arbitrary, and let C =

(
a b
b a

)
∈ C2×2. Then, C is normal.

Indeed, C∗ =

(
a b
b a

)
, so that it is easy to check that both CC∗ and C∗C equal(

a b
b a

)(
a b
b a

)
=

(
aa + bb ab + ba
ab + ba aa + bb

)
.

As we promised, several familiar classes of matrices are normal. We recall a
definition:

Definition 2.5.3. A square matrix H ∈ Cn×n is said to be Hermitian if and only if
H∗ = H.

For example, the matrix
(

1 i
−i 2

)
is Hermitian. Any real symmetric matrix

(i.e., any symmetric matrix with real entries) is Hermitian as well.
In contrast, a square matrix S ∈ Cn×n is skew-Hermitian if and only if S∗ = −S

(by Definition 1.5.4). Finally, a square matrix U ∈ Cn×n is unitary if and only if
UU∗ = U∗U = In (by Theorem 1.5.3, equivalence A ⇐⇒ C). Having recalled all
these concepts, we can state the following:

Proposition 2.5.4. (a) Every Hermitian matrix H ∈ Cn×n is normal.

(b) Every skew-Hermitian matrix S ∈ Cn×n is normal.

(c) Every unitary matrix U ∈ Cn×n is normal.

(d) Every diagonal matrix D ∈ Cn×n is normal.

Proof. (a) Let H ∈ Cn×n be a Hermitian matrix. Then, H∗ = H (by the definition of
“Hermitian”). Hence, H H∗︸︷︷︸

=H

= H︸︷︷︸
=H∗

H = H∗H. In other words, H is normal. This

proves Proposition 2.5.4 (a).

(b) This is analogous to part (a), except for a minus sign that appears and disap-
pears again.

(c) This is clear, since UU∗ = U∗U = In entails UU∗ = U∗U.

(d) Let D ∈ Cn×n be a diagonal matrix. Write D in the form

D = diag (λ1, λ2, . . . , λn) for some λ1, λ2, . . . , λn ∈ C.
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Then, D∗ = diag
(
λ1, λ2, . . . , λn

)
. Hence,

DD∗ = diag
(
λ1λ1, λ2λ2, . . . , λnλn

)
and

D∗D = diag
(
λ1λ1, λ2λ2, . . . , λnλn

)
.

The right hand sides of these two equalities are equal (since λiλi = λiλi for each
i ∈ [n]). Thus, the left hand sides must too be equal. In other words, DD∗ = D∗D.
This means that D is normal. This proves Proposition 2.5.4 (d).

Unlike the unitary matrices, the normal matrices are not closed under multipli-
cation:

Exercise 2.5.1. 2 Find two normal matrices A, B ∈ C2×2 such that neither A + B
nor AB is normal.

Here are three more ways to construct normal matrices out of existing normal
matrices:

Proposition 2.5.5. Let A ∈ Cn×n be a normal matrix.

(a) If λ ∈ C is arbitrary, then the matrix λIn + A is normal.

(b) If U ∈ Cn×n is a unitary matrix, then the matrix UAU∗ is normal.

(c) The matrix A∗ is normal.

Proof. We have AA∗ = A∗A (since A is normal).

(a) Let λ ∈ C be arbitrary. Then, Proposition 1.3.3 (a) yields

(λIn + A)∗ = (λIn)
∗︸ ︷︷ ︸

=λIn
(this is easily seen directly, or

obtained from Proposition 1.3.3 (b))

+A∗ = λIn + A∗.

Hence,

(λIn + A) (λIn + A)∗︸ ︷︷ ︸
=λIn+A∗

= (λIn + A)
(
λIn + A∗

)
= λλIn + λA∗ + λA + AA∗.

A similar computation shows that

(λIn + A)∗ (λIn + A) = λλIn + λA∗ + λA + A∗A.

The right hand sides of these two equalities are equal (since λλ = λλ and AA∗ =
A∗A). Hence, so are the left hand sides. In other words, (λIn + A) (λIn + A)∗ =
(λIn + A)∗ (λIn + A). In other words, the matrix λIn + A is normal. This proves
Proposition 2.5.5 (a).
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(b) Let U ∈ Cn×n be a unitary matrix. Thus, UU∗ = U∗U = In (by the A ⇐⇒ C
part of Theorem 1.5.3). Now, applying Proposition 1.3.3 (c) twice, we see that
(XYZ)∗ = Z∗Y∗X∗ for any three n× n-matrices X, Y, Z. Hence,

(UAU∗)∗ = (U∗)∗︸ ︷︷ ︸
=U

(by Proposition 1.3.3 (d))

A∗U∗ = UA∗U∗.

Hence,

(UAU∗) (UAU∗)∗︸ ︷︷ ︸
=UA∗U∗

= (UAU∗) (UA∗U∗) = UA U∗U︸︷︷︸
=In

A∗U∗ = UAA∗U∗.

A similar computation shows that

(UAU∗)∗ (UAU∗) = UA∗AU∗.

The right hand sides of these two equalities are equal (since AA∗ = A∗A). Hence,
so are the left hand sides. In other words, (UAU∗) (UAU∗)∗ = (UAU∗)∗ (UAU∗).
In other words, the matrix UAU∗ is normal. This proves Proposition 2.5.5 (b).

(c) This is left to the reader.

Here is another normality-preserving way to transform matrices:

Definition 2.5.6. Let F be a field. Let A ∈ Fn×n be a square matrix. Let p (x)
be a polynomial in a single indeterminate x with coefficients in F. Write p (x) in
the form p (x) = a0x0 + a1x1 + · · ·+ adxd, where a0, a1, . . . , ad ∈ F.

Then, p (A) denotes the matrix a0A0 + a1A1 + · · ·+ ad Ad ∈ Fn×n.

For instance, if p (x) = x3 − 2x2 + 1, then p (A) = A3 − 2A2 + A0 = A3 − 2A2 +
In.

Proposition 2.5.7. Let A ∈ Cn×n be a normal matrix. Let p (x) be a polynomial in
a single indeterminate x with coefficients in C. Then, the matrix p (A) is normal.

Exercise 2.5.2. 3 Prove Proposition 2.5.7.

Exercise 2.5.3. 2 Generalizing Proposition 2.5.5 (b), we might claim the follow-
ing:

Let A ∈ Ck×k be a normal matrix. Let U ∈ Cn×k be an isometry. Then, the
matrix UAU∗ is normal.

Is this generalization correct?
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Exercise 2.5.4. 4 Let A ∈ Cn×n be a normal matrix. Prove the following:

(a) We have ||Ax|| = ||A∗x|| for each x ∈ Cn.

(b) We have Ker A = Ker (A∗).

(c) Let λ ∈ C. Then, the λ-eigenvectors of A are the λ-eigenvectors of A∗.

Exercise 2.5.5. 4 (a) Let A ∈ Cn×n and B ∈ Cm×m be two normal matrices, and
X ∈ Cn×m. Prove that AX = XB if and only if A∗X = XB∗. (This is known as
the (finite) Fuglede–Putnam theorem.)

(b) Let A ∈ Cn×n and X ∈ Cn×n be two matrices such that A is normal. Prove
that X commutes with A if and only if X commutes with A∗.

[Hint: For part (a), set C := AX−XB and D := A∗X−XB∗. Use Exercise 2.0.2
to show that Tr (C∗C) = Tr (D∗D). Conclude using Exercise 2.0.3 (b). Finally,
observe that part (b) is a particular case of part (a).]

Exercise 2.5.6. 5 Let A ∈ Cn×n and B ∈ Cn×n be two normal matrices such that
AB = BA. Prove that the matrices A + B and AB are normal.

[Hint: Use Exercise 2.5.5 (b).]

Exercise 2.5.7. 4 Let A ∈ Cn×n.

(a) Show that there is a unique pair (R, C) of Hermitian matrices R and C such
that A = R + iC.

(b) Consider this pair (R, C). Show that A is normal if and only if R and C
commute (that is, RC = CR).

[Hint: For part (a), apply the “conjugate transpose” operation to A = R + iC
to obtain A∗ = R− iC.]

We will now prove an innocent-looking property of normal matrices that will
turn out crucial in characterizing them:

Lemma 2.5.8. Let T ∈ Cn×n be a triangular matrix. Then, T is normal if and only
if T is diagonal.

Proof. The “if” direction follows from Proposition 2.5.4 (d). Thus, it remains to
prove the “only if” direction.

So let us assume that T is normal. We shall show that T is diagonal.
The matrix T is normal; thus, T∗ is normal as well (by Proposition 2.5.5 (c)). Since

T is normal, we have TT∗ = T∗T.
We have assumed that T is triangular. WLOG assume that T is upper-triangular

(because otherwise, we can replace T by T∗). In other words,

Ti,j = 0 for all i, j ∈ [n] satisfying i > j. (40)
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We must prove that the matrix T is diagonal. Assume the contrary. Thus, T has a
nonzero off-diagonal entry29. Let i be the smallest element of [n] such that the i-th
row of T contains a nonzero off-diagonal entry. Hence, the i-th row of T contains
a nonzero off-diagonal entry, but the 1-st, 2-nd, . . ., (i− 1)-st rows of T contain no
such entries.

The definition of the product of two matrices yields that the (i, i)-th entry of T∗T
is

(T∗T)i,i =
n

∑
k=1

(T∗)i,k︸ ︷︷ ︸
=Tk,i

(by the definition of T∗)

Tk,i =
n

∑
k=1

Tk,iTk,i

=
i

∑
k=1

Tk,iTk,i +
n

∑
k=i+1

Tk,i Tk,i︸︷︷︸
=0

(by (40), applied to k and i
instead of i and j)

=
i

∑
k=1

Tk,iTk,i +
n

∑
k=i+1

Tk,i0 =
i

∑
k=1

Tk,iTk,i︸ ︷︷ ︸
=|Tk,i|2

(since zz=|z|2 for each z∈C)

=
i

∑
k=1
|Tk,i|2 .

A similar computation yields

(TT∗)i,i =
n

∑
k=i
|Ti,k|2 .

The left hand sides of these two equalities are equal (since T∗T = TT∗). Thus, the
right hand sides are equal as well. In other words, we have

i

∑
k=1
|Tk,i|2 =

n

∑
k=i
|Ti,k|2 .

Both sides of this equality are sums with their k = i addend equal to |Ti,i|2. Thus, if
we subtract |Ti,i|2 from this equality, then both sums lose their k = i addends, and
we are left with

i−1

∑
k=1
|Tk,i|2 =

n

∑
k=i+1

|Ti,k|2 . (41)

Now, recall that the 1-st, 2-nd, . . ., (i− 1)-st rows of T contain no nonzero off-
diagonal entries. In other words, if k ∈ [i− 1], then Tk,j = 0 for each j 6= k. Hence,

29An “off-diagonal entry” means an entry that does not lie on the diagonal.
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in particular, if k ∈ [i− 1], then Tk,i = 0 (since i 6= k). Therefore,
i−1
∑

k=1

∣∣∣∣∣∣ Tk,i︸︷︷︸
=0

∣∣∣∣∣∣
2

=

i−1
∑

k=1
02 = 0. Comparing this with (41), we obtain

n

∑
k=i+1

|Ti,k|2 = 0.

Therefore, all addends |Ti,i+1|2 , |Ti,i+2|2 , . . . , |Ti,n|2 in this sum are 0 (because a sum
of nonnegative reals can only be 0 if all its addends are 0). In other words, all the
numbers Ti,i+1, Ti,i+2, . . . , Ti,n are 0. Since all the numbers Ti,1, Ti,2, . . . , Ti,i−1 are
0 as well (by (40)), we thus conclude that all the numbers Ti,1, Ti,2, . . . , Ti,n are 0
except for (possibly) Ti,i. In other words, the i-th row of T contains no nonzero
off-diagonal entries. This contradicts the definition of i. Hence, we have obtained
a contradiction, and our proof of Lemma 2.5.8 is complete.

Exercise 2.5.8. 3 (a) Let T ∈ Cn×n be an upper-triangular matrix. Prove that

m

∑
i=1

(TT∗ − T∗T)i,i =
m

∑
i=1

n

∑
j=m+1

∣∣Ti,j
∣∣2

for each m ∈ {0, 1, . . . , n}.
(b) Use this to give a direct proof (i.e., not a proof by contradiction) of Lemma

2.5.8.

For the next exercise, we recall the notion of a nilpotent matrix:

Definition 2.5.9. Let F be a field. A square matrix A ∈ Fn×n is said to be nilpotent
if there exists some nonnegative integer m such that Am = 0.

For example, the matrix
(

6 9
−4 −6

)
is nilpotent, since

(
6 9
−4 −6

)2

= 0. Also,

every strictly upper-triangular matrix and every strictly lower-triangular matrix is
nilpotent.

Exercise 2.5.9. 2 Let A ∈ Cn×n be a normal matrix that is nilpotent. Prove that
A = 0.

Let us state another useful property of polynomials applied to matrices (Defini-
tion 2.5.6):
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Exercise 2.5.10. 3 Let A ∈ Cn×n be any matrix. Let λ1, λ2, . . . , λn be the eigen-
values of A (listed with their algebraic multiplicities). Let p (x) be a polynomial
in a single indeterminate x with coefficients in C.

Prove that the eigenvalues of the matrix p (A) are p (λ1) , p (λ2) , . . . , p (λn)
(listed with their algebraic multiplicities).

(This is known as the spectral mapping theorem.)

2.6. The spectral theorem

2.6.1. The spectral theorem for normal matrices

We are now ready to state the main theorem about normal matrices, the so-called
spectral theorem:

Theorem 2.6.1 (spectral theorem for normal matrices). Let A ∈ Cn×n be a normal
matrix. Then:

(a) There exists a unitary matrix U ∈ Un (C) and a diagonal matrix D ∈ Cn×n

such that
A = UDU∗.

In other words, A is unitarily similar to a diagonal matrix.

(b) Let U ∈ Un (C) be a unitary matrix, and D ∈ Cn×n be a diagonal matrix
such that A = UDU∗. Then, the diagonal entries of D are the eigenvalues of
A. Moreover, the columns of U are eigenvectors of A. Thus, there exists an
orthonormal basis of Cn consisting of eigenvectors of A.

Proof. (a) Theorem 2.3.1 yields that there exist a unitary matrix U ∈ Un (C) and an
upper-triangular matrix T ∈ Cn×n such that A = UTU∗. Consider these U and T.

Since U is unitary, we have U∗U = In and UU∗ = In. The matrix U∗ is unitary as
well (since U∗ (U∗)∗︸ ︷︷ ︸

=U

= U∗U = In and (U∗)∗︸ ︷︷ ︸
=U

U∗ = UU∗ = In). Hence, Proposition

2.5.5 (b) (applied to U∗ instead of U) yields that the matrix U∗A (U∗)∗ is normal.
Since

U∗ A︸︷︷︸
=UTU∗

(U∗)∗︸ ︷︷ ︸
=U

= U∗U︸︷︷︸
=In

T U∗U︸︷︷︸
=In

= InTIn = T,

this rewrites as follows: The matrix T is normal. Since T is upper-triangular, we
thus conclude by Lemma 2.5.8 that T is diagonal. Hence, if we set D = T, then
we have constructed a unitary matrix U ∈ Un (C) and a diagonal matrix D ∈ Cn×n

such that A = UDU∗. Hence, A is unitarily similar to a diagonal matrix. This
proves Theorem 2.6.1 (a).

(b) From A = UDU∗, we see that the matrix D is unitarily similar to A. Hence,
D is similar to A (by Proposition 2.2.5). Moreover, the matrix D is upper-triangular
(since it is diagonal). Thus, Proposition 2.3.7 (applied to F = C and T = D)
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yields that the diagonal entries of T are the eigenvalues of A (with their algebraic
multiplicities).

Next, we shall show that the columns of U are eigenvectors of A. Indeed, from
A = UDU∗, we obtain

AU = UD U∗U︸︷︷︸
=In

(since U is unitary)

= UD.

Now, let λ1, λ2, . . . , λn be the diagonal entries of the diagonal matrix D. Let
i ∈ [n]. Then, Dei = λiei (where (e1, e2, . . . , en) denotes the standard basis of Cn),
since D is a diagonal matrix whose i-th diagonal entry is ei. Therefore,

AU︸︷︷︸
=UD

ei = U Dei︸︷︷︸
=λiei

= λi ·Uei.

This shows that Uei is an eigenvector of A (for eigenvalue λi). Since Uei is the i-th
column of U, we can rewrite this as follows: The i-th column of U is an eigenvector
of A.

Forget that we fixed i. We thus have shown that for each i ∈ [n], the i-th column
of U is an eigenvector of A. In other words, the columns of U are eigenvectors of
A.

It remains to prove that there exists an orthonormal basis of Cn consisting of
eigenvectors of A. However, this is now easy: The matrix U is unitary. Thus, the
columns of U form an orthonormal basis of Cn (by the implication A =⇒ E in
Theorem 1.5.3). This basis consists of eigenvectors of A (since the columns of U
are eigenvectors of A). Thus, there exists an orthonormal basis of Cn consisting of
eigenvectors of A (namely, this basis). This concludes the proof of Theorem 2.6.1
(b).

The decomposition A = UDU∗ in Theorem 2.4.3 (or, to be more precise, the pair
(U, D)) is called a spectral decomposition of A. It is not unique (e.g., we can replace
U by λU whenever λ ∈ C satisfies |λ| = 1; this does not change UDU∗). We
can actually choose the order of the diagonal entries of D at will, as the following
simple corollary shows:

Corollary 2.6.2. Let A ∈ Cn×n be a normal matrix. Let λ1, λ2, . . . , λn be the
n eigenvalues of A (listed with algebraic multiplicities, in an arbitrary or-
der). Then, there exists a spectral decomposition (U, D) of A with D =
diag (λ1, λ2, . . . , λn). Thus,

A us∼ diag (λ1, λ2, . . . , λn) . (42)

Proof. Let L = diag (λ1, λ2, . . . , λn). This is clearly a diagonal matrix.
Theorem 2.6.1 (a) yields that there exist a unitary matrix U ∈ Un (C) and a

diagonal matrix D ∈ Cn×n such that A = UDU∗. Consider these U and D, and
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denote them by W and F (since they are not yet the U and D that we are looking
for). Thus, W ∈ Un (C) is a unitary matrix and F ∈ Cn×n is a diagonal matrix such
that

A = WFW∗.

The definition of unitary similarity yields A us∼ F (since W is unitary and A =
WFW∗). However, the diagonal entries of F are the eigenvalues of A (by Theo-
rem 2.6.1 (b), applied to U = W and D = F). Since the eigenvalues of A are
λ1, λ2, . . . , λn, this shows that the diagonal entries of F are λ1, λ2, . . . , λn in some
order. In other words, there exists a permutation σ of [n] such that the diagonal
entries of F are λσ(1), λσ(2), . . . , λσ(n). Consider this σ.

The matrix F is a diagonal matrix, and its diagonal entries are λσ(1), λσ(2), . . . , λσ(n).

In other words, F = diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
.

However, Proposition 2.2.7 yields diag (λ1, λ2, . . . , λn)
us∼ diag

(
λσ(1), λσ(2), . . . , λσ(n)

)
.

This rewrites as L us∼ F (since L = diag (λ1, λ2, . . . , λn) and F = diag
(

λσ(1), λσ(2), . . . , λσ(n)

)
).

In other words, there exists a unitary matrix Q ∈ Un (C) such that

F = QLQ∗.

Consider this Q. Now, the matrix WQ is unitary (by Exercise 1.5.2 (b), since W and
Q are unitary), and we have

A = W F︸︷︷︸
=QLQ∗

W∗ = WQL Q∗W∗︸ ︷︷ ︸
=(WQ)∗

= WQL (WQ)∗ = (WQ) · L · (WQ)∗ .

This shows that (WQ, L) is a spectral decomposition of A (since WQ is unitary and
L is diagonal). This spectral decomposition satisfies L = diag (λ1, λ2, . . . , λn). Thus,
there exists a spectral decomposition (U, D) of A with D = diag (λ1, λ2, . . . , λn)

(namely, (WQ, L)). This furthermore shows that A us∼ diag (λ1, λ2, . . . , λn). Corol-
lary 2.6.2 is thus proven.

Note that Theorem 2.6.1 (b) has a converse, which helps finding spectral de-
compositions in practice if one doesn’t want to go through the trouble of Schur
triangularization:

Proposition 2.6.3. Let A ∈ Cn×n. Let U ∈ Un (C) be a unitary matrix and D ∈
Cn×n a diagonal matrix. Assume that for each i ∈ [n], we have AU•,i = Di,iU•,i
(that is, the i-th column of U is an eigenvector of A for the eigenvalue Di,i). Then,
A = UDU∗, so that (U, D) is a spectral decomposition of A.

Exercise 2.6.1. 2 Prove Proposition 2.6.3.
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Exercise 2.6.2. 5 (a) Find a spectral decomposition of the normal matrix(
1 1 + i

1 + i 1

)
.

(b) Find a spectral decomposition of the Hermitian matrix
(

0 −i
i 0

)
.

(c) Find a spectral decomposition of the skew-Hermitian matrix
(

0 i
i 0

)
.

(d) Find a spectral decomposition of the unitary matrix
1√
2

(
1 1
1 −1

)
.

Exercise 2.6.3. 2 Describe all spectral decompositions of the n× n identity ma-
trix In.

Only normal matrices can have a spectral decomposition. Indeed, if some n× n-
matrix A ∈ Cn×n can be written as A = UDU∗ for some unitary U and some
diagonal D, then D is normal (by Proposition 2.5.4 (d)), and therefore A is normal
(by Proposition 2.5.5 (b), applied to D instead of A). Thus, we obtain the following
characterization of normal matrices:

Corollary 2.6.4. An n× n-matrix A ∈ Cn×n is normal if and only if it is unitarily
similar to a diagonal matrix.

Proof. =⇒: Assume that A is normal. Then, Theorem 2.6.1 (a) shows that A is
unitarily similar to a diagonal matrix. This proves the “=⇒” direction of Corollary
2.6.4.

⇐=: Assume that A is unitarily similar to a diagonal matrix. In other words,
A = UDU∗ for some unitary matrix U ∈ Un (C) and some diagonal matrix D ∈
Cn×n. Consider these U and D. The matrix D is normal (by Proposition 2.5.4 (d)).
Hence, the matrix UDU∗ is normal (by Proposition 2.5.5 (b), applied to D instead
of A). In other words, the matrix A is normal (since A = UDU∗). This proves the
“⇐=” direction of Corollary 2.6.4.

Exercise 2.6.4. 3 Let A ∈ Cn×n and B ∈ Cn×n be two normal matrices such that
A ∼ B. Prove that A us∼ B.

2.6.2. The spectral theorem for Hermitian matrices

The spectral decompositions of a Hermitian matrix have a special property:

Proposition 2.6.5. Let A ∈ Cn×n be a Hermitian matrix, and let (U, D) be a
spectral decomposition of A. Then, the diagonal entries of D are real.
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Proof. The definition of a spectral decomposition yields that U is unitary and D is
diagonal and A = UDU∗. However, since A is Hermitian, we have A∗ = A. In
view of A = UDU∗, this rewrites as (UDU∗)∗ = UDU∗. Hence,

UDU∗ = (UDU∗)∗ = (U∗)∗︸ ︷︷ ︸
=U

D∗U∗ = UD∗U∗.

Since the matrix U is unitary, we can cancel both U and U∗ from this equality30, and
thus obtain D = D∗. However, if λ is a diagonal entry of D, then the corresponding
diagonal entry of D∗ must be λ, and therefore we obtain λ = λ (since D = D∗

shows that these two entries are equal). Thus, each diagonal entry λ of D satisfies
λ = λ and therefore λ ∈ R (because a complex number z satisfying z = z must
automatically satisfy z ∈ R). In other words, the diagonal entries of D are real.
This proves Proposition 2.6.5.

This allows us to characterize Hermitian matrices in a similar way as normal
matrices were characterized by Corollary 2.6.4:

Corollary 2.6.6. An n × n-matrix A ∈ Cn×n is Hermitian if and only if it is
unitarily similar to a diagonal matrix with real entries.

Proof. =⇒: Assume that A is Hermitian. Then, A is normal (by Proposition 2.5.4
(a)). Hence, Theorem 2.6.1 (a) shows that A is unitarily similar to a diagonal matrix.
In other words, A = UDU∗ for some unitary matrix U ∈ Un (C) and some diagonal
matrix D ∈ Cn×n. Consider these U and D. Clearly, A is unitarily similar to D.
Moreover, (U, D) is a spectral decomposition of A (by the definition of a spectral
decomposition). Hence, Proposition 2.6.5 yields that the diagonal entries of D are
real. Thus, D is a diagonal matrix with real entries. Hence, A is unitarily similar to
a diagonal matrix with real entries (since A is unitarily similar to D). This proves
the “=⇒” direction of Corollary 2.6.6.

⇐=: Assume that A is unitarily similar to a diagonal matrix with real entries. In
other words, A = UDU∗ for some unitary matrix U ∈ Un (C) and some diagonal
matrix D ∈ Cn×n that has real entries. Consider these U and D. The matrix D is
a diagonal matrix with real entries; thus, it is easy to see that D∗ = D (since the
diagonal entries of D are real and thus remain unchanged and unmoved in D∗,
whereas all other entries of D are 0). Now, from A = UDU∗, we obtain

A∗ = (UDU∗)∗ = (U∗)∗︸ ︷︷ ︸
=U

D∗︸︷︷︸
=D

U∗ = UDU∗ = A.

In other words, the matrix A is Hermitian. This proves the “⇐=” direction of
Corollary 2.6.6.
30Indeed, the matrix U is unitary; therefore, U is invertible, and its inverse is U−1 = U∗. Hence,

U∗ is also invertible (being the inverse of U). Thus, we can multiply both sides of the equality
UDU∗ = UD∗U∗ from the left by U−1 and from the right by (U∗)−1; as a result, we obtain
D = D∗.
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2.6.3. The spectral theorem for skew-Hermitian matrices

Similarly, we can handle skew-Hermitian matrices:

Proposition 2.6.7. Let A ∈ Cn×n be a skew-Hermitian matrix, and let (U, D)
be a spectral decomposition of A. Then, the diagonal entries of D are purely
imaginary.

Corollary 2.6.8. An n× n-matrix A ∈ Cn×n is skew-Hermitian if and only if it is
unitarily similar to a diagonal matrix with purely imaginary entries.

Exercise 2.6.5. 3 Prove Proposition 2.6.7 and Corollary 2.6.8.

2.6.4. The spectral theorem for unitary matrices

Likewise, we can handle unitary matrices:

Proposition 2.6.9. Let A ∈ Cn×n be a unitary matrix, and let (U, D) be a spectral
decomposition of A. Then, each of the diagonal entries of D has absolute value
1.

Corollary 2.6.10. An n× n-matrix A ∈ Cn×n is unitary if and only if it is unitarily
similar to a diagonal matrix whose all diagonal entries have absolute value 1.

Exercise 2.6.6. 2 Prove Proposition 2.6.9 and Corollary 2.6.10.

Exercise 2.6.7. 2 Prove the following generalization of Theorem 2.6.1:
Let F be a subset of Cn×n such that any matrix in F is normal, and such that

any two matrices in F commute (i.e., any A ∈ F and B ∈ F satisfy AB = BA).
Then, there exists a unitary matrix U ∈ Un (C) such that for each A ∈ F , the

matrix UAU∗ is diagonal.

Lecture 6 starts here.

2.7. The Cayley–Hamilton theorem

We will now state the famous Cayley–Hamilton theorem, and to prove it at least
for matrices with complex entries. This will serve as a reminder of an important
theorem (which will soon be used), and also as an illustration of how Schur trian-
gularization can be applied.

In Definition 2.5.6, we have learnt how to substitute a square matrix into a poly-
nomial. Something peculiar happens when a matrix is substituted into its own
characteristic polynomial:
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Theorem 2.7.1 (Cayley–Hamilton theorem). Let F be a field. Let A ∈ Fn×n be an
n× n-matrix. Then,

pA (A) = 0.

(The “0” on the right hand side here means the zero matrix 02×2.)

Example 2.7.2. Let n = 2 and A =

(
a b
c d

)
. Then, as we know from Example

2.0.2, we have
pA = t2 − (a + d) t + (ad− bc) .

Thus,

pA (A) = A2 − (a + d) A + (ad− bc) I2

=

(
a b
c d

)2

− (a + d)
(

a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=

(
0 0
0 0

)
= 0.

Thus, we have verified Theorem 2.7.1 for n = 2.

Remark 2.7.3. It is tempting to “prove” Theorem 2.7.1 by arguing that pA (A) =
det (AIn − A) holds “by substituting A for t into pA = det (tIn − A)”. Unfor-
tunately, such an argument is unjustified. Indeed, tIn − A is a matrix whose
entries are polynomials in t. If you substitute A for t into it, it will become a
matrix whose entries are matrices. This poses two problems: First, it is unclear
how to take the determinant of such a matrix; second, this matrix is not AIn− A.
For example, for n = 2, substituting A for t in tIn − A gives

(
a b
c d

)
− a −b

−c
(

a b
c d

)
− d

 ,

which can be made sense of (if we treat the a, b, c, d as multiples of I2), but which
is certainly not the same as AIn− A (which is the zero matrix). There is a correct
proof of the Cayley–Hamilton theorem along the lines of “substituting A for t”,
but it requires a lot of additional work (see https://math.stackexchange.com/
questions/1141648/ for some discussion of this).

Various proofs of Theorem 2.7.1 are found across the literature; see [Grinbe19,
after Theorem 2.6] for a list of references (Theorem 2.7.1 is [Grinbe19, Theorem
2.5]). I can particularly recommend the algebraic proofs given in [Heffer20, Chapter
Five, Section IV, Lemma 1.9], [Mate16, §4, Theorem 1] and [Shurma15], and the
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combinatorial proof shown in [Straub83] and [Zeilbe85, §3]. Here, however, I will
show a proof of Theorem 2.7.1 in the particular case when F = C.

This proof will rely on two lemmas. The first collects some useful properties of
the application of polynomials to matrices:

Lemma 2.7.4. Let n ∈ N. Let F be a field. Let A ∈ Fn×n be an n × n-matrix.
The word “polynomial” shall mean “polynomial in an indeterminate t with co-
efficients in F”. Then:

(a) If f and g are two polynomials, then ( f g) (A) = f (A) · g (A).

(b) If f1, f2, . . . , fk are several polynomials, then ( f1 f2 · · · fk) (A) = f1 (A) ·
f2 (A) · · · · · fk (A).

(c) If f is a polynomial, and W ∈ Fn×n is an invertible matrix, then
f
(
WAW−1) = W · f (A) ·W−1.

Proof of Lemma 2.7.4. (a) Let f and g be two polynomials. Write f in the form f =
p
∑

i=0
fiti for some coefficients f0, f1, . . . , fp ∈ F. Write g in the form g =

q
∑

j=0
gjtj for

some coefficients g0, g1, . . . , gq ∈ F. Definition 2.5.6 yields

f (A) =
p

∑
i=0

fi Ai

(
since f =

p

∑
i=0

fiti

)

and

g (A) =
q

∑
j=0

gj Aj

(
since g =

q

∑
j=0

gjtj

)
.

Multiplying these two equalities, we obtain

f (A) · g (A) =

(
p

∑
i=0

fi Ai

)
·
(

q

∑
j=0

gj Aj

)
=

p

∑
i=0

q

∑
j=0

figj Ai Aj︸ ︷︷ ︸
=Ai+j

=
p

∑
i=0

q

∑
j=0

figj Ai+j. (43)

Multiplying the equalities f =
p
∑

i=0
fiti and g =

q
∑

j=0
gjtj, we obtain

f g =

(
p

∑
i=0

fiti

)(
q

∑
j=0

gjtj

)
=

p+q

∑
k=0

 ∑
i∈{0,1,...,k};
i≤p; k−i≤q

figk−i

 tk
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(by the definition of the product of two polynomials). Hence, Definition 2.5.6 yields

( f g) (A) =
p+q

∑
k=0

 ∑
i∈{0,1,...,k};
i≤p; k−i≤q

figk−i

 Ak =
p+q

∑
k=0

∑
i∈{0,1,...,k};
i≤p; k−i≤q︸ ︷︷ ︸

=
p
∑

i=0

i+q
∑

k=i
(because both of these double sums
are summing over all pairs (k,i) of
nonnegative integers satisfying i≤k

and i≤p and k≤i+q)

figk−i Ak

=
p

∑
i=0

i+q

∑
k=i

figk−i Ak =
p

∑
i=0

q

∑
j=0

fi g(i+j)−i︸ ︷︷ ︸
=gj

Ai+j

(here, we have substituted i + j for k in the inner sum)

=
p

∑
i=0

q

∑
j=0

figj Ai+j = f (A) · g (A) (by (43)) .

This proves Lemma 2.7.4 (a).

(b) Lemma 2.7.4 (b) follows by induction on k. (The base case relies on 1 (A) = In,
where 1 denotes the constant polynomial 1. The induction step uses Lemma 2.7.4
(a).)

(c) Let f be a polynomial, and let W ∈ Fn×n be an invertible matrix. Let B :=

WAW−1. Write the polynomial f in the form f =
p
∑

k=0
fktk for some coefficients

f0, f1, . . . , fp ∈ F. Thus, Definition 2.5.6 yields

f (A) =
p

∑
k=0

fk Ak and (44)

f (B) =
p

∑
k=0

fkBk. (45)

However, for each k ∈N, we have

Bk = WAkW−1 (46)

(indeed, this is precisely the equality (30), which we have proved long ago). There-
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fore, (45) becomes

f (B) =
p

∑
k=0

fk Bk︸︷︷︸
=WAkW−1

(by (46))

=
p

∑
k=0

fkWAkW−1

= W ·
p

∑
k=0

fk AkW−1 = W ·
(

p

∑
k=0

fk Ak

)
︸ ︷︷ ︸

= f (A)
(by (44))

·W−1 = W · f (A) ·W−1.

This proves Lemma 2.7.4 (c).

The second lemma is an easy but neat property of triangular matrices:

Lemma 2.7.5. Let n ∈N. Let F be a field. Let T1, T2, . . . , Tn be n upper-triangular
n× n-matrices. Assume that for each i ∈ [n], the i-th diagonal entry of the matrix
Ti is 0 (that is, we have (Ti)i,i = 0). Then,

T1T2 · · · Tn = 0.

(The 0 on the right hand side here is the zero matrix.)

Example 2.7.6. For n = 3, Theorem 2.7.5 is saying the following: If T1, T2, T3 are
three 3× 3-matrices of the form

T1 =

 0 ∗ ∗
0 ∗ ∗
0 0 ∗

 , T2 =

 ∗ ∗ ∗0 0 ∗
0 0 ∗

 , T3 =

 ∗ ∗ ∗0 ∗ ∗
0 0 0


(where each asterisk “∗” stands for an arbitrary entry – not necessarily equal to
the other asterisk entries), then T1T2T3 = 0.

Proof of Lemma 2.7.5. We claim that

the first k columns of the matrix T1T2 · · · Tk are 0 (47)

for each k ∈ {0, 1, . . . , n}.
[Proof of (47): We shall prove (47) by induction on k:
Base case: The first 0 columns of any matrix are 0 (indeed, this is vacuously true).

Thus, (47) holds for k = 0.
Induction step: Let p ∈ [n]. Assume that (47) holds for k = p− 1. We must prove

that (47) holds for k = p.
Let A = T1T2 · · · Tp−1 and B = Tp. Thus,

AB =
(
T1T2 · · · Tp−1

)
Tp = T1T2 · · · Tp. (48)
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We have assumed that (47) holds for k = p− 1. In other words, the first p− 1
columns of the matrix T1T2 · · · Tp−1 are 0. In other words, the first p− 1 columns
of the matrix A are 0 (since A = T1T2 · · · Tp−1). In other words,

Ai,j = 0 for each i ∈ [n] and j ∈ [p− 1] . (49)

On the other hand, the assumption of Lemma 2.7.5 yields that the p-th diagonal
entry of the matrix Tp is 0. In other words,

(
Tp
)

p,p = 0. In other words, Bp,p = 0
(since B = Tp). Moreover, the matrix Tp is upper-triangular (by the assumption of
Lemma 2.7.5). In other words, the matrix B is upper-triangular (since B = Tp). In
other words,

Bi,j = 0 for each i, j ∈ [n] satisfying i > j. (50)

Now, let i ∈ [n] and j ∈ [p] be arbitrary. We shall show that (AB)i,j = 0.
Indeed, the definition of the product of two matrices yields

(AB)i,j =
n

∑
k=1

Ai,kBk,j =
p−1

∑
k=1

Ai,k︸︷︷︸
=0

(by (49), applied to k instead of j
(since k∈[p−1]))

Bk,j +
n

∑
k=p

Ai,kBk,j

=
p−1

∑
k=1

0Bk,j︸ ︷︷ ︸
=0

+
n

∑
k=p

Ai,kBk,j =
n

∑
k=p

Ai,kBk,j. (51)

If p > j, then this becomes

(AB)i,j =
n

∑
k=p

Ai,k Bk,j︸︷︷︸
=0

(by (50), applied to k instead of i
(since k≥p>j))

=
n

∑
k=p

Ai,k0 = 0,

and therefore (AB)i,j = 0 has been proved in this case. Hence, for the rest of the
proof of (AB)i,j = 0, we WLOG assume that we don’t have p > j. Thus, j ≥ p, so
that j = p (since j ∈ [p]). In other words, p = j. Now, (51) becomes

(AB)i,j =
n

∑
k=p

Ai,kBk,j = Ai,p Bp,j︸︷︷︸
=Bp,p

(since j=p)

+
n

∑
k=p+1

Ai,k Bk,j︸︷︷︸
=0

(by (50), applied to k instead of i
(since k≥p+1>p=j))

(here, we have split off the addend for k = p from the sum)

= Ai,p Bp,p︸︷︷︸
=0

+
n

∑
k=p+1

Ai,k0︸ ︷︷ ︸
=0

= 0.
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Thus, we have proved that (AB)i,j = 0.
Forget that we fixed i and j. We thus have shown that (AB)i,j = 0 for all i ∈ [n]

and j ∈ [p]. In other words, the first p columns of the matrix AB are 0. In view of
(48), we can rewrite this as follows: The first p columns of the matrix T1T2 · · · Tp are
0. In other words, (47) holds for k = p. This completes the induction step. Thus,
(47) is proven.]

Now, we can apply (47) to k = n, and conclude that the first n columns of the
matrix T1T2 · · · Tn is 0. Since this matrix T1T2 · · · Tn has only n columns, this means
that all of its columns are 0. In other words, the entire matrix T1T2 · · · Tn is 0. This
proves Lemma 2.7.5.

Proof of Theorem 2.7.1 for F = C. Assume that F = C. The Schur triangularization
theorem (Theorem 2.3.1) shows that A is unitarily similar to an upper-triangular
matrix. Hence, A is similar to an upper-triangular matrix (because unitarily similar
matrices always are similar). In other words, there exist an invertible matrix U and
an upper-triangular matrix T such that A = UTU−1. Consider these U and T.

From A = UTU−1, we obtain

pA (A) = pA

(
UTU−1

)
= U · pA (T) ·U−1

(by Lemma 2.7.4 (c), applied to pA, U and T instead of f , W and A). Hence, in
order to prove that pA (A) = 0, it will suffice to show that pA (T) = 0.

Now, let λ1, λ2, . . . , λn be the diagonal entries of T. Then, by Proposition 2.3.7,
these diagonal entries λ1, λ2, . . . , λn are the eigenvalues of A (with algebraic multi-
plicities). Hence,

pA = (t− λ1) (t− λ2) · · · (t− λn)

(since pA is monic, and the roots of pA are precisely the eigenvalues of A with
algebraic multiplicities). Therefore,

pA (T) = ((t− λ1) (t− λ2) · · · (t− λn)) (T)
= (T − λ1 In) (T − λ2 In) · · · (T − λn In) (52)

(by Lemma 2.7.4 (b), applied to n, T and t− λi instead of k, A and fi).
We have

Ti,i = λi for each i ∈ [n] (53)

(since λ1, λ2, . . . , λn are the diagonal entries of T).
However, the n matrices T − λ1 In, T − λ2 In, . . . , T − λn In are upper-triangular

(since they are linear combinations of the upper-triangular matrices T and In).
Moreover, for each i ∈ [n], the i-th diagonal entry of the matrix T − λi In is 0
(because this entry is (T − λi In)i,i = Ti,i︸︷︷︸

=λi
(by (53))

−λi (In)i,i︸ ︷︷ ︸
=1

= λi − λi = 0). Thus, Lemma

2.7.5 (applied to Ti = T − λi In) yields

(T − λ1 In) (T − λ2 In) · · · (T − λn In) = 0.

January 4, 2022



Math 504 notes page 95

In view of (52), this rewrites as pA (T) = 0. As explained above, this entails
pA (A) = 0. Thus, Theorem 2.7.1 is proved under the assumption that F = C.

The Cayley–Hamilton theorem has an interesting consequence: it yields that the
inverse of an invertible matrix can be written as a polynomial applied to this matrix.
(However, the specific polynomial that needs to be applied depends on this matrix.)
In more detail:

Exercise 2.7.1. 3 Let F be a field. Let n be a positive integer. Let A ∈ Fn×n be
an invertible matrix with entries in F. Prove that there exists a polynomial f of
degree n− 1 in the single indeterminate t over F such that A−1 = f (A).

For example, for n = 2, we have A−1 = uI2− vA with u =
Tr A
det A

and v =
1

det A
.

Another consequence of Cayley–Hamilton is that the powers of a given square
matrix A ∈ Fn×n span a vector space of dimension ≤ n:

Exercise 2.7.2. 3 Let F be a field. Let A ∈ Fn×n be a square matrix with entries
in F. Prove that for any nonnegative integer k, the power Ak can be written as
an F-linear combination of the first n powers A0, A1, . . . , An−1.

Yet another rather curious consequence is an application to linearly recurrent
sequences. We recall what these are:

Definition 2.7.7. Let a1, a2, . . . , ak be k numbers. A sequence (x0, x1, x2, . . .) of
numbers is said to be (a1, a2, . . . , ak)-recurrent if each integer i ≥ k satisfies

xi = a1xi−1 + a2xi−2 + · · ·+ akxi−k.

For instance, the famous Fibonacci sequence ( f0, f1, f2, . . .) (defined by the start-
ing values f0 = 0 and f1 = 1 and the recurrence fi = fi−1 + fi−2) is (1, 1)-recurrent
(by its very definition). Now, it is a simple exercise to check that the “even-indexed
Fibonacci sequence” ( f0, f2, f4, f6, . . .) and the “odd-indexed Fibonacci sequence”
( f1, f3, f5, f7, . . .) themselves follow a simple recursion; to wit, they are both (3,−1)-
recurrent (check this!). Likewise, the “multiples-of-3-indexed Fibonacci sequence”
( f0, f3, f6, f9, . . .) as well as its companions ( f1, f4, f7, f10, . . .) and ( f2, f5, f8, f11, . . .)
are (4, 1)-recurrent. This generalizes:

Exercise 2.7.3. 5 Let a1, a2, . . . , ak be k numbers. Let (x0, x1, x2, . . .) be any
(a1, a2, . . . , ak)-recurrent sequence of numbers. Let d be a positive integer. Show
that there exist k integers b1, b2, . . . , bk such that each i ≥ kd satisfies

xi = b1xi−d + b2xi−2d + · · ·+ bkxi−kd.
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(This means that the sequences (x0+u, xd+u, x2d+u, x3d+u, . . .) are (b1, b2, . . . , bk)-
recurrent for all u ≥ 0.)

[Hint: For each j ≥ 0, define the column vector vj by vj =


xj

xj+1
...

xj+k−1

 ∈ Rk.

Let A be the k× k-matrix


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
ak ak−1 ak−2 · · · a1

 ∈ Rk×k. Start by showing

that Avj = vj+1 for each j ≥ 0.]

2.8. Sylvester’s equation

We shall next see another application of the Cayley–Hamilton theorem. First, a
notation:

Definition 2.8.1. Let A ∈ Cn×n. Then, the spectrum of A is defined to be the set
of all eigenvalues of A. This spectrum is denoted by σ (A).

Some authors write spec A instead of σ (A). (Some also define it to be a multiset
rather than a set; however, the set suffices for our purposes.)

We now claim the following:

Theorem 2.8.2. Let A ∈ Cn×n be an n× n-matrix, and let B ∈ Cm×m be an m×m-
matrix (both with complex entries). Let C ∈ Cn×m be an n×m-matrix. Then, the
following two statements are equivalent:

• U : There is a unique matrix X ∈ Cn×m such that AX− XB = C.

• V : We have σ (A) ∩ σ (B) = ∅.

Example 2.8.3. Let us take n = 1 and m = 1, and see what Theorem 2.8.2
becomes. In this case, the matrices A, B and C are 1× 1-matrices, so we can view
them as scalars. Let us therefore write a, b and c for them. Then, Theorem 2.8.2
says that the following two statements are equivalent:

• U : There is a unique complex number x such that ax− xb = c.

• V : We have {a} ∩ {b} = ∅ (that is, a 6= b).
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This is not surprising, because the linear equation ax − xb = c has a unique
solution (namely, x =

c
a− b

) when a 6= b, and otherwise has either none or

infinitely many solutions.

The equation AX − XB = C in Theorem 2.8.2 is known as Sylvester’s equation. It
is much harder than the superficially similar equations AX − BX = C and XA−
XB = C (see Exercise 2.8.1 for the first of these). In fact, since the X is on different
sides in AX and in XB, it cannot be factored out from AX − XB (matrices do not
generally commute).

Exercise 2.8.1. 2 Let A ∈ Cn×m, B ∈ Cn×m and C ∈ Cn×p be three complex
matrices. Prove that there exists a matrix X ∈ Cm×p such that AX − BX = C if
and only if each column of C belongs to the image (= column space) of A− B.

We shall prove only the V =⇒ U part of Theorem 2.8.2; the opposite direction
will be left as an exercise (Exercise 2.8.2 (b)). Our proof of V =⇒ U will rely on the
following lemma:

Lemma 2.8.4. Let F be a field. Let A ∈ Fn×n, B ∈ Fm×m and X ∈ Fn×m be three
matrices such that AX = XB. Then:

(a) We have AkX = XBk for each k ∈N.

(b) Let p be a polynomial in a single indeterminate x with coefficients in F.
Then, p (A) X = Xp (B).

Proof of Lemma 2.8.4. (a) Intuitively, this is easy: For instance, if k = 4, then this is
saying that A4X = XB4, but this follows from

A4B = AAA AB︸︷︷︸
=BA

= AA AB︸︷︷︸
=BA

A = A AB︸︷︷︸
=BA

AA = AB︸︷︷︸
=BA

AAA = BAAAA = BA4.

Formally, Lemma 2.8.4 (a) is proved by induction on k:
Induction base: We have A0X = XB0, since both sides of this equation equal X.

Thus, Lemma 2.8.4 (a) holds for k = 0.
Induction step: Let ` ∈ N. Assume (as the induction hypothesis) that Lemma

2.8.4 (a) holds for k = `. We must prove that Lemma 2.8.4 (a) holds for k = `+ 1.
We have assumed that Lemma 2.8.4 (a) holds for k = `. In other words, A`X =

XB`. Thus,
A`+1︸ ︷︷ ︸
=AA`

X = A A`X︸︷︷︸
=XB`

= AX︸︷︷︸
=XB

B` = X BB`︸︷︷︸
=B`+1

= XB`+1.

In other words, Lemma 2.8.4 (a) holds for k = `+ 1. This completes the induction
step; thus, Lemma 2.8.4 (a) is proven.
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(b) Write the polynomial p in the form p (x) =
d
∑

k=0
pkxk for some coefficients

p0, p1, . . . , pd ∈ F. Then, Definition 2.5.6 yields

p (A) =
d

∑
k=0

pk Ak and p (B) =
d

∑
k=0

pkBk.

Hence,

p (A) X =

(
d

∑
k=0

pk Ak

)
X =

d

∑
k=0

pk AkX︸︷︷︸
=XBk

(by Lemma 2.8.4 (a))

=
d

∑
k=0

pkXBk and

Xp (B) = X
d

∑
k=0

pkBk =
d

∑
k=0

pkXBk.

Comparing these two equalities, we find p (A) X = Xp (B). Thus, Lemma 2.8.4 (b)
is proven.

Proof of the V =⇒ U part of Theorem 2.8.2. First, we observe that the matrix space
Cn×m is itself a C-vector space of dimension nm.

Consider the map

L : Cn×m → Cn×m,
X 7→ AX− XB.

This map L is linear, because for any α, β ∈ C and any X, Y ∈ Cn×m, we have

L (αX + βY) = A (αX + βY)− (αX + βY) B
= αAX + βAY− αXB− βYB
= α (AX− XB)︸ ︷︷ ︸

=L(X)

+β (AY−YB)︸ ︷︷ ︸
=L(Y)

= αL (X) + βL (Y) .

Now, assume that statement V holds. That is, we have σ (A) ∩ σ (B) = ∅. We
shall now show that Ker L = 0. This will then yield that L is bijective.

Indeed, let X ∈ Ker L. Thus, X ∈ Cn×m and L (X) = 0. However, the definition
of L yields L (X) = AX − XB. Therefore, AX − XB = L (X) = 0. In other words,
AX = XB. Hence, we can apply Lemma 2.8.4.

Thus, Lemma 2.8.4 (b) (applied to p = pA) yields pA (A) X = XpA (B). However,
Theorem 2.7.1 (a) yields pA (A) = 0, so that pA (A) X = 0X = 0. Comparing this
with pA (A) X = XpA (B), we obtain XpA (B) = 0.

We shall show that the matrix pA (B) is invertible. Indeed, Theorem 2.0.10 (a)
shows that the polynomial pA factors into n linear terms:

pA = (t− λ1) (t− λ2) · · · (t− λn) , (54)
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where λ1, λ2, . . . , λn ∈ C are its roots. Moreover, these roots λ1, λ2, . . . , λn are the
eigenvalues of A (by Theorem 2.0.10 (b)); thus, {λ1, λ2, . . . , λn} = σ (A).

Substituting the matrix B for t on both sides of the equality (54), we obtain

pA (B) = (B− λ1 In) (B− λ2 In) · · · (B− λn In) (55)

(by Lemma 2.7.4 (b), applied to B and n and t− λi instead of A and k and fi).
Now, let i ∈ [n]. Then, λi ∈ {λ1, λ2, . . . , λn} = σ (A). Therefore, λi /∈ σ (B)

(since having λi ∈ σ (B) would yield λi ∈ σ (A) ∩ σ (B), which would contradict
σ (A) ∩ σ (B) = ∅). In other words, λi is not an eigenvalue of B. In other words,
det (λi In − B) 6= 0 (by the definition of an eigenvalue). Hence, the matrix λi In − B
is invertible. In other words, the matrix B − λi In is invertible (since B − λi In =
− (λi In − B)).

Forget that we fixed i. We thus have shown that the matrix B− λi In is invertible
for each i ∈ [n]. In other words, the n matrices B− λ1 In, B− λ2 In, . . . , B− λn In are
invertible. Hence, their product (B− λ1 In) (B− λ2 In) · · · (B− λn In) is invertible as
well. In view of (55), this shows that pA (B) is invertible. Hence, from XpA (B) = 0,
we conclude that X = 0.

Now, forget that we fixed X. We thus have shown that X = 0 for each X ∈ Ker L.
In other words, Ker L = 0. Hence, the linear map L is injective.

However, it is well-known that an injective linear map between two finite-dimensional
vector spaces of the same dimension is necessarily bijective31. Hence, L is bijective
(since L is an injective linear map between Cn×m and Cn×m). Therefore, there exists
a unique matrix X ∈ Cn×m such that L (X) = C. In other words, there is a unique
matrix X ∈ Cn×m such that AX − XB = C (since L (X) = AX − XB). In other
words, statement U holds. Thus, the implication V =⇒ U is proven.

Exercise 2.8.2. 5 Let A, B and C be as in Theorem 2.8.2.

(a) Let the linear map L be as in the above proof of the V =⇒ U part of Theo-
rem 2.8.2. Prove that if λ ∈ σ (A) and µ ∈ σ (B), then λ− µ is an eigenvalue of L
(that is, there exists a nonzero matrix X ∈ Cn×m satisfying L (X) = (λ− µ) X).

(b) Prove the implication U =⇒ V in Theorem 2.8.2 (thus completing the proof
of the theorem).

31Proof. Let f : U → V be an injective linear map between two finite-dimensional vector spaces of
the same dimension. We must show that f is bijective. We have Ker f = 0 (since f is injective)
and thus dim (Ker f ) = 0. The rank-nullity theorem yields

dim U = dim (Ker f )︸ ︷︷ ︸
=0

+dim (Im f ) = dim (Im f ) ,

so that dim (Im f ) = dim U = dim V (since U and V have the same dimension), and therefore
Im f = V (because Im f is a subspace of V). This shows that f is surjective. Since f is also
injective, we thus conclude that f is bijective.
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We note that more can be said: If A, B and C are as in Theorem 2.8.2, and if L is
as in the above proof, then all eigenvalues of L have the form λ− µ for λ ∈ σ (A)
and µ ∈ σ (B). But this seems harder to prove at this point.

Lecture 7 starts here.

We shall next prove a somewhat surprising consequence of Theorem 2.8.2: a
similarity criterion for certain block matrices:

Corollary 2.8.5. Let A ∈ Cn×n, B ∈ Cm×m and C ∈ Cn×m be three matrices such
that σ (A) ∩ σ (B) = ∅. Then, the two (n + m)× (n + m)-matrices(

A C
0 B

)
and

(
A 0
0 B

)
(written in block matrix notation) are similar.

Example 2.8.6. Let A =

(
1 3
0 1

)
and B =

(
2
)

and C =

(
7
9

)
. Then, Corol-

lary 2.8.5 says that the matrices 1 3 7
0 1 9
0 0 2

 and

 1 3 0
0 1 0
0 0 2


are similar.

Proof of Corollary 2.8.5. Theorem 2.8.2 (specifically, its V =⇒ U direction) shows
that there is a unique matrix X ∈ Cn×m such that AX− XB = C. Consider this X.

Now, let S =

(
In X
0 Im

)
. (This is an (n + m)× (n + m)-matrix written in block

matrix notation.) Now, I claim that this matrix S is invertible and that(
A 0
0 B

)
= S

(
A C
0 B

)
S−1.

Once this claim is proved, the claim of Corollary 2.8.5 will follow (by the definition
of “similar”).

To see that S is invertible, we construct an inverse. Namely, we set S′ =
(

In −X
0 Im

)
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(again an (n + m)× (n + m)-matrix). Then, the definitions of S and S′ yield

SS′ =
(

In X
0 Im

)(
In −X
0 Im

)
=

(
In In + X · 0 In (−X) + XIm
0In + Im · 0 0 (−X) + Im Im

)
(by Proposition 1.6.5)

=

(
In 0
0 Im

) (
since In In + X · 0 = In and In (−X) + XIm = −X + X = 0

and 0In + Im · 0 = 0 and 0 (−X) + Im Im = Im

)
= In+m

and similarly S′S = In+m. Thus, the matrices S and S′ are mutually inverse. Hence,
S is invertible.

It remains to check that (
A 0
0 B

)
= S

(
A C
0 B

)
S−1. (56)

To do so, it suffices to check the equivalent identity(
A 0
0 B

)
S = S

(
A C
0 B

)
(57)

(indeed, these two identities are equivalent, since S is invertible). This we do by
computing both sides and comparing: Namely, the definition of S yields(

A 0
0 B

)
S =

(
A 0
0 B

)(
In X
0 Im

)
=

(
AIn + 0 · 0 A · X + 0 · Im
0In + B · 0 0X + BIm

)
(by Proposition 1.6.5)

=

(
A AX
0 B

)
(by the obvious simplifications)

and

S
(

A C
0 B

)
=

(
In X
0 Im

)(
A C
0 B

)
=

(
In A + X · 0 InC + XB
0A + Im · 0 0C + Im · B

)
(by Proposition 1.6.5)

=

(
A C + XB
0 B

)
(by the obvious simplifications)

=

(
A AX
0 B

)
(since AX− XB = C entails C + XB = AX) .

Comparing these two equalities yields (57). Thus, we obtain (56) (by multiplying
both sides of (57) with S−1 from the right). But this shows that the two matrices(

A C
0 B

)
and

(
A 0
0 B

)
are similar. This proves Corollary 2.8.5.
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3. The Jordan canonical form ([HorJoh13, Chapter
3])

This chapter is devoted to the Jordan canonical form (and some of its variants), which
is a normal form for n× n-matrices over C with respect to similarity. This means
that each n× n-matrix is similar to a more-or-less unique matrix of a certain kind
(namely, a block-diagonal matrix made of a specific type of blocks), called its “Jor-
dan canonical form”.

We recall that the notation “A ∼ B” (where A and B are two n × n-matrices)
means that the matrices A and B are similar.

3.1. Jordan cells

The building blocks for the Jordan canonical form are the so-called Jordan cells.
Let us define them:

Definition 3.1.1. Let F be a field. A Jordan cell is an m×m-matrix of the form
λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 for some m > 0 and some λ ∈ F.

In other words, it is an m×m-matrix

• whose diagonal entries are λ,

• whose entries directly above the diagonal (i.e., just one step upwards from
a diagonal entry) are 1, and

• whose all remaining entries are 0.

In formal terms, it is the m×m-matrix A whose entries are given by the rule

Ai,j =


λ, if i = j;
1, if i = j− 1;
0, otherwise

for all i ∈ [m] and j ∈ [m] .

To be specific, this matrix is called the Jordan cell of size m at eigenvalue λ. It is
denoted by Jm (λ).
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Example 3.1.2. (a) The Jordan cell of size 3 at eigenvalue −5 is

J3 (−5) =

 −5 1 0
0 −5 1
0 0 −5

 .

(b) The Jordan cell of size 2 at eigenvalue π is

J2 (π) =

(
π 1
0 π

)
.

(c) For any λ ∈ F, the Jordan cell of size 1 at eigenvalue λ is the 1× 1-matrix(
λ
)
.

Remark 3.1.3. We will chiefly use Jordan cells as building blocks for the Jordan
normal form. However, they are of some independent interest. In particular,
they serve as matrix representations for several useful linear maps.

For example, fix m ∈ N, and let Pm be the C-vector space of all polynomials
in a single variable t of degree < m (with complex coefficients). Then, Pm has a

basis
(
t0, t1, . . . , tm−1). The derivative operator

d
dt

: Pm → Pm (which sends each

polynomial f ∈ Pm to its derivative f ′) is a C-linear map that is represented by
the matrix 

0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
0 0 0 0 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · 0


with respect to this basis. This matrix has the numbers 1, 2, . . . , m − 1 in the
cells directly above the main diagonal, and 0s everywhere else. It is not quite a

Jordan cell. However, if we instead use the basis
(

t0

0!
,

t1

1!
, . . . ,

tm−1

(m− 1)!

)
, then the

operator
d
dt

is represented by the matrix

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
0 0 0 0 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · 0


which is precisely the Jordan cell Jm (0). (This basis is just a rescaled version
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of the basis
(
t0, t1, . . . , tm−1), where the rescaling factors have been chosen to

“normalize” the 1, 2, . . . , m− 1 entries to be 1s.)

While the Jordan cell Jm (λ) depends on both m and λ, its dependence on λ is
not very substantial:

Proposition 3.1.4. Let F be a field. Let m be a positive integer, and let λ ∈ F.
Then,

Jm (λ) = Jm (0) + λIm.

Proof. Definition 3.1.1 yields

Jm (λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 (58)

and

Jm (0) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 . (59)

On the other hand,

λIm =


λ 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 .

Adding this equality to (59), we obtain

Jm (0) + λIm =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

+


λ 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ



=


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 = Jm (λ)

(by (58)). This proves Proposition 3.1.4.
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Thanks to Proposition 3.1.4, we can reduce many questions about Jm (λ) to the
corresponding questions about Jm (0). Let us compute the powers of Jm (0):

Proposition 3.1.5. Let F be a field. Let m be a positive integer. Let B = Jm (0).
Let p ∈N. Then:

(a) The entries of the m×m-matrix Bp are given by

(Bp)i,j =

{
1, if i = j− p;
0, otherwise

for all i, j ∈ [m] .

(b) We have Bp = 0 if p ≥ m.

(c) We have dim (Ker (Bp)) = p if p ≤ m.

(d) We have dim (Ker (Bp)) = m if p ≥ m.

Example 3.1.6. For m = 4, the matrix B = J4 (0) from Proposition 3.1.5 satisfies

B =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

B3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , B4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 = 0.

Thus, as we go from B to B2 to B3 to B4, the 1s in the cells directly above the main
diagonal recede further and further upwards, until they eventually disappear
beyond the borders of the matrix. (It is actually better to start this sequence with
B0 rather than B, so that the 1s start on the main diagonal.) Proposition 3.1.5
(a) is merely a formal way of stating this phenomenon. Parts (b), (c) and (d) of
Proposition 3.1.5 follow easily from part (a).

Proof of Proposition 3.1.5. We have

B = Jm (0) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 (60)

(by the definition of Jm (0)).

(a) We can prove Proposition 3.1.5 (a) by induction on p, using the definition of
matrix multiplication (and the fact that Bq+1 = BqB for each q ∈ N). However,
there is a more elegant proof using the action of B on basis vectors:
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Forget that we fixed p. For each i ∈ [m], let ei be the column vector in Fm whose
i-th entry is 1 while all its other entries are 0. That is,

ei =
(

0 0 · · · 0 1 0 0 · · · 0
)T ,

where the 1 is in the i-th position. The vectors e1, e2, . . . , em are the standard basis
vectors of Fm. It is well-known that every m×m-matrix C ∈ Fm×m satisfies

C•,i = Cei for each i ∈ [m] . (61)

(Recall that C•,i denotes the i-th column of C.)
We have so far defined the vectors ei only for i ∈ [m]. Now, for each integer

i /∈ [m], we define ei to be the zero vector 0 ∈ Fm. Thus, we have defined a vector
ei ∈ Fm for each i ∈ Z (although it is nonzero only when i ∈ [m]). In particular,
e0 = 0 (since 0 /∈ [m]). Note that we have

(the k-th entry of the column vector ei) =

{
1, if k = i;
0, otherwise

(62)

for each i ∈ Z and each k ∈ [m] 32.
Now, from (60), we see that the columns of the matrix B are 0, e1, e2, . . . , em−1

in this order. In other words, the columns of B are e0, e1, e2, . . . , em−1 in this order
(since e0 = 0). In other words, we have

B•,i = ei−1 for each i ∈ [m]

(since B•,i denotes the i-th column of B). However, (61) (applied to C = B) shows
that we have

B•,i = Bei for each i ∈ [m] .

Comparing these two equalities, we obtain

Bei = ei−1 for each i ∈ [m] . (63)

However, this equality also holds for all i ≤ 0 (because if i ≤ 0, then both ei and ei−1
equal the zero vector 0 (since i /∈ [m] and i− 1 /∈ [m]), and therefore this equality
boils down to B · 0 = 0). Thus,

Bei = ei−1 for each integer i ≤ m. (64)

Now, we claim that

Bpei = ei−p for each p ∈N and i ∈ [m] . (65)

32Proof. If i ∈ [m], then the equality (62) follows from the definition of ei. On the other hand, if
i /∈ [m], then ei = 0 (by definition), so that both sides of the equality (62) are 0 (since we don’t

have k = i (because k ∈ [m] and i /∈ [m]), and thus we have

{
1, if k = i;
0, otherwise

= 0). Thus, the

equality (62) holds in either case.
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[Proof of (65): We induct on p:
Induction base: We have B0 = Im and thus B0ei = Imei = ei = ei−0 for each i ∈ [m].

In other words, (65) holds for p = 0.
Induction step: Let q ∈ N. Assume that (65) holds for p = q. We must prove that

(65) holds for p = q + 1.
We have assumed that (65) holds for p = q. In other words, we have Bqei = ei−q

for each i ∈ [m]. Now, let i ∈ [m] be arbitrary. As we have just seen, we have
Bqei = ei−q. However, from q ≥ 0, we obtain i− q ≤ i ≤ m (since i ∈ [m]). Thus,
(64) (applied to i− q instead of i) yields Bei−q = ei−q−1. Now,

Bq+1︸︷︷︸
=BBq

ei = B Bqei︸︷︷︸
=ei−q

= Bei−q = ei−q−1 = ei−(q+1).

Forget that we fixed i. We thus have shown that Bq+1ei = ei−(q+1) for each i ∈ [m].
In other words, (65) holds for p = q + 1. This completes the induction step. Thus,
(65) is proved.]

Now, let p ∈N and let i, j ∈ [m]. Then,

(Bp)•,j = Bpej (by (61), applied to Bp and j instead of C and i)

= ej−p (by (65), applied to j instead of i) .

Furthermore,

(Bp)i,j =

the i-th entry of the column vector (Bp)•,j︸ ︷︷ ︸
=ej−p


=
(
the i-th entry of the column vector ej−p

)
=

{
1, if i = j− p;
0, otherwise

(by (62), applied to i and j− p instead of k and i). This proves Proposition 3.1.5 (a).

(b) Assume that p ≥ m. Let i, j ∈ [m] be arbitrary. Then, i ≥ 1 and j ≤ m.
Hence, j︸︷︷︸

≤m

−p ≤ m− p ≤ 0 (since p ≥ m), so that 0 ≥ j− p. On the other hand,

i ≥ 1 > 0 ≥ j− p. Therefore, i 6= j− p. However, Proposition 3.1.5 (a) yields

(Bp)i,j =

{
1, if i = j− p;
0, otherwise

= 0 (since i 6= j− p) .

Forget that we fixed i and j. We thus have shown that (Bp)i,j = 0 for all i, j ∈ [m].
In other words, all entries of the matrix Bp equal 0. Thus, Bp = 0. This proves
Proposition 3.1.5 (b).
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(c) Assume that p ≤ m. We shall use the column vectors ei ∈ Fm that were
defined for all i ∈ Z in our above proof of Proposition 3.1.5 (a).

Let v =


v1
v2
...

vm

 ∈ Fm be a column vector. Thus,

v =


v1
v2
...

vm

 = v1e1 + v2e2 + · · ·+ vmem =
m

∑
i=1

viei.

Hence,

Bpv = Bp ·
m

∑
i=1

viei =
m

∑
i=1

vi Bpei︸︷︷︸
=ei−p

(by (65))

=
m

∑
i=1

viei−p =
m−p

∑
j=1−p

vj+pej

(here, we have substituted j + p for i in the sum)

=
0

∑
j=1−p

vj+p ej︸︷︷︸
=0

(since j/∈[m]
(because j≤0))

+
m−p

∑
j=1

vj+pej =
0

∑
j=1−p

vj+p0︸ ︷︷ ︸
=0

+
m−p

∑
j=1

vj+pej =
m−p

∑
j=1

vj+pej

= vp+1e1 + vp+2e2 + · · ·+ vmem−p =



vp+1

vp+2
...

vm
0
0
...
0


.

Thus, Bpv = 0 holds if and only if vp+1 = vp+2 = · · · = vm = 0. In other words,
Bpv = 0 holds if and only if v ∈ span

(
e1, e2, . . . , ep

)
(because vp+1 = vp+2 = · · · =

vm = 0 is equivalent to v ∈ span
(
e1, e2, . . . , ep

)
).

Now, forget that we fixed v. We thus have shown that a vector v ∈ Fm satisfies
Bpv = 0 if and only if v ∈ span

(
e1, e2, . . . , ep

)
. Thus,

Ker (Bp) = span
(
e1, e2, . . . , ep

)
(since Ker (Bp) is defined as the set of all vectors v ∈ Fm satisfying Bpv = 0).
Therefore,

dim (Ker (Bp)) = dim
(
span

(
e1, e2, . . . , ep

))
= p
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(since span
(
e1, e2, . . . , ep

)
is clearly a p-dimensional subspace of Fm). This proves

Proposition 3.1.5 (c).

(d) Assume that p ≥ m. Then, Proposition 3.1.5 (b) yields Bp = 0. Hence,
dim (Ker (Bp)) = dim (Ker 0)︸ ︷︷ ︸

=Fm

= dim (Fm) = 0. Thus, Proposition 3.1.5 (d) is

proven.

Proposition 3.1.7. Let m be a positive integer, and let λ ∈ C. The only eigen-
value of the matrix Jm (λ) is λ. This eigenvalue has algebraic multiplicity m and
geometric multiplicity 1.

Proof. The definition of Jm (λ) yields

Jm (λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 .

This matrix is upper-triangular, so its characteristic polynomial is

pJm(λ) = (t− λ) (t− λ) · · · (t− λ) = (t− λ)m .

Thus, the only root of this polynomial is λ. In other words, the only eigenvalue of
this matrix Jm (λ) is λ. Its algebraic multiplicity is m (since this is its multiplicity
as a root of pJm(λ)). It remains to show that its geometric multiplicity is 1.

Since the geometric multiplicity of λ is defined as dim (Ker (Jm (λ)− λIm)), this
means that it remains to show that dim (Ker (Jm (λ)− λIm)) = 1.

Let B = Jm (0). Proposition 3.1.5 (c) (applied to p = 1) yields dim
(
Ker

(
B1)) = 1

(since 1 ≤ m). In other words, dim (Ker B) = 1.
Proposition 3.1.4 yields

Jm (λ) = Jm (0)︸ ︷︷ ︸
=B

+λIm = B + λIm,

so that Jm (λ)− λIm = B. Hence,

dim

Ker (Jm (λ)− λIm)︸ ︷︷ ︸
=B

 = dim (Ker B) = 1.

This completes our proof of Proposition 3.1.7.

3.2. Jordan canonical form: the theorem

Let us now build larger matrices out of Jordan cells:
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Definition 3.2.1. Let F be a field. A Jordan matrix means a block-diagonal matrix
whose diagonal blocks are Jordan cells. In other words, it is a matrix of the form

Jn1 (λ1) 0 · · · 0
0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 ,

where n1, n2, . . . , nk are positive integers and λ1, λ2, . . . , λk are scalars in F (not
necessarily distinct, but not necessarily equal either).

We note that any Jordan matrix is upper-triangular.

We claim the following:33

Theorem 3.2.2 (Jordan canonical form theorem). Let A ∈ Cn×n be an n × n-
matrix over C. Then:

(a) There exists a Jordan matrix J such that A ∼ J.

(b) This Jordan matrix J is unique up to the order of the diagonal blocks.

This theorem is useful partly (but not only) because it allows to reduce ques-
tions about general square matrices to questions about Jordan matrices. And the
latter can usually further be reduced to questions about Jordan cells, because a
block-diagonal matrix “behaves like its diagonal blocks are separate” (see, e.g., the
discussion before Proposition 1.6.11).

Note that we cannot hope for the matrix J in Theorem 3.2.2 to be fully unique,
unless it has only one diagonal block (i.e., unless k = 1). Indeed, Proposition 1.6.6
shows that if we permute the diagonal blocks Jn1 (λ1) , Jn2 (λ2) , . . . , Jnk (λk), then
the matrix stays similar to A. Thus, the order of these diagonal blocks can be
chosen arbitrary.

Definition 3.2.3. Let A be an n× n-matrix over C. Theorem 3.2.2 (a) says that
there exists a Jordan matrix J such that A ∼ J. Such a matrix J is called a Jordan
canonical form of A (or a Jordan normal form of A).

We often use the definite article (“the Jordan canonical form of A”), because
Theorem 3.2.2 (b) says that J is “more or less unique”. (Strictly speaking, of
course, it is not entirely appropriate.)

The diagonal blocks Jn1 (λ1) , Jn2 (λ2) , . . . , Jnk (λk) of J are called the Jordan
blocks (or Jordan cells) of A.

We often abbreviate “Jordan canonical form” as “JCF”.

33Recall that “A ∼ B” means that the matrix A is similar to the matrix B.
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Example 3.2.4. A Jordan canonical form of

 1 2 3
0 2 5
0 0 1

 is

 2 0 0
0 1 1
0 0 1

. Indeed, 2 0 0
0 1 1
0 0 1

 is a Jordan matrix (it can be written as
(

J1 (2) 0
0 J2 (1)

)
) and it can

be checked that  1 2 3
0 2 5
0 0 1

 ∼
 2 0 0

0 1 1
0 0 1

 .

We can swap the two Jordan cells in this Jordan matrix, and obtain another

Jordan canonical form of the same matrix:

 1 1 0
0 1 0
0 0 2

.

Example 3.2.5. If A =

(
0 −1
1 0

)
, then a Jordan canonical form of A is(

−i 0
0 i

)
=

(
J1 (−i) 0

0 J1 (i)

)
, where i =

√
−1 ∈ C. Note that this Jordan

canonical form has imaginary entries, despite all entries of A being real. This is
unavoidable when A has non-real eigenvalues.

Example 3.2.6. If D is a diagonal matrix, then D itself is a Jordan canonical form
of D. Indeed, each diagonal entry λ of D can be viewed as a Jordan cell of size
1 (namely, J1 (λ)), so that D is a Jordan matrix.

3.3. Jordan canonical form: proof of uniqueness

We shall approach the proof of Theorem 3.2.2 slowly34, making sure to record all
auxiliary results obtained on the way (as they are themselves rather useful). We
first try to explore how much of the structure of the Jordan normal form J can be
read off the matrix A. This will lead us to the proof of the uniqueness part (i.e.,
part (b)) of Theorem 3.2.2.

We start with an example:

34See [Bourba03, Chapter VII, §5, section 4], [GalQua20, Theorem 31.17], [Heffer20, Chapter Five,
Section IV, Theorem 2.8], [Loehr14, §8.10–§8.11], [OmClVi11, §4.6], [Prasol94, §12.2], [Shapir15,
§4.3], [Taylor20, §2.4], [Treil15, Chapter 9, Theorem 5.1] and [Woerde16, Theorem 4.4.1] for other
proofs (at least proofs of Theorem 3.2.2 (a), which is the harder part of Theorem 3.2.2).
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Example 3.3.1. Let A ∈ C7×7. Suppose that A ∼ J with

J =

 J2 (8) 0 0
0 J3 (8) 0
0 0 J2 (9)

 =



8 1 0 0 0 0 0
0 8 0 0 0 0 0
0 0 8 1 0 0 0
0 0 0 8 1 0 0
0 0 0 0 8 0 0
0 0 0 0 0 9 1
0 0 0 0 0 0 9


.

How are the structural elements of this matrix J (that is, the diagonal entries 8
and 9 and the sizes 2, 3, 2 of the diagonal blocks) reflected in the matrix A ?

First, the matrix J is a Jordan matrix, and thus upper-triangular. Hence, Propo-
sition 2.3.7 (applied to T = J) shows that the diagonal entries of J are the eigen-
values of A (with their algebraic multiplicities). Thus, the eigenvalues of A are 8
and 9, with respective algebraic multiplicities 5 and 2.

Now, what about the geometric multiplicities? That is, what are
dim (Ker (A− 8I7)) and dim (Ker (A− 9I7)) ?

From A ∼ J, we obtain A− 8I7 ∼ J − 8I7 (by Proposition 2.1.5 (h), applied to
B = J and λ = 8 and n = 7). Thus, Proposition 2.1.5 (b) (applied to A − 8I7,
J − 8I7 and 7 instead of A, B and 8) yields that the matrices A− 8I7 and J − 8I7
have the same nullity. In other words,

dim (Ker (A− 8I7)) = dim (Ker (J − 8I7))

= dim

Ker

 J2 (8)− 8I2 0 0
0 J3 (8)− 8I3 0
0 0 J2 (9)− 8I2


(since

J − 8I7 =

 J2 (8) 0 0
0 J3 (8) 0
0 0 J2 (9)

− 8I7

=

 J2 (8)− 8I2 0 0
0 J3 (8)− 8I3 0
0 0 J2 (9)− 8I2


). Thus,

dim (Ker (A− 8I7))

= dim

Ker

 J2 (8)− 8I2 0 0
0 J3 (8)− 8I3 0
0 0 J2 (9)− 8I2


= dim (Ker (J2 (8)− 8I2)) + dim (Ker (J3 (8)− 8I3)) + dim (Ker (J2 (9)− 8I2))
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(by Proposition 1.6.11). Now, let us find the three dimensions on the right hand
side.

Proposition 3.1.4 yields J2 (8) = J2 (0) + 2I2, so that J2 (8) − 8I2 = J2 (0).
Hence,

dim (Ker (J2 (8)− 8I2)) = dim (Ker (J2 (0))) = dim
(

Ker
(
(J2 (0))

1
))

= 1

(by Proposition 3.1.5 (c), applied to m = 2 and p = 1, because the matrix J2 (0) is
what is called B in this proposition). Similarly, dim (Ker (J3 (8)− 8I3)) = 1. On

the other hand, the matrix J2 (9)− 8I2 =

(
1 1
0 1

)
is an upper-triangular matrix

with 1’s on its main diagonal; thus, its determinant is 1 · 1 = 1 6= 0, so that it is
nonsingular. Hence, Ker (J2 (9)− 8I2) = 0, so that dim (Ker (J2 (9)− 8I2)) = 0.
Thus, our above computation of dim (Ker (A− 8I7)) becomes

dim (Ker (A− 8I7))

= dim (Ker (J2 (8)− 8I2))︸ ︷︷ ︸
=1

+dim (Ker (J3 (8)− 8I3))︸ ︷︷ ︸
=1

+dim (Ker (J2 (9)− 8I2))︸ ︷︷ ︸
=0

= 1 + 1 + 0 = 2.

Looking back, we see that this comes from the fact that exactly 2 of the diagonal
blocks in the Jordan canonical form J are Jordan cells at eigenvalue 8.

Generalizing this reasoning, we obtain the following:

Proposition 3.3.2. Let A be an n × n-matrix, and let J =
Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 be its Jordan canonical form. Then:

(a) We have σ (A) = {λ1, λ2, . . . , λk}.
(b) The geometric multiplicity of a number λ ∈ C as an eigenvalue of A is the

number of Jordan cells of A at eigenvalue λ. In other words, it is the number of
i ∈ [k] satisfying λi = λ.

(c) The algebraic multiplicity of a number λ ∈ C as an eigenvalue of A is the
sum of the sizes of all Jordan cells of A at eigenvalue λ. In other words, it is

∑
i∈[k];
λi=λ

ni.

Proof. TODO: Scribe?

With some more effort, we can obtain a more precise result:
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Proposition 3.3.3. Let A be an n × n-matrix, and let J =
Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 be its Jordan canonical form. Let λ ∈ C.

Let p be a positive integer. Then,

(the number of i ∈ [k] such that λi = λ and ni ≥ p)

= dim
(
Ker

(
(A− λIn)

p))− dim
(

Ker
(
(A− λIn)

p−1
))

.

Proof. We have A ∼ J, so that A− λIn ∼ J − λIn (by Proposition 2.1.5 (h), applied
to B = J), and therefore (A− λIn)

p ∼ (J − λIn)
p (by Proposition 2.1.5 (f), applied

to A− λIn and B− λIn and p instead of A, B and k). Hence,

dim
(
Ker

(
(A− λIn)

p)) = dim
(
Ker

(
(J − λIn)

p)) . (66)

For each i ∈ [k], we set
Mi := Jni (λi − λ) . (67)

However, for each i ∈ [k], we have

Jni (λi)− λIni = Jni (λi − λ) (68)

(because the two Jordan cells Jni (λi) and Jni (λi − λ) differ only in their diagonal
entries, which are λi in the former matrix and λi − λ in the latter). Comparing this
with (67), we obtain

Jni (λi)− λIni = Mi (69)

for each i ∈ [k].
Now, we have

J =


Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 and

λIn =


λIn1 0 · · · 0

0 λIn2 · · · 0
...

... . . . ...
0 0 · · · λInk

 .
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Subtracting these two equalities from one another, we obtain

J − λIn =


Jn1 (λ1)− λIn1 0 · · · 0

0 Jn2 (λ2)− λIn2 · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)− λInk



=


M1 0 · · · 0
0 M2 · · · 0
...

... . . . ...
0 0 · · · Mk


(by (68)). Hence,

(J − λIn)
p =


M1 0 · · · 0
0 M2 · · · 0
...

... . . . ...
0 0 · · · Mk


p

=


Mp

1 0 · · · 0
0 Mp

2 · · · 0
...

... . . . ...
0 0 · · · Mp

k


(by Corollary 1.6.10). Thus,

dim
(
Ker

(
(J − λIn)

p))

= dim

Ker


Mp

1 0 · · · 0
0 Mp

2 · · · 0
...

... . . . ...
0 0 · · · Mp

k




= dim
(
Ker

(
Mp

1

))
+ dim

(
Ker

(
Mp

2
))

+ · · ·+ dim
(
Ker

(
Mp

k

))
(by Proposition 1.6.11)

=
k

∑
i=1

dim
(
Ker

(
Mp

i
))

(70)

Now, fix an i ∈ [k] satisfying λi 6= λ. Thus, λi − λ 6= 0. The matrix Jni (λi − λ)
is upper-triangular, and its diagonal entries are all λi − λ. Hence, its determinant
is det (Jni (λi − λ)) = (λi − λ)ni 6= 0 (since λi − λ 6= 0). Therefore, this matrix
Jni (λi − λ) is invertible. In other words, the matrix Mi is invertible (since Mi =

Jni (λi − λ)). Hence, its p-th power Mp
i is also invertible, and therefore has nullity

0. In other words, dim
(
Ker

(
Mp

i
))

= 0.
Forget that we fixed i. We thus have shown that if i ∈ [k] satisfies λi 6= λ, then

dim
(
Ker

(
Mp

i
))

= 0. (71)
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Hence, (70) becomes

dim
(
Ker

(
(J − λIn)

p))
=

k

∑
i=1

dim
(
Ker

(
Mp

i
))

= ∑
i∈[k];
λi 6=λ

dim
(
Ker

(
Mp

i
))︸ ︷︷ ︸

=0
(by (71))

+ ∑
i∈[k];
λi=λ

dim
(
Ker

(
Mp

i
))

(since each i ∈ [k] satisfies either λi 6= λ or λi = λ)

= ∑
i∈[k];
λi=λ

dim
(
Ker

(
Mp

i
))

. (72)

Now, let us fix some i ∈ [k] satisfying λi = λ. Then, λi − λ = 0. Hence,

Jni (λi − λ) = Jni (0) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

. Let us denote this matrix Jni (0) by B.

Then, Proposition 3.1.5 (c) (applied to m = ni) shows that we have

dim (Ker (Bp)) = p if p ≤ ni.

On the other hand, Proposition 3.1.5 (c) (applied to m = ni) shows that we have

dim (Ker (Bp)) = ni if p > ni.

Combining these two equalities, we obtain

dim (Ker (Bp)) =

{
p, if p ≤ ni;
ni, if p ≥ ni.

35 In other words,

dim
(
Ker

(
Mp

i
))

=

{
p, if p ≤ ni;
ni, if p ≥ ni

(73)

(since B = Jni (0) = Jni (λi − λ) = Mi (by (67))).
Now, forget that we fixed i. We thus have proved (71) for each i ∈ [k] satisfying

λi = λ. Therefore, (72) becomes

dim
(
Ker

(
(J − λIn)

p)) = ∑
i∈[k];
λi=λ

dim
(
Ker

(
Mp

i
))︸ ︷︷ ︸

=

p, if p ≤ ni;
ni, if p ≥ ni

(by (73))

= ∑
i∈[k];
λi=λ

{
p, if p ≤ ni;
ni, if p ≥ ni.

35Note that the two cases p ≤ ni and p ≥ ni are not mutually exclusive: They overlap when p = ni.
(But the answers in this case are identical.)
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Thus, (66) becomes

dim
(
Ker

(
(A− λIn)

p)) = dim
(
Ker

(
(J − λIn)

p)) = ∑
i∈[k];
λi=λ

{
p, if p ≤ ni;
ni, if p > ni.

However, we can also apply the same argument to p− 1 instead of p (since p− 1 ∈
N). Thus, we obtain

dim
(

Ker
(
(A− λIn)

p−1
))

= ∑
i∈[k];
λi=λ

{
p− 1, if p− 1 ≤ ni;
ni, if p− 1 ≥ ni.

Subtracting these two equalities, we obtain

dim
(
Ker

(
(A− λIn)

p))− dim
(

Ker
(
(A− λIn)

p−1
))

= ∑
i∈[k];
λi=λ

{
p, if p ≤ ni;
ni, if p > ni

− ∑
i∈[k];
λi=λ

{
p− 1, if p− 1 ≤ ni;
ni, if p− 1 ≥ ni

= ∑
i∈[k];
λi=λ

({
p, if p ≤ ni;
ni, if p > ni

−
{

p− 1, if p− 1 ≤ ni;
ni, if p− 1 ≥ ni

)
︸ ︷︷ ︸

=

1, if p ≤ ni;
0, if p > ni

(this can be directly checked in each
of the two cases p≤ni and p>ni)

= ∑
i∈[k];
λi=λ

{
1, if p ≤ ni;
0, if p > ni

= ∑
i∈[k];
λi=λ

{
1, if ni ≥ p;
0, if ni < p

(
since the condition p ≤ ni is equivalent to ni ≥ p,

and since the condition p > ni is equivalent to ni < p

)
= (the number of i ∈ [k] such that λi = λ and ni ≥ p)

(because the sum has an addend equal to 1 for each i ∈ [k] satisfying λi = λ and
ni ≥ p, whereas all remaining addends of this sum are 0). Thus, Proposition 3.3.3
is proved.

Corollary 3.3.4. Let A be an n × n-matrix, and let J =
Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 be its Jordan canonical form. Let λ ∈ C.
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Let p be a positive integer. Then,

(the number of i ∈ [k] such that λi = λ and ni = p)
= 2 dim

(
Ker

(
(A− λIn)

p))
− dim

(
Ker

(
(A− λIn)

p−1
))
− dim

(
Ker

(
(A− λIn)

p+1
))

.

Proof. An integer z equals p if and only if it satisfies z ≥ p but does not satisfy
z ≥ p + 1. Hence, an i ∈ [k] satisfies ni = p if and only if it satisfies ni ≥ p but does
not satisfy ni ≥ p + 1. Thus,

(the number of i ∈ [k] such that λi = λ and ni = p)
= (the number of i ∈ [k] such that λi = λ and ni ≥ p)︸ ︷︷ ︸

=dim(Ker((A−λIn)
p))−dim(Ker((A−λIn)

p−1))
(by Proposition 3.3.3)

− (the number of i ∈ [k] such that λi = λ and ni ≥ p + 1)︸ ︷︷ ︸
=dim(Ker((A−λIn)

p+1))−dim(Ker((A−λIn)
p))

(by Proposition 3.3.3,
applied to p+1 instead of p)

(because any i ∈ [k] satisfying ni ≥ p + 1 must also satisfy ni ≥ p)

=
(

dim
(
Ker

(
(A− λIn)

p))− dim
(

Ker
(
(A− λIn)

p−1
)))

−
(

dim
(

Ker
(
(A− λIn)

p+1
))
− dim

(
Ker

(
(A− λIn)

p)))
= 2 dim

(
Ker

(
(A− λIn)

p))− dim
(

Ker
(
(A− λIn)

p−1
))
− dim

(
Ker

(
(A− λIn)

p+1
))

.

This proves Corollary 3.3.4.

Now, we can easily prove Theorem 3.2.2 (b):

Proof of Theorem 3.2.2 (b). Let A ∈ Cn×n be an n × n-matrix. Let J be a Jordan

matrix such that A ∼ J. Write J as J =


Jn1 (λ1) 0 · · · 0

0 Jn2 (λ2) · · · 0
...

... . . . ...
0 0 · · · Jnk (λk)

 as

in Corollary 3.3.4. Then, the Jordan blocks of J are Jn1 (λ1) , Jn2 (λ2) , . . . , Jnk (λk).
Hence, for any λ ∈ C and any positive integer p, we have

(the number of Jordan blocks of J of size p at eigenvalue λ)

= (the number of i ∈ [k] such that λi = λ and ni = p)

= 2 dim
(
Ker

(
(A− λIn)

p))− dim
(

Ker
(
(A− λIn)

p−1
))
− dim

(
Ker

(
(A− λIn)

p+1
))

.
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Therefore, this number is uniquely determined by A, λ and p. Hence, the whole
structure of J is determined uniquely by A, up to the order of the Jordan blocks.
This proves Theorem 3.2.2 (b).

Example 3.3.5. Let A be an 8× 8-matrix. Assume that we know that the Jordan
canonical form of A has

• 1 Jordan block of size 1 at eigenvalue 17;

• 2 Jordan blocks of size 1 at eigenvalue 35;

• 1 Jordan block of size 2 at eigenvalue 35;

• 1 Jordan block of size 3 at eigenvalue 59;

• no Jordan blocks of other sizes or at other eigenvalues.

Then, the Jordan canonical form of A must be the block-diagonal matrix
J1 (17) 0 0 0 0

0 J2 (35) 0 0 0
0 0 J1 (35) 0 0
0 0 0 J1 (35) 0
0 0 0 0 J3 (59)


or one that is obtained from it by permuting the diagonal blocks.

Let us now approach the existence of the Jordan canonical form (Theorem 3.2.2
(a)).

3.4. Jordan canonical form: proof of existence

We will prove the existence of the Jordan canonical form in several steps, each of
which will bring our matrix A “closer” to a Jordan matrix. Along the way, we will
obtain several results of independent interest.

3.4.1. Step 1: Schur triangularization

Our first step will be an application of Schur triangularization. As we recall, the
“weak” Schur triangularization theorem (Theorem 2.3.1) tells us that if A ∈ Cn×n

is an n× n-matrix, then A is unitarily similar to an upper-triangular matrix T. The
diagonal entries of the latter matrix T will be the eigenvalues of A in some order (by
Proposition 2.3.6). However, let us now be a bit pickier. To wit, we now want the
triangular matrix T to have the property that equal eigenvalues come in contiguous
runs on the main diagonal. In other words, we want T to have the property that
if two diagonal entries of T are equal, then all the diagonal entries between them
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are also equal to them. For instance, if the eigenvalues of A are 1, 1, 2, 2, we don’t
want36

T =


1 ∗ ∗ ∗

2 ∗ ∗
1 ∗

2

 ,

but instead we want

T =


1 ∗ ∗ ∗

1 ∗ ∗
2 ∗

2

 .

Fortunately, we can achieve this using Theorem 2.3.3: Indeed, if we list the eigenval-
ues of A as (λ1, λ2, . . . , λn) in such a way that equal eigenvalues come in contiguous
runs in this list, then Theorem 2.3.3 shows that we can find an upper-triangular ma-
trix T that is unitarily similar to A and that has diagonal entries λ1, λ2, . . . , λn in
this order. This matrix T is what we want.

3.4.2. Step 2: Separating distinct eigenvalues

Theorem 2.3.3 brings any n × n-matrix A ∈ Cn×n to a certain simplified form
(upper-triangular with eigenvalues placed contiguously on the diagonal) that is
not yet a Jordan canonical form, but already has some of its aspects. We will now
transform it further to get a bit closer to a Jordan canonical form. To wit, we will
get rid of some of the entries above the diagonal (or, to be more precise, we will
turn them into 0). Let us demonstrate this on an example:

Example 3.4.1. Let a, b, c, . . . , p ∈ C be any numbers. We shall now show that

1 a b c d e
1 f g h i

2 j k `
2 m n

2 p
3

 ∼


1 a
1

2 j k
2 m

2
3

 (74)

(where the entries in the empty cells are understood to be 0s).

Indeed, the triangular matrices
(

1 a
1

)
and


2 j k `

2 m n
2 p

3

 have disjoint

spectra (i.e., they have no eigenvalues in common), because their diagonals have

36In the following equation, an empty cell of the matrix must be filled with a 0, whereas a “∗” in a
cell means that any arbitrary value can go into that cell.

January 4, 2022



Math 504 notes page 121

no entries in common. So, by Corollary 2.8.5, we have

1 a b c d e
1 f g h i

2 j k `
2 m n

2 p
3

 ∼


1 a
1

2 j k `
2 m n

2 p
3

 . (75)

Furthermore, the triangular matrices


1 a

1
2 j k

2 m
2

 and
(

3
)

have disjoint

spectra, so Corollary 2.8.5 yields
1 a

1
2 j k `

2 m n
2 p

3

 ∼


1 a
1

2 j k
2 m

2
3

 . (76)

Since ∼ is an equivalence relation, we can combine the two similarities (75) and
(76), and we conclude that the claim (74) holds.

This example generalizes:

Theorem 3.4.2. Let T ∈ Cn×n be an upper-triangular matrix. Assume that the
diagonal entries of T come in contiguous runs (i.e., if i, j ∈ [n] satisfy i < j and
Ti,i = Tj,j, then Ti,i = Ti+1,i+1 = Ti+2,i+2 = · · · = Tj,j). Let S be the matrix
obtained from T by setting all entries Ti,j with Ti,i 6= Tj,j to 0. In other words, let
S ∈ Cn×n be the n× n-matrix defined by setting

Si,j =

{
Ti,j, if Ti,i = Tj,j;

0, otherwise
for all i, j ∈ [n] .

Then, T ∼ S.

Proof. TODO: Scribe!

Roughly speaking, Theorem 3.4.2 says that whenever we have an upper-triangular
matrix T whose diagonal has no interlaced values (i.e., there is never a µ between
two λ’s on the diagonal when µ 6= λ), we can “clean out” all the above-diagonal
entries that correspond to different diagonal entries (i.e., all above-diagonal entries
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Ti,j with Ti,i 6= Tj,j) by a similarity (i.e., if we set all these entries to 0, the resulting
matrix will be similar to T).

Now, combining this with Theorem 2.3.3, we obtain the following:

Proposition 3.4.3. Let A ∈ Cn×n be an n × n-matrix. Then, A is similar to a
block-diagonal matrix of the form

B1
B2

. . .
Bk

 ,

where each Bi is an upper-triangular matrix such that all entries on the diagonal
of Bi are equal. (Here, the cells that we left empty are understood to be filled
with zero matrices.)

Proof. TODO: Scribe!

Note that we have given up unitary similarity at this point: The word “similar”
in Proposition 3.4.3 cannot be replaced by “unitarily similar”. (A counterexample
is easily obtained from Exercise 2.2.1.)

3.4.3. Step 3: Strictly upper-triangular matrices

The block-diagonal matrix in Proposition 3.4.3 is not yet a Jordan canonical form,
but it is already somewhat close. At least, we have separated out all the distinct
eigenvalues of A and “cleaned out the space between them”. We now can work
with the matrices B1, B2, . . . , Bk separately; each of these matrices has one distinct
eigenvalue. Our next goal is to show that each of these matrices B1, B2, . . . , Bk is
similar to a Jordan matrix. (This will easily yield that the total block-diagonal

matrix


B1

B2
. . .

Bk

 is similar to a Jordan matrix, and therefore the same

holds for A.)
For each i ∈ [k], the matrix Bi has all its diagonal entries equal. Let us say these

diagonal entries all equal µi. Thus, Bi − µi I is a strictly upper-triangular matrix.
(Recall: a strictly upper-triangular matrix is an upper-triangular matrix whose diago-
nal entries are 0.) We want to show that Bi is similar to a Jordan matrix. Because of
Proposition 2.1.5 (g), it will suffice to show that the strictly upper-triangular matrix
Bi − µi I is similar to a Jordan matrix (because adding µi I to a Jordan matrix always
gives a Jordan matrix again).

Thus, our goal is now to show that every strictly upper-triangular matrix A is
similar to a Jordan matrix. Before we approach this goal in general, let us convince
ourselves that it is achievable for 2× 2-matrices.
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Example 3.4.4. A strictly upper-triangular 2× 2-matrix A ∈ C2×2 must have the

form
(

0 a
0 0

)
for some a ∈ C.

• If a = 0, then A is the Jordan matrix
(

J1 (0)
J1 (0)

)
.

• If a 6= 0, then A is similar to the Jordan matrix J2 (0) =
(

0 1
0 0

)
. Indeed,

A =

(
a 0
0 1

)(
0 1
0 0

)(
a 0
0 1

)−1

.

Now, we return to the general case. Let F be any field. Let A ∈ Fn×n be any
strictly upper-triangular n× n-matrix. (We don’t need to restrict ourselves to the
case F = C here.) We want to prove that A is similar to a Jordan matrix.

The key to this proof will be to restate the question in terms of certain bases of
Fn, and then to construct these bases by an iterative process. We begin with a few
notions:

Convention 3.4.5. We fix a nonnegative integer n ∈ N, a field F and a strictly
upper-triangular matrix A ∈ Fn×n for the rest of Subsection 3.4.3.

We observe that
An = 0. (77)

(This is a well-known property of strictly upper-triangular n× n-matrices. It can
be obtained by applying Lemma 2.7.5 to Ti = A, because A is an upper-triangular
matrix whose all diagonal entries are 0. An alternative proof can be found, e.g., in
[Grinbe19, Corollary 3.78]37.)

Definition 3.4.6. (a) An orbit shall mean a tuple of the form(
A0v, A1v, . . . , Akv

)
, where v ∈ Fn is a vector and k ∈ N is an integer

satisfying Ak+1v = 0. (We can also write this tuple as
(
v, Av, A2v, . . . , Akv

)
.)

(b) The concatenation of two tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`) is defined
to be the tuple (a1, a2, . . . , ak, b1, b2, . . . , b`). Thus, concatenation is a binary op-
eration on the set of tuples. Since this operation is associative, we thus ob-
tain the notion of concatenation of several tuples. For example, the concate-
nation of three tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`) and (c1, c2, . . . , cm) is
(a1, a2, . . . , ak, b1, b2, . . . , b`, c1, c2, . . . , cm).

37To be precise, [Grinbe19, Corollary 3.78] proves the analogous property for strictly lower-
triangular matrices. But the case of strictly upper-triangular matrices is analogous (the roles
of rows and columns are swapped).
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(c) A tuple (v1, v2, . . . , vm) of vectors in Fn will be called forwarded if each
i ∈ [m] satisfies Avi = vi+1 or Avi = 0. (Here, vm+1 is understood to be 0.)

(d) A tuple (v1, v2, . . . , vm) of vectors in Fn will be called backwarded if each
i ∈ [m] satisfies Avi = vi−1 or Avi = 0. (Here, v0 is understood to be 0.)

Note that the notions of “orbit”, “forwarded” and “backwarded” depend on
A, but we do not mention A since A is fixed.

Example 3.4.7. Let p, q, r be three vectors in Fn satisfying A3p = 0 and A2q = 0
and A4r = 0. Then, the 9-tuple(

p, Ap, A2p, q, Aq, r, Ar, A2r, A3r
)

is forwarded. Indeed, if we rename this tuple as (v1, v2, . . . , v9), then each i ∈
{1, 2, 4, 6, 7, 8} satisfies Avi = vi+1, whereas each i ∈ {3, 5} satisfies Avi = 0. This
9-tuple is furthermore the concatenation of the orbits

(
p, Ap, A2p

)
, (q, Aq) and(

r, Ar, A2r, A3r
)
. Reversing this 9-tuple yields a new 9-tuple(

A3r, A2r, Ar, r, Aq, q, A2p, Ap, p
)

,

which is backwarded.

What we have seen in this example can be generalized:

Proposition 3.4.8. (a) A tuple (v1, v2, . . . , vm) of vectors in Fn is forwarded if and
only if it is a concatenation of finitely many orbits.

(b) A tuple (v1, v2, . . . , vm) of vectors in Fn is backwarded if and only if the
tuple (vm, vm−1, . . . , v1) is forwarded.

Proof. TODO: Scribe?

More importantly, backwarded tuples are closely related to Jordan forms. To wit:

Proposition 3.4.9. Let (s1, s2, . . . , sn) be a basis of Fn. Let S ∈ Fn×n be the n× n-
matrix with columns s1, s2, . . . , sn. Then, S−1AS is a Jordan matrix if and only if
the n-tuple (s1, s2, . . . , sn) is backwarded.

Proof. We shall only prove the “if” part, since this is the only part that we will use;
however, the proof of the “only if” part can essentially be obtained from the proof
of the “if” part by reading it in reverse.

So let us prove the “if” part. Thus, we assume that the n-tuple (s1, s2, . . . , sn) is
backwarded. In other words, each i ∈ [n] satisfies

Asi = si−1 or Asi = 0 (78)
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(where s0 means 0). Our goal is to show that S−1AS is a Jordan matrix.
The matrix S is invertible, since its columns s1, s2, . . . , sn form a basis of Fn.
We call an i ∈ [n]

• red if it satisfies Asi = si−1 6= 0, and

• blue if it satisfies Asi = 0.

Thus, (78) shows that each i ∈ [n] is either red or blue. Note that 1 is always
blue, since s1−1 = s0 = 0.

Let J be the n× n-matrix whose (i, j)-th entry is{
1, if j = i + 1 and j is red;
0, otherwise.

For instance, if n = 8 and if 2, 3, 5, 7, 8 are red whereas 1, 4, 6 are blue, then

J =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


Thus, all entries of J are 0 except for some 1s placed in cells directly above the main
diagonal. This shows that J is a Jordan matrix, with each Jordan block covering the
rows and columns between one blue i ∈ [n] and the next. Explicitly, if i1, i2, . . . , ik
are the blue i’s listed from smallest to largest (i.e., with i1 < i2 < · · · < ik), then J is

the block-diagonal matrix


Ji2−i1 (0) 0 · · · 0

0 Ji3−i2 (0) · · · 0
...

... . . . ...
0 0 · · · Jik+1−ik (0)

, where we set

ik+1 := n + 1.
We shall now show that AS = SJ. This will entail that S−1AS = J, which as we

know is a Jordan matrix.
For each i ∈ [n], we have

(the i-th column of the matrix AS)
= A · (the i-th column of the matrix S)︸ ︷︷ ︸

=si
(by the definition of S)

(by the rules for multiplying matrices)

= Asi =

{
si−1, if i is red;
0, if i is blue

(by the definition of “red” and “blue”) .
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On the other hand, for each i ∈ [n], we have

(the i-th column of the matrix SJ)
= S · (the i-th column of the matrix J)︸ ︷︷ ︸

=

ei−1, if i is red;
0, if i is blue

(by the definition of J)

(by the rules for multiplying matrices)

= S ·
{

ei−1, if i is red;
0, if i is blue

=

{
Sei−1, if i is red;
0, if i is blue

=

{
si−1, if i is red;
0, if i is blue.

(since Sei−1 = (the (i− 1) -th column of the matrix S) = si−1). Comparing these
two equalities, we obtain

(the i-th column of the matrix AS) = (the i-th column of the matrix SJ)

for each i ∈ [n]. Hence, AS = SJ. Therefore, S−1AS = J. Hence, S−1AS is a Jordan
matrix (since we know that J is a Jordan matrix). This proves the “if” direction of
Proposition 3.4.9.

Recall that our goal is to show that A is similar to a Jordan matrix. Proposition
3.4.9 shows us a way to this goal: We just need to find a basis for Fn that is
forwarded. In view of Proposition 3.4.8 (b), this is tantamount to finding a basis
for Fn that is backwarded. Let us first see how to do so on examples:

[...]
TODO: Polish from here!
TODO: Empty cells = 0 entries.

Example 3.4.10. Let n = 4 and A =... (where the cells we leave empty are
understood to contain zeroes). Then, ... find some interesting orbits and bases

TODO: Scribe?

We begin by finding forwarded bases in some examples:

Example 3.4.11. Let n = 2. Then, A =

(
0 a
0 0

)
for some a ∈ F.

We are looking for an invertible matrix S ∈ F2×2 such that S−1AS is a Jordan
matrix.

If a = 0, then this is obvious (just take S = I2), since A =

(
J1 (0)

J1 (0)

)
is

already a Jordan matrix.
Now assume a 6= 0.
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Consider our unknown invertible matrix S. Let s1 and s2 be its columns.
Then, s1 and s2 are linearly independent (since S is invertible). Moreover, we

want S−1AS =

(
0 1
0 0

)
. In other words, we want AS = S

(
0 1
0 0

)
. However,

S =
(

s1 s2
)

(in block-matrix notation), so S
(

0 1
0 0

)
=
(

0 s1
)
. Thus our

equation AS = S
(

0 1
0 0

)
is equivalent to

(
As1 As2

)
=
(

0 s1
)

.

In other words, As1 = 0 and As2 = s1.
So we are looking for two linearly independent vectors s1, s2 ∈ F2 such that

As1 = 0 and As2 = s1.
One way to do so is to pick some nonzero vector s1 ∈ Ker A, and then define s2

to be some preimage of s1 under A. (It can be shown that such preimage exists.)
This way, however, does not generalize to higher n.

Another (better) way is to start by picking s2 ∈ F2 \ Ker A and then setting
s1 = As2. We claim that s1 and s2 are linearly independent, and that As1 = 0.

To show that As1 = 0, we just observe that As1 = AA︸︷︷︸
=A2=0

s2 = 0.

To show that s1 and s2 are linearly independent, we argue as follows: Let
λ1, λ2 ∈ F be such that λ1s1 + λ2s2 = 0. Applying A to this, we obtain A ·
(λ1s1 + λ2s2) = A · 0 = 0. However,

A · (λ1s1 + λ2s2) = λ1 As1︸︷︷︸
=0

+λ2 As2︸︷︷︸
=s1

= λ2s1,

so this becomes λ2s1 = 0. However, s1 6= 0 (because s1 = As2 but s2 /∈ Ker A).
Hence, λ2 = 0. Now, λ1s1 + λ2s2 = 0 becomes λ1s1 = 0. Since s1 6= 0, this yields
λ1 = 0. Now both λis are 0, qed.

Example 3.4.12. Let n = 3 and A =

 1 1
0

.

Our first method above doesn’t work, because most vectors in Ker A do not
have preimages under A.

However, our second method can be made to work:

We pick a vector s3 /∈ Ker A. To wit, we pick s3 = e3 =

 0
0
1

. Then, As3 = e1.

Set s2 = As3 = e1. Note that s2 ∈ Ker A. Let s1 be another nonzero vector in
Ker A, namely e2 − e3. These three vectors s1, s2, s3 are linearly independent and
satisfy As1 = 0 and As2 = 0 and As3 = s2.
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So S =

 0 1 0
1 0 0
−1 0 1

. And indeed, S−1AS =

 0 0 0
0 0 1
0 0 0

 is a Jordan matrix.

So what is the general algorithm here? Can we always find n linearly indepen-
dent vectors s1, s2, . . . , sn such that each Asi is either 0 or si−1 ?

Now, we return to the general case: How do we find a backwarded basis (s1, s2, . . . , sn)
of Fn ?

(The following proof is due to Terence Tao [Tao07].)
We recall that an orbit was defined to be a tuple of the form

(
v, Av, A2v, . . . , Akv

)
,

where v ∈ Fn satisfies Ak+1v = 0. Note that for each v ∈ Fn, there is an orbit that
starts with v, since An = 0.

Now, we claim the existence of a forwarded basis:

Lemma 3.4.13 (orbit basis lemma). There exists a basis of Fn that is a concatena-
tion of orbits.

Once Lemma 3.4.13 is proved, we will be done, because such a basis will be a
forwarded basis (by Proposition 3.4.8 (a)), and therefore reading it backwards will
gives us a backwarded basis (by Proposition 3.4.8 (b)), which is precisely what we
wish. For example, if the basis that Lemma 3.4.13 gives us is(

u, Au, A2u, v, Av, A2v, A3v, w, Aw
)

(with A3u = 0 and A4v = 0 and A2w = 0), then reading it backwards gives(
Aw, w, A3v, A2v, Av, v, A2u, Au, u

)
,

which is a backwarded basis of Fn.

Proof of Lemma 3.4.13. It is easy to find a finite spanning set of Fn that is a concate-
nation of orbits. Indeed, we can start with the standard basis (e1, e2, . . . , en), and
extend it to the list

(e1, Ae1, A2e1, . . . , An−1e1,

e2, Ae2, A2e2, . . . , An−1e2,
. . . ,

en, Aen, A2en, . . . , An−1en).

This is clearly a spanning set of Fn (since e1, e2, . . . , en already span Fn), and also a
concatenation of orbits (since An = 0).

Now, we will gradually shorten this spanning set (i.e., replace it by smaller ones)
until we get a basis. We have to do this in such a way that it remains a spanning set
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throughout the process, and that it remains a concatenation of orbits throughout
the process.

For the sake of concreteness, let us assume that our spanning set is(
x, Ax, y, Ay, A2y, z, Az, A2z, A3z, w

)
,

with A2x = 0 and A3y = 0 and A4z = 0 and Aw = 0. If this spanning set is linearly
independent, then it is already a basis, and we are done. So assume that it is not.
Thus, there exists some linear dependence relation – say,

3x + 4Ax + 5Ay + 6A2y + 7A2z + 8w = 0.

Applying A to this relation, we obtain

3Ax + 4A2x + 5A2y + 6A3y + 7A3z + 8Aw = 0, i.e.

3Ax + 5A2y + 7A3z = 0

(since A2x = 0 and A3y = 0 and Aw = 0). Applying A to this relation again, we
obtain

3A2x + 5A3y + 7A4z = 0, i.e.
0 = 0.

We have gone too far, so let us revert to the previous equation:

3Ax + 5A2y + 7A3z = 0.

So this is a linear dependence relation between the final vectors of the orbits in our
spanning set. (“Final” means the last vector in the orbit.) Factoring out an A in this
relation, we obtain

A
(

3x + 5Ay + 7A2z
)
= 0.

Thus, the 1-tuple
(
3x + 5Ay + 7A2z

)
is an orbit.

Now, let us replace the orbit (x, Ax) in our spanning set
(
x, Ax, y, Ay, A2y, z, Az, A2z, A3z, w

)
by the orbit

(
3x + 5Ay + 7A2z

)
. We get(

3x + 5Ay + 7A2z, y, Ay, A2y, z, Az, A2z, A3z, w
)

.

This is still a concatenation of orbits, since the 1-tuple
(
3x + 5Ay + 7A2z

)
is an

orbit. Furthermore, this is still a spanning set of Fn; why? Because we removed the
vector Ax, which was unnecessary for spanning Fn (because the equality 3Ax +
5A2y + 7A3z = 0 reveals that it is a linear combination of the other vectors in our
spanning set), and we replaced x by 3x + 5Ay + 7A2z (which does not change the
span, because Ay and A2z are still in the spanning set).
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This example generalizes. In the general case, you have a spanning set s that is a
concatenation of orbits:

s = (v1, Av1, . . . , Am1v1, v2, Av2, . . . , Am2v2, . . . , vk, Avk, . . . , Amk vk) ,

where Am1+1v1 = 0 and Am2+1v2 = 0 and . . . and Amk+1vk = 0. If this spanning set
s is a basis, you are done. If not, you pick a linear dependence relation:

∑
i,j

λi,j Ajvi = 0.

By multiplying this by A an appropriate amount of times (namely, you keep mul-
tiplying until it becomes 0 = 0, and then you take a step back), you obtain a linear
dependence relation that involves only the final vectors of the orbits (i.e., the vec-
tors Am1v1, Am2v2, . . . , Amk vk). Thus, it will look like this:

µ1Am1v1 + µ2Am2v2 + · · ·+ µk Amk vk = 0

(with at least one of µ1, µ2, . . . , µk being nonzero). Assume WLOG that the first
p of the scalars µ1, µ2, . . . , µk are nonzero, while the remaining k − p are 0 (this
can always be achieved by permuting the orbits, which of course does not change
anything about the spanning set being a spanning set). So the relation becomes

µ1Am1v1 + µ2Am2v2 + · · ·+ µp Amp vp = 0,

with µ1, µ2, . . . , µp being nonzero. Note that p > 0 (since at least one of µ1, µ2, . . . , µk
is nonzero), so that µ1 6= 0. Assume WLOG that m1 = min

{
m1, m2, . . . , mp

}
, and

factor out Am1 from this relation. This yields

Am1
(
µ1v1 + µ2Am2−m1v2 + · · ·+ µp Amp−m1vp

)
= 0.

Now, set w1 = µ1v1 + µ2Am2−m1v2 + · · ·+ µp Amp−m1vp. Thus, Am1w1 = 0. Hence,(
w1, Aw1, A2w1, . . . , Am1−1w1

)
is an orbit of length m1. Now, replace the orbit

(v1, Av1, . . . , Am1v1) in the spanning set s by the shorter orbit
(
w1, Aw1, A2w1, . . . , Am1−1w1

)
.

The resulting list(
w1, Aw1, A2w1, . . . , Am1−1w1, v2, Av2, . . . , Am2v2, . . . , vk, Avk, . . . , Amk vk

)
is still a concatenation of orbits (since Am1w1 = 0). Also, it still spans Fn, because
the m1 + 1 vectors v1, Av1, . . . , Am1v1 that we have removed from s can be recovered
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as linear combinations of the vectors in our new list as follows:

v1 =
1
µ1

(
w1 −

(
µ2Am2−m1v2 + · · ·+ µp Amp−m1vp

))
(
since w1 = µ1v1 + µ2Am2−m1v2 + · · ·+ µp Amp−m1vp

)
;

Av1 = A · 1
µ1

(
w1 −

(
µ2Am2−m1v2 + · · ·+ µp Amp−m1vp

))
=

1
µ1

(
Aw1 −

(
µ2Am2−m1+1v2 + · · ·+ µp Amp−m1+1vp

))
;

A2v1 = A2 · 1
µ1

(
w1 −

(
µ2Am2−m1v2 + · · ·+ µp Amp−m1vp

))
=

1
µ1

(
A2w1 −

(
µ2Am2−m1+2v2 + · · ·+ µp Amp−m1+2vp

))
;

. . . ;

Am1v1 =
1
µ1

Am1w1︸ ︷︷ ︸
=0

−
(
µ2Am2v2 + · · ·+ µp Amp vp

)
=

1
µ1

(
−
(
µ2Am2v2 + · · ·+ µp Amp vp

))
.

So we have found a new spanning set of Fn that is still a concatenation of orbits,
but is shorter than s (namely, it has one less vector than s). In other words, we
have found a way to replace a spanning set of Fn that is a concatenation of orbits
by a smaller such set as long as it is linearly independent. Performing this process
repeatedly, we will eventually obtain a basis (since we cannot keep making a finite
list shorter and shorter indefinitely). This proves Lemma 3.4.13.

As we said, Lemma 3.4.13 gives us a basis of Fn that is a concatenation of orbits.
In other words, it gives us a forwarded basis (by Proposition 3.4.8 (a)), and therefore
reading it backwards will gives us a backwarded basis (by Proposition 3.4.8 (b)).
In view of Proposition 3.4.9, this lets us find an invertible matrix S ∈ Fn×n such
that S−1AS is a Jordan matrix. This completes the proof of Theorem 3.2.2 (a) (the
existence part of the Jordan canonical form).

Example 3.4.14. Let F = C and

A =


0 1 0 −1 1 −1
0 1 1 −2 2 −2
0 1 0 −1 2 −2
0 1 0 −1 2 −2
0 1 0 −1 1 −1
0 1 0 −1 1 −1

 .

This matrix A is not strictly upper-triangular, but it is nilpotent, with A3 = 0, so
the above argument goes equally well with this A.
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[TODO: Replace this by a better example, with an actual strictly upper-
triangular A.]

Let us try to find a basis of F6 that is a concatenation of orbits.
We begin with the spanning set(

e1, Ae1, A2e1, e2, Ae2, A2e2, . . . , e6, Ae6, A2e6

)
.

It has lots of linear dependencies. For one, Ae1 = 0. Multiplying it by A gives
A2e1 = 0, so we can replace

(
e1, Ae1, A2e1

)
by (e1, Ae1). So our spanning set

becomes (
e1, Ae1, e2, Ae2, A2e2, . . . , e6, Ae6, A2e6

)
.

One more step of the same form gives(
e1, e2, Ae2, A2e2, . . . , e6, Ae6, A2e6

)
.

Now, observe that Ae3 = e2. That is, e2− Ae3 = 0. Multiplying it by A2, we ob-
tain A2e2 = 0 (since A2 · Ae3 = A3e3 = 0). So we replace the orbit

(
e2, Ae2, A2e2

)
by (e2, Ae2). So we get the spanning set(

e1, e2, Ae2, e3, Ae3, A2e3, e4, Ae4, A2e4, e5, Ae5, A2e5, e6, Ae6, A2e6

)
.

We observe that
Ae2 = e1 + e2 + e3 + e4 + e5 + e6.

In other words,
Ae2 − e1 − e2 − e3 − e4 − e5 − e6 = 0.

Multiplying this by A2, we obtain

−A2e3 − A2e4 − A2e5 − A2e6 = 0.

In other words,
A2 (−e3 − e4 − e5 − e6) = 0.

Thus, we set w1 := −e3− e4− e5− e6, and we replace
(
e3, Ae3, A2e3

)
by (w1, Aw1).

So we get the spanning set(
e1, e2, Ae2, w1, Aw1, e4, Ae4, A2e4, e5, Ae5, A2e5, e6, Ae6, A2e6

)
.

Keep making these steps. Eventually, there will be no more linear dependencies,
so we will have a basis.
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Exercise 3.4.1. 3 Compute the Jordan canonical form of the matrix

 1 0 2
0 1 1
0 0 1

.

Exercise 3.4.2. 4 Let A ∈ Cn×n be a matrix. Prove that the following three
statements are equivalent:

• A: The matrix A is nilpotent.

• B: We have An = 0.

• C: The only eigenvalue of A is 0 (that is, we have σ (A) = {0}).

Exercise 3.4.3. 4 Let A ∈ Cn×n be a matrix. Let λ ∈ C be nonzero. Prove the
following:

(a) If A is nilpotent, then A ∼ λA.

(b) If A ∼ λA and if all n numbers λ1, λ2, . . . , λn are distinct from 1, then A is
nilpotent.

3.5. Powers and the Jordan canonical form

Let n ∈ N and A ∈ Fn×n for some field F. Assume that we know the JCF J of A
(this always exists when F = C, but sometimes exists for other fields as well) and
an invertible matrix S ∈ Fn×n such that

A = SJS−1.

Then, it is fairly easy to compute all powers Am of A. Indeed, recall that

•
(
SJS−1)m

= SJmS−1 for any m ∈N.

•


A1

A2
. . .

Ak


m

=


Am

1
Am

2
. . .

Am
k

 for any m ∈N.

Thus, it suffices to compute the m-th power of any Jordan cell Jk (λ).
So let us consider a Jordan cell

C := J5 (λ) =


λ 1

λ 1
λ 1

λ 1
λ

 .
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Then,

C2 =


λ2 2λ 1

λ2 2λ 1
λ2 2λ 1

λ2 2λ

λ2

 ; C3 =


λ3 3λ2 3λ 1

λ3 3λ2 3λ 1
λ3 3λ2 3λ

λ3 3λ2

λ3

 ;

C4 =


λ4 4λ3 6λ2 4λ 1

λ4 4λ3 6λ2 4λ

λ4 4λ3 6λ2

λ4 4λ3

λ4

 ; C5 =


λ5 5λ4 10λ3 10λ2 5λ

λ5 5λ4 10λ3 10λ2

λ5 5λ4 10λ3

λ5 5λ4

λ5

 .

In general, we have the following:

Theorem 3.5.1. Let F be a field. Let k > 0 and λ ∈ F. Let C = Jk (λ). Let
m ∈ N. Then, Cm is the upper-triangular k × k-matrix whose (i, j)-th entry is(

m
j− i

)
λm−j+i for all i, j ∈ [k]. (Here, we follow the convention that

(
m
`

)
λm−` :=

0 when ` /∈N. Also, recall that
(

n
`

)
= 0 when n ∈N and ` > n.)

First proof of Theorem 3.5.1. Induct on m and use Cm = CCm−1 as well as Pascal’s
recursion (

n
`

)
=

(
n− 1
`

)
+

(
n− 1
`− 1

)
.

Second proof of Theorem 3.5.1. Set B := Jk (0) =


1

1
. . .

1

. Proposition

3.1.5 (a) tells us what the powers of B are: Namely, Bi has 1s i steps above the
main diagonal, and 0s everywhere else.

However, C = B + λIk. The matrices λIk and B commute (i.e., we have B · λIk =
λIk · B). It is a general fact that if X and Y are two commuting n× n-matrices, then
the binomial formula

(X + Y)m =
m

∑
i=0

(
m
i

)
XiYm−i holds.

(This can be proved in the same way as for numbers, because the commutativity of
X and Y lets you move any Xes past any Ys.) Applying this formula to X = B and
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Y = λIk, we obtain

(B + λIk)
m =

m

∑
i=0

(
m
i

)
Bi (λIk)

m−i︸ ︷︷ ︸
=λm−i Ik

=
m

∑
i=0

(
m
i

)
λm−iBi

=



λm
(

m
1

)
λm−1

(
m
2

)
λm−2 · · · · · · · · · · · ·

λm
(

m
1

)
λm−1

(
m
2

)
λm−2 · · · · · · · · ·

λm
(

m
1

)
λm−1

(
m
2

)
λm−2 · · · · · ·

λm
(

m
1

)
λm−1 · · · · · ·

λm · · · ...
. . . ...

λm



,

which is precisely the matrix claimed in the theorem.

Now we know how to take powers of Jordan cells, and therefore how to take
powers of any matrix that we know how to bring to a Jordan canonical form.

Corollary 3.5.2. Let A ∈ Cn×n. Then, lim
m→∞

Am = 0 if and only if all eigenvalues
of A have absolute value < 1.

Proof. =⇒: Suppose that lim
m→∞

Am = 0, and let λ be an eigenvalue of A. We must

show that |λ| < 1.
Consider a nonzero eigenvector x for eigenvalue λ. Thus, Ax = λx. Then,

A2x = λ2x (since A2x = A Ax︸︷︷︸
=λx

= λ Ax︸︷︷︸
=λx

= λλx = λ2x) and similarly A3x = λ3x

and A4x = λ4x and so on. Thus,

Amx = λmx for each m ∈N.

Now, as m → ∞, the vector Amx goes to 0 (since Am → 0). Thus, the vector λmx
goes to 0 as well (since Amx = λmx for each m ∈ N). Since x 6= 0, this entails that
the scalar λm goes to 0 as well. Hence, |λ| < 1 (because if |λ| was ≥ 1, then λm

would either oscillate along the unit circle, or move further and further away from
the origin).

⇐=: Suppose that all eigenvalues of A have absolute value < 1.

Let A = SJS−1 be the Jordan canonical form of A. Write J as


J1

J2
. . .

Jp

,

where J1, J2, . . . , Jp are Jordan cells.

January 4, 2022



Math 504 notes page 136

It suffices to show that lim
m→∞

Jm
h = 0 for each h ∈ [p] (because this will yield

lim
m→∞

Jm = 0, and therefore

lim
m→∞

Am = lim
m→∞

(
SJS−1

)m

︸ ︷︷ ︸
=SJmS−1

= lim
m→∞

SJmS−1 = S
(

lim
m→∞

Jm
)

︸ ︷︷ ︸
=0

S−1 = 0,

which is what we want to show).
Fix some h ∈ [p]. Write Jh as Jk (λ), with |λ| < 1. Theorem 3.5.1 thus yields that

the powers Jm
h of this matrix Jh have a very specific form; in particular, each Jm

h is

an upper-triangular k× k-matrix whose (i, j)-th entry is
(

m
j− i

)
λm−j+i. Thus, we

need to show that for each i, j ∈ [k], we have

lim
m→∞

(
m

j− i

)
λm−j+i = 0.

However, this follows from a standard asymptotics argument:(
m

j− i

)
︸ ︷︷ ︸

=
m (m− 1) (m− 2) · · · (m− j + i)

(j− i)!
(for i≤j; otherwise the claim is trivial)

λm−j+i︸ ︷︷ ︸
exponential in m,

with quotient λ having absolute value |λ|<1

→ 0

because exponential functions with a quotient of absolute value < 1 converge to 0
faster than polynomials can go to ∞.

Exercise 3.5.1. 6 Let λ ∈ C. Let n and k be two positive integers. Prove the
following:

(a) If a k× k-matrix C has eigenvalue λ with algebraic multiplicity k and geo-
metric multiplicity 1, then C ∼ Jk (λ).

(b) We have (Jk (λ))
n ∼ Jk (λ

n) if λ 6= 0.

(c) If A ∈ Ck×k is an invertible matrix such that An is diagonalizable, then A
is diagonalizable.

Exercise 3.5.2. 4 Let F be a field. Compute (Jk (λ))
−1 for any nonzero λ ∈ F

and any k > 0.

3.6. The minimal polynomial

Recall: A polynomial p (t) ∈ F [t] (where F is any field, and t is an indeterminate)
is said to be monic if its leading coefficient is 1 – that is, if it can be written in the
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form

p (t) = tm + pm−1tm−1 + pm−2tm−2 + · · ·+ p0t0

for some m ∈N and p0, p1, . . . , pm−1 ∈ F.

Definition 3.6.1. Given a matrix A ∈ Fn×n and a polynomial p (t) ∈ F [t], we say
that p (t) annihilates A if p (A) = 0.

The Cayley–Hamilton theorem says that the characteristic polynomial pA of a
square matrix A always annihilates A. However, often there are matrices that are
annihilated by other – sometimes simpler – polynomials.

Example 3.6.2. The identity matrix In is annihilated by the polynomial p (t) :=
t− 1, because

p (In) = In − In = 0.

Example 3.6.3. The matrix

 0 1 0
0 0 0
0 0 0

 is annihilated by the polynomial p (t) :=

t2, since its square is 0.

Example 3.6.4. The diagonal matrix

 2
2

3

 (where empty cells are un-

derstood to be filled with zeroes) is annihilated by the polynomial p (t) :=
(t− 2) (t− 3), since

p

 2
2

3

 =

 2
2

3

− 2I3

 2
2

3

− 3I3


=

 0
0

1

 −1
−1

0

 = 0.

Theorem 3.6.5. Let F be a field. Let A ∈ Fn×n be an n× n-matrix. Then, there is
a unique monic polynomial qA (t) of minimum degree that annihilates A.

Proof. The Cayley–Hamilton theorem (Theorem 2.7.1) shows that pA annihilates A.
Since pA is monic, we thus conclude that there exists some monic polynomial that
annihilates A. Hence, there exists such a polynomial of minimum degree.

It remains to show that it is unique. To do so, we let qA and q̃A be two monic
polynomials of minimum degree that annihilate A. Our goal then is to show that
qA = q̃A.
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Assume the contrary. Thus, qA − q̃A 6= 0. However, the two polynomials qA
and q̃A have the same degree (since both have minimum degree) and the same
leading coefficients (because they are both monic). Thus, their difference qA − q̃A
is a polynomial of smaller degree than qA and q̃A; furthermore, this difference
qa − q̃A annihilates A (because (qA − q̃A) (A) = qA (A) − q̃A (A) = 0 − 0 = 0).
Thus, by scaling this difference by an appropriate scalar in F, we can make it monic
(since it is nonzero), and of course it will still annihilate A. Therefore, we obtain
a monic polynomial of smaller degree than qA that annihilates A. This contradicts
the minimality of qA’s degree. This concludes the proof of Theorem 3.6.5.

Definition 3.6.6. Let A ∈ Fn×n be an n × n-matrix. Theorem 3.6.5 shows that
there is a unique monic polynomial qA (t) of minimum degree that annihilates
A. This unique polynomial will be denoted qA (t) and will be called the minimal
polynomial of A.

Example 3.6.7. Let F = C. Let A be the diagonal matrix

 2
2

3

 (where

empty cells are supposed to contain 0 entries). Then,

qA (t) = (t− 2) (t− 3) .

Indeed, we already know that the monic polynomial (t− 2) (t− 3) annihilates
A. If there was any monic polynomial of smaller degree that would annihilate
A, then it would have the form t− λ for some λ ∈ F, but λ cannot be 2 and 3 at
the same time.

For comparison: The characteristic polynomial of A is pA (t) = (t− 2)2 (t− 3).

Exercise 3.6.1. 2 Find the minimal polynomial of a diagonal matrix whose dis-
tinct diagonal entries are λ1, λ2, . . . , λk. (Each of these λ1, λ2, . . . , λk can appear
on the diagonal any positive number of times.)

Exercise 3.6.2. 3 Let F be a field. Let n ≥ 2 be an integer. Let x1, x2, . . . , xn ∈ F

and y1, y2, . . . , yn ∈ F. Let A be the n× n-matrix


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn

...
... . . . ...

xny1 xny2 · · · xnyn

 ∈
Fn×n.

(a) Find the minimal polynomial of A under the assumption that x1, x2, . . . , xn
and y1, y2, . . . , yn are nonzero.

(b) What changes if we drop this assumption?

[Hint: Compute A2.]
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Theorem 3.6.8. Let A ∈ Fn×n be an n × n-matrix. Let f (t) ∈ F [t] be any
polynomial. Then, f annihilates A if and only if f is a multiple of qA (that
is, f (t) = qA (t) · g (t) for some polynomial g (t) ∈ F [t]).

Proof. =⇒: Assume that f annihilates A. Thus, f (A) = 0. WLOG, assume that
f 6= 0. Thus, we can make f monic by scaling it. Thus, deg f ≥ deg qA (since qA
had minimum degree). Hence, we can divide f by qA with remainder, obtaining

f (t) = qA (t) · g (t) + r (t) , (79)

where g (t) and r (t) are two polynomials with deg r < deg qA. (Note that r (t) is
allowed to be the zero polynomial.) Consider these g (t) and r (t).

Substituting A for t in the equality (79) (and using Lemma 2.7.4 (a)), we obtain

f (A) = qA (A)︸ ︷︷ ︸
=0

(since qA annihilates A)

·g (A) + r (A) = r (A) ,

so that r (A) = f (A) = 0. In other words, r annihilates A. Since deg r < deg qA,
this entails that r = 0 (since otherwise, we could scale the polynomial r (t) to make
it monic, and then we would obtain a monic polynomial of degree deg r < deg qA
that annihilates A; but this would contradict the minimality of deg qA). Thus,

f (t) = qA (t) · g (t) + r (t)︸︷︷︸
=0

= qA (t) · g (t) .

Thus, f is a multiple of qA.

⇐=: Easy and LTTR.

Corollary 3.6.9. Let F be a field. Let A ∈ Fn×n be a matrix. Then, qA (t) | pA (t).

Proof. Apply the previous theorem to f = pA, recalling that pA annihilates A.

The corollary yields that any root of qA must be a root of pA, that is, an eigen-
value of A. Conversely, we can show that any eigenvalue of A is a root of qA (but
we don’t know with which multiplicity):

Proposition 3.6.10. Let A ∈ Cn×n be an n× n-matrix. If λ ∈ σ (A), then qA (λ) =
0.

Proof. Let λ ∈ σ (A). Thus, there exists a nonzero eigenvector x for λ.
Then, Ax = λx. As we have seen above, this entails Amx = λmx for each m ∈N.

Therefore, f (A) x = f (λ) x for each polynomial f (t) ∈ C [t] (because you can
write f (t) as f0t0 + f1t1 + · · ·+ fptp, and then apply Amx = λmx to each of m =
0, 1, . . . , p). Hence, qA (A) x = qA (λ) x, so that

qA (λ) x = qA (A)︸ ︷︷ ︸
=0

(since qA annihilates A)

x = 0.

Since x 6= 0, this entails qA (λ) = 0, qed.

January 4, 2022



Math 504 notes page 140

Combining Corollary 3.6.9 with Proposition 3.6.10, we see that the roots of qA (t)
are precisely the eigenvalues of A (when A ∈ Cn×n); we just don’t know yet with
which multiplicities they appear as roots. In other words, we have

qA (t) = (t− λ1)
k1 (t− λ2)

k2 · · ·
(
t− λp

)kp ,

where λ1, λ2, . . . , λp are the distinct eigenvalues of A, and the k1, k2, . . . , kp are pos-
itive integers; but we don’t know these k1, k2, . . . , kp yet. So let us find them. We
will use some lemmas for this.

Lemma 3.6.11. Let F be a field. Let A and B be two similar n × n-matrices in
Fn×n. Then, qA (t) = qB (t).

Proof. This is obvious from the viewpoint of endomorphisms (see Remark 2.1.6).
For a pedestrian proof, you can just argue that a polynomial f annihilates A if and
only if it annihilates B. But this is easy: We have A = SBS−1 for some invertible S
(since A and B are similar), and therefore every polynomial f satisfies

f (A) = f
(

SBS−1
)
= S f (B) S−1

and therefore f (A) = 0 holds if and only if f (B) = 0.

We recall the notion of the lcm (= least common multiple) of several polynomials.
It is defined as one would expect: If p1, p2, . . . , pm are m nonzero polynomials
(in a single indeterminate t), then lcm (p1, p2, . . . , pm) is the monic polynomial of
smallest degree that is a common multiple of p1, p2, . . . , pm. For example,

lcm
(

t2 − 1, t3 − 1
)
= lcm

(
(t− 1) (t + 1) , (t− 1)

(
t2 + t + 1

))
= (t− 1) (t + 1)

(
t + t2 + 1

)
= t4 + t3 − t− 1.

(Again, the lcm of several polynomials is unique. This can be shown in the same
way that we used to prove uniqueness of the minimal polynomial.)

Our next lemma tells us what the minimal polynomial of a block-diagonal matrix
is:

Lemma 3.6.12. Let A1, A2, . . . , Am be m square matrices. Let

A =


A1

A2
. . .

Am

 .

Then,
qA = lcm

(
qA1 , qA2 , . . . , qAm

)
.
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Proof. For any polynomial f ∈ F [t], we have

f (A) = f


A1

A2
. . .

Am

 =


f (A1)

f (A2)
. . .

f (Am)


(indeed, the last equality follows from

A1
A2

. . .
Am


k

=


Ak

1

Ak
2

. . .
Ak

m


and from the fact that a polynomial f is just a F-linear combination of tks). Thus,
f (A) = 0 holds if and only if

f (A1) = 0 and f (A2) = 0 and · · · and f (Am) = 0.

However, f (A) = 0 holds if and only if f is a multiple of qA, whereas f (Ai) = 0
holds if and only if f is a multiple of qAi . Thus, the previous sentence says that f
is a multiple of qA if and only if f is a multiple of all of the qAis. In other words,
the multiples of qA are precisely the common multiples of all the qAis. Therefore,
qA is the lcm of the qAis (because the universal property of an lcm characterizes the
lcm of the qAis as the unique monic polynomial whose multiples are the common
multiples of all the qAis).

Lemma 3.6.13. Let F be a field. Let k > 0 and λ ∈ F. Let A = Jk (λ). Then,

qA = (t− λ)k .

Proof. It is easy to see that qA = qA−λIk (t− λ), because for a polynomial f ∈ F [t]
to annihilate A− λIk is the same as for the polynomial f (t− λ) to annihilate A. So
we need to find qA−λIk . Recall (from Proposition 3.1.4) that

A− λIk = Jk (0) =


1

1
. . .

1

 .
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Therefore, for any polynomial f = f0t0 + f1t1 + f2t2 + · · · , we have

f (A− λIk) =


f0 f1 f2 · · · fk−1

f0 f1 · · · fk−2
f0 · · · fk−3

. . . ...
f0

 .

So f (A− λIk) = 0 if and only if f0 = f1 = · · · = fk−1 = 0, i.e., if and only if the
first k coefficients of f are 0. Now, the monic polynomial of smallest degree whose
first k coefficients are 0 is the polynomial tk. So the monic polynomial f of smallest
degree that satisfies f (A− λIk) = 0 is tk. In other words, qA−λIk = tk.

Now, recall that qA = qA−λIk (t− λ) = (t− λ)k (since qA−λIk = tk). This proves
Lemma 3.6.13.

Theorem 3.6.14. Let A ∈ Cn×n be an n× n-matrix. Let J be the Jordan canonical
form of A. Let λ1, λ2, . . . , λp be the distinct eigenvalues of A. Then,

qA = (t− λ1)
k1 (t− λ2)

k2 · · ·
(
t− λp

)kp ,

where ki is the size of the largest Jordan cell at eigenvalue λi in J.

Example 3.6.15. Let A have Jordan canonical form

J =



5 1
5 1

5
5 1

5
8

8 1
8


.

Then,
qA = (t− 5)3 (t− 8)2 .

Proof of Theorem 3.6.14. We have A ∼ J, so that qA = qJ (by Lemma 3.6.11).
Recall that J is a Jordan matrix, i.e., a block-diagonal matrix whose diagonal

blocks are Jordan cells J1, J2, . . . , Jm. Thus, by Lemma 3.6.12, we have

qJ = lcm (qJ1 , qJ2 , . . . , qJm)

= lcm
(
(t− λJ1)

k J1 , (t− λJ2)
k J2 , . . . , (t− λJm)

k Jm
)

,

where each Ji has eigenvalue λJi and size k Ji (by Lemma 3.6.13). This lcm must be
divisible by each t− λ at least as often as each of the

(
t− λJi

)k Ji s is; i.e., it must be
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divisible by (t− λ)k, where k is the largest size of a Jordan cell of J at eigenvalue
λ. So the lcm is the product of these (t− λ)ks. But this is precisely our claim.

Exercise 3.6.3. 1 Let F be a field. Let A ∈ Fn×n be any n× n-matrix.

(a) Prove that qAT = qA, where AT denotes the transpose of the matrix A.

(b) Assume that F = C. Prove that qA∗ = qA, where qA denotes the result of
replacing all coefficients of the polynomial qA by their complex conjugates.

Exercise 3.6.4. 5 (a) A matrix A ∈ C3×3 has characteristic polynomial
t (t− 1) (t− 2). What can its JCF be?

(b) A matrix A ∈ C3×3 has characteristic polynomial t2 (t− 2). What can its
JCF be?

(c) A matrix A ∈ C3×3 has minimal polynomial t2 (t− 2). What can its JCF
be?

(d) A matrix A ∈ C3×3 has minimal polynomial t (t− 2). What can its JCF be?

Exercise 3.6.5. 5 Let A ∈ Cn×n be a matrix. Prove that AT ∼ A, where AT

denotes the transpose of the matrix A.

[Hint: Reduce to the case of a Jordan cell.]

3.7. Application of functions to matrices

Consider a square matrix A ∈ Cn×n. We have already defined what it means to
apply a polynomial f to A: We just write f as ∑

i
fiti, and substitute A for t.

Can we do the same with non-polynomial functions f ? For example, can we
define exp A or sin A ?

One option to do so is to follow the same rule as for polynomials, but using the

Taylor series for f . For example, since exp has Taylor series exp t = ∑
i∈N

ti

i!
, we can

set

exp A = ∑
i∈N

Ai

i!
.

This indeed works for exp and for sin, as the sums you get always converge. But it
doesn’t generally work, e.g., for f = tan, since its Taylor series only converges in a
certain neighborhood of 0. Is this the best we can do?

There is a different approach that gives a more general definition. We begin with
a lemma about Jordan cells:
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Lemma 3.7.1. Let k > 0 and λ ∈ C. Let A = Jk (λ). Then, for any polynomial
f ∈ C [t], we have

f (A) =



f (λ)
0!

f ′ (λ)
1!

f ′′ (λ)
2!

· · · f (k−1) (λ)

(k− 1)!
f (λ)

0!
f ′ (λ)

1!
· · · f (k−2) (λ)

(k− 2)!
f (λ)

0!
· · · f (k−3) (λ)

(k− 3)!
. . . ...

f (λ)
0!



Exercise 3.7.1. 2 Prove Lemma 3.7.1.

Now, we aim to define f (A) by the above formula, at least when A is a Jordan
cell. This only requires f to be (k− 1)-times differentiable at λ.

Definition 3.7.2. Let A ∈ Cn×n be an n× n-matrix that has minimal polynomial

qA (t) = (t− λ1)
k1 (t− λ2)

k2 · · ·
(
t− λp

)kp ,

where the λ1, λ2, . . . , λp are the distinct eigenvalues of A.
Let f be a function from C to C that is defined at each of the numbers

λ1, λ2, . . . , λp and is holomorphic at each of them, or at least (ki − 1)-times differ-
entiable at each λi if λi is real. Then, we can define an n× n-matrix f (A) ∈ Cn×n

as follows: Write A = SJS−1, where J is a Jordan matrix and S is invertible. Write
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J as


J1

J2
. . .

Jm

, where the J1, J2, . . . , Jm are Jordan cells. Then, we set

f (A) := S f (J) S−1, where

f (J) :=


f (J1)

f (J2)
. . .

f (Jm)

 , where

f (Jk (λ)) :=



f (λ)
0!

f ′ (λ)
1!

f ′′ (λ)
2!

· · · f (k−1) (λ)

(k− 1)!
f (λ)

0!
f ′ (λ)

1!
· · · f (k−2) (λ)

(k− 2)!
f (λ)

0!
· · · f (k−3) (λ)

(k− 3)!
. . . ...

f (λ)
0!


.

Theorem 3.7.3. This definition is actually well-defined. That is, the value f (A)
does not depend on the choice of S and J.

Exercise 3.7.2. 5 Prove this.
[Hint: Use Hermite interpolation to find a polynomial g ∈ C [t] such that

g(m) (λ) = f (m) (λ) for each λ ∈ σ (A) and each m ∈ {0, 1, . . . , mλ − 1}, where
mλ is the algebraic multiplicity of λ as an eigenvalue of A.]

3.8. The companion matrix

For each n× n-matrix A, we have defined its characteristic polynomial pA and its
minimal polynomial qA. What variety of polynomials do we get this way? Do all
characteristic polynomials share some property, or can any monic polynomial be a
characteristic polynomial?

The latter turns out to be true (and moreover, the same holds for the minimal
polynomial). We shall prove this by explicitly constructing a matrix with a given
polynomial as its characteristic polynomial.
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Definition 3.8.1. Let F be a field, and let n ∈N.
Let f (t) = tn + fn−1tn−1 + fn−2tn−2 + · · ·+ f1t1 + f0t0 be a monic polynomial

of degree n with coefficients in F. Then, the companion matrix of f (t) is defined
to be the matrix

C f :=



0 − f0
1 0 − f1

1 0 − f2

1 . . . ...
. . . 0 − fn−2

1 − fn−1


∈ Fn×n

(where each cell that is left empty is supposed to be filled with a 0). This
is the n × n-matrix whose first n − 1 columns are the standard basis vectors
e2, e3, . . . , en, and whose last column is (− f0,− f1, . . . ,− fn−1)

T.

Proposition 3.8.2. For any monic polynomial f (t), we have

pC f (t) = qC f (t) = f (t) .

Proof. Let us first show that pC f (t) = f (t).
To do so, we induct on n. The base case (that is, the case n = 0) is obvious (since

the determinant of the 0× 0-matrix is 1 by definition). Let us thus proceed to the
induction step: Let n be a positive integer. Let f (t) = tn + fn−1tn−1 + fn−2tn−2 +
· · ·+ f1t1 + f0t0 be a monic polynomial of degree n with coefficients in F. We must
show that pC f (t) = f (t). We assume (as the induction hypothesis) that the same
holds for all monic polynomials of degree n− 1.

Let g (t) be the polynomial tn−1 + fn−1tn−2 + · · ·+ f2t1 + f1t0. This is a monic
polynomial of degree n − 1; thus, we can apply the induction hypothesis to it.
Thus, we conclude that pCg (t) = g (t).

The definition of the characteristic polynomial yields

pC f (t) = det
(
tIn − C f

)
= det



t f0
−1 t f1

−1 t f2

−1 . . . ...
. . . t fn−2
−1 t + fn−1


.

We compute this determinant by Laplace expansion along the first row (exploiting
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the fact that only two entries of this first row are nonzero):

det



t f0
−1 t f1

−1 t f2

−1 . . . ...
. . . t fn−2
−1 t + fn−1



= t det


t f1
−1 t f2

−1 . . . ...
. . . t fn−2
−1 t + fn−1


︸ ︷︷ ︸

=tIn−1−Cg
(by the definition of Cg)

+ (−1)n+1 f0 det


−1 t

−1 t

−1 . . .
. . . t
−1


︸ ︷︷ ︸

=(−1)n−1

(since this matrix is upper-triangular of
size n−1, and its diagonal entries are −1’s)

= t det
(
tIn−1 − Cg

)︸ ︷︷ ︸
=pCg (t)

(by the definition of the characteristic polynomial)

+ (−1)n+1 f0 (−1)n−1︸ ︷︷ ︸
=(−1)n−1 f0

= t pCg (t)︸ ︷︷ ︸
=g(t)

=tn−1+ fn−1tn−2+···+ f2t1+ f1t0

+ (−1)n+1 (−1)n−1︸ ︷︷ ︸
=1

f0

= t
(

tn−1 + fn−1tn−2 + · · ·+ f2t1 + f1t0
)
+ f0

= tn + fn−1tn−1 + f2t2 + f1t1 + f0 = f (t) .

Thus, pC f (t) = f (t) is proved. This completes the induction step. Hence, we have
proved the pC f (t) = f (t) part of Proposition 3.8.2.

Now, let us show that qC f (t) = f (t). Indeed, both qC f (t) and f (t) are monic
polynomials, and we know from Corollary 3.6.9 that qC f (t) | pC f (t) = f (t). Hence,
if qC f (t) 6= f (t), then qC f (t) is a proper divisor of f (t), thus has degree < n (since
f (t) has degree n). So we just need to rule out the possibility that qC f (t) has degree
< n.

Indeed, assume (for the sake of contradiction) that qC f (t) has degree < n. Thus,
qC f (t) = aktk + ak−1tk−1 + · · ·+ a0t0 with k < n and ak = 1 (since qC f is monic of
degree < n). However, the definition of qC f yields qC f

(
C f
)
= 0. In other words,

akCk
f + ak−1Ck−1

f + · · ·+ a0C0
f = 0.

However, let us look at what C f does to the standard basis vector e1 = (1, 0, 0, 0, . . . , 0)T.
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We have

C0
f e1 = e1;

C1
f e1 = C f e1 = e2;

C2
f e1 = C f e2 = e3;

. . . ;

Cn−1
f e1 = en.

Thus, applying our equality

akCk
f + ak−1Ck−1

f + · · ·+ a0C0
f = 0

to e1, we obtain

akek+1 + ak−1ek + · · ·+ a0e1 = 0 (since k < n) .

But this is absurd, since e1, e2, . . . , en are linearly independent. So we found a
contradiction, and thus we conclude that qC f (t) has degree ≥ n. So, by the above,
we obtain qC f (t) = f (t).

Remark 3.8.3. For algebraists: The companion matrix C f has a natural meaning.
To wit, consider the quotient ring F [t] / ( f (t)) as an n-dimensional F-vector
space with basis

(
t0, t1, . . . , tn−1

)
. Then, the companion matrix C f represents

the endomorphism “multiply by t” (that is, the endomorphism that sends each
residue class g (t) to t · g (t)) in this basis.

Exercise 3.8.1. 3 Let A ∈ Cn×n be an n× n-matrix that has n distinct eigenval-
ues. Prove that A ∼ CpA .

Exercise 3.8.2. 4 Let F be a field. Let A ∈ Fn×n be an n× n-matrix. Prove that
A ∼ CpA if and only if there exists a vector v ∈ Fn such that(

v, Av, A2v, . . . , An−1v
)
=
(

A0v, A1v, . . . , An−1v
)

is a basis of Fn.

3.9. The Jordan–Chevalley decomposition

Recall that:

• A matrix A ∈ Cn×n is said to be diagonalizable if it is similar to a diagonal
matrix.
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• A matrix A ∈ Cn×n is said to be nilpotent if some power of it is the zero
matrix (i.e., if Ak = 0 for some k ∈ N). As we know from Exercise 3.4.2, for
an n× n-matrix A to be nilpotent, it is necessary and sufficient that An = 0.

Theorem 3.9.1 (Jordan–Chevalley decomposition). Let A ∈ Cn×n be an n × n-
matrix.

(a) Then, there exists a unique pair (D, N) consisting of

• a diagonalizable matrix D ∈ Cn×n and

• a nilpotent matrix N ∈ Cn×n

such that DN = ND and A = D + N.

(b) Both matrices D and N in this pair can be written as polynomials in A. In
other words, there exist two polynomials f , g ∈ C [t] such that D = f (A) and
N = g (A).

The pair (D, N) in this theorem is known as the Jordan–Chevalley decomposition
(or the Dunford decomposition) of A.

For a complete proof of Theorem 3.9.1, see [Bourba03, Chapter VII, §5, section
9, Theorem 1]. An outline can also be found on the Wikipedia page for “Jordan–
Chevalley decomposition”.

Partial proof of Theorem 3.9.1. We will only show the following claim:

Claim 1: There exists a Jordan–Chevalley decomposition of A.

To prove Claim 1, we can WLOG assume that A is a Jordan matrix. Indeed, if
A = SJS−1 for some invertible S ∈ Cn×n and some Jordan matrix J ∈ Cn×n, and
if (D′, N′) is a Jordan–Chevalley decomposition of J, then

(
SD′S−1, SN′S−1) is a

Jordan–Chevalley decomposition of A.
So we WLOG assume that A is a Jordan matrix. Thus,

A =


Jk1 (λ1)

Jk2 (λ2)
. . .

Jkp

(
λp
)


for some λ1, λ2, . . . , λp and some k1, k2, . . . , kp. (Here, empty cells are understood
to be filled with zero matrices.)

We want to find a Jordan–Chevalley decomposition of A. In other words, we
want to find a pair (D, N), where D ∈ Cn×n is a diagonalizable matrix and N ∈
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Cn×n is a nilpotent matrix satisfying DN = ND and A = D + N. We do this by
setting

D :=


λ1 Ik1

λ2 Ik2

. . .
λp Ikp

 and N :=


Jk1 (0)

Jk2 (0)
. . .

Jkp (0)

 .

It is easy to check that A = D + N (since Jk (λ) = λIk + Jk (0) for each k > 0 and
λ ∈ C) and DN = ND (since block-diagonal matrices can be multiplied block by
block, and since matrices of the form λIk for k > 0 and λ ∈ C commute with every
k× k-matrix). Clearly, the matrix D is diagonalizable (since D is diagonal) and the
matrix N is nilpotent (since N is strictly upper-triangular). Thus, Claim 1 is proved.

The rest of the proof of Theorem 3.9.1 is omitted for now.

3.10. The real Jordan canonical form

Given a matrix A ∈ Rn×n with real entries, its Jordan canonical form doesn’t nec-
essarily have real entries. Indeed, the eigenvalues of A don’t have to be real. Some-
times, we want to find a “simple” form for A that does have real entries. What
follows is a way to tweak the Jordan canonical form to this use case.

We observe the following:

Lemma 3.10.1. Let A ∈ Rn×n and λ ∈ C. Then, the “Jordan structure of A at
λ” (meaning the multiset of the sizes of the Jordan blocks of A at λ) equals the
Jordan structure of A at λ. In other words, for each p > 0, we have

(the number of Jordan blocks of A at λ having size p)

=
(
the number of Jordan blocks of A at λ having size p

)
.

In other words, Jordan blocks at λ and Jordan blocks at λ come in pairs of
equal sizes (when λ 6= λ).

Exercise 3.10.1. 2 Prove Lemma 3.10.1.

So we can try to combine each Jordan block at λ with an equally sized Jordan
block at λ (when λ /∈ R) and hope that something real comes out somehow, in the
same way as multiplying the complex polynomials t− λ and t− λ yields the real
polynomial (t− λ)

(
t− λ

)
= t2 − 2 (Re λ) t + |λ|2 ∈ R [t].

How to do this? For Jordan blocks of size 1, this is easy:
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Lemma 3.10.2. Let λ ∈ C. Let L be the 2× 2-matrix
(

λ 0
0 λ

)
. Let a = Re λ and

b = Im λ (so that λ = a + bi). Then,

L ∼
(

a b
−b a

)
.

Exercise 3.10.2. 2 Prove Lemma 3.10.2.

Now, let us see how to combine a Jordan block at λ with an equally sized Jordan
block at λ when the size is arbitrary. We can WLOG assume that these two Jordan
blocks are adjacent (since we can permute the Jordan blocks at will). Thus, they
form the following matrix together:38

(
Jp (λ)

Jp
(
λ
) ) =



λ 1

λ
. . .
. . . 1

λ

λ 1

λ
. . .
. . . 1

λ


.

This matrix is similar to the 2p× 2p-matrix

Lp :=



λ 1
λ 1

λ 1
λ 1

. . . . . .
. . . . . .

λ

λ


=


L I2

L I2
. . . . . .

L I2
L

 ,

where L is the 2× 2-matrix
(

λ 0
0 λ

)
. (In fact, we can easily see that

(
Jp (λ)

Jp
(
λ
) ) =

P−1
σ LpPσ, where Pσ is the permutation matrix of the permutation σ of [2p] that

38Again, empty cells in matrices signify 0s (or zero matrices).
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sends 1, 2, 3, . . . , p, p+ 1, p+ 2, p+ 3, . . . , 2p to 1, 3, 5, . . . , 2p− 1, 2, 4, 6, . . . , 2p.) How-
ever, Lemma 3.10.2 yields

L ∼
(

a b
−b a

)
,

where a = Re λ and b = Im λ (so that λ = a + bi). So our matrix Lp is similar to

a b 1
−b a 1

a b 1
−b a 1

. . . . . . . . .
. . . . . . . . .

a b
−b a


(why?). Hence, altogether, we obtain

(
Jp (λ)

Jp
(
λ
) ) ∼



a b 1
−b a 1

a b 1
−b a 1

. . . . . . . . .
. . . . . . . . .

a b
−b a


.

The matrix on the right is a real matrix. Thus, we can replace our two Jordan blocks
(at λ and λ, of equal sizes) by a real 2p × 2p-matrix, obtaining a similar matrix.
Performing the same procedure with all Jordan blocks at non-real eigenvalues, we
thus obtain a “normal form” that has real entries. See [HorJoh13, §3.4.1] for details
and for further results in this direction.

3.11. The centralizer of a matrix

Here is a fairly natural question: Which matrices commute with a given square
matrix A ?

Proposition 3.11.1. Let F be a field. Let A ∈ Fn×n be an n× n-matrix. Let f and
g be two polynomials in a single variable t over F. Then, f (A) commutes with
g (A).
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Proof. Write f (t) as f (t) =
n
∑

i=0
fiti, and write g (t) as g (t) =

m
∑

j=0
gjtj. Then,

f (A) =
n

∑
i=0

fi Ai and g (A) =
m

∑
j=0

gj Aj.

Thus,

f (A) · g (A) =

(
n

∑
i=0

fi Ai

)
·
(

m

∑
j=0

gj Aj

)
=

n

∑
i=0

m

∑
j=0

figj Ai Aj︸ ︷︷ ︸
=Ai+j

=
n

∑
i=0

m

∑
j=0

figj Ai+j.

A similar computation shows that

g (A) · f (A) =
n

∑
i=0

m

∑
j=0

figj Ai+j.

Comparing these two, we obtain f (A) · g (A) = g (A) · f (A), qed.

Thus, in particular, f (A) commutes with A for any polynomial f (because A =
g (A) for g (t) = t).

But are there other matrices that commute with A ?
There certainly can be. For instance, if A = λIn for some λ ∈ F, then every

n × n-matrix commutes with A (but very few matrices are of the form f (A) for
some polynomial f ). This is, in a sense, the “best case scenario”. Only for A = λIn
is it true that every n× n-matrix commutes with A.

Let us study the general case now.

Definition 3.11.2. Let A ∈ Fn×n be an n × n-matrix. The centralizer of A is
defined to be the set of all n × n-matrices B ∈ Fn×n such that AB = BA. We
denote this set by Cent A.

We thus want to know what Cent A is.
We begin with some general properties:

Proposition 3.11.3. Let A ∈ Fn×n be an n× n-matrix. Then, Cent A is a subset of
Fn×n that is closed under addition, scaling and multiplication and contains λIn
for all λ ∈ F. In other words:

(a) For any B, C ∈ Cent A, we have B + C ∈ Cent A.
(b) For any B ∈ Cent A and λ ∈ F, we have λB ∈ Cent A.
(c) For any B, C ∈ Cent A, we have BC ∈ Cent A.
(d) For any λ ∈ F, we have λIn ∈ Cent A.

This implies, in particular, that Cent A is a vector subspace of Fn×n. Furthermore,
it shows that Cent A is an F-subalgebra of Fn×n (in particular, a subring of Fn×n).
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Proof of Proposition 3.11.3. Let me just show part (c); the other parts are even easier.
(c) Let B, C ∈ Cent A. Thus, AB = BA and AC = CA. Now,

AB︸︷︷︸
=BA

C = B AC︸︷︷︸
=CA

= BCA.

This shows that BC ∈ Cent A. Thus, part (c) is proved.

Now, as an example, let us compute Cent A in the case when A is a single Jordan
cell Jn (0). So we fix an n > 0, and we set

A := Jn (0) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 .

Let B ∈ Fn×n be arbitrary. We want to know when B ∈ Cent A. In other words, we
want to know when AB = BA.

We have

AB =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0




B1,1 B1,2 B1,3 · · · B1,n
B2,1 B2,2 B2,3 · · · B2,n
B3,1 B3,2 B3,3 · · · B3,n

...
...

... . . . ...
Bn,1 Bn,2 Bn,3 · · · Bn,n



=


B2,1 B2,2 B2,3 · · · B2,n
B3,1 B3,2 B3,3 · · · B3,n

...
...

... . . . ...
Bn,1 Bn,2 Bn,3 · · · Bn,n

0 0 0 · · · 0


and

BA =


B1,1 B1,2 B1,3 · · · B1,n
B2,1 B2,2 B2,3 · · · B2,n
B3,1 B3,2 B3,3 · · · B3,n

...
...

... . . . ...
Bn,1 Bn,2 Bn,3 · · · Bn,n




0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0



=


0 B1,1 B1,2 · · · B1,n−1
0 B2,1 B2,2 · · · B2,n−1
0 B3,1 B3,2 · · · B3,n−1
...

...
... . . . . . .

0 Bn,1 Bn,2 · · · Bn,n−1

 .
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Thus, AB = BA holds if and only if
B2,1 B2,2 B2,3 · · · B2,n
B3,1 B3,2 B3,3 · · · B3,n

...
...

... . . . ...
Bn,1 Bn,2 Bn,3 · · · Bn,n

0 0 0 · · · 0

 =


0 B1,1 B1,2 · · · B1,n−1
0 B2,1 B2,2 · · · B2,n−1
0 B3,1 B3,2 · · · B3,n−1
...

...
... . . . . . .

0 Bn,1 Bn,2 · · · Bn,n−1

 ,

i.e., if

B2,j = B1,j−1 for all j ∈ [n] (where B1,0 := 0);

B3,j = B2,j−1 for all j ∈ [n] (where B2,0 := 0);

B4,j = B3,j−1 for all j ∈ [n] (where B3,0 := 0);

. . . ;
Bn,j = Bn−1,j−1 for all j ∈ [n] (where Bn−1,0 := 0);

0 = Bn,j for all j ∈ [n− 1] .

The latter system of equations can be restated as follows:

. . . ;
Bn,n−2 = Bn−1,n−3 = Bn−2,n−4 = · · · = B3,1 = 0;
Bn,n−1 = Bn−1,n−2 = Bn−2,n−3 = · · · = B2,1 = 0;

Bn,n = Bn−1,n−1 = Bn−2,n−2 = · · · = B1,1;
Bn−1,n = Bn−2,n−1 = Bn−3,n−2 = · · · = B1,2;
Bn−2,n = Bn−3,n−1 = Bn−4,n−2 = · · · = B1,3;

. . . .

In other words, it means that the matrix B looks as follows:

B =


b0 b1 b2 · · · bn−1

b0 b1 · · · bn−2
b0 · · · bn−3

. . . ...
b0


(where the empty cells have entries equal to 0). This is called an upper-triangular
Toeplitz matrix. We can also rewrite it as

B = b0 In + b1A + b2A2 + · · ·+ bn−1An−1.

So we have proved the following:
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Theorem 3.11.4. Let n > 0. Let A = Jn (0). Then,

Cent A =




b0 b1 b2 · · · bn−1

b0 b1 · · · bn−2
b0 · · · bn−3

. . . ...
b0

 | b0, b1, . . . , bn−1 ∈ F


=
{

b0 In + b1A + b2A2 + · · ·+ bn−1An−1 | b0, b1, . . . , bn−1 ∈ F
}

= { f (A) | f ∈ F [t] is a polynomial of degree ≤ n− 1} .

So this is the worst-case scenario: The only matrices commuting with A are the
matrices of the form f (A) (which, as we recall, must always commute with A).

What happens for an arbitrary A ? Is the answer closer to the best-case scenario
or to the worst-case scenario? The answer is that the worst-case scenario holds for a
randomly chosen matrix, but we can actually answer the question “what is Cent A
exactly” if we know the Jordan canonical form of A.

We start with simple propositions:

Proposition 3.11.5. Let A ∈ Fn×n and λ ∈ F. Then, Cent (A− λIn) = Cent A.

Exercise 3.11.1. 1 Prove this.

Proposition 3.11.6. Let A, B and S be three n× n-matrices such that S is invert-
ible. Then,

(B ∈ Cent A) ⇐⇒
(

SBS−1 ∈ Cent
(

SAS−1
))

.

Exercise 3.11.2. 1 Prove this.

Thus, if A is a matrix with complex entries, and if we want to compute Cent A,
it suffices to compute Cent J, where J is the JCF of A.

Therefore, we now focus on centralizers of Jordan matrices. One further simpli-
fication stems from the following proposition:

Proposition 3.11.7. Let A1, A2, . . . , Ak be square matrices with complex entries.
Assume that the spectra of these matrices are disjoint – i.e., if i 6= j, then σ (Ai)∩
σ
(

Aj
)
= ∅.
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Then,

Cent


A1

A2
. . .

Ak



=




B1
B2

. . .
Bk

 | Bi ∈ Cent (Ai) for each i ∈ [k]

 .

Proof. The ⊇ inclusion is obvious. We thus need to prove the ⊆ inclusion only.
Let Ai be an ni × ni-matrix for each i ∈ [k].

Let B ∈ Cent


A1

A2
. . .

Ak

. We want to show that B has the form


B1

B2
. . .

Bk

 where Bi ∈ Cent (Ai) for each i ∈ [k].

Write B as a block matrix

B =


B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)

 ,

where each B (i, j) is an ni × nj-matrix. Then, by the rule for multiplying block
matrices, we have

A1
A2

. . .
Ak




B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)



=


A1B (1, 1) A1B (1, 2) · · · A1B (1, k)
A2B (2, 1) A2B (2, 2) · · · A2B (2, k)

...
... . . . ...

AkB (k, 1) AkB (k, 2) · · · AkB (k, k)



January 4, 2022



Math 504 notes page 158

and 
B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)




A1
A2

. . .
Ak



=


B (1, 1) A1 B (1, 2) A2 · · · B (1, k) Ak
B (2, 1) A1 B (2, 2) A2 · · · B (2, k) Ak

...
... . . . ...

B (k, 1) A1 B (k, 2) A2 · · · B (k, k) Ak

 .

However, these two matrices must be equal, since


B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)

 ∈

Cent


A1

A2
. . .

Ak

. Thus, we have


A1B (1, 1) A1B (1, 2) · · · A1B (1, k)
A2B (2, 1) A2B (2, 2) · · · A2B (2, k)

...
... . . . ...

AkB (k, 1) AkB (k, 2) · · · AkB (k, k)

 =


B (1, 1) A1 B (1, 2) A2 · · · B (1, k) Ak
B (2, 1) A1 B (2, 2) A2 · · · B (2, k) Ak

...
... . . . ...

B (k, 1) A1 B (k, 2) A2 · · · B (k, k) Ak

 .

Comparing blocks, we can rewrite this as

AiB (i, j) = B (i, j) Aj for all i, j ∈ [k] .

Now, let i, j ∈ [k] be distinct. Consider this equality AiB (i, j) = B (i, j) Aj. We can
rewrite it as AiB (i, j)− B (i, j) Aj = 0. Thus, B (i, j) is an ni× nj-matrix X satisfying
AiX − XAj = 0. However, because σ (Ai) ∩ σ

(
Aj
)
= ∅, a theorem we proved

before (the V =⇒ U direction of Theorem 2.8.2) tells us that there is a unique
ni × nj-matrix X satisfying AiX − XAj = 0. Clearly, this unique matrix X must be
the 0 matrix (since the 0 matrix satisfies Ai0− 0Aj = 0). So we conclude that B (i, j)
is the 0 matrix. In other words, B (i, j) = 0.

So we have shown that B (i, j) = 0 whenever i and j are distinct. Thus,

B =


B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)

 =


B (1, 1)

B (2, 2)
. . .

B (k, k)

 .
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This shows that B is block-diagonal. Now, applying the equation

AiB (i, j) = B (i, j) Aj for all i, j ∈ [k]

to j = i, we obtain AiB (i, i) = B (i, i) Ai, which of course means that B (i, i) ∈

Cent (Ai). Thus, B has the form


B1

B2
. . .

Bk

 where Bi ∈ Cent (Ai) for

each i ∈ [k]. This completes the proof of Proposition 3.11.7.

So we only need to compute Cent J when J is a Jordan matrix with only one
eigenvalue.

We can WLOG assume that this eigenvalue is 0, since we know that Cent (A− λIn) =
Cent A.

So we only need to compute Cent J when J is a Jordan matrix with zeroes on its
diagonal.

If J is just a single Jordan cell, we already know the result (by Theorem 3.11.4).
In the general case, we have the following:

Proposition 3.11.8. Let J ∈ Cn×n be a Jordan matrix whose Jordan blocks are

Jn1 (0) , Jn2 (0) , . . . , Jnk (0) .

Let B be an n× n-matrix, written as a block matrix

B =


B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)

 ,

where each B (i, j) is an ni × nj-matrix. Then, B ∈ Cent J if and only if each of
the k2 blocks B (i, j) is an upper-triangular Toeplitz matrix in the wide sense.

Here, we say that a matrix is an upper-triangular Toeplitz matrix in the wide sense
if it

• has the form
(

0 U
)
, where U is an upper-triangular Toeplitz (square)

matrix and 0 is a zero matrix, or

• has the form
(

U
0

)
, where U is an upper-triangular Toeplitz (square) ma-

trix and 0 is a zero matrix.

(The zero matrices are allowed to be empty.)
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Proof. Essentially the same argument that we used to prove Theorem 3.11.4, just
with a lot more bookkeeping involved. See [OmClVi11, Proposition 3.1.2] for de-
tails.

We can summarize our results into a single theorem:

Theorem 3.11.9. Let A ∈ Cn×n be an n× n-matrix with Jordan canonical form J.
Then, Cent A is a vector subspace of Cn×n with dimension

∑
λ∈σ(A)

gλ (A) .

Here, for each eigenvalue λ of A, the number gλ (A) is a nonnegative integer de-
fined as follows: Let n1, n2, . . . , nk be the sizes of the Jordan blocks at eigenvalue
λ that appear in J; then, we set

gλ (A) :=
k

∑
i=1

k

∑
j=1

min
{

ni, nj
}

.

Proof. Combine Proposition 3.11.6, Proposition 3.11.7, Proposition 3.11.5, and Propo-
sition 3.11.8, and count the degrees of freedom.

Now, let us return to the worst-case scenario: When is Cent A = { f (A) | f ∈ C [t]}
? We can answer this, too, although the proof takes longer.

Definition 3.11.10. An n× n-matrix A ∈ Fn×n is said to be nonderogatory if qA =
pA (that is, the minimal polynomial of A equals the characteristic polynomial of
A).

“Most” matrices are nonderogatory (in the sense that a “randomly chosen” ma-
trix with complex entries will be nonderogatory with probability 1); but there are
exceptions. It is easy to see that if a matrix A has n distinct eigenvalues, then A
is nonderogatory, but this is not an “if and only if”; a single Jordan cell is also
nonderogatory. Here is a necessary and sufficient criterion:

Proposition 3.11.11. An n× n-matrix A ∈ Cn×n is nonderogatory if and only if
its Jordan canonical form has exactly one Jordan block for each eigenvalue.

Exercise 3.11.3. 2 Prove this.

Theorem 3.11.12. Let A ∈ Cn×n be an n× n-matrix. Then,

Cent A = { f (A) | f ∈ C [t]}

if and only if A is nonderogatory. Moreover, in this case,

Cent A = { f (A) | f ∈ C [t] is a polynomial of degree ≤ n− 1} .
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Exercise 3.11.4. 8 Prove this.

4. Hermitian matrices ([HorJoh13, Chapter 4])

Recall: A Hermitian matrix is an n× n-matrix A ∈ Cn×n such that A∗ = A.
Note that this is the complex analogue of real symmetric matrices (i.e., matrices

A ∈ Rn×n such that AT = A).
If A is a Hermitian matrix, then Ai,i ∈ R and Ai,j = Aj,i.

For instance, the matrix

 −1 i 2
−i 5 1− i
2 1 + i 0

 is Hermitian.

4.1. Basics

Theorem 4.1.1. Let A ∈ Cn×n be an n× n-matrix. Then, the following are equiv-
alent:

• A: The matrix A is Hermitian (i.e., we have A∗ = A).

• B: We have A = UDU∗ for some unitary matrix U ∈ Cn×n and some real
diagonal matrix D ∈ Cn×n (that is, D is a diagonal matrix with real entries).

• C: The matrix A is normal and its eigenvalues are real.

• D: We have 〈Ax, x〉 ∈ R for each x ∈ Cn.

• E : The matrix S∗AS is Hermitian for all S ∈ Cn×k (for all k ∈N).

To prove this, we will need two lemmas:

Lemma 4.1.2. Let M ∈ Cn×n be an n × n-matrix. Let u =


u1
u2
...

un

 and v =


v1
v2
...

vn

 be two vectors in Cn. Then,

〈Mu, v〉 =
n

∑
i=1

n

∑
j=1

Mi,jujvi.

January 4, 2022



Math 504 notes page 162

Proof. For each i ∈ [n], let wi denote the i-th entry of the column vector w. Accord-
ing to the definition of matrix multiplication, this entry is given by

wi = Mi,1u1 + Mi,2u2 + · · ·+ Mi,nun =
n

∑
j=1

Mi,juj. (80)

However, Mu =


w1
w2
...

wn

 and v =


v1
v2
...

vn

; therefore, the definition of the inner

product yields

〈Mu, v〉 = w1v1 + w2v2 + · · ·+ wnvn =
n

∑
i=1

wi︸︷︷︸
=

n
∑

j=1
Mi,juj

(by (80))

vi =
n

∑
i=1

n

∑
j=1

Mi,jujvi.

This proves Lemma 4.1.2.

Lemma 4.1.3. Let M ∈ Cn×n be an n× n-matrix. Assume that 〈Mx, x〉 = 0 for
each x ∈ Cn. Then, M = 0.

Proof of Lemma 4.1.3. For every x =


x1
x2
...

xn

 ∈ Cn, we have

〈Mx, x〉 =
n

∑
i=1

n

∑
j=1

Mi,jxjxi (by Lemma 4.1.2)

=
n

∑
i=1

n

∑
j=1

Mi,jxixj

and therefore
n

∑
i=1

n

∑
j=1

Mi,jxixj = 〈Mx, x〉 = 0 (81)

(since we assumed that 〈Mx, x〉 = 0 for each x ∈ Cn). In particular:

• We can apply (81) to x = e1 = (1, 0, 0, . . . , 0)T, and we obtain M1,1 · 1 · 1 = 0,
which means M1,1 = 0. Similarly, we can find that

Mi,i = 0 for all i ∈ [n] . (82)
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• We can apply (81) to x = e1 + e2 = (1, 1, 0, 0, . . . , 0)T, and we obtain

M1,1 · 1 · 1 + M1,2 · 1 · 1 + M2,1 · 1 · 1 ·M2,2 · 1 · 1 = 0.

This simplifies to
M1,1 + M1,2 + M2,1 + M2,2 = 0.

However, the previous bullet point yields M1,1 = 0 and M2,2 = 0, so this
simplifies further to

M1,2 + M2,1 = 0.

• We can apply (81) to x = e1 + ie2 = (1, i, 0, 0, . . . , 0)T (where i =
√
−1), and

we obtain

M1,1 · 1 · 1 + M1,2 · 1 · i + M2,1 · i · 1 ·M2,2 · i · i = 0.

This simplifies to
M1,1 + iM1,2 − iM2,1 + M2,2 = 0.

However, we know that M1,1 = 0 and M2,2 = 0, so this simplifies further to

iM1,2 − iM2,1 = 0.

Thus,
M1,2 −M2,1 = 0.

Adding this to
M1,2 + M2,1 = 0,

we obtain 2M1,2 = 0. In other words, M1,2 = 0. Similarly, we can show that

Mi,j = 0 for all i 6= j. (83)

Combining (82) with (83), we conclude that all entries of M are 0. In other words,
M = 0. This proves Lemma 4.1.3.

Now we can prove the theorem:

Proof of Theorem 4.1.1. The equivalence A ⇐⇒ B has already been proved (it is
Corollary 2.6.6). The implication A =⇒ C follows from Proposition 2.5.4 (a) and
Proposition 2.6.5 and Theorem 2.6.1 (b). The implication C =⇒ B follows from
Theorem 2.6.1. Combining these facts, we obtain the equivalence A ⇐⇒ B ⇐⇒ C.
So we only need to prove the equivalence A ⇐⇒ D ⇐⇒ E .

• Proof of A =⇒ D: Assume that A holds. Thus, A = A∗. Now, let x ∈ Cn.
Then, 〈x, Ax〉 = 〈Ax, x〉 (by Proposition 1.1.5 (b)). However, by Proposition
1.1.5 (a), we have

〈Ax, x〉 = x∗Ax and 〈x, Ax〉 = (Ax)∗︸ ︷︷ ︸
=x∗A∗

x = x∗ A∗︸︷︷︸
=A

x = x∗Ax.
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Comparing these two equalities, we see that 〈Ax, x〉 = 〈x, Ax〉 = 〈Ax, x〉.
This entails 〈Ax, x〉 ∈ R (since the only complex numbers z ∈ C that satisfy
z = z are the real numbers). Thus, statement D is proved.

• Proof of D =⇒ A: Assume that statement D holds. Thus, 〈Ax, x〉 ∈ R for
each x ∈ Cn. Again, Proposition 1.1.5 (a) shows that each x ∈ Cn satisfies

〈Ax, x〉 = x∗Ax and 〈x, Ax〉 = (Ax)∗︸ ︷︷ ︸
=x∗A∗

x = x∗A∗x.

Thus, each x ∈ Cn satisfies

x∗Ax = 〈Ax, x〉 = 〈Ax, x〉 (since 〈Ax, x〉 ∈ R)

= 〈x, Ax〉 (by Proposition 1.1.5 (b))
= x∗A∗x

and thus

x∗ (A∗ − A) x = x∗A∗x− x∗Ax︸ ︷︷ ︸
=x∗A∗x

= x∗A∗x− x∗A∗x = 0.

Applying Lemma 4.1.3 to M = A∗ − A, we thus conclude that A∗ − A = 0.
In other words, A∗ = A. This proves statement A.

• Proof of A =⇒ E : If A is Hermitian, then A∗ = A, so that every matrix
S ∈ Cn×k satisfies

(S∗AS)∗ = S∗ A∗︸︷︷︸
=A

(S∗)∗︸ ︷︷ ︸
=S

= S∗AS,

and therefore S∗AS is again Hermitian. This proves the implication A =⇒ E .

• Proof of E =⇒ A: If statement E holds, then we can apply it to S = In (and
k = n), and conclude that I∗n AIn is Hermitian; but this is simply saying that
A is Hermitian. So the implication E =⇒ A follows.

Theorem 4.1.1 is thus proved.

Exercise 4.1.1. 1 (a) Prove the converse of Proposition 1.4.3: If a matrix A ∈
Cn×k satisfies ||Ax|| = ||x|| for each x ∈ Ck, then A is an isometry.

(b) Prove the converse of Exercise 2.5.4 (a): If a matrix A ∈ Cn×n satisfies
||Ax|| = ||A∗x|| for each x ∈ Cn, then A is normal.

Let us recall again that sums of Hermitian matrices are Hermitian, but products
are not (in general).

4.2. Definiteness and semidefiniteness
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Definition 4.2.1. Let A ∈ Cn×n be a Hermitian matrix.

(a) We say that A is positive semidefinite if it satisfies

〈Ax, x〉 ≥ 0 for all x ∈ Cn.

(b) We say that A is positive definite if it satisfies

〈Ax, x〉 > 0 for all nonzero x ∈ Cn.

(c) We say that A is negative semidefinite if it satisfies

〈Ax, x〉 ≤ 0 for all x ∈ Cn.

(d) We say that A is negative definite if it satisfies

〈Ax, x〉 < 0 for all nonzero x ∈ Cn.

(e) We say that A is indefinite if it is neither positive semidefinite nor negative
semidefinite, i.e., if there exist vectors x, y ∈ Cn such that

〈Ax, x〉 < 0 < 〈Ay, y〉 .

Here are some examples of matrices that are definite, semidefinite or neither:

Example 4.2.2. Let n ∈ N. Let J =


1 1 · · · 1
1 1 · · · 1
...

... . . . ...
1 1 · · · 1

. This matrix J is real

symmetric, thus Hermitian. Is it positive definite? Positive semidefinite? Let us
see.

Let x = (x1, x2, . . . , xn)
T ∈ Cn. Then, Lemma 4.1.2 yields

〈Jx, x〉 =
n

∑
i=1

n

∑
j=1

xjxi =

(
n

∑
j=1

xj

)(
n

∑
i=1

xi

)
=

(
n

∑
i=1

xi

)(
n

∑
i=1

xi

)

=

(
n

∑
i=1

xi

)(
n

∑
i=1

xi

)
=

∣∣∣∣∣ n

∑
i=1

xi

∣∣∣∣∣
2

≥ 0.

So J is positive semidefinite.
Is J positive definite? Again, let x = (x1, x2, . . . , xn)

T ∈ Cn. We just have

shown that 〈Jx, x〉 =
∣∣∣∣ n

∑
i=1

xi

∣∣∣∣2. Therefore, to have 〈Jx, x〉 = 0 is equivalent to

having
n
∑

i=1
xi = 0. When n = 1 (or n = 0), this is equivalent to having x = 0, so
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we can conclude that J is positive definite in this case. However, if n > 1, then
this is not equivalent to having x = 0, and in fact the vector e1− e2 is an example
of a nonzero vector x ∈ Cn such that 〈Jx, x〉 = 0. So J is not positive definite
unless n ≤ 1.

Example 4.2.3. Consider a diagonal matrix

D := diag (λ1, λ2, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn


with λ1, λ2, . . . , λn ∈ R. When is D positive semidefinite?

We want 〈Dx, x〉 ≥ 0 for all x ∈ Cn. Let x = (x1, x2, . . . , xn)
T ∈ Cn. Then,

〈Dx, x〉 =
n

∑
i=1

λi xixi︸︷︷︸
=|xi|2

=
n

∑
i=1

λi |xi|2 .

If λ1, λ2, . . . , λn ≥ 0, then we therefore conclude that 〈Dx, x〉 ≥ 0, so that D is
positive semidefinite. Otherwise, D is not positive semidefinite, since we can
pick an x = ej where j satisfies λj < 0. So D is positive semidefinite if and only
if λ1, λ2, . . . , λn ≥ 0. A similar argument shows that D is positive definite if and
only if λ1, λ2, . . . , λn > 0.

Example 4.2.4. The Hilbert matrix

1
1

1
2

· · · 1
n

1
2

1
3

· · · 1
n + 1

...
... . . . ...

1
n

1
n + 1

· · · 1
2n


(i.e., the n × n-matrix whose (i, j)-th entry is

1
i + j− 1

) is positive definite. In

other words, for any x = (x1, x2, . . . , xn)
T ∈ Cn, we have

n

∑
i=1

n

∑
j=1

xixj

i + j− 1
≥ 0.

This is not obvious at all, and the proof will be the content of the next exercise.
More generally, if a1, a2, . . . , an are positive reals, then the n × n-matrix whose

(i, j)-th entry is
1

ai + aj
is positive definite.
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Exercise 4.2.1. 4 Let a1, a2, . . . , an be positive reals. Let A be the n × n-matrix

whose (i, j)-th entry is
1

ai + aj
. Prove that A is positive definite.

[Hint: Recall that
1
m

=
∫ 1

0 tm−1dt for each m > 0. Also, integrating an R≥0-

valued function over [0, 1] yields a nonnegative real.]

Exercise 4.2.2. 5 Let a1, a2, . . . , an be reals. Let A ∈ Rn×n be the n× n-matrix
a1 a1 · · · a1 a1
a1 a2 · · · a2 a2
...

... . . . ...
...

a1 a2 · · · an−1 an−1
a1 a2 · · · an−1 an


(that is, the n× n-matrix whose (i, j)-th entry is amin{i,j}). This matrix A is real
symmetric and thus Hermitian.

(a) Set a0 := 0, and let di := ai − ai−1 for each i ∈ [n]. Let D be the diagonal
matrix diag (d1, d2, . . . , dn) ∈ Rn×n. Let U be the upper-triangular matrix

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
... . . . ...

0 0 0 · · · 1

 ∈ Rn×n,

all of whose entries on and above the main diagonal are 1. Prove that A = U∗DU.

(b) Prove that A is positive definite if and only if 0 < a1 < a2 < · · · < an.

Note that a Hermitian matrix A is negative definite if and only if −A is positive
definite. Similarly, a Hermitian matrix A is negative semidefinite if and only if −A
is positive semidefinite. (These claims follow easily from the definitions.)

As an application of positive semidefiniteness, the Schoenberg theorem gener-
alizes the triangle inequality. Recall that the triangle inequality says that three
nonnegative real numbers x, y, z are the mutual distances of 3 points in the plane
if and only if x ≤ y + z and y ≤ z + x and z ≤ x + y. More generally, Schoenberg’s
theorem gives a criterion for when a bunch of nonnegative reals can be realized as
mutual distances of n points in an r-dimensional real vector space:

Theorem 4.2.5 (Schoenberg’s theorem). Let n ∈ N and r ∈ N. Let di,j be a
nonnegative real for each i, j ∈ [n]. Assume that di,i = 0 for all i ∈ [n], and

January 4, 2022



Math 504 notes page 168

furthermore di,j = dj,i for all i, j ∈ [n]. Then, there exist n points P1, P2, . . . , Pn ∈
Rr satisfying ∣∣Pi − Pj

∣∣ = di,j for all i, j ∈ [n]

if and only if the (n− 1)× (n− 1)-matrix whose (i, j)-th entry is

d2
i,n + d2

j,n − d2
i,j for all i, j ∈ [n− 1]

is positive semidefinite and has rank ≤ r.

We will not prove this here. (See [LibLav15, Theorem 7.1] for a proof.)

Remark 4.2.6. If A ∈ Rn×n and 〈Ax, x〉 ≥ 0 for all x ∈ Rn, then we cannot
conclude that A is positive semidefinite. The reason is that it does not follow

that A is symmetric. For example, A =

(
2 1
0 2

)
satisfies

〈Ax, x〉 = 2x2
1 + x1x2 + 2x2

2 =
1
2
(x1 + x2)

2 +
3
2

(
x2

1 + x2
2

)
≥ 0

for each x =

(
x1
x2

)
∈ R2, but it is not symmetric.

Theorem 4.2.7. Let A ∈ Cn×n be a Hermitian matrix. Then:

(a) The matrix A is positive semidefinite if and only if all eigenvalues of A are
nonnegative.

(b) The matrix A is positive definite if and only if all eigenvalues of A are
positive.

(Recall that the eigenvalues of A are real by the spectral theorem.)

Proof. By the spectral theorem (Corollary 2.6.6), the matrix A is unitarily similar to
a diagonal matrix with real entries. In other words, A = UDU∗ for some unitary
matrix U ∈ Un (C) and some diagonal matrix D ∈ Cn×n that has real entries.
Consider these U and D. From Theorem 2.6.1 (b), we know that the diagonal
entries of D are the eigenvalues of A. Let λ1, λ2, . . . , λn be the diagonal entries of
D, so that D = diag (λ1, λ2, . . . , λn). Then, λ1, λ2, . . . , λn are the eigenvalues of A
(since the diagonal entries of D are the eigenvalues of A).

(a) =⇒: Assume that A is positive semidefinite. Let λ be an eigenvalue of A. Let
x 6= 0 be a corresponding eigenvector. Then, Ax = λx. However, 〈Ax, x〉 ≥ 0 since
A is positive semidefinite. However, from Ax = λx, we obtain 〈Ax, x〉 = 〈λx, x〉 =
λ 〈x, x〉. Thus, λ 〈x, x〉 = 〈Ax, x〉 ≥ 0. We can cancel 〈x, x〉 from this inequality
(since 〈x, x〉 > 0). Thus, we get λ ≥ 0. Therefore, all eigenvalues of A are ≥ 0.
⇐=: Assume that all eigenvalues of A are ≥ 0. In other words, λ1, λ2, . . . , λn ≥ 0

(since λ1, λ2, . . . , λn are the eigenvalues of A). Thus, the square roots
√

λ1,
√

λ2, . . . ,
√

λn
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are well-defined nonnegative reals. Set E := diag
(√

λ1,
√

λ2, . . . ,
√

λn
)
∈ Cn×n.

Then,

E2 =
(

diag
(√

λ1,
√

λ2, . . . ,
√

λn

))2
= diag

((√
λ1

)2
,
(√

λ2

)2
, . . . ,

(√
λn

)2
)

= diag (λ1, λ2, . . . , λn) = D,

so that D = E2 = EE. Moreover, E∗ = E, since E is a diagonal matrix with real
entries. Now,

A = U D︸︷︷︸
=EE

U∗ = UE E︸︷︷︸
=E∗

U∗ = UE︸︷︷︸
=((UE)∗)

∗

E∗U∗︸ ︷︷ ︸
=(UE)∗

=
(
(UE)∗

)∗
(UE)∗ .

Hence, for each x ∈ Cn, we have

〈Ax, x〉 = x∗Ax (by the formula 〈u, v〉 = v∗u)

= x∗
(
(UE)∗

)∗
(UE)∗ x

(
since A =

(
(UE)∗

)∗
(UE)∗

)
=
〈
(UE)∗ x, (UE)∗ x

〉
(by the formula 〈u, v〉 = v∗u)

≥ 0 (since 〈u, u〉 ≥ 0 for each u ∈ Cn) .

Thus, A is positive semidefinite.
We have thus proved Proposition 4.2.7 (a). The proof of Proposition 4.2.7 (b) is

similar, except that we need to also observe that x 6= 0 entails (UE)∗ x 6= 0 (because
U and E are invertible, thus UE is invertible, thus (UE)∗ is invertible).

Exercise 4.2.3. 4 Let A, B ∈ Cn×n be two positive definite Hermitian matrices.

(a) Prove that A + B is positive definite.

(b) Find a counterexample showing that AB is not necessarily Hermitian.

(c) Now assume that AB = BA. Prove that AB is Hermitian and positive
definite.

[Hint: In part (c), use Exercise 2.6.7.]

4.3. The Cholesky decomposition

Theorem 4.3.1 (Cholesky decomposition for positive definite matrices). Let A ∈
Cn×n be a positive definite Hermitian matrix. Then, A has a unique factorization
of the form

A = LL∗,

where L ∈ Cn×n is a lower-triangular matrix whose diagonal entries are positive
reals.
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Example 4.3.2. For n = 1, the theorem is trivial: In this case, A =
(

a
)

for some

a ∈ R, and this a is > 0 because A is positive definite. Thus, setting L =
( √

a
)

,
we obtain A = LL∗. Moreover, this is clearly the only choice for L.

Example 4.3.3. Let us manually verify Theorem 4.3.1 for n = 2. Let A =(
a b
c d

)
be a positive definite Hermitian matrix. We are looking for a lower-

triangular matrix L =

(
λ 0
x δ

)
whose diagonal entries λ and δ are positive

reals that satisfies A = LL∗.
So we need(

a b
c d

)
= A = LL∗ =

(
λ 0
x δ

)(
λ 0
x δ

)∗
=

(
λ 0
x δ

)(
λ x
0 δ

)
(since λ, δ are real)

=

(
λ2 λx
λx xx + δ2

)
=

(
λ2 λx
λx |x|2 + δ2

)
.

So we need to solve the system of equations
a = λ2;
b = λx;
c = λx;

d = |x|2 + δ2.

First, we solve the equation a = λ2 by setting λ =
√

a. Since A is positive
definite, we have a = 〈Ae1, e1〉 > 0, so that

√
a is well-defined, and we get a

positive real λ. Next, we solve the equation c = λx by setting x =
c
λ

. Next, the
equation b = λx is automatically satisfied, since the Hermitianness of A entails
b = c = λx = λx (since λ is real). Finally, we solve the equation d = |x|2 + δ2

by setting δ =
√

d− |x|2. Here, we need to convince ourselves that d− |x|2 is a

positive real, i.e., that d > |x|2. Why is this the case?

I claim that this follows from applying 〈Az, z〉 ≥ 0 to the vector z =

(
b
−a

)
.

Indeed, setting z =

(
b
−a

)
, we obtain

Az =

(
a b
c d

)(
b
−a

)
=

(
0

bc− ad

)
,

so that

〈Az, z〉 =
〈(

0
bc− ad

)
,
(

b
−a

)〉
= (bc− ad)−a = a (ad− bc)
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and thus a (ad− bc) = 〈Az, z〉 > 0 (by the positive definiteness of A, since z 6= 0).
We can divide this inequality by a (since a > 0), and obtain ad− bc > 0. Now,
recall that x =

c
λ

and λ =
√

a. Hence,

d− |x|2 = d−
∣∣∣ c
λ

∣∣∣2 = d− cc
λ2 = d− cb

a

(
since c = b and λ2 = a

)
=

ad− bc
a

> 0 (since ad− bc > 0 and a > 0) .

This is what we need. So Theorem 4.3.1 is proved for n = 2.

To prove Theorem 4.3.1 in general, we need a lemma that essentially generalizes
our above argument for d− |x|2 > 0:

Lemma 4.3.4. Let Q ∈ Cn×n be a invertible matrix. Let x ∈ Cn be some column
vector. Let d ∈ R. Let

A :=
(

QQ∗ Qx
(Qx)∗ d

)
∈ C(n+1)×(n+1).

Assume that A is positive definite. Then, ||x||2 < d.

Proof of Lemma 4.3.4. Set Q−∗ :=
(
Q−1)∗ = (Q∗)−1. (This is well-defined, since Q is

invertible.) Set u =

(
Q−∗x
−1

)
∈ Cn+1. (This is in block-matrix notation. Explicitly,

this is the column vector obtained by appending the extra entry −1 at the bottom
of Q−∗x.)

The definitions of A and u yield

Au =

(
QQ∗ Qx
(Qx)∗ d

)(
Q−∗x
−1

)
=

(
QQ∗Q−∗x + Qx (−1)
(Qx)∗ Q−∗x + d (−1)

)

=

(
0

x∗Q∗Q−∗x− d

)
=

(
0

x∗x− d

)
=

(
0

||x||2 − d

)

(since x∗x = 〈x, x〉 = ||x||2). Hence,

〈Au, u〉 =
〈(

0
||x||2 − d

)
,
(

Q−∗x
−1

)〉
=
(
||x||2 − d

) (
−1
)
= d− ||x||2 .

However, the vector u is nonzero (since its last entry is −1), and the matrix A is
positive definite (by assumption). Thus, 〈Au, u〉 > 0. Since 〈Au, u〉 = d− ||x||2, we
thus obtain d− ||x||2 > 0. In other words, d > ||x||2. This proves Lemma 4.3.4.

Now, let us prove the Cholesky factorization theorem:
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Proof of Theorem 4.3.1. We proceed by induction on n.
The base cases n = 0 and n = 1 are essentially obvious (n = 1 was done in

Example 4.3.2).
Induction step: Assume that Theorem 4.3.1 holds for some n. We must prove that

it holds for n + 1 as well.
Let A ∈ C(n+1)×(n+1) be a positive definite Hermitian matrix. Write A in the

block-matrix form

A =

(
B b
b∗ d

)
,

where B ∈ Cn×n and b ∈ Cn and d ∈ C. Note that the b∗ on the bottom of
the right hand side is because A is Hermitian, so all entries in the last row of A
are the complex conjugates of the corresponding entries in the last column of A.
Also, d = d∗ for the same reason, so d ∈ R. Moreover, B is Hermitian (since A is
Hermitian).

Next, we claim that B is positive definite. Indeed, for any nonzero vector x ∈ Cn,

we have 〈Bx, x〉 = 〈Ax′, x′〉, where x′ is the nonzero vector
(

x
0

)
∈ Cn+1. Thus,

positive definiteness of B follows from positive definiteness of A. (More generally,
any principal submatrix of a positive definite matrix is positive definite.)

Therefore, by the induction hypothesis, we can apply Theorem 4.3.1 to the n× n-
matrix B instead of A. We conclude that B can be uniquely written as a product
B = QQ∗, where Q ∈ Cn×n is a lower-triangular matrix whose diagonal entries
are positive reals. Consider this Q. Note that the matrix Q is invertible (since it is
lower-triangular and its diagonal entries are positive).

Now, we want to find a vector x ∈ Cn and a positive real δ such that if we set

L :=
(

Q 0
x∗ δ

)
,

then A = LL∗. If we can find such x and δ, then at least the existence part of
Theorem 4.3.1 will be settled.

So let us set L :=
(

Q 0
x∗ δ

)
, and see what conditions A = LL∗ places on x and

δ. We want(
B b
b∗ d

)
= A = LL∗ =

(
Q 0
x∗ δ

)(
Q∗ (x∗)∗

0 δ

)

=

(
Q 0
x∗ δ

)(
Q∗ x
0 δ

) (
since δ ∈ R entails δ = δ

)
=

(
QQ∗ Qx
x∗Q∗ x∗x + δ2

)
.
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In other words, we want 
B = QQ∗;
b = Qx;

b∗ = x∗Q∗;
d = x∗x + δ2.

The first of these four equations is already satisfied (we know that B = QQ∗). The
second equation will be satisfied if we set x = Q−1b. We can indeed set x = Q−1b,
since the matrix Q is invertible. The third equation follows automatically from the
second (indeed, b = Qx entails b∗ = (Qx)∗ = x∗Q∗). Finally, the fourth equation

rewrites as d = ||x||2 + δ2. We can satisfy it by setting δ =
√

d− ||x||2, as long as

we can show that d − ||x||2 > 0. Fortunately, we can indeed show this, because
Lemma 4.3.4 yields that ||x||2 < d. Thus, we have found x and δ, and constructed
a lower-triangular matrix L whose diagonal entries are positive reals and which
satisfies A = LL∗.

It remains to show that this L is unique. Indeed, we can basically read our
argument above backwards. If L ∈ C(n+1)×(n+1) is a lower-triangular matrix whose
diagonal entries are positive reals and which satisfies A = LL∗, then we can write A

in the form A =

(
Q 0
x∗ δ

)
for some Q ∈ Cn×n and x ∈ Cn and some positive real

δ, where Q is lower-triangular with its diagonal entries being real. The equation
A = LL∗ then rewrites as(

B b
b∗ d

)
=

(
QQ∗ Qx
x∗Q∗ x∗x + δ2

)
. (84)

Thus, in particular, B = QQ∗. By the induction hypothesis, the lower-triangular
matrix Q ∈ Cn×n with real diagonal entries that satisfies B = QQ∗ is unique.
Hence, our new Q is exactly the Q that was constructed above. Furthermore, (84)
shows that b = Qx, so that x = Q−1b, so again our new x is our old x. Finally,

(84) yields d = x∗x + δ2, whence δ2 = d− x∗x = d− ||x||2. Thus, δ =
√

d− ||x||2,
because δ has to be positive. So our δ is our old δ. Thus, our L is the L that
we constructed above. This proves the uniqueness of the L. Theorem 4.3.1 is
proved.

Theorem 4.3.1 can be used to prove several facts about positive definite matrices:

Exercise 4.3.1. 2 Let A ∈ Cn×n be a positive definite Hermitian matrix. Prove
that det A is a positive real.

Exercise 4.3.2. 4 Let n > 0. Let A and B be two positive definite Hermitian
matrices in Cn×n. Prove that Tr (AB) is real and Tr (AB) > 0.
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Exercise 4.3.3. 4 Let A ∈ Rn×n be a symmetric matrix with real entries. Assume
that every nonzero vector x ∈ Rn (with real entries) satisfies 〈Ax, x〉 > 0. Prove
that A is positive definite.

Some properties of positive semidefinite matrices can be deduced from corre-
sponding properties of positive definite matrices:

Exercise 4.3.4. 4 Let A ∈ Cn×n be a positive semidefinite Hermitian matrix.

(a) Prove that A + εIn is positive definite whenever ε is a positive real number.

(b) Prove that det A is a nonnegative real.

(c) Let B ∈ Cn×n be a further positive semidefinite Hermitian matrix. Prove
that Tr (AB) is real and Tr (AB) ≥ 0.

There is a version of Cholesky decomposition for positive semidefinite matrices,
but we omit it for now.

4.4. Rayleigh quotients

4.4.1. Definition and basic properties

Definition 4.4.1. Let A ∈ Cn×n be a Hermitian matrix, and x ∈ Cn be a nonzero
vector. Then, the Rayleigh quotient for A and x is defined to be the real number

R (A, x) :=
〈Ax, x〉
〈x, x〉 =

x∗Ax
x∗x

=
x∗Ax

||x||2
.

Proposition 4.4.2. Let A ∈ Cn×n be a Hermitian matrix, and x ∈ Cn be a nonzero
vector. Let y =

x
||x|| . Then,

R (A, x) = R (A, y) = y∗Ay.

Proof. Let λ = ||x||. Thus, y =
x
λ

, so that x = λy. Hence,

R (A, x) =
〈Ax, x〉
〈x, x〉 =

〈A · λy, λy〉
〈λy, λy〉 =

λλ 〈Ay, y〉
λλ 〈y, y〉

=
〈Ay, y〉
〈y, y〉 = R (A, y)

(by the definition of R (A, y)). Moreover, the definition of y yields ||y|| =
∣∣∣∣∣∣∣∣ x
||x||

∣∣∣∣∣∣∣∣ =
||x||
||x|| = 1. Now, the definition of R (A, y) yields

R (A, y) =
y∗Ay

||y||2
= y∗Ay (since ||y|| = 1) .
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The proof of Proposition 4.4.2 is thus complete.

4.4.2. The Courant–Fisher theorem: statement

Let us explore what Rayleigh quotients can tell us about the eigenvalues of a Her-
mitian matrix.

Let A ∈ Cn×n be a Hermitian matrix with n > 0. By the spectral theorem,
we have A = UDU∗ for some unitary U ∈ Cn×n and some real diagonal matrix
D ∈ Rn×n. Consider these U and D. We have D = diag (λ1, λ2, . . . , λn), where
λ1, λ2, . . . , λn are the eigenvalues of A. We WLOG assume that

λ1 ≤ λ2 ≤ · · · ≤ λn

(indeed, we can always achieve this by permuting rows/columns of D and inte-
grating the permutation matrices into U 39). We set

λmin (A) := λ1 and λmax (A) := λn.

Let us now pick some vector x ∈ Cn of length 1 (that is, ||x|| = 1). Set z = U∗x.
Then, z∗ = (U∗x)∗ = x∗ (U∗)∗ = x∗U. Also, the matrix U∗ is an isometry (since U
is unitary), and thus we have ||U∗x|| = ||x|| = 1. In other words, ||z|| = 1 (since

z = U∗x). In other words,
n
∑

k=1
|zk|2 = 1 (since ||z|| =

√
n
∑

k=1
|zk|2). Furthermore,

writing z as


z1
z2
...

zn

, we have

x∗ A︸︷︷︸
=UDU∗

x = x∗U︸︷︷︸
=z∗

D U∗x︸︷︷︸
=z

= z∗Dz =
n

∑
k=1

λkzkzk =
n

∑
k=1

λk︸︷︷︸
≤λn

|zk|2

≤
n

∑
k=1

λn |zk|2 = λn

n

∑
k=1
|zk|2︸ ︷︷ ︸
=1

= λn.

Thus, we have shown that each vector x ∈ Cn of length 1 satisfies x∗Ax ≤ λn.
This inequality becomes an equality at least for one vector x of length 1: namely,
for the vector x = Uen (because for this vector, we have z = U∗U︸︷︷︸

=In

en = en, so that

zk = 0 for all k < n, and therefore the inequality
n
∑

k=1
λk |zk|2 ≤

n
∑

k=1
λn |zk|2 becomes

39Alternatively, we can achieve λ1 ≤ λ2 ≤ · · · ≤ λn right away by applying Theorem 2.3.3.
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an equality40). Thus,

λn = max {x∗Ax | x ∈ Cn is a vector of length 1}

= max
{

x∗Ax
x∗x

| x ∈ Cn is nonzero
}

= max {R (A, x) | x ∈ Cn is nonzero} .

Since λn = λmax (A), we thus have proved the following fact:

Proposition 4.4.3. Let A ∈ Cn×n be a Hermitian matrix with n > 0. Then, the
largest eigenvalue of A is

λmax (A) = max {x∗Ax | x ∈ Cn is a vector of length 1}
= max {R (A, x) | x ∈ Cn is nonzero} .

Similarly, we can prove the following:

Proposition 4.4.4. Let A ∈ Cn×n be a Hermitian matrix with n > 0. Then, the
smallest eigenvalue of A is

λmin (A) = min {x∗Ax | x ∈ Cn is a vector of length 1}
= min {R (A, x) | x ∈ Cn is nonzero} .

What about the other eigenvalues? Can we characterize λ2 (for example) in terms
of Rayleigh quotients? Yes, but the characterization is more complicated:

Theorem 4.4.5 (Courant–Fisher theorem). Let A ∈ Cn×n be a Hermitian matrix.
Let λ1, λ2, . . . , λn be the eigenvalues of A, with λ1 ≤ λ2 ≤ · · · ≤ λn. Then, for
each k ∈ [n], we have

λk = min
S⊆Cn is a subspace;

dim S=k

max
x∈S;
x 6=0

R (A, x) (85)

and
λk = max

S⊆Cn is a subspace;
dim S=n−k+1

min
x∈S;
x 6=0

R (A, x) . (86)

(The notation “min
x∈Ω

f (x)” we are using here is a synonym for

min { f (x) | x ∈ Ω} whenever Ω is a set and f is a function defined on
this set. The same applies to maxima. For instance, max

x∈S;
x 6=0

R (A, x) means

max {R (A, x) | x ∈ S and x 6= 0}.)
40and because the vector Uen does have length 1 (since U is an isometry, so that ||Uen|| = ||en|| = 1)
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To prove this theorem, we will use some elementary facts about subspaces of
finite-dimensional vector spaces. We begin by recalling a classical definition:

4.4.3. The Courant–Fisher theorem: lemmas

Definition 4.4.6. Let S1 and S2 be two subspaces of a vector space V. Then,

S1 + S2 := {s1 + s2 | s1 ∈ S1 and s2 ∈ S2} .

This is again a subspace of V. (This is the smallest subspace of V that contains
both S1 and S2 as subspaces.)

Proposition 4.4.7. Let F be a field. Let V be a finite-dimensional F-vector space.
Let S1 and S2 be two subspaces of V. Then,

dim (S1 ∩ S2) + dim (S1 + S2) = dim S1 + dim S2.

Proof. Pick any basis (x1, x2, . . . , xk) of the vector space S1 ∩ S2.
Then, (x1, x2, . . . , xk) is a linearly independent list of vectors in S1. Thus, we can

extend it to a basis of S1 by inserting some new vectors y1, y2, . . . , yp. Hence,(
x1, x2, . . . , xk, y1, y2, . . . , yp

)
is a basis of S1.

On the other hand, (x1, x2, . . . , xk) is a linearly independent list of vectors in S2.
Thus, we can extend it to a basis of S2 by inserting some new vectors z1, z2, . . . , zq.
Hence, (

x1, x2, . . . , xk, z1, z2, . . . , zq
)

is a basis of S2.

The above three bases yield dim (S1 ∩ S2) = k and dim S1 = k + p and dim S2 =
k + q.

Now, we claim that

w :=
(
x1, x2, . . . , xk, y1, y2, . . . , yp, z1, z2, . . . , zq

)
is a basis of S1 + S2.

Once this is proved, we will conclude that dim (S1 + S2) = k + p + q, and then
Proposition 4.4.7 will follow by a simple computation (namely, k + (k + p + q) =
(k + p) + (k + q)).

So let us prove our claim. To prove that w is a basis of S1 + S2, we need to check
the following two statements:

1. The list w is linearly independent.

2. The list w spans S1 + S2.
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Proving statement 2 is easy: Any element of S1 + S2 is an element of S1 plus an
element of S2, and thus can be written as(

a linear combination of x1, x2, . . . , xk, y1, y2, . . . , yp
)

+
(
a linear combination of x1, x2, . . . , xk, z1, z2, . . . , zq

)
= λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp

+ µ1x1 + µ2x2 + · · ·+ µkxk + β1z1 + β2z2 + · · ·+ βqzq(
for some scalars λi, αj, µi, βv ∈ F

)
= (λ1 + µ1) x1 + (λ2 + µ2) x2 + · · ·+ (λk + µk) xk

+ α1y1 + α2y2 + · · ·+ αpyp + β1z1 + β2z2 + · · ·+ βqzq

=
(
a linear combination of x1, x2, . . . , xk, y1, y2, . . . , yp, z1, z2, . . . , zq

)
;

thus it belongs to the span of w.
Let us now prove statement 1. We need to show that w is linearly independent.

So let us assume that

λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp + β1z1 + β2z2 + · · ·+ βqzq = 0

for some coefficients λm, αi, β j that are not all equal to 0. We want a contradiction.
Let

v := λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp.

Then,

v = −
(

β1z1 + β2z2 + · · ·+ βqzq
)

(by the above equation)

∈ S2
(
since the zj’s lie in S2

)
.

On the other hand, the definition of v yields v ∈ S1 (since the xm’s and the yi’s lie in
S1). Thus, v lies in both S1 and S2. This entails that v ∈ S1 ∩ S2. Since (x1, x2, . . . , xk)
is a basis of S1 ∩ S2, this entails that

v = ξ1x1 + ξ2x2 + · · ·+ ξkxk for some ξ1, ξ2, . . . , ξk ∈ F.

Comparing this with

v = −
(

β1z1 + β2z2 + · · ·+ βqzq
)

,

we obtain

ξ1x1 + ξ2x2 + · · ·+ ξkxk = −
(

β1z1 + β2z2 + · · ·+ βqzq
)

.

In other words,

ξ1x1 + ξ2x2 + · · ·+ ξkxk + β1z1 + β2z2 + · · ·+ βqzq = 0.
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Since the list
(

x1, x2, . . . , xk, z1, z2, . . . , zq
)

is linearly independent (being a basis of
S2), this entails that all coefficients ξm and β j are 0. Thus, v = 0 (since v = ξ1x1 +
ξ2x2 + · · ·+ ξkxk). In view of

v = λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp,

this rewrites as

λ1x1 + λ2x2 + · · ·+ λkxk + α1y1 + α2y2 + · · ·+ αpyp = 0.

Since the list
(
x1, x2, . . . , xk, y1, y2, . . . , yp

)
is linearly independent (being a basis of

S1), this entails that all coefficients λm and αi are 0.
Now we know that all λm and αi and β j are 0, which contradicts our assumption

that some of them are nonzero. This completes the proof of Statement 1.
As we said, we now conclude that the list w is a basis of the vector space S1 + S2.

Since this list w contains k+ p+ q vectors, we thus obtain dim (S1 + S2) = k+ p+ q,
so that

dim (S1 ∩ S2)︸ ︷︷ ︸
=k

+dim (S1 + S2)︸ ︷︷ ︸
=k+p+q

= k + (k + p + q)

= (k + p)︸ ︷︷ ︸
=dim S1

+ (k + q)︸ ︷︷ ︸
=dim S2

= dim S1 + dim S2.

This proves Proposition 4.4.7.

Remark 4.4.8. A well-known fact in elementary set theory says that if A1 and A2
are two finite sets, then

|A1 ∩ A2|+ |A1 ∪ A2| = |A1|+ |A2| .

Proposition 4.4.7 is an analogue of this fact for vector spaces (noticing that the
sum S1 + S2 is a vector-space analogue of the union).

Note, however, that the “next level” of the above formula has no vector space
analogue. We do have

|A1 ∪ A2 ∪ A3|+ |A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|
= |A1|+ |A2|+ |A3|+ |A1 ∩ A2 ∩ A3|

for any three finite sets A1, A2, A3, but no such relation holds for three subspaces
of a vector space.

Corollary 4.4.9. Let F be a field, and let n ∈ N. Let V be an n-dimensional
F-vector space. Let S1, S2, . . . , Sk be subspaces of V (with k ≥ 1). Let

δ := dim (S1) + dim (S2) + · · ·+ dim (Sk)− (k− 1) n.
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(a) Then, dim (S1 ∩ S2 ∩ · · · ∩ Sk) ≥ δ.

(b) If F = C and V = Cn and δ > 0, then there exists a vector x ∈ S1 ∩ S2 ∩
· · · ∩ Sk with ||x|| = 1.

Proof. (a) We induct on k. The base case (k = 1) is obvious (since dim (S1 ∩ S2 ∩ · · · ∩ Sk) =
dim (S1) = δ in this case).

Induction step: Suppose the statement holds for some k. Now consider k + 1
subspaces S1, S2, . . . , Sk+1 of V, and let

δk+1 := dim (S1) + dim (S2) + · · ·+ dim (Sk+1)− kn.

We want to prove that dim (S1 ∩ S2 ∩ · · · ∩ Sk+1) ≥ δk+1.
Then,

dim (S1 ∩ S2 ∩ · · · ∩ Sk+1)

= dim (S1 ∩ S2 ∩ · · · ∩ Sk−1 ∩ (Sk ∩ Sk+1)) .

Now, set

δk := dim (S1) + dim (S2) + · · ·+ dim (Sk−1) + dim (Sk ∩ Sk+1)− (k− 1) n.

By the induction hypothesis, we can apply Corollary 4.4.9 (a) to Sk ∩ Sk+1 and δk
instead of Sk and δ. Thus, we obtain

dim (S1 ∩ S2 ∩ · · · ∩ Sk−1 ∩ (Sk ∩ Sk+1)) ≥ δk.

It remains to show that δk ≥ δk+1. Equivalently, we need to show that

dim (Sk ∩ Sk+1)− (k− 1) n ≥ dim (Sk) + dim (Sk+1)− kn.

In other words, we need to show that

dim (Sk ∩ Sk+1) + n ≥ dim (Sk) + dim (Sk+1) .

However, Sk + Sk+1 is a subspace of V, so its dimension is dim (Sk + Sk+1) ≤
dim V = n. Therefore,

dim (Sk ∩ Sk+1)+ n︸︷︷︸
≥dim(Sk+Sk+1)

≥ dim (Sk ∩ Sk+1)+dim (Sk + Sk+1) = dim (Sk)+dim (Sk+1)

(by Proposition 4.4.7). So the induction step is complete, and Corollary 4.4.9 (a) is
proved.

(b) Assume that F = C and V = Cn and δ > 0. Then, part (a) yields

dim (S1 ∩ S2 ∩ · · · ∩ Sk) ≥ δ > 0.

Thus, the subspace S1∩ S2∩ · · · ∩ Sk is not just {0}. Therefore, it contains a nonzero
vector. Scaling this vector by the reciprocal of its length, we obtain a vector of length
1. This proves Corollary 4.4.9 (b).
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Lemma 4.4.10. Let A ∈ Cn×n be a Hermitian matrix. Let (v1, v2, . . . , vk) be
an orthonormal tuple of eigenvectors of A, and let µ1, µ2, . . . , µk be the cor-
responding eigenvalues (so that Aivi = µivi for each i ∈ [k]). Assume that
µ1 ≤ µ2 ≤ · · · ≤ µk. Then, each v ∈ span (v1, v2, . . . , vk) satisfies

〈Av, v〉 ≥ µ1 〈v, v〉 (87)

and
〈Av, v〉 ≤ µk 〈v, v〉 . (88)

Proof. Let v ∈ span (v1, v2, . . . , vk). Thus, we can write v in the form

v = α1v1 + α2v2 + · · ·+ αkvk (89)

for some α1, α2, . . . , αk ∈ C. Consider these α1, α2, . . . , αk. From (89), we obtain

v = α1v1 + α2v2 + · · ·+ αkvk =
k

∑
i=1

αivi

and thus

Av = A
k

∑
i=1

αivi =
k

∑
i=1

αi Avi︸︷︷︸
=µivi

=
k

∑
i=1

αiµivi.

Combining this with v =
k
∑

i=1
αivi =

k
∑

j=1
αjvj, we obtain

〈Av, v〉 =
〈

k

∑
i=1

αiµivi,
k

∑
j=1

αjvj

〉
=

k

∑
i=1

k

∑
j=1

αiµiαj
〈
vi, vj

〉
. (90)

However, the inner products
〈
vi, vj

〉
in this sum are 0 whenever i 6= j (since the

tuple (v1, v2, . . . , vk) is orthonormal). Thus, we can simplify this sum as follows:

k

∑
i=1

k

∑
j=1

αiµiαj
〈
vi, vj

〉
=

k

∑
i=1

αiµiαi 〈vi, vi〉︸ ︷︷ ︸
=||vi||2=1

(since the tuple (v1,v2,...,vk)
is orthonormal)

=
k

∑
i=1

αiµiαi︸ ︷︷ ︸
=αiαi·µi

=
k

∑
i=1

αiαi︸︷︷︸
=|αi|2

·µi =
k

∑
i=1
|αi|2 µi.

Thus, (90) rewrites as

〈Av, v〉 =
k

∑
i=1
|αi|2 µi. (91)
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On the other hand, from v =
k
∑

i=1
αivi and v =

k
∑

j=1
αjvj, we obtain

〈v, v〉 =
〈

k

∑
i=1

αivi,
k

∑
j=1

αjvj

〉
=

k

∑
i=1

k

∑
j=1

αiαj
〈
vi, vj

〉
=

k

∑
i=1

αiαi︸︷︷︸
=|αi|2

〈vi, vi〉︸ ︷︷ ︸
=||vi||2=1

(since the tuple (v1,v2,...,vk)
is orthonormal)(

since the inner products
〈
vi, vj

〉
are 0 whenever i 6= j

)
=

k

∑
i=1
|αi|2 . (92)

Now, (91) becomes

〈Av, v〉 =
k

∑
i=1
|αi|2 µi︸︷︷︸

≥µ1
(since µ1≤µ2≤···≤µk)

≥
k

∑
i=1
|αi|2 µ1 = µ1

k

∑
i=1
|αi|2︸ ︷︷ ︸

=〈v,v〉
(by (92))

= µ1 〈v, v〉 .

This proves (87). Likewise, (91) becomes

〈Av, v〉 =
k

∑
i=1
|αi|2 µi︸︷︷︸

≤µk
(since µ1≤µ2≤···≤µk)

≤
k

∑
i=1
|αi|2 µk = µk

k

∑
i=1
|αi|2︸ ︷︷ ︸

=〈v,v〉
(by (92))

= µk 〈v, v〉 .

This proves (88).

4.4.4. The Courant–Fisher theorem: proof

Now, we are ready for the proof of the Courant–Fisher theorem:

Proof of Theorem 4.4.5. The spectral theorem (Theorem 2.6.1 (a)) says that A = UDU∗

for some unitary U and some diagonal matrix D. Consider these U and D. Propo-
sition 2.6.5 shows that the diagonal entries of D are real.

The columns of U form an orthonormal basis of Cn (since U is unitary); let
(u1, u2, . . . , un) be this basis. Then, u1, u2, . . . , un are eigenvectors of A (by Theorem
2.6.1 (b)). We WLOG assume that the corresponding eigenvalues are λ1, λ2, . . . , λn
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(otherwise, permute the diagonal entries of D and correspondingly permute the
columns of U). Thus, D = diag (λ1, λ2, . . . , λn) (by the proof of Theorem 2.6.1 (b)).

Let k ∈ [n].
Let S be a vector subspace of Cn with dim S = k. Let S′ = span (uk, uk+1, . . . , un).

Then, by Proposition 4.4.7, we have

dim
(
S ∩ S′

)
+ dim

(
S + S′

)
= dim S︸ ︷︷ ︸

=k

+ dim S′︸ ︷︷ ︸
=n−k+1

= n + 1 > n ≥ dim
(
S + S′

)
(since S + S′ is a subspace of Cn). Subtracting dim (S + S′) from this inequal-
ity, we obtain dim (S ∩ S′) > 0. Thus, S ∩ S′ contains a nonzero vector. Thus,

sup
x∈S∩S′;

x 6=0

R (A, x) and inf
x∈S∩S′;

x 6=0

R (A, x) are well-defined.

Now,

sup
x∈S;
x 6=0

R (A, x) ≥ sup
x∈S∩S′;

x 6=0

R (A, x) ≥ inf
x∈S∩S′;

x 6=0

R (A, x)

≥ inf
x∈S′;
x 6=0

R (A, x) . (93)

However, I claim that inf
x∈S′;
x 6=0

R (A, x) ≥ λk (actually, this is an equality, but we

will not need this). Indeed, (uk, uk+1, . . . , un) is an orthonormal tuple of eigenval-
ues of A (since (u1, u2, . . . , un) is an orthonormal tuple of eigenvalues of A) with
corresponding eigenvalues λk, λk+1, . . . , λn satisfying λk ≤ λk+1 ≤ · · · ≤ λn (since
λ1 ≤ λ2 ≤ · · · ≤ λn). Thus, any x ∈ span (uk, uk+1, . . . , un) satisfies

〈Ax, x〉 ≥ λk 〈x, x〉

(by (87), applied to (uk, uk+1, . . . , un) and (λk, λk+1, . . . , λn) and x instead of (v1, v2, . . . , vk)

and (µ1, µ2, . . . , µk) and v) and thus R (A, x) =
〈Ax, x〉
〈x, x〉 ≥ λk. In other words, any

x ∈ S′ satisfies R (A, x) ≥ λk (since S′ = span (uk, uk+1, . . . , un)). Hence, we have

inf
x∈S′;
x 6=0

R (A, x) ≥ λk.

Combining this with (93), we obtain

sup
x∈S;
x 6=0

R (A, x) ≥ λk.
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Furthermore, this supremum is a maximum, because

sup
x∈S;
x 6=0

R (A, x) = sup
y∈S;
||y||=1

R (A, y)
(

since R (A, x) = R (A, y) where y =
x
||x||

)

= max
y∈S;
||y||=1

R (A, y)

 since the set of all y ∈ S satisfying ||y|| = 1
is compact, and since a continuous function

on a compact set always has a maximum


= max

x∈S;
x 6=0

R (A, x) .

So we conclude that

max
x∈S;
x 6=0

R (A, x) = sup
x∈S;
x 6=0

R (A, x) ≥ λk.

Forget that we fixed S. We thus have shown that if S is any k-dimensional sub-
space of Cn, then max

x∈S;
x 6=0

R (A, x) exists and satisfies

max
x∈S;
x 6=0

R (A, x) ≥ λk.

However, by choosing S appropriately, we can achieve equality here; indeed, we
have to choose S = span (u1, u2, . . . , uk) for this. (Why? Because each x ∈ span (u1, u2, . . . , uk)
can easily be seen to satisfy 〈Ax, x〉 ≤ λk 〈x, x〉 by a similar argument to the one we
used above41.)

Thus, we have shown that the value max
x∈S;
x 6=0

R (A, x) is ≥ λk for each S, but is = λk

for a certain S. Therefore, λk is the smallest possible value of max
x∈S;
x 6=0

R (A, x). In

other words,
λk = min

S⊆Cn is a subspace;
dim S=k

max
x∈S;
x 6=0

R (A, x) .

Thus, we have proved (85). It remains to prove the other part of the theorem –
i.e., the equality (86).

One way to prove this is by arguing similarly to the above proof. Alternatively,
we can simply apply the already proved equality (85) to −A instead of A, after
noticing that −A is a Hermitian matrix with eigenvalues

−λn ≤ −λn−1 ≤ · · · ≤ −λ1.

41but using (88) instead of (87)
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Keep in mind that −λk is not the k-th smallest eigenvalue of −A, but rather is the
k-th largest eigenvalue of −A, and thus the (n− k + 1)-st smallest eigenvalue of
−A. Thus, we have to apply the equality (85) to −A and n − k + 1 instead of A
and k. Taking negatives turns minima into maxima and vice versa (i.e., we have
min
x∈Ω

(− f (x)) = −max
x∈Ω

f (x) and max
x∈Ω

(− f (x)) = −min
x∈Ω

f (x)). Finally, it is helpful

to know that R (−A, x) = −R (A, x) for any vector x ∈ Cn. Armed with these
observations, we can easily derive (86) from (85). The proof of Theorem 4.4.5 is
now complete.

4.4.5. The Weyl inequalities

The Courant–Fisher theorem can be used to connect the eigenvalues of A + B with
the eigenvalues of A and B.

Theorem 4.4.11 (Weyl’s inequalities). Let A and B be two Hermitian matrices in
Cn×n. Let i ∈ [n] and j ∈ {0, 1, . . . , n− i}.

(a) Then,
λi (A + B) ≤ λi+j (A) + λn−j (B) .

Here, λk (C) means the k-th smallest eigenvalue of a Hermitian matrix C.
Moreover, this inequality becomes an equality if and only if there exists a

nonzero vector x ∈ Cn satisfying

Ax = λi+j (A) x, Bx = λn−j (B) x, (A + B) x = λi (A + B) x

(at the same time).

(b) Furthermore,

λi−k+1 (A) + λk (B) ≤ λi (A + B) for any k ∈ [i] .

Theorem 4.4.11 lets us bound the eigenvalues of A + B in terms of those of A
and B under the assumption that A and B are Hermitian matrices. (In contrast, if
A and B are arbitrary – not Hermitian – matrices, then no such bounds are possible
for n > 1.)

Example 4.4.12. Applying Theorem 4.4.11 (a) to i = n and j = 0, we obtain

λn (A + B) ≤ λn (A) + λn (B) .

Applying Theorem 4.4.11 (b) to i = 1 and k = 1, we obtain

λ1 (A) + λ1 (B) ≤ λ1 (A + B) .
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Proof of Theorem 4.4.11. Let (x1, x2, . . . , xn), (y1, y2, . . . , yn) and (z1, z2, . . . , zn) be three
orthonormal bases of Cn with

Axk = λk (A) xk, Byk = λk (B) yk, (A + B) zk = λk (A + B) zk

for all k ∈ [n]. (As above, we can find such bases by using the spectral decomposi-
tions of A, B and A + B.)

Let

S1 = span
(
x1, x2, . . . , xi+j

)
;

S2 = span
(
y1, y2, . . . , yn−j

)
;

S3 = span (zi, zi+1, . . . , zn) .

Then,
δ := dim (S1)︸ ︷︷ ︸

=i+j

+dim (S2)︸ ︷︷ ︸
=n−j

+dim (S3)︸ ︷︷ ︸
=n−i+1

−2n = 1 > 0.

Hence, Corollary 4.4.9 (b) yields that there is a length-1 vector v in S1 ∩ S2 ∩ S3.
This v satisfies

λi (A + B) ≤ 〈(A + B) v, v〉 (by (87), since v ∈ S3 = span (zi, zi+1, . . . , zn))

= 〈Av + Bv, v〉 = 〈Av, v〉︸ ︷︷ ︸
≤λi+j(A)
(by (88),

since v∈S1=span(x1,x2,...,xi+j))

+ 〈Bv, v〉︸ ︷︷ ︸
≤λn−j(B)
(by (88),

since v∈S2=span(y1,y2,...,yn−j))

≤ λi+j (A) + λn−j (B) .

This proves the inequality part of Theorem 4.4.11 (a). The equality case is not hard
to analyze following the above argument; we leave this to the reader.

The proof of Theorem 4.4.11 (b) is left to the reader as well.

4.5. ([Missing lecture]) The interlacing theorem

4.6. Consequences of the interlacing theorem

Recall: If A ∈ Cn×n is a Hermitian matrix (i.e., a square matrix satisfying A∗ = A),
then we denote its eigenvalues by λ1 (A) , λ2 (A) , . . . , λn (A) in weakly increasing
order (with multiplicities). This makes sense, since we know that these eigenvalues
are reals.

Last time, Hugo proved:

Theorem 4.6.1 (Cauchy’s interlacing theorem, aka eigenvalue interlacing theo-
rem). Let A ∈ Cn×n be a Hermitian matrix. Let j ∈ [n]. Let B ∈ C(n−1)×(n−1) be
the matrix obtained from A by removing the j-th row and the j-th column. Then,

λ1 (A) ≤ λ1 (B) ≤ λ2 (A) ≤ λ2 (B) ≤ · · · ≤ λn−1 (A) ≤ λn−1 (B) ≤ λn (A) .

January 4, 2022



Math 504 notes page 187

In other words,

λi (A) ≤ λi (B) ≤ λi+1 (A) for each i ∈ [n− 1] .

A converse of this theorem also holds:

Proposition 4.6.2. Let λ1, λ2, . . . , λn and µ1, µ2, . . . , µn−1 be real numbers satisfy-
ing

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn.

Then, there exist n− 1 reals y1, y2, . . . , yn−1 ∈ R and a real a ∈ R such that the
matrix

A :=


µ1 y1

µ2 y2
. . . ...

µn−1 yn−1
y1 y2 · · · yn−1 a


(where all empty cells are supposed to be filled with 0s) has eigenvalues
λ1, λ2, . . . , λn. (This matrix is, of course, Hermitian, since it is real symmetric.)

Proof. Omitted. (Exercise?)

Now, let us derive some consequences from Cauchy’s interlacing theorem. We
begin with a straightforward generalization:

Corollary 4.6.3 (Cauchy’s interlacing theorem for multiple deletions). Let A ∈
Cn×n be a Hermitian matrix. Let r ∈ {0, 1, . . . , n}. Let C ∈ Cr×r be the result of
removing n− r rows and the corresponding n− r columns from A. (That is, we
pick some j1 < j2 < · · · < jn−r, and we remove the j1-st, j2-nd, . . ., jn−r-th rows
from A, and we remove the j1-st, j2-nd, . . ., jn−r-th columns from A.) Then, for
each j ∈ [r], we have

λj (A) ≤ λj (C) ≤ λj+n−r (A) .

Proof. Induction on n− r.
The base case (n− r = 0) is trivial, since C = A in this case.
In the induction step, we obtain C from B by removing a single row and the

corresponding column. Thus, by the original Cauchy interlacing theorem, we get
λj (B) ≤ λj (C). However, by the induction hypothesis, we get λj (A) ≤ λj (B).
Combining these inequalities, we get λj (A) ≤ λj (C). The remaining inequality
λj (C) ≤ λj+n−r (A) is proved similarly: By the original Cauchy interlacing the-
orem, we get λj (C) ≤ λj+1 (B). However, by the induction hypothesis, we get
λj+1 (B) ≤ λj+1+(n−r−1) (A) = λj+n−r (A).

The next corollary provides a minimum/maximum description of the sum of the
first m smallest/largest eigenvalues of a Hermitian matrix:
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Corollary 4.6.4. Let A ∈ Cn×n be a Hermitian matrix. Let m ∈ {0, 1, . . . , n}.
Then:

(a) We have

λ1 (A) + λ2 (A) + · · ·+ λm (A) = min
isometries V∈Cn×m

Tr (V∗AV) .

(b) We have

λn−m+1 (A) + λn−m+2 (A) + · · ·+ λn (A) = max
isometries V∈Cn×m

Tr (V∗AV) .

Proof. First of all, it suffices to show the first equality, because the second follows
by applying the first to −A instead of A.

First, we shall show that

λ1 (A) + λ2 (A) + · · ·+ λm (A) ≤ Tr (V∗AV) for every isometry V ∈ Cn×m.

Indeed, let V ∈ Cn×m be an isometry. Thus, V is an n×m-matrix whose columns
are orthonormal. As we know from Corollary 1.2.9, we can extend each orthonor-
mal tuple of vectors to an orthonormal basis. Doing this to the columns of V, we
thus obtain an orthonormal basis of Cn whose first m entries are the columns of V.
Let U be the matrix whose columns are the entries of this basis. Then,

U =
(

V Ṽ
)

(in block-matrix notation)

by construction of this basis, and furthermore the matrix U is unitary since its
columns form an orthonormal basis.

Since U is unitary, we have U∗AU ∼ A and therefore

λj (U∗AU) = λj (A) for all j ∈ [n] .

However, U =
(

V Ṽ
)

entails

U∗AU =
(

V Ṽ
)∗

A
(

V Ṽ
)
=

(
V∗

Ṽ∗

)
A
(

V Ṽ
)
=

(
V∗AV ∗
∗ ∗

)
,

where the three ∗s mean blocks that we don’t care about. So the matrix V∗AV is ob-
tained from U∗AU by removing a bunch of rows and the corresponding columns.
Hence, Corollary 4.6.3 yields

λj (U∗AU) ≤ λj (V∗AV) for all j ∈ [m]

(since U∗AU is Hermitian (because A is Hermitian)). In other words,

λj (A) ≤ λj (V∗AV) for all j ∈ [m]
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(since λj (U∗AU) = λj (A)). Adding these inequalities together, we obtain

λ1 (A) + λ2 (A) + · · ·+ λm (A)

≤ λ1 (V∗AV) + λ2 (V∗AV) + · · ·+ λm (V∗AV)

= (the sum of all eigenvalues of V∗AV)(
since V∗AV is an m×m-matrix

and thus has m eigenvalues

)
= Tr (V∗AV)

(since the sum of all eigenvalues of a matrix is the trace of this matrix).
Now, we need to show that there exists a unitary matrix V ∈ Cn×m such that

λ1 (A) + λ2 (A) + · · ·+ λm (A) = Tr (V∗AV) .

To do this, we construct V as follows: We pick an eigenvector xi of A at eigenvalue
λi (A) for each i ∈ [n] in such a way that (x1, x2, . . . , xn) is an orthonormal basis
of Cn. (This is possible because of Theorem 2.6.1 (b).) Now, let V ∈ Cn×m be
the matrix whose columns are x1, x2, . . . , xm. This matrix V is an isometry, since
x1, x2, . . . , xm are orthonormal. Moreover,

V∗AV =


x∗1
x∗2
...

x∗m

 A
(

x1 x2 · · · xm
)

=


x∗1 Ax1 x∗1 Ax2 · · · x∗1 Axm
x∗2 Ax1 x∗2 Ax2 · · · x∗2 Axm

...
... . . . ...

x∗m Ax1 x∗m Ax2 · · · x∗m Axm

 ,

so that

Tr (V∗AV) =
m

∑
j=1

x∗j Axj︸︷︷︸
=λj(A)xj

(since xj is an eigenvector of A
at eigenvalue λj(A))

=
m

∑
j=1

λj (A) x∗j xj︸︷︷︸
=||xj||2=1

(since (x1,x2,...,xn)
is an orthonormal basis)

=
m

∑
j=1

λj (A) = λ1 (A) + λ2 (A) + · · ·+ λm (A) .

This is precisely what we needed. Thus, we conclude that

λ1 (A) + λ2 (A) + · · ·+ λm (A) = min
isometries V∈Cn×m

Tr (V∗AV) .

As we said above, this completes the proof.
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Corollary 4.6.5. Let A ∈ Cn×n be a Hermitian n× n-matrix. Let m ∈ {0, 1, . . . , n}.
Let i1, i2, . . . , im ∈ [n] be distinct. Then,

λ1 (A) + λ2 (A) + · · ·+ λm (A) ≤ Ai1,i1 + Ai2,i2 + · · ·+ Aim,im
≤ λn−m+1 (A) + λn−m+2 (A) + · · ·+ λn (A) .

In words: For a Hermitian matrix A, each sum of m distinct diagonal entries of
A is sandwiched between the sum of the m smallest eigenvalues of A and the sum
of the m largest eigenvalues of A.

Proof. Let C be the matrix obtained from A by removing all but the i1-st, i2-nd, . . .,
im-th rows and the corresponding columns of A. Then,

Tr C = Ai1,i1 + Ai2,i2 + · · ·+ Aim,im .

However, Cauchy’s interlacing theorem for multiple deletions yields

λj (A) ≤ λj (C) for each j ∈ [m] .

Summing these up, we obtain

λ1 (A) + λ2 (A) + · · ·+ λm (A) ≤ λ1 (C) + λ2 (C) + · · ·+ λm (C)
= (the sum of all eigenvalues of C)
= Tr C = Ai1,i1 + Ai2,i2 + · · ·+ Aim,im .

So we have proved the first of the required two inequalities. The second follows by
applying the first to −A instead of A.

The above corollary has a bunch of consequences that are obtained by restating
it in terms of something called majorization. Let us define this concept and see what
it entails.

4.7. Introduction to majorization theory ([HorJoh13, §4.3])

We will now give a brief introduction to majorization theory. Much more can be
found in [MaOlAr11] (see also [Nathan21] for an elementary introduction).

4.7.1. Notations and definition

Convention 4.7.1. Let x ∈ Rn be a column vector with real entries. Then:

(a) For each i ∈ [n], we let xi denote the i-th coordinate of x. (“Coordinate” is
just a synonym for “entry” in the context of a vector.) Thus,

x =


x1
x2
...

xn

 = (x1, x2, . . . , xn)
T .
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(b) We say that x is weakly decreasing if x1 ≥ x2 ≥ · · · ≥ xn. We say that x is
weakly increasing if x1 ≤ x2 ≤ · · · ≤ xn.

(c) We let x↓ denote the weakly decreasing permutation of x (that is, the col-
umn vector obtained by sorting the entries of x in weakly decreasing order).
In other words, x↓ is the unique weakly decreasing column vector that can be
obtained by permuting the entries of x.

Thus, x↓i is the i-th largest entry of x for each i ∈ [n]; in particular, x↓1 ≥ x↓2 ≥
· · · ≥ x↓n.

(d) We let x↑ denote the weakly increasing permutation of x (that is, the col-
umn vector obtained by sorting the entries of x in weakly increasing order). In
other words, x↑ is the unique weakly increasing column vector that can be ob-
tained by permuting the entries of x.

Thus, x↑i is the i-th smallest entry of x for each i ∈ [n]; in particular, x↑1 ≤ x↑2 ≤
· · · ≤ x↑n.

For example, if x = (3, 5, 2)T, then x1 = 3 and x2 = 5 and x3 = 2 and

x↓ = (5, 3, 2)T and x↓1 = 5 and x↓2 = 3 and x↓3 = 2 and

x↑ = (2, 3, 5)T and x↑1 = 2 and x↑2 = 3 and x↑3 = 5.

Definition 4.7.2. Let x ∈ Rn and y ∈ Rn be two column vectors with real entries.
Then, we say that x majorizes y (and we write x < y) if and only if we have

m

∑
i=1

x↓i ≥
m

∑
i=1

y↓i for each m ∈ [n]

and
n

∑
i=1

x↓i =
n

∑
i=1

y↓i .

In other words, x majorizes y if and only if we have

x↓1 ≥ y↓1 ;

x↓1 + x↓2 ≥ y↓1 + y↓2 ;

x↓1 + x↓2 + x↓3 ≥ y↓1 + y↓2 + y↓3 ;
. . . ;

x↓1 + x↓2 + · · ·+ x↓n−1 ≥ y↓1 + y↓2 + · · ·+ y↓n−1;

x↓1 + x↓2 + · · ·+ x↓n = y↓1 + y↓2 + · · ·+ y↓n

(note that the last relation in this chain is an equality, not just an inequality).
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Example 4.7.3. We have 
1
3
5
7

 <


2
2
6
6

 ,

since

7 ≥ 6;
7 + 5 ≥ 6 + 6;

7 + 5 + 3 ≥ 6 + 6 + 2;
7 + 5 + 3 + 1 = 6 + 6 + 2 + 2.

Example 4.7.4. We don’t have 
1
3
5
7

 <


0
2
6
8

 ,

since we don’t have 7 ≥ 8.

The intuition behind majorization is the following: A column vector x majorizes
a column vector y if and only if you can obtain y from x by “moving the entries
closer together (while keeping the average equal)”. We will soon see a rigorous
way to state this.

Here are some more general examples of majorization:

Exercise 4.7.1. 2 Let x ∈ Rn, and let m =
x1 + x2 + · · ·+ xn

n
. Show that x <

(m, m, . . . , m)T.

Exercise 4.7.2. 2 Let a, b, c ∈ R, and let x =
b + c

2
and y =

c + a
2

and z =
a + b

2
.

Show that (a, b, c)T < (x, y, z)T.

Exercise 4.7.3. 4 Let a, b, c ∈ R, and let x =
b + c

2
and y =

c + a
2

and z =
a + b

2
and m =

a + b + c
3

. Show that

(a, b, c, m, m, m)T < (x, x, y, y, z, z)T .
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Exercise 4.7.4. 3 Let x, y ∈ Rn. Prove that x < y if and only if −x < −y.

We note that the condition
n
∑

i=1
x↓i =

n
∑

i=1
y↓i in the definition of majorization can

be rewritten as
n
∑

i=1
xi =

n
∑

i=1
yi, because the sum of all coordinates of a vector does

not change when we permute the entries of the vector. However, the conditions
m
∑

i=1
x↓i ≥

m
∑

i=1
y↓i cannot be rewritten as

m
∑

i=1
xi ≥

m
∑

i=1
yi.

Proposition 4.7.5. Majorization is a partial order: That is, the binary relation <
on the set Rn is reflexive, antisymmetric and transitive.

Proof. This is straightforward to verify. For example, if
m
∑

i=1
x↓i ≥

m
∑

i=1
y↓i and

m
∑

i=1
y↓i ≥

m
∑

i=1
z↓i , then

m
∑

i=1
x↓i ≥

m
∑

i=1
z↓i .

However, majorization is not a total order: For example, the vectors

x =


2
2
4
6

 and y =


1
3
5
5


satisfy neither x < y nor y < x, since we have 6 > 5 but 6 + 4 + 2 < 5 + 5 + 3. For
an even simpler example, if two vectors x ∈ Rn and y ∈ Rn have different sums of
coordinates, then we have neither x < y nor y < x.

4.7.2. Restating Schur’s theorem as a majorization

Now we can restate Corollary 4.6.5 as follows:

Corollary 4.7.6 (Schur’s theorem). Let A ∈ Cn×n be a Hermitian n× n-matrix.
Then,

(λ1 (A) , λ2 (A) , . . . , λn (A))T < (A1,1, A2,2, . . . , An,n)
T .

In words: The tuple of all eigenvalues of A majorizes the tuple of all diagonal
entries of A.

Proof. We need to show that

• the sum of the m largest eigenvalues of A is ≥ to the sum of the m largest
diagonal entries of A for each m ∈ [n];

• the sum of all diagonal entries of A equals the sum of all eigenvalues of A.
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But the second of these two statements follows from the well-known theorem
that the trace of a matrix is the sum of its eigenvalues (Theorem 2.0.10 (d)). Thus,
it remains to prove the first statement.

So let m ∈ [n]. We must prove that the sum of the m largest eigenvalues of A
is ≥ to the sum of the m largest diagonal entries of A. However, Corollary 4.6.5
yields that

λ1 (A) + λ2 (A) + · · ·+ λm (A) ≤ Ai1,i1 + Ai2,i2 + · · ·+ Aim,im
≤ λn−m+1 (A) + λn−m+2 (A) + · · ·+ λn−m (A)

for any distinct i1, i2, . . . , im ∈ [n]. The second inequality here says that

λn−m+1 (A) + λn−m+2 (A) + · · ·+ λn−m (A) ≥ Ai1,i1 + Ai2,i2 + · · ·+ Aim,im

for any distinct i1, i2, . . . , im ∈ [n]. In other words, the sum of the m largest eigen-
values of A is ≥ to any sum of m distinct diagonal entries of A. Thus, in particular,
the sum of the m largest eigenvalues of A is ≥ to the sum of the m largest diagonal
entries of A. This completes the proof of Corollary 4.7.6.

Exercise 4.7.5. 5 For each Hermitian matrix A ∈ Cn×n, let λ (A) ∈ Rn be the
column vector (λn (A) , λn−1 (A) , . . . , λ1 (A))T consisting of all eigenvalues of
A in decreasing order.

Let A ∈ Cn×n and B ∈ Cn×n be two Hermitian matrices. Prove the following:

(a) (Fan’s theorem:) We have

λ (A) + λ (B) < λ (A + B) .

(b) (Lidskii’s theorem:) We have

λ (A + B) < λ (A) + (λ (B))↑ .

[Hint: For part (a), use Corollary 4.6.4 (b). For part (b), observe first that three
weakly decreasing vectors x, y, z ∈ Rn satisfying x− z↑ < y must always satisfy
x < y + z↑.]

4.7.3. Robin Hood moves

Above, we briefly alluded to an intuition for majorization: We said that x majorizes
y if and only if you can obtain y from x by “moving the entries closer together
(while keeping the average equal)”. Let us now turn this into an actual theorem.
First, a simple lemma:
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Lemma 4.7.7. Let x, y ∈ Rn. Then, x < y if and only if x↓ < y↓.

Proof. The definition of < only involves x↓ and y↓. In other words, whether or not
we have x < y does not depend on the order of the coordinates of x or of those of
y. Thus, replacing x and y by x↓ and y↓ doesn’t make any difference.

Definition 4.7.8. Let x ∈ Rn. Let i and j be two distinct elements of [n] such that
xi ≤ xj. Let t ∈

[
xi, xj

]
(that is, t ∈ R and xi ≤ t ≤ xj). Let y ∈ Rn be the column

vector obtained from x by

replacing the i-th and j-th coordinates xi and xj by u and v

for some u, v ∈
[
xi, xj

]
satisfying u + v = xi + xj. In other words, we obtain y by

picking two numbers u, v ∈
[
xi, xj

]
satisfying u + v = xi + xj and setting

yk =


u, if k = i;
v, if k = j;
xk, otherwise

for all k ∈ [n] .

Then, we say that y is obtained from x by a Robin Hood move (short: RH move),
and we write

x RH−→ y.

Moreover, if x and y are weakly decreasing, then this RH move is said to be
an order-preserving RH move (short: OPRH move), and we write

x OPRH−→ y.

A Robin Hood move is thus a “local transformation” that changes a column
vector x by picking two of its entries (say, xi and xj) and replacing them by two
new entries u and v that are “closer together” (that is, u, v ∈

[
xi, xj

]
) and have

the same sum (that is, u + v = xi + xj). If we regard the entries x1, x2, . . . , xn
of x as the wealths of n persons, then a Robin Hood move thus corresponds to
redistributing some wealth from a richer person to a poorer person in such a way
that the disparity between these two people does not increase. (Thus the name.) If
the n people were ordered in the order of decreasing wealth at the beginning (that
is, x was weakly decreasing) and this remains so after the RH move, then the RH
move is an OPRH move.

Example 4.7.9. (a) Replacing two coordinates of a vector x by their average is

an RH move. (Indeed, this corresponds to the case when u = v =
xi + xj

2
in

Definition 4.7.8.)
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(b) Swapping two coordinates of a vector x is an RH move. (Indeed, this
corresponds to the case when u = xj and v = xi in Definition 4.7.8.)

(c) If x ∈ Rn is weakly decreasing, then replacing two adjacent entries of x
by their average is an OPRH move. (Indeed, if we replace xi and xi+1 by their

average
xi + xi+1

2
, then the vector remains weakly decreasing, since x1 ≥ x2 ≥

· · · ≥ xn entails x1 ≥ x2 ≥ · · · ≥ xi−1 ≥
xi + xi+1

2
≥ xi + xi+1

2
≥ xi+2 ≥ xi+3 ≥

· · · ≥ xn.)

(d) More generally: If x ∈ Rn is weakly decreasing, then replacing its co-
ordinates xi and xi+1 by u and xi + xi+1 − u is an OPRH move if and only if

u ∈
[

xi + xi+1

2
, xi

]
.

(e) Here is an example of an RH move that is not an OPRH move:
6
5
2
1

 RH−→


4
5
2
3

 .

This move replaces the two entries 1 and 6 by 3 and 4 (with 3, 4 ∈ [1, 6] and
3 + 4 = 1 + 6), but it changes the relative order of the entries, so it is not order-
preserving.

Proposition 4.7.10. If x RH−→ y, then the sum of the entries of x equals the sum of
the entries of y.

Proof. Clear from the u + v = xi + xj requirement in Definition 4.7.8.

Lemma 4.7.11. Let x, y ∈ Rn be weakly decreasing column vectors such that y is
obtained from x by a (finite) sequence of OPRH moves. Then, x < y.

Proof. Let us first prove Lemma 4.7.11 in the case when y is obtained from x by a
single OPRH move.

So let us assume that y is obtained from x by a single OPRH move. Let this
move be replacing xi and xj by u and v, where xi ≤ xj and u, v ∈

[
xi, xj

]
with

u + v = xi + xj. WLOG, we have xi < xj (since otherwise, the OPRH move changes
nothing, because we have u = v = xi = xj). Therefore, i > j (since x is weakly
decreasing (by the definition of an OPRH move)). Thus,

y =
(
x1, x2, . . . , xj−1, v, xj+1, xj+2, . . . , xi−1, u, xi+1, xi+2, . . . , xn

)T

(since y is obtained from x by replacing xi and xj by u and v).
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Now, we must prove that x < y. In other words, we must prove that

x1 + x2 + · · ·+ xm ≥ y1 + y2 + · · ·+ ym (94)

for each m ∈ [n] (since x and y are weakly decreasing), and we must prove that

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn. (95)

The latter equality follows from u + v = xi + xj. So we only need to prove the
former inequality. So let us fix an m ∈ [n]. We must prove the inequality (94). We
are in one of the following cases:

1. We have m < j.

2. We have j ≤ m < i.

3. We have i ≤ m.

In Case 1, we have x1 + x2 + · · ·+ xm = y1 + y2 + · · ·+ ym (because xp = yp for
all p ≤ m in this case). Thus, (94) is proved in Case 1.

In Case 2, we have

y1 + y2 + · · ·+ ym = x1 + x2 + · · ·+ xj−1 + v + xj+1 + xj+2 + · · ·+ xm

= (x1 + x2 + · · ·+ xm) + v− xj︸ ︷︷ ︸
≤0

(since v∈[xi,xj])

≤ x1 + x2 + · · ·+ xm.

Thus, (94) is proved in Case 2.
In Case 3, we have

y1 + y2 + · · ·+ ym

= x1 + x2 + · · ·+ xj−1 + v + xj+1 + xj+2 + · · ·+ xi−1 + u + xi+1 + xi+2 + · · ·+ xm

= (x1 + x2 + · · ·+ xm) + (u− xi) +
(
v− xj

)︸ ︷︷ ︸
=0

(since u+v=xi+xj)

= x1 + x2 + · · ·+ xm.

Thus, (94) is proved in Case 3.
So we have proved (94) in all cases. As we said, this concludes our proof of x < y.
We are not completely done yet: We have only proved Lemma 4.7.11 in the case

when y is obtained from x by a single OPRH move.
Now, let us prove the general case: Assume that y is obtained from x by a (finite)

sequence of OPRH moves. That is, there is a finite sequence x[0], x[1], . . . , x[m] of
vectors in Rn such that x[0] = x and x[m] = y and

x[0]
OPRH−→ x[1]

OPRH−→ · · · OPRH−→ x[m].
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Then, by the special case we have already proved, we conclude that

x[0] < x[1] < · · · < x[m].

Hence, x[0] < x[m] (since the relation < is reflexive and transitive). In other words,
x < y (since x[0] = x and x[m] = y). This completes the proof of Lemma 4.7.11.

We are now ready to state one version of the “moving the entries closer together”
intuition for majorization:

Theorem 4.7.12 (RH criterion for majorization). Let x, y ∈ Rn be two weakly
decreasing column vectors. Then, x < y if and only if y can be obtained from x
by a (finite) sequence of OPRH moves.

Example 4.7.13. (a) We have (4, 1, 1)T < (2, 2, 2)T, and indeed (2, 2, 2)T can be
obtained from (4, 1, 1)T by OPRH moves as follows:

(4, 1, 1)T OPRH−→ (3, 2, 1)T OPRH−→ (2, 2, 2)T .

(b) We have (7, 5, 2, 0)T < (4, 4, 3, 3)T, and indeed (4, 4, 3, 3)T can be obtained
from (7, 5, 2, 0)T by OPRH moves as follows:

(7, 5, 2, 0)T OPRH−→ (6, 6, 2, 0)T OPRH−→ (6, 5, 3, 0)T OPRH−→ (6, 4, 3, 1)T OPRH−→ (4, 4, 3, 3)T .

Here is another way to do this:

(7, 5, 2, 0)T OPRH−→ (7, 4, 3, 0)T OPRH−→ (4, 4, 3, 3)T .

Proof of Theorem 4.7.12. ⇐=: This follows from Lemma 4.7.11.

=⇒: Let x < y. We must show that y can be obtained from x by a finite sequence
of OPRH moves.

If x = y, then this is clear (just take the empty sequence). So we WLOG assume
that x 6= y. We claim now that there is a further weakly decreasing vector z ∈ Rn

such that

1. we have x OPRH−→ z;

2. we have z < y;

3. the vector z has more entries in common with y than x does; in other words,
we have

|{i ∈ [n] | zi = yi}| > |{i ∈ [n] | xi = yi}| . (96)
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In other words, we claim that by making a strategic OPRH move starting at x,
we can reach a vector z that still majorizes y but has at least one more entry in
common with y than x does. If we can prove this claim, then we will automatically
obtain a recursive procedure to transform x into y by a sequence of OPRH moves.
(And in fact, this procedure will use at most n moves, because each move makes
the vector agree with y in at least one more position.)

So let us prove our claim.
Since x is weakly decreasing, we have x = x↓. Similarly, y = y↓. Thus, from

x < y, we obtain
x1 + x2 + · · ·+ xm ≥ y1 + y2 + · · ·+ ym (97)

for all m ∈ [n], as well as

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn. (98)

We define a turn to be a pair (a, b) of two elements of [n] satisfying

xa > ya and xb < yb and a < b.

We claim that there exists at least one turn.
[Proof: We have x 6= y. Thus, there exists some a ∈ [n] such that xa 6= ya.

Consider the smallest such a. Thus, xi = yi for each i < a. However, (97) (applied
to m = a) yields x1 + x2 + · · ·+ xa ≥ y1 + y2 + · · ·+ ya. Thus, xa ≥ ya (since xi = yi
for each i < a). Hence, xa > ya (since xa 6= ya). Therefore, x1 + x2 + · · · + xa >
y1 + y2 + · · ·+ ya.

Next, let us pick the smallest b ∈ {a + 1, a + 2, . . . , n} such that x1 + x2 + · · ·+
xb = y1 + y2 + · · ·+ yb. (This exists, because (98) shows that n is such a b.) Clearly,
a < b (since b ∈ {a + 1, a + 2, . . . , n}).

We shall now show that xb < yb. Indeed, assume the contrary. Thus, xb ≥ yb.
Subtracting this inequality from the equality x1 + x2 + · · ·+ xb = y1 + y2 + · · ·+ yb,
we obtain x1 + x2 + · · ·+ xb−1 ≤ y1 + y2 + · · ·+ yb−1. However, we have x1 + x2 +
· · ·+ xb−1 ≥ y1 + y2 + · · ·+ yb−1 (by (97)). Combining these two inequalities, we
obtain x1 + x2 + · · · + xb−1 = y1 + y2 + · · · + yb−1. However, recall that b was
defined to be the smallest element of {a + 1, a + 2, . . . , n} such that x1 + x2 + · · ·+
xb = y1 + y2 + · · ·+ yb. This contradicts the equality x1 + x2 + · · ·+ xb−1 = y1 +
y2 + · · ·+ yb−1 (after all, b− 1 is smaller than b) unless b− 1 is not an element of
{a + 1, a + 2, . . . , n}. Thus, b− 1 must not be an element of {a + 1, a + 2, . . . , n}. So
we have b ∈ {a + 1, a + 2, . . . , n} but b− 1 /∈ {a + 1, a + 2, . . . , n}. Therefore, b =
a+ 1, so that b− 1 = a. Thus, the equality x1 + x2 + · · ·+ xb−1 = y1 + y2 + · · ·+ yb−1
rewrites as x1 + x2 + · · ·+ xa = y1 + y2 + · · ·+ ya. But this contradicts the inequality
x1 + x2 + · · ·+ xa > y1 + y2 + · · ·+ ya proved above. Thus, our proof of xb < yb is
complete.

We thus conclude that (a, b) is a turn (since a < b and xa > ya and xb < yb). This
proves that there exists at least one turn.]

The width of a turn (a, b) shall denote the positive integer b− a. (This is a positive
integer, since a < b in a turn (a, b).)
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Now, let us pick a turn (a, b) with the smallest possible width. Then, we have

xa > ya and xb < yb and a < b.

Moreover, for each j ∈ {a + 1, a + 2, . . . , b− 1}, we have xj = yj (because if we had
xj < yj, then (a, j) would be a turn of smaller width than (a, b), and if we had
xj > yj, then (j, b) would be a turn of smaller width than (a, b)). Thus, we have

xa > ya,
xj = yj for all j ∈ {a + 1, a + 2, . . . , b− 1} ,

xb < yb.

Since y is weakly decreasing (so that ya ≥ ya+1 ≥ · · · ≥ yb), we thus obtain the
following chain of inequalities:

xa > ya ≥
(
all of the xj and yj with j ∈ {a + 1, a + 2, . . . , b− 1}

)
≥ yb > xb.

(If there are no j ∈ {a + 1, a + 2, . . . , b− 1}, then this is supposed to read xa > ya ≥
yb > xb.) This shows, in particular, that ya and yb lie in the open interval (xa, xb).

Now, we make an RH move (on the vector x) that “squeezes xa and xb together”
until either xa reaches ya or xb reaches yb (whatever happens first). In formal terms,
this means that we do the following:

• If xa − ya ≤ yb − xb, then we replace xa and xb by ya and xa + xb − ya.

• If xa − ya ≥ yb − xb, then we replace xa and xb by xa + xb − yb and yb.

(The two cases overlap, but this is not a problem, because if xa − ya = yb − xb, then
both outcomes are identical.)

Let z ∈ Rn be the n-tuple resulting from this operation. We claim that z is weakly
decreasing and satisfies the three requirements 1, 2, 3 above:

1. we have x OPRH−→ z;

2. we have z < y;

3. the vector z has more entries in common with y than x does; in other words,
we have

|{i ∈ [n] | zi = yi}| > |{i ∈ [n] | xi = yi}| .

Indeed, let us prove that these three requirements hold. Requirement 3 is the
easiest one to verify: The only entries of z that differ from the respective entries of
x are the two entries za and zb; among these two entries, at least one agrees with the
corresponding entry of y (because we have either za = ya or zb = yb), whereas none
of the corresponding entries of x agrees with the corresponding entry of y (since
xa > ya and xb < yb). Thus, going from x to z, we have increased the number of
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entries that agree with the corresponding entries of y by at least 1. Requirement 3
is therefore satisfied.

Let us next check Requirement 1. (The reader should draw a picture of the
numbers xj and yj for j ∈ {a, a + 1, . . . , b} as points on the real axis. As we recall,
za and zb are obtained by moving xa and xb closer together (preserving their sum)
until either xa hits ya or xb hits yb (whatever happens first). This picture should
render some of the verifications below trivial.)

The definition of z shows that za ≥ ya
42 and zb ≤ yb

43. Moreover, the
numbers za and zb lie in the interval [xb, xa] 44, and we have za + zb = xa + xb
45. Thus, the operation that transformed x into z was an RH move (with b and a

playing the roles of i and j from Definition 4.7.8). Therefore, x RH−→ z. It remains to
prove that this RH move is order-preserving, i.e., that z is weakly decreasing. Since
the only entries of x that changed in our RH move were xa and xb (and since we
know that x is weakly decreasing), we only need to verify the inequalities

xa−1 ≥ za (if a > 1) and
za ≥ xa+1 (if a + 1 6= b) and
za ≥ zb (if a + 1 = b) and

xb−1 ≥ zb (if a + 1 6= b) and
zb ≥ xb+1 (if b 6= n) .

Fortunately, these inequalities all follow easily from the facts that we know (viz.,

42Proof. The definition of za shows that za = ya in the case when xa − ya ≤ yb − xb, and that
za = xa + xb − yb in the case when xa − ya ≥ yb − xb. In the former case, the inequality za ≥ ya
is obvious (and is, in fact, an equality). Hence, it remains to prove za ≥ ya in the latter case.

So let us assume that we are in the latter case – i.e., that we have xa − ya ≥ yb − xb. Thus,
xa ≥ yb − xb + ya. Now,

za = xa︸︷︷︸
≥yb−xb+ya

+xb − yb ≥ yb − xb + ya + xb − yb = ya,

qed.
43Proof. The definition of zb shows that zb = xa + xb − ya in the case when xa − ya ≤ yb − xb, and

that zb = yb in the case when xa − ya ≥ yb − xb. In the latter case, the inequality zb ≤ yb is
obvious (and is, in fact, an equality). Hence, it remains to prove zb ≤ yb in the former case.

So let us assume that we are in the former case – i.e., that we have xa − ya ≤ yb − xb. Thus,
xa ≤ yb − xb + ya. Now,

zb = xa︸︷︷︸
≤yb−xb+ya

+xb − ya ≤ yb − xb + ya + xb − ya = yb,

qed.
44Proof. The definition of z shows that we have either (za = ya and zb = xa + xb − ya) or

(za = xa + xb − yb and zb = yb). Hence, we must show that the numbers ya, xa + xb − ya,
xa + xb − yb and yb all lie in the interval [xb, xa]. But this follows easily from xa > ya ≥ yb > xb.

45Proof. The definition of z shows that we have either (za = ya and zb = xa + xb − ya) or
(za = xa + xb − yb and zb = yb). Hence, we must show that ya + (xa + xb − ya) = xa + xb and
(xa + xb − yb) + yb = xa + xb. But both of these equalities are clearly true.
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from the chain of inequalities

xa > ya ≥
(
all of the xj and yj with j ∈ {a + 1, a + 2, . . . , b− 1}

)
≥ yb > xb

and from the inequalities za ≥ ya and zb ≤ yb and the fact that za and zb lie in the
interval [xb, xa]): The inequality xa−1 ≥ za (if a > 1) follows from xa−1 ≥ xa ≥ za
(since za ∈ [xb, xa]). The inequality za ≥ xa+1 (if a + 1 6= b) follows from

za ≥ ya ≥
(
all of the xj and yj with j ∈ {a + 1, a + 2, . . . , b− 1}

)
(since xa+1 is one of the latter xj). Furthermore, za ≥ zb follows from za ≥ ya ≥
yb ≥ zb (since zb ≤ yb). Next, xb−1 ≥ zb (if a + 1 6= b) follows from(

all of the xj and yj with j ∈ {a + 1, a + 2, . . . , b− 1}
)
≥ yb ≥ zb

(since xb−1 is one of those former xj). Finally, zb ≥ xb+1 follows by combining
zb ≥ xb (this is because zb lies in the interval [xb, xa]) and xb ≥ xb+1. Thus, we have
checked all the necessary inequalities to ensure that z is weakly decreasing. Thus,
requirement 1 holds.

Finally, we need to verify requirement 2. In other words, we need to show that
z < y. Since z and y are weakly decreasing, this means that we need to verify the
inequalities

z1 + z2 + · · ·+ zm ≥ y1 + y2 + · · ·+ ym (99)

for all m ∈ [n], as well as the equality

z1 + z2 + · · ·+ zn = y1 + y2 + · · ·+ yn. (100)

The equality (100) is easy to verify: Since x RH−→ z (and since the sum of the
entries of a vector does not change when we make an RH move), we have

z1 + z2 + · · ·+ zn = x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn

(since x < y). Thus, it remains to prove the inequality (99). So let us fix m ∈ [n].
We must prove (99). We are in one of the following three cases:

Case 1: We have m < a.
Case 2: We have a ≤ m < b.
Case 3: We have m ≥ b.
Let us first consider Case 1. In this case, we have m < a. Hence, zi = xi for each

i ≤ m. Thus,

z1 + z2 + · · ·+ zm = x1 + x2 + · · ·+ xm ≥ y1 + y2 + · · ·+ ym

(since x < y). This proves (99) in Case 1.
Let us next consider Case 2. In this case, we have a ≤ m < b. Hence,

z1 + z2 + · · ·+ zm = x1 + x2 + · · ·+ xa−1︸ ︷︷ ︸
≥y1+y2+···+ya−1

(since x<y)

+ za︸︷︷︸
≥ya

+ xa+1 + xa+2 + · · ·+ xm︸ ︷︷ ︸
=ya+1+ya+2+···+ym

(since xj=yj for all j∈{a+1,a+2,...,b−1})

≥ y1 + y2 + · · ·+ ya−1 + ya + ya+1 + ya+2 + · · ·+ ym

= y1 + y2 + · · ·+ ym.
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This proves (99) in Case 2.
Finally, let us consider Case 3. In this case, we have m ≥ b. Hence,

z1 + z2 + · · ·+ zm

= x1 + x2 + · · ·+ xa−1 + za + xa+1 + xa+2 + · · ·+ xb−1 + zb + xb+1 + xb+2 + · · ·+ xm

= (x1 + x2 + · · ·+ xm) + (za − xa) + (zb − xb)︸ ︷︷ ︸
=0

(since za+zb=xa+xb)

= x1 + x2 + · · ·+ xm ≥ y1 + y2 + · · ·+ ym (since x < y) .

This proves (99) in Case 3.
We have now proved (99) in all three Cases 1, 2 and 3. Hence, (99) always holds.

Thus, we have verified Requirement 2. Now, all three requirements 1, 2 and 3
are satisfied. As we explained, this means that our vector z fits our bill, and this
completes the proof of Theorem 4.7.12.

Exercise 4.7.6. 2 Let x, y ∈ Rn be two weakly decreasing column vectors. Prove
that x < y if and only if y can be obtained from x by a sequence of at most n− 1
OPRH moves.

Theorem 4.7.12 formalizes our intuition about majorization as “moving entries
closer together” for weakly decreasing vectors. There is a version for arbitrary
vectors as well:

Theorem 4.7.14 (RH criterion for majorization, non-decreasing form). Let x, y ∈
Rn be two column vectors. Then, x < y if and only if y can be obtained from x
by a (finite) sequence of RH moves.

The proof of this theorem will be an exercise, but we delay this exercise until
after Theorem 4.7.20, since the latter theorem provides a good tool for the proof.

Exercise 4.7.7. 7 Let x, y ∈ Rn be two column vectors such that x < y. Prove that
there exists a real symmetric matrix A ∈ Rn×n with diagonal entries y1, y2, . . . , yn
and eigenvalues x1, x2, . . . , xn.

[Remark: This can be viewed as a converse to Corollary 4.7.6 (but is in fact
even stronger, since A is not just Hermitian but real symmetric).]

4.7.4. Karamata’s inequality

Now, what can we do with majorization? Probably the most important property of
majorizing pairs of vectors is the so-called Karamata inequality. To state it, we recall
the concept of a convex function:
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Definition 4.7.15. Let I ⊆ R be an interval. Let f : I → R be a function. We say
that f is convex if and only if it has the following property: For any a, b ∈ I and
any λ ∈ [0, 1], we have

λ f (a) + (1− λ) f (b) ≥ f (λa + (1− λ) b) .

This property is best conceptualized using the plot of the function: A function
f : I → R is convex if and only if, for any two points (a, f (a)) and (b, f (b)) on the
plot of f , the entire segment connecting these two points lies weakly above (i.e., on
or above) the plot of f . (In fact, the segment connecting these two points can be
parametrized as

{(λa + (1− λ) b, λ f (a) + (1− λ) f (b)) | λ ∈ [0, 1]} ,

so a typical point on this segment has the form

(λa + (1− λ) b, λ f (a) + (1− λ) f (b))

for some λ ∈ [0, 1], whereas the corresponding point on the plot of f is

(λa + (1− λ) b, f (λa + (1− λ) b)) .

Thus, the former point lies weakly above the latter point if and only if λ f (a) +
(1− λ) f (b) ≥ f (λa + (1− λ) b) holds.)

Here are some examples of convex functions:

• f (t) = tn defines a convex function f : R→ R whenever n ∈N is even.

• f (t) = tn defines a convex function f : R+ → R whenever n ∈ R \ (0, 1).
Otherwise, it defines a concave function46.

• f (t) = sin t defines a concave function f : [0, π] → R and a convex function
f : [π, 2π]→ R.

Before we state Karamata’s inequality, let us recall three fundamental properties
of convex functions:

Theorem 4.7.16 (second derivative test). Let I ⊆ R be an interval. Let f : I → R

be a twice differentiable function. Then, f is convex if and only if each x ∈ I
satisfies f ′′ (x) ≥ 0.

Note that there are convex functions that are not twice differentiable. For in-
stance, the absolute value function f : R→ R (given by f (z) = |z| for each z ∈ R)
is convex. This cannot be proved by the second derivative test, but it is easy to
check using the triangle inequality.

A classical property of convex functions is Jensen’s inequality. Let us give it in two
of its forms – a simple unweighted and a more general weighted one:

46A function f : I → R is said to be concave if − f is convex.
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Theorem 4.7.17 (Jensen’s inequality). Let I ⊆ R be an interval. Let f : I → R be

a convex function. Let x1, x2, . . . , xn ∈ I. Let m =
x1 + x2 + · · ·+ xn

n
. Then,

f (x1) + f (x2) + · · ·+ f (xn) ≥ n f (m) .

Theorem 4.7.18 (weighted Jensen’s inequality). Let I ⊆ R be an interval. Let
f : I → R be a convex function. Let x1, x2, . . . , xn ∈ I. Let λ1, λ2, . . . , λn be n
nonnegative reals satisfying λ1 + λ2 + · · ·+ λn = 1. Then,

λ1 f (x1) + λ2 f (x2) + · · ·+ λn f (xn) ≥ f (λ1x1 + λ2x2 + · · ·+ λnxn) .

The easiest way to prove these two theorems is to first prove Theorem 4.7.18 by
induction on n (this is commonly done in textbooks on probability theory, where
this inequality is used quite often47) and then obtain Theorem 4.7.17 from it by

setting λ1 = λ2 = · · · = λn =
1
n

.
Note that both Jensen’s inequalities are highly useful for proving various kinds

of inequalities, even ones in which there is no convex function easily visible. See
[Hung07, Chapter 4] for some such applications.

Jensen’s inequality can be interpreted as saying that a sum of values of a convex
function f at several points x1, x2, . . . , xn becomes smaller (or at least not larger) if

all these points are replaced by their average m =
x1 + x2 + · · ·+ xn

n
. Karamata’s

inequality generalizes this by saying that we don’t need to replace all the points by
their average right away, but rather it suffices to “move them closer together” (not
necessarily going all the way to the average). Here, “moving them closer together”
is formalized using majorization:

Theorem 4.7.19 (Karamata’s inequality). Let I ⊆ R be an interval. Let f : I → R

be a convex function. Let x ∈ In and y ∈ In be two vectors such that x < y. Then,

f (x1) + f (x2) + · · ·+ f (xn) ≥ f (y1) + f (y2) + · · ·+ f (yn) .

Karamata’s inequality has many applications (see, e.g., [KDLM05, §2], which
incidentally also gives a proof of Karamata’s inequality different from the ones
we shall give below). In particular, Jensen’s inequality follows from Karamata’s
inequality, since Exercise 4.7.1 says that (x1, x2, . . . , xn)

T < (m, m, . . . , m)T.
The weighted Jensen’s inequality can, incidentally, be derived from a weighted

Karamata’s inequality (see Exercise 4.7.10 below).
Let us now prove Karamata’s inequality:

47Or see https://en.wikipedia.org/wiki/Jensen’s_inequality or https://www.ucd.ie/
mathstat/t4media/convex-sets-and-jensen-inequalities-mathstat.pdf .
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Proof of Theorem 4.7.19. It is enough to prove the claim in the case when x and y
are weakly decreasing (because permuting the entries of any of x and y does not
change anything).

Furthermore, it is enough to prove the claim in the case when x OPRH−→ y (this
means that y is obtained from x by a single OPRH move). Indeed, if we have shown
this, then it will mean that the sum f (x1) + f (x2) + · · ·+ f (xn) decreases (weakly)
every time we apply an OPRH move to the vector x. Therefore, if y is obtained
from x by a (finite) sequence of OPRH moves, then f (x1) + f (x2) + · · ·+ f (xn) ≥
f (y1) + f (y2) + · · ·+ f (yn). Hence, if if x < y, then f (x1) + f (x2) + · · ·+ f (xn) ≥
f (y1) + f (y2) + · · · + f (yn) (since Theorem 4.7.12 shows that y can be obtained
from x by a (finite) sequence of OPRH moves).

So let us assume that x OPRH−→ y. Thus, y is obtained from x by picking two entries
xi and xj with xi ≤ xj and replacing them by u and v, where u, v ∈

[
xi, xj

]
with

u + v = xi + xj. Consider these xi, xj, u, v. We must prove that

f (x1) + f (x2) + · · ·+ f (xn) ≥ f (y1) + f (y2) + · · ·+ f (yn) .

It clearly suffices to show that

f (xi) + f
(
xj
)
≥ f (u) + f (v)

(since yk = xk for all k other than i and j).
But showing this is easy: From u ∈

[
xi, xj

]
, we obtain

u = λxi + (1− λ) xj for some λ ∈ [0, 1]

(namely, λ =
u− xj

xi − xj
). Consider this λ. Then,

v = (1− λ) xi + λxj

(this follows easily from substituting u = λxi + (1− λ) xj into u + v = xi + xj and
solving for v).

From u = λxi + (1− λ) xj, we obtain

f (u) = f
(
λxi + (1− λ) xj

)
≤ λ f (xi) + (1− λ) f

(
xj
)

(since f is convex) .

From v = (1− λ) xi + λxj, we obtain

f (v) = f
(
(1− λ) xi + λxj

)
≤ (1− λ) f (xi) + λ f

(
xj
)

(since f is convex) .

Adding together these two inequalities, we obtain

f (u) + f (v) ≤
(
λ f (xi) + (1− λ) f

(
xj
))

+
(
(1− λ) f (xi) + λ f

(
xj
))

= f (xi) + f
(
xj
)

, qed.

Thus, Theorem 4.7.19 is proved.
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Karamata’s inequality has a converse: If x, y ∈ Rn are two vectors such that every
convex function f : R→ R satisfies

f (x1) + f (x2) + · · ·+ f (xn) ≥ f (y1) + f (y2) + · · ·+ f (yn) ,

then x < y. Even better, we don’t even need to require this to hold for every convex
function f ; instead, it suffices to require for the special class of convex functions
f : R → R that have the form z 7→ |z− t| for constants t ∈ R. In other words, we
have the following:

Theorem 4.7.20 (absolute-value criterion for majorization). Let x ∈ Rn and y ∈
Rn be two vectors. Then, x < y if and only if all t ∈ R satisfy

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t| ≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t| .

Proof. =⇒: Assume that x < y. Let t ∈ R. Consider the function

ft : R→ R,
z 7→ |z− t| .

This function ft is convex (this follows easily from the triangle inequality). Hence,
Karamata’s inequality (Theorem 4.7.19) yields

ft (x1) + ft (x2) + · · ·+ ft (xn) ≥ ft (y1) + ft (y2) + · · ·+ ft (yn) .

By the definition of ft, this means

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t| ≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t| .

So we have proved the “=⇒” direction of Theorem 4.7.20.

⇐=: We assume that the inequality

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t|
≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t| (101)

holds for all t ∈ R. (Actually, it will suffice to assume that it holds for all t ∈
{x1, x2, . . . , xn}.)

We must prove that x < y.
WLOG assume that x and y are weakly decreasing (since permuting the entries

changes neither the inequality (101) nor the claim x < y).
For each t ∈ R, we have

n

∑
i=1
|xi − t| = |x1 − t|+ |x2 − t|+ · · ·+ |xn − t|

≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t| (by (101))

=
n

∑
i=1
|yi − t| . (102)
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Let k ∈ {0, 1, . . . , n}. Pick some t ∈ {x1, x2, . . . , xn} satisfying xk ≥ t ≥ xk+1
48.

Then, since x is weakly decreasing, we have

x1 ≥ x2 ≥ · · · ≥ xk ≥ t ≥ xk+1 ≥ xk+2 ≥ · · · ≥ xn.

Thus, each i ∈ {1, 2, . . . , k} satisfies xi ≥ t and therefore

|xi − t| = xi − t, (103)

whereas each i ∈ {k + 1, k + 2, . . . , n} satisfies t ≥ xi and therefore

|xi − t| = t− xi. (104)

Now,

n

∑
i=1
|xi − t| =

k

∑
i=1
|xi − t|︸ ︷︷ ︸
=xi−t

(by (103))

+
n

∑
i=k+1

|xi − t|︸ ︷︷ ︸
=t−xi

(by (104))

=
k

∑
i=1

(xi − t)︸ ︷︷ ︸
=

k
∑

i=1
xi−kt

+
n

∑
i=k+1

(t− xi)︸ ︷︷ ︸
=(n−k)t−

n
∑

i=k+1
xi

=
k

∑
i=1

xi − kt + (n− k) t−
n

∑
i=k+1

xi︸ ︷︷ ︸
=

n
∑

i=1
xi−

k
∑

i=1
xi

=
k

∑
i=1

xi − kt + (n− k) t−
(

n

∑
i=1

xi −
k

∑
i=1

xi

)

= 2
k

∑
i=1

xi + (n− 2k) t−
n

∑
i=1

xi (105)

and
n

∑
i=1
|yi − t| =

k

∑
i=1

|yi − t|︸ ︷︷ ︸
≥yi−t

(since |z|≥z for each z∈R)

+
n

∑
i=k+1

|yi − t|︸ ︷︷ ︸
≥t−yi

(since |z|≥−z for each z∈R)

≥
k

∑
i=1

(yi − t)︸ ︷︷ ︸
=

k
∑

i=1
yi−kt

+
n

∑
i=k+1

(t− yi)︸ ︷︷ ︸
=(n−k)t−

n
∑

i=k+1
yi

=
k

∑
i=1

yi − kt + (n− k) t−
n

∑
i=k+1

yi︸ ︷︷ ︸
=

n
∑

i=1
yi−

k
∑

i=1
yi

=
k

∑
i=1

yi − kt + (n− k) t−
(

n

∑
i=1

yi −
k

∑
i=1

yi

)

= 2
k

∑
i=1

yi + (n− 2k) t−
n

∑
i=1

yi. (106)

48Here is how to find such a t: If k > 0, then we pick t = xk; otherwise, we pick t = xk+1 = x1.
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Now, (105) yields

2
k

∑
i=1

xi + (n− 2k) t−
n

∑
i=1

xi

=
n

∑
i=1
|xi − t| ≥

n

∑
i=1
|yi − t| (by (102))

≥ 2
k

∑
i=1

yi + (n− 2k) t−
n

∑
i=1

yi (by (106)) .

Subtracting (n− 2k) t from both sides of this inequality, we obtain

2
k

∑
i=1

xi −
n

∑
i=1

xi ≥ 2
k

∑
i=1

yi −
n

∑
i=1

yi. (107)

Forget that we fixed k. We thus have proved the inequality (107) for all k ∈
{0, 1, . . . , n}.

Applying (107) to k = 0, we obtain

−
n

∑
i=1

xi ≥ −
n

∑
i=1

yi (108)

(since both
k
∑

i=1
sums are empty for k = 0). In other words,

n

∑
i=1

xi ≤
n

∑
i=1

yi. (109)

On the other hand, applying (107) to k = n, we obtain

n

∑
i=1

xi ≥
n

∑
i=1

yi (110)

(since the left hand side simplifies to 2
n
∑

i=1
xi −

n
∑

i=1
xi =

n
∑

i=1
xi, and likewise for the

right hand side). Combining this inequality with (109), we obtain

n

∑
i=1

xi =
n

∑
i=1

yi. (111)

Now, for each k ∈ [n], we have

2
k

∑
i=1

xi ≥ 2
k

∑
i=1

yi
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(by adding the inequalities (107) and (110) together) and therefore

k

∑
i=1

xi ≥
k

∑
i=1

yi

(by cancelling the factor 2 from both sides of the previous inequality). This fact,
combined with (111), shows that x < y (since x and y are weakly decreasing). This
proves the “⇐=” direction of Theorem 4.7.20.

Exercise 4.7.8. 2 Let x, y ∈ Rn be two vectors such that x < y. Let u, v ∈ Rm be

two further vectors such that u < v. Prove that
(

x
u

)
<

(
y
v

)
. (We are using

block-matrix notation here, so that
(

x
u

)
means the vector obtained by stacking

x on top of u.)

Exercise 4.7.9. 3 Prove Theorem 4.7.14.

We note that the analogue of Exercise 4.7.6 for arbitrary (not necessarily weakly
decreasing) column vectors is false: It is not hard to find two vectors x, y ∈ R4 such
that x < y but it takes 4 (not 3) RH moves to transform x into y. (For example,
x = (5, 3, 2, 0)T and y = (1, 1, 4, 4)T are two such vectors.) On the other hand,
it is easy to see (piggybacking on Exercise 4.7.6) that for any two column vectors
x, y ∈ Rn satisfying x < y, it is possible to obtain y from x by at most 2n − 2
RH moves. Finding the minimum number of RH moves that always suffices to
transform x ∈ Rn into y ∈ Rn when x < y appears to be an interesting question.

We can use Theorem 4.7.20 to define a “weighted” generalization of majorization.
This leads to the following generalization of Theorem 4.7.19:

Theorem 4.7.21 (weighted Karamata’s inequality). Let I ⊆ R be an interval. Let
f : I → R be a convex function. Let w1, w2, . . . , wn be n nonnegative reals. Let
x ∈ In and y ∈ In be two vectors such that all t ∈ R satisfy

w1 |x1 − t|+w2 |x2 − t|+ · · ·+wn |xn − t| ≥ w1 |y1 − t|+w2 |y2 − t|+ · · ·+wn |yn − t| .

(Note that this is a “weighted” version of the condition x < y.) Then,

w1 f (x1) + w2 f (x2) + · · ·+ wn f (xn) ≥ w1 f (y1) + w2 f (y2) + · · ·+ wn f (yn) .

Exercise 4.7.10. 7 Prove Theorem 4.7.21.
[Hint: Let S be a finite subset of I. For each s ∈ S, let fs : I → R be the

piecewise-linear function that sends each z ∈ I to |s− z|. Show that the con-
vex function f can be interpolated on S by a linear combination ∑

s∈S
αs fs of the
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functions fs with nonnegative coefficients αs; that is, show that there exists a
nonnegative real αs for each s ∈ S such that

f (z) = ∑
s∈S

αs |s− z| for each z ∈ S.

Then, apply this to S = {x1, x2, . . . , xn, y1, y2, . . . , yn}.]

Exercise 4.7.11. 7 We define a new binary relation <′ on the set Rn as follows:
For two column vectors x ∈ Rn and y ∈ Rn, we write x <′ y (and say that x
weakly majorizes y) if and only if we have

m

∑
i=1

x↓i ≥
m

∑
i=1

y↓i for each m ∈ [n]

(but we do not require
n
∑

i=1
x↓i =

n
∑

i=1
y↓i ).

Let x and y be two weakly decreasing column vectors in Rn. Let I be an
interval of R that contains all entries of x and of y. Prove that the following
statements are equivalent:

• A: We have x <′ y.

• B: For any sufficiently low α ∈ R, we have
(

x
α−∑ x

)
<

(
y

α−∑ y

)
,

where ∑ x :=
n
∑

i=1
xi and ∑ y :=

n
∑

i=1
yi (and where we are using block-matrix

notation, so that
(

x
α−∑ x

)
denotes the result of appending a new entry

α−∑ x to the bottom of the column vector x).

• C: We can obtain y from x by a sequence of OPRH moves and OPD moves.
Here, an “OPD move” (short for “order-preserving decrease move”) means
a move in which we decrease an entry of a weakly decreasing vector in
such a way that the vector remains weakly decreasing (i.e., we replace an
entry zi of a decreasing vector z ∈ Rn by a smaller entry z′i ≤ zi such that
we still have z1 ≥ z2 ≥ · · · ≥ zi−1 ≥ z′i ≥ zi+1 ≥ zi+2 ≥ · · · ≥ zn).

• D: Every weakly increasing convex function f : I → R satisfies

f (x1) + f (x2) + · · ·+ f (xn) ≥ f (y1) + f (y2) + · · ·+ f (yn) .

• E : All t ∈ R satisfy

(x1 − t)++(x2 − t)++ · · ·+(xn − t)+ ≥ (y1 − t)++(y2 − t)++ · · ·+(yn − t)+ .

Here, the notation z+ means the positive part of a real number z (that is,
we have z+ = z when z ≥ 0, and z+ = 0 otherwise).
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4.7.5. Doubly stochastic matrices

Majorizing pairs of vectors are closely related to doubly stochastic matrices:

Definition 4.7.22. A matrix S ∈ Rn×n is said to be doubly stochastic if its entries
Si,j satisfy the following three conditions:

1. We have Si,j ≥ 0 for all i, j.

2. We have
n
∑

j=1
Si,j = 1 for each i ∈ [n].

3. We have
n
∑

i=1
Si,j = 1 for each j ∈ [n].

In other words, a doubly stochastic matrix is an n× n-matrix whose entries are
nonnegative reals and whose rows and columns have sum 1 each.

Exercise 4.7.12. 2 Show that even if we allow S to be rectangular in Definition
4.7.22, the conditions 2 and 3 still force S to be a square matrix.

Example 4.7.23. (a) The matrix


1
2

1
3

1
6

1
2

1
4

1
4

0
5

12
7

12

 is doubly stochastic.

(b) Each doubly stochastic 2× 2-matrix has the form(
λ 1− λ

1− λ λ

)
for some λ ∈ [0, 1] .

(c) Any permutation matrix is doubly stochastic.

Proposition 4.7.24. Let S ∈ Rn×n be a matrix whose entries are nonnegative
reals. Let e = (1, 1, . . . , 1)T ∈ Rn. Then, S is doubly stochastic if and only if
Se = e and eTS = eT.

Corollary 4.7.25. Any product of doubly stochastic matrices is again doubly
stochastic.

Exercise 4.7.13. 3 Prove Proposition 4.7.24 and Corollary 4.7.25.

Now, we can connect doubly stochastic matrices with majorization:
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Theorem 4.7.26. Let x, y ∈ Rn be two vectors. Then, x < y if and only if there
exists a doubly stochastic matrix S ∈ Rn×n such that y = Sx.

Proof. =⇒: Assume that x < y. We must prove that there exists a doubly stochastic
matrix S ∈ Rn×n such that y = Sx.

By Example 4.7.23 (c) and Corollary 4.7.25, it suffices to show this in the case
when x and y are weakly decreasing (because any permutation of the entries of a
vector can be effected by multiplying this vector with a permutation matrix).

Thus, we WLOG assume that x and y are weakly decreasing. We must prove
that there exists a doubly stochastic matrix S ∈ Rn×n such that y = Sx.

By Corollary 4.7.25, it suffices to show this in the case when x OPRH−→ y (because in
the general case, y is obtained from x by a sequence of OPRH moves49).

So let us WLOG assume that x OPRH−→ y. Thus, y is obtained from x by picking two
entries xi and xj with xi ≤ xj and replacing them by u and v, where u, v ∈

[
xi, xj

]
with u + v = xi + xj. Consider these xi, xj, u, v.

From u ∈
[
xi, xj

]
, we obtain

u = λxi + (1− λ) xj for some λ ∈ [0, 1]

(namely, λ =
u− xj

xi − xj
). Consider this λ. Then,

v = (1− λ) xi + λxj
(
since u + v = xi + xj

)
.

This entails that y = Sx, where S ∈ Rn×n is the matrix defined by

Si,i = λ, Si,j = 1− λ, Sj,i = 1− λ, Sj,j = λ,

Sk,k = 1 for each k /∈ {i, j} ,
Sk,` = 0 for all remaining k, `.

For example, if i = 2 and j = 4, then

S =


1

λ 1− λ
1

1− λ λ


(where all empty cells are filled with zeroes). In this case,

Sx = S


x1
x2
x3
x4

 =


x1

λx2 + (1− λ) x4
x3

(1− λ) x2 + λx4

 =


x1
u
x3
v

 = y.

49This is a consequence of Theorem 4.7.12.
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So we have constructed a matrix S ∈ Rn×n that satisfies y = Sx, and it is easy to
see that this S is doubly stochastic. Thus, we have proved the “=⇒” direction of
Theorem 4.7.26.

⇐=: Assume that y = Sx for some doubly stochastic matrix S ∈ Rn×n. Then, for
every i ∈ [n], we have

yi = (Sx)i =
n

∑
j=1

Si,jxj. (112)

Hence, for every i ∈ [n] and t ∈ R, we have

yi − t =
n

∑
j=1

Si,jxj − t =
n

∑
j=1

Si,jxj −
n

∑
j=1

Si,jt

since condition 2 in Definition 4.7.22

yields
n
∑

j=1
Si,j = 1, so that

n
∑

j=1
Si,jt =

(
n

∑
j=1

Si,j

)
︸ ︷︷ ︸

=1

t = t

and therefore t =
n
∑

j=1
Si,jt


=

n

∑
j=1

Si,j
(
xj − t

)
and therefore

|yi − t| =
∣∣∣∣∣ n

∑
j=1

Si,j
(
xj − t

)∣∣∣∣∣
≤

n

∑
j=1

∣∣Si,j
(
xj − t

)∣∣︸ ︷︷ ︸
=Si,j·|xj−t|
(since Si,j≥0

(by condition 1 in Definition 4.7.22)) by the triangle inequality, which says that

∣∣∣∣∣ n
∑

j=1
αj

∣∣∣∣∣ ≤ n
∑

j=1

∣∣αj
∣∣

for any n reals α1, α2, . . . , αn


=

n

∑
j=1

Si,j ·
∣∣xj − t

∣∣ . (113)
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Thus, for every t ∈ R, we have

|y1 − t|+ |y2 − t|+ · · ·+ |yn − t|

=
n

∑
i=1
|yi − t| ≤

n

∑
i=1

n

∑
j=1

Si,j ·
∣∣xj − t

∣∣ (by (113))

=
n

∑
j=1

(
n

∑
i=1

Si,j

)
︸ ︷︷ ︸

=1
(by condition 3

in Definition 4.7.22)

·
∣∣xj − t

∣∣ = n

∑
j=1

∣∣xj − t
∣∣

= |x1 − t|+ |x2 − t|+ · · ·+ |xn − t| .

In other words, for every t ∈ R, we have

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t| ≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t| .

Therefore, by Theorem 4.7.20, we have x < y. This proves the “⇐=” direction of
Theorem 4.7.26.

5. Singular value decomposition ([HorJoh13, §2.6])

This will be just a brief introduction to singular value decomposition. For much
more, see [TreBau97].

5.1. Some properties of A∗A

We first state some basic properties of matrices of the form A∗A:

Proposition 5.1.1 (the Ker (A∗A) lemma). Let A ∈ Cm×n be any m × n-matrix
with complex entries (not necessarily a square matrix). Then:

(a) The matrix A∗A is Hermitian and positive semidefinite.

(b) We have Ker A = Ker (A∗A).

(c) We have rank A = rank (A∗A).

Proof. (a) The matrix A∗A is Hermitian, since (A∗A)∗ = A∗ (A∗)∗︸ ︷︷ ︸
=A

= A∗A. More-

over, this matrix A∗A is positive semidefinite, since each vector x ∈ Cn satisfies

〈A∗Ax, x〉 = x∗A∗︸ ︷︷ ︸
=(Ax)∗

Ax = (Ax)∗ Ax = ||Ax||2 ≥ 0.

Thus, Proposition 5.1.1 (a) is proven.
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(b) Each y ∈ Ker A satisfies y ∈ Ker (A∗A) (because y ∈ Ker A entails Ay = 0, so
that A∗ Ay︸︷︷︸

=0

= 0 and thus y ∈ Ker (A∗A)). In other words, Ker A ⊆ Ker (A∗A).

Let us now show that Ker (A∗A) ⊆ Ker A. Indeed, let x ∈ Ker (A∗A). Thus,
x ∈ Cn and A∗Ax = 0. Hence,

||Ax||2 = (Ax)∗︸ ︷︷ ︸
=x∗A∗

Ax
(

since ||v||2 = 〈v, v〉 = v∗v for any v ∈ Cn
)

= x∗ A∗Ax︸ ︷︷ ︸
=0

= 0.

In other words, ||Ax|| = 0. Hence, Ax = 0 (since a vector whose length is 0 must
itself be 0). In other words, x ∈ Ker A.

Forget that we fixed x. We thus have shown that x ∈ Ker A for each x ∈
Ker (A∗A). In other words, Ker (A∗A) ⊆ Ker A. Combining this with Ker A ⊆
Ker (A∗A), we obtain Ker A = Ker (A∗A). This proves Proposition 5.1.1 (b).

(c) The rank-nullity theorem yields

rank A = n− dim (Ker A) and
rank (A∗A) = n− dim (Ker (A∗A)) .

The right hand sides of these two equalities are equal (since part (b) yields Ker A =
Ker (A∗A)). Thus, the left hand sides are also equal. In other words, rank A =
rank (A∗A). This proves Proposition 5.1.1 (c).

Note that Proposition 5.1.1 (b) really requires a matrix with complex entries. It
cannot be generalized to matrices over an arbitrary field.

5.2. The singular value decomposition

Definition 5.2.1. Let A and B be two m× n-matrices with complex entries.
We say that A and B are unitarily equivalent if there exist unitary matrices

U ∈ Um (C) and V ∈ Un (C) such that A = UBV∗.

Note that we could just as well require A = UBV instead of A = UBV∗ here, since
V is unitary if and only if V∗ is unitary.

Note the difference between “unitarily equivalent” and “unitarily similar”: The
latter requires A = UBU∗, whereas the former only requires A = UBV∗.

Unitary equivalence is an equivalence relation.

Exercise 5.2.1. 2 Prove this!
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A natural question is therefore: What is the “simplest” matrix in the equivalence
class of a given matrix? The answer is pretty nice: Each matrix is unitarily equiv-
alent to a “more or less diagonal” matrix. We are saying “more or less” because
diagonal matrices are supposed to be square, but our matrices can have any di-
mensions; thus, we introduce a separate word for rectangular matrices that “would
be diagonal if they were square”:

Definition 5.2.2. Let F be a field. A rectangular matrix A ∈ Fn×m is said to be
pseudodiagonal if it satisfies

Ai,j = 0 whenever i 6= j.

This is just the straightforward generalization of diagonal matrices to non-square
matrices. In particular, a square matrix is pseudodiagonal if and only if it is diag-

onal. A pseudodiagonal 2× 3-matrix looks like this:
(
∗ 0 0
0 ∗ 0

)
. A pseudodiag-

onal 3× 2-matrix looks like this:

 ∗ 0
0 ∗
0 0

. (Of course, any of the ∗s can be a 0

too.)

Theorem 5.2.3 (SVD). Let A ∈ Cm×n. Then:

(a) There exist unitary matrices U ∈ Um (C) and V ∈ Un (C) and a pseudodi-
agonal matrix Σ ∈ Cm×n such that all diagonal entries of Σ are nonnegative reals
and such that

A = UΣV∗.

In other words, A is unitarily equivalent to a pseudodiagonal matrix whose
diagonal entries are nonnegative reals.

(b) The matrix Σ is unique up to permutation of its diagonal entries. (The
matrices U and V are usually not unique.)

(c) Let k = rank A. Then, the matrix Σ has exactly k nonzero diagonal entries.

(d) Let σ1, σ2, . . . , σn be the square roots of the n eigenvalues of the Hermitian
matrix A∗A, listed in decreasing order (so that σ1 ≥ σ2 ≥ · · · ≥ σn). Then, we
have σk+1 = σk+2 = · · · = σn = 0, and we can take

Σ =



σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · σk 0 · · · 0
0 0 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 0 0 · · · 0


∈ Cm×n
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in part (a).

Definition 5.2.4. The triple (U, V, Σ) in Theorem 5.2.3 (a) is called a singular value
decomposition (short: SVD) of A. The numbers σ1, σ2, . . . , σn are called the singular
values of A.

Before we prove the theorem, a few words are to be said about the use of an
SVD. In practice, you often want to find a low-rank “approximation” for a given
matrix A: that is, a matrix B that is “sufficiently close” to A and yet has low rank.
One of the best ways to do this is by computing an SVD of A – that is, writing A
in the form A = UΣV∗ with U, Σ, V as in Theorem 5.2.3 (a) – and then setting all
but the first few σi’s to 0 in Σ. We will soon see why this “approximates” A.

Let us now prove the theorem.

Proof of Theorem 5.2.3. Let k := rank A. Then, k is the rank of an m × n-matrix
(namely, A), and thus satisfies k ≤ m and k ≤ n.

Proposition 5.1.1 (a) shows that the matrix A∗A is Hermitian and positive semidef-
inite. Let λ1, λ2, . . . , λn be the eigenvalues of this matrix A∗A, listed in decreasing
order. These eigenvalues λ1, λ2, . . . , λn are nonnegative reals (since A∗A is positive
semidefinite). Thus, we can set

σi :=
√

λi for each i ∈ [n] .

Then, σ1, σ2, . . . , σn are nonnegative reals. Moreover, λ1 ≥ λ2 ≥ · · · ≥ λn (since
λ1, λ2, . . . , λn are listed in decreasing order) and therefore σ1 ≥ σ2 ≥ · · · ≥ σn
(since σi =

√
λi for each i).

The matrix A∗A is Hermitian and thus normal. Hence, Corollary 2.6.2 (applied
to A∗A instead of A) yields that there exists a spectral decomposition (V, D) of
A∗A with D = diag (λ1, λ2, . . . , λn). Consider this spectral decomposition. Thus,
V ∈ Un (C) is a unitary matrix, and D = diag (λ1, λ2, . . . , λn), and we have

A∗A = VDV∗. (114)

From (114), we obtain A∗A us∼ D (since V is unitary). Now,

k = rank A = rank (A∗A) (by Proposition 5.1.1 (c))

= rank (diag (λ1, λ2, . . . , λn))
(

since A∗A us∼ D = diag (λ1, λ2, . . . , λn)
)

= (the number of i ∈ [n] such that λi 6= 0)
= (the number of i ∈ [n] such that σi 6= 0)

(since σi =
√

λi for each i). Hence, exactly k of the numbers σ1, σ2, . . . , σn are
nonzero. Since σ1, σ2, . . . , σn are nonnegative reals and satisfy σ1 ≥ σ2 ≥ · · · ≥ σn,
this entails that

σ1 ≥ σ2 ≥ · · · ≥ σk > 0 and (115)
σk+1 = σk+2 = · · · = σn = 0. (116)
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Let v1, v2, . . . , vn be the columns of the unitary matrix V. Thus, (v1, v2, . . . , vn)
is an orthonormal basis of Cn (since V is unitary)50. Since V is the unitary ma-
trix in a spectral decomposition of A∗A, we can easily see that the columns of V
are eigenvectors of A∗A corresponding to the eigenvalues λ1, λ2, . . . , λn. In other
words,

A∗Avi = λivi for each i ∈ [n] . (117)

[Proof of (117): Let i ∈ [n]. Then, we have51 V•,i = vi (since v1, v2, . . . , vn are the
columns of V). However, from (114), we obtain A∗AV = VD V∗V︸︷︷︸

=In
(since V is unitary)

= VD.

Hence,

(A∗AV)•,i = (VD)•,i
= (V · diag (λ1, λ2, . . . , λn))•,i (since D = diag (λ1, λ2, . . . , λn))

= λi V•,i︸︷︷︸
=vi

 since multiplication by the diagonal
matrix diag (λ1, λ2, . . . , λn) on the right
scales the i-th column of a matrix by λi


= λivi.

Comparing this with

(A∗AV)•,i = A∗A V•,i︸︷︷︸
=vi

(by the rules for matrix multiplication)

= A∗Avi,

we obtain A∗Avi = λivi. This proves (117).]

For each j ∈ [k], we set

uj :=
1
σj

Avj.

(The division by σj in this definition is legitimate, since (115) reveals that σj 6= 0.)
We claim that the tuple (u1, u2, . . . , uk) is orthonormal. Indeed:

50Here we are using the implication A =⇒ E of Theorem 1.5.3.
51Recall that the notation M•,i denotes the i-th column of a matrix M.
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• For any two distinct elements i and j of [k], we have

〈
ui, uj

〉
=

〈
1
σi

Avi,
1
σj

Avj

〉 (
by the definitions of ui and uj

)
=

1
σiσj

〈
Avi, Avj

〉︸ ︷︷ ︸
=(Avj)

∗
Avi

=
1

σiσj

(
Avj
)∗︸ ︷︷ ︸

=v∗j A∗

Avi

=
1

σiσj
v∗j A∗Avi︸ ︷︷ ︸

=λivi
(by (117)

=
1

σiσj
v∗j λivi =

λi

σiσj
v∗j vi︸︷︷︸

=〈vi,vj〉
=0

(since (v1,v2,...,vn)
is orthonormal)

= 0

and thus ui ⊥ uj. Therefore, the tuple (u1, u2, . . . , uk) is orthogonal.

• For any i ∈ [k], we have

〈ui, ui〉 =
〈

1
σi

Avi,
1
σi

Avi

〉
(by the definition of ui)

=
1

σiσi︸︷︷︸
=

1
λi

(since σi∈R and
thus σiσi=σiσi=σ2

i =λi
(because σi=

√
λi))

〈Avi, Avi〉︸ ︷︷ ︸
=(Avi)

∗Avi

=
1
λi

(Avi)
∗︸ ︷︷ ︸

=v∗i A∗

Avi

=
1
λi

v∗i A∗Avi︸ ︷︷ ︸
=λivi

(by (117)

=
1
λi

v∗i λivi = v∗i vi = 〈vi, vi〉 = ||vi||2 = 1

(since (v1, v2, . . . , vn) is orthonormal and thus ||vi|| = 1), and thus ||ui|| = 1.
Hence, the orthogonal tuple (u1, u2, . . . , uk) is orthonormal.

So (u1, u2, . . . , uk) is an orthonormal tuple of vectors in Cm. Hence, Corollary
1.2.9 shows that we can extend this tuple to an orthonormal basis (u1, u2, . . . , um)
of Cm by appending m− k new (appropriately chosen) vectors uk+1, uk+2, . . . , um.
Let us consider the orthonormal basis (u1, u2, . . . , um) of Cm obtained in this way.
Let U ∈ Cm×m be the m×m-matrix with columns u1, u2, . . . , um. Thus, the columns
of this matrix U form an orthonormal basis of Cm; hence, U is a unitary matrix (by
the implication E =⇒ A of Theorem 1.5.3).
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Let

Σ :=



σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · σk 0 · · · 0
0 0 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 0 0 · · · 0


∈ Cm×n.

(This is the m× n-matrix whose (i, i)-th entries are σi for all i ∈ [k], and whose all
remaining entries are 0.) Clearly, this matrix Σ is pseudodiagonal. Moreover, this
matrix Σ has exactly k nonzero diagonal entries (since (115) shows that σ1, σ2, . . . , σk
are nonzero). All its diagonal entries are nonnegative reals.

Now, we claim that A = UΣV∗. To prove this, we shall first show that AV = UΣ.
It is sufficient to prove that52

(AV)•,j = (UΣ)•,j for each j ∈ [n] .

So let us fix j ∈ [n] and try to prove that (AV)•,j = (UΣ)•,j. We note that V•,j = vj
(since the columns of V are v1, v2, . . . , vn) and U•,j = uj (since the columns of U are
u1, u2, . . . , um). We distinguish between the cases j ≤ k and j > k:

• Assume that j ≤ k. Then, by the rules for multiplying matrices, we have

(AV)•,j = A V•,j︸︷︷︸
=vj

= Avj = σj uj︸︷︷︸
=U•,j

(
since uj =

1
σj

Avj

)

= σjU•,j. (118)

On the other hand, j ≤ k shows that the j-th column of the matrix Σ has a
σj in its j-th position and zeroes in all other positions. In other words, this
column equals σjej (where (e1, e2, . . . , em) denotes the standard basis of Cm).
In other words, Σ•,j = σjej (since Σ•,j is the j-th column of Σ). Now, by the
rules for multiplying matrices, we have

(UΣ)•,j = U Σ•,j︸︷︷︸
=σjej

= U · σjej = σj Uej︸︷︷︸
=U•,j

(since multiplying a matrix by ej always
produces the j-th column of the matrix)

= σjU•,j.

Comparing this with (118), we obtain (AV)•,j = (UΣ)•,j.

Thus, (AV)•,j = (UΣ)•,j is proved in the case when j ≤ k.

52Recall that the notation M•,j means the j-th column of a matrix M.
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• Now, assume that j > k. Then, σj = 0 (by (116)), so that λj = 0 (since the
definition of σj yields σj =

√
λj, so that λj = σ2

j ). However, applying (117) to
i = j, we obtain

A∗Avj = λj︸︷︷︸
=0

(since j>k)

vj = 0,

so that vj ∈ Ker (A∗A) = Ker A (by Proposition 5.1.1 (b)). Now, by the rules
for multiplying matrices, we have

(AV)•,j = A V•,j︸︷︷︸
=vj

= Avj = 0
(
since vj ∈ Ker A

)
.

Comparing this with

(UΣ)•,j = U Σ•,j︸︷︷︸
=0

(since j>k, so that all entries in
the j-th column of Σ are 0)

= 0,

we obtain (AV)•,j = (UΣ)•,j.

Thus, (AV)•,j = (UΣ)•,j is proved in the case when j > k.

Thus, we have proved (AV)•,j = (UΣ)•,j in both cases.
Forget that we fixed j. We thus have shown that (AV)•,j = (UΣ)•,j for each

j ∈ [n]. In other words, each column of the matrix AV equals the corresponding
column of the matrix UΣ. Hence, AV = UΣ. Therefore,

UΣ︸︷︷︸
=AV

V∗ = A VV∗︸︷︷︸
=In

(since V is unitary)

= A,

so that A = UΣV∗, as desired.
This proves parts (a), (c) and (d) of Theorem 5.2.3.

(b) We must show that if P is a pseudodiagonal matrix such that all diagonal
entries of P are nonnegative reals, and such that A is unitarily equivalent to P, then
P and Σ have the same diagonal entries up to order.

Before we prove this, let us show two auxiliary results:

Claim 1: Let X ∈ Cm×n and Y ∈ Cm×n be two unitarily equivalent
matrices. Then, X and Y have the same singular values53.

53Recall that the singular values of a matrix X are defined to be the square roots of the eigenvalues
of X∗X.

January 4, 2022



Math 504 notes page 223

[Proof of Claim 1: Since X and Y are unitarily equivalent, there exist two unitary
matrices U ∈ Um (C) and V ∈ Un (C) such that X = UYV∗. (These U and V have
nothing to do with the U and V from Theorem 5.2.3.) Consider these U and V.
From X = UYV∗, we obtain

X∗X = (UYV∗)∗︸ ︷︷ ︸
=(V∗)∗Y∗U∗

(UYV∗) = (V∗)∗︸ ︷︷ ︸
=V

Y∗ U∗U︸︷︷︸
=Im

(since U is unitary)

YV∗ = VY∗YV∗.

This shows that X∗X us∼ Y∗Y (since V is unitary). Therefore, X∗X ∼ Y∗Y (by
Proposition 2.2.5). Thus, the matrices X∗X and Y∗Y have the same eigenvalues (by
Proposition 2.1.5 (e)). Therefore, X and Y have the same singular values (because
the singular values of X are defined as the square roots of the eigenvalues of X∗X,
and likewise for Y). This proves Claim 1.]

Claim 2: Let D ∈ Cm×n be a pseudodiagonal matrix. Then, the nonzero
singular values of D are the absolute values of the nonzero diagonal
entries of D.

[Proof of Claim 2: We WLOG assume that m ≤ n, since the case m > n is similar
but easier. Let d1, d2, . . . , dm be the diagonal entries of D. Then,

D =


d1 0 · · · 0 0 · · · 0
0 d2 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · dm 0 · · · 0

 .

Hence, it is easy to check that

D∗D =



d1d1 0 · · · 0 0 · · · 0
0 d2d2 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · dmdm 0 · · · 0
0 0 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 0 0 · · · 0


= diag

d1d1, d2d2, . . . , dmdm, 0, 0, . . . , 0︸ ︷︷ ︸
n−m entries


= diag

|d1|2 , |d2|2 , . . . , |dm|2 , 0, 0, . . . , 0︸ ︷︷ ︸
n−m entries

 .
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Therefore, the eigenvalues of D∗D are |d1|2 , |d2|2 , . . . , |dm|2 , 0, 0, . . . , 0︸ ︷︷ ︸
n−m entries

(since the

eigenvalues of a diagonal matrix are its diagonal entries). Hence, the singular
values of D are |d1| , |d2| , . . . , |dm| , 0, 0, . . . , 0︸ ︷︷ ︸

n−m entries

(since the singular values of D are

defined as the square roots of the eigenvalues of D∗D). Thus, the nonzero singular
values of D are the nonzero numbers among |d1| , |d2| , . . . , |dm|. In other words,
they are the absolute values of the nonzero diagonal entries of D. This proves
Claim 2.]

Now, we can prove the claim we intended to prove. Let P be a pseudodiagonal
matrix such that all diagonal entries of P are nonnegative reals, and such that A is
unitarily equivalent to P. As we recall, our goal is to prove that P and Σ have the
same diagonal entries up to order.

We know that the matrix A is unitarily equivalent to Σ and also to P. Thus, Σ is
unitarily equivalent to P (because unitary equivalence is an equivalence relation).
Therefore, Claim 1 (applied to X = Σ and Y = P) shows that the matrices Σ and P
have the same singular values. However, these two matrices are pseudodiagonal;
thus, Claim 2 shows that their nonzero singular values are the absolute values of
their nonzero diagonal entries. Since their diagonal entries are nonnegative reals,
we can actually drop the “absolute values” part from this sentence, and conclude
that their nonzero singular values are simply their nonzero diagonal entries. Thus,
the matrices Σ and P have the same nonzero diagonal entries (because we have
shown that they have the same singular values). Therefore, the matrices Σ and P
have the same diagonal entries (since they have the same dimensions and therefore
the same number of diagonal entries). Thus, we have shown that the matrices P
and Σ have the same diagonal entries up to order. This completes the proof of
Theorem 5.2.3 (b).

Example 5.2.5. Let A =

(
3 2 2
2 3 −2

)
∈ C2×3. How do we find an SVD of A ?

This is not the way SVDs are computed in practice, but we can try following
our above proof of Theorem 5.2.3. Thus, we compute a spectral decomposition
of A∗A. (Since A∗A is Hermitian, this is equivalent to diagonalizing A∗A.) A
simple computation yields that

A∗A =

 13 12 2
12 13 −2
2 −2 8


and that A∗A has eigenvalues 25, 9, 0 and a spectral decomposition (V, D) with

V =


√

2/2
√

2/6 −2/3√
2/2 −

√
2/6 2/3

0 2
√

2/3 1/3

 and D = diag (25, 9, 0) .
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(Of course, we have handpicked A to make the eigenvalues integers; a random A
would give rise to irrational eigenvalues.) Thus, λ1 = 25 and λ2 = 9 and λ3 = 0

and k = 2. Hence, σ1 =
√

25 = 5 and σ2 =
√

9 = 3, so that Σ =

(
5 0 0
0 3 0

)
. It

remains to find U. To do so, we set uj :=
1
σj

Avj for all j ∈ [k]; thus,

u1 =
1
σ1

Av1 =
1
5

(
3 2 2
2 3 −2

)
√

2/2√
2/2
0

 =

( √
2/2√
2/2

)
and

u2 =
1
σ2

Av2 =
1
3

(
3 2 2
2 3 −2

)
√

2/6
−
√

2/6
2
√

2/3

 =

( √
2/2

−
√

2/2

)
.

The proof of Theorem 5.2.3 tells us to extend this orthonormal tuple
(u1, u2, . . . , uk) to an orthonormal basis (u1, u2, . . . , um) of Cm, but this is unnec-
essary here, since it already is a basis (since k = m). Thus, we can now compute

U as the matrix with columns u1, u2, . . . , um; that is, U =

( √
2/2

√
2/2√

2/2 −
√

2/2

)
.

Hence, we obtain the SVD (U, V, Σ) of A with

U =

( √
2/2

√
2/2√

2/2 −
√

2/2

)
, V =


√

2/2
√

2/6 −2/3√
2/2 −

√
2/6 2/3

0 2
√

2/3 1/3

 ,

Σ =

(
5 0 0
0 3 0

)
.

Exercise 5.2.2. 3 Find an SVD of the matrix A :=
(

1 0 1
0 1 0

)
.

Exercise 5.2.3. 4 Find an SVD of the matrix A :=

 1 0 1
0 1 0
−1 0 1

.

Exercise 5.2.4. 3 Let (U, V, Σ) be an SVD of a matrix A ∈ Cm×n.

(a) Construct an SVD of the matrix A∗ ∈ Cn×m.

(b) Now assume that A is invertible (so that m = n). Construct an SVD of the
matrix A−1.

January 4, 2022



Math 504 notes page 226

Exercise 5.2.5. 3 Let A and B be two m× n-matrices. Prove that A and B are
unitarily equivalent if and only if the matrices A∗A and B∗B are unitarily similar.

A variant of the SVD is the so-called compact SVD, in which the unitary matrices
U and V are replaced by isometries and the pseudodiagonal matrix Σ is replaced
by a diagonal k× k-matrix for k = rank A:

Corollary 5.2.6. Let A ∈ Cm×n. Let k = rank A. Then:

(a) There exist isometries U ∈ Cm×k and V ∈ Cn×k and a diagonal matrix
Σ ∈ Ck×k such that all diagonal entries of Σ are positive reals and such that

A = UΣV∗.

(b) The matrix Σ is unique up to permutation of its diagonal entries. (The
matrices U and V are usually not unique.)

(c) Let σ1, σ2, . . . , σn be the square roots of the n eigenvalues of the Hermitian
matrix A∗A, listed in decreasing order (so that σ1 ≥ σ2 ≥ · · · ≥ σn). Then, we
have σk+1 = σk+2 = · · · = σn = 0, and we can take

Σ = diag (σ1, σ2, . . . , σk) ∈ Ck×k

in part (a).

Exercise 5.2.6. 4 Prove Corollary 5.2.6.

Exercise 5.2.7. 4 Give a simple algorithm (without using eigenvalues or spectral
decomposition) to compute a compact SVD of a given rank-1 matrix.

6. Positive and nonnegative matrices ([HorJoh13,
Chapter 8])

6.1. Basics

Recall the triangle inequality:

Proposition 6.1.1 (triangle inequality). Let z1, z2, . . . , zn be n complex numbers.
Then:

(a) We have the inequality

|z1|+ |z2|+ · · ·+ |zn| ≥ |z1 + z2 + · · ·+ zn| .

(b) Equality holds in this inequality if and only if z1, z2, . . . , zn have the same
argument (i.e., there exists some w ∈ C such that z1, z2, . . . , zn are nonnegative
real multiples of w).
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Definition 6.1.2. Let A ∈ Cn×m be a matrix.

(a) We say that A is positive (and write A > 0) if all entries of A are positive
reals.

(b) We say that A is nonnegative (and write A ≥ 0) if all entries of A are
nonnegative reals.

(c) We let |A| ∈ Rn×m be the nonnegative matrix obtained by replacing each
entry of A by its absolute value. In other words,

|A| :=


|A1,1| |A1,2| · · · |A1,m|
|A2,1| |A2,2| · · · |A2,m|

...
... . . . ...

|An,1| |An,2| · · · |An,m|

 .

Remark 6.1.3. Recall that row vectors and column vectors are matrices. Thus,
the statements “v > 0” and “v ≥ 0” and the notation |v| are defined for them as
well. If v = (v1, v2, . . . , vk)

T, then |v| = (|v1| , |v2| , . . . , |vk|)T.

Warning 6.1.4. Do not mistake |v| (a vector) for ||v|| (a number). Also, when A
is a matrix, do not mistake |A| for (an old notation for) the determinant of A.
(We always write det A for the determinant of A, so this confusion should not
arise.)

Let us stress once again that positive matrices and nonnegative matrices are re-
quired to have real entries by definition.

Exercise 6.1.1. 1 Let v ∈ Cm be a column vector. Prove that |||v||| = ||v||, where
the left hand side means the length of |v|.

Exercise 6.1.2. 1 Let λ ∈ C and A ∈ Cn×m. Prove that |λA| = |λ| · |A|.

Proposition 6.1.5. A matrix A ∈ Cn×m is nonnegative if and only if |A| = A.

Proof. =⇒: If A is nonnegative, then each i and j satisfy Ai,j ≥ 0 and thus
∣∣Ai,j

∣∣ =
Ai,j; therefore, |A| = A.
⇐=: If |A| = A, then A is nonnegative (since |A| is always nonnegative).

Definition 6.1.6. Let A, B ∈ Rn×m be two matrices with real entries. Then:

(a) We say that A ≥ B if and only if A− B ≥ 0 (or, equivalently, Ai,j ≥ Bi,j for
all i ∈ [n] and j ∈ [m]).

(b) We say that A > B if and only if A− B > 0 (or, equivalently, Ai,j > Bi,j for
all i ∈ [n] and j ∈ [m]).
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(c) We say that A ≤ B if and only if A− B ≤ 0 (or, equivalently, Ai,j ≤ Bi,j for
all i ∈ [n] and j ∈ [m]).

(d) We say that A < B if and only if A− B < 0 (or, equivalently, Ai,j < Bi,j for
all i ∈ [n] and j ∈ [m]).

Example 6.1.7. We have
(

1 2
3 4

)
≥
(

0 2
2 4

)
.

The relations ≥, >, ≤ and < are known as entrywise inequalities (specifically,
“entrywise greater or equal”, “entrywise greater”, etc.), since they are just saying
that each entry of A is ≥, >, ≤ or < to the corresponding entry of B.

Remark 6.1.8. Again, recall that row vectors and column vectors are matrices
too; thus, Definition 6.1.6 applies to them as well.

Proposition 6.1.9. (a) The relations ≥, >, ≤ and < on Rn×m (introduced in
Definition 6.1.6) are transitive.

(b) The relations ≥ and ≤ are reflexive and antisymmetric (so they are weak
partial orders on Rn×m).

(c) Let A and B be two matrices in Rn×m. Then, the implications (A > B) =⇒
(A ≥ B) and (A < B) =⇒ (A ≤ B) as well as the equivalences (A > B) ⇐⇒
(B < A) and (A ≥ B) ⇐⇒ (B ≤ A) hold.

Proof. All of these are straightforward, since the relations ≥, >, ≤ and < are just
entrywise inequalities.

Warning 6.1.10. The relations ≥ and ≤ are not total orders (unless n ≤ 1). For
instance, the row vector (2, 1) is neither ≥ nor ≤ to (3, 0).

Warning 6.1.11. Do not mistake the relation ≥ on column vectors for the relation
< (majorization).

Warning 6.1.12. The trivial vector v = () ∈ R0 (with no entries at all) satisfies
v > v and v < v and v ≥ v and v ≤ v, because the “for all” statements in
Definition 6.1.6 are vacuously true. However, this is the only case in which a
vector v satisfies both v > v and v ≤ v.

Warning 6.1.13. Given two matrices A and B, the relation A ≥ B is not equivalent
to “A > B or A = B”. For example, (3, 1) ≥ (2, 1) is true, but we have neither
(2, 1) > (3, 1) nor (2, 1) = (3, 1).
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Exercise 6.1.3. 1 Let A ∈ Cn×n be a doubly stochastic matrix (see Definition
4.7.22 for the meaning of this). Let J be the n× n-matrix whose all entries equal
1. Prove that J ≥ A ≥ 0.

Two complex numbers z and w always satisfy |z| · |w| = |zw|. For two matrices,
however, this equality is not usually satisfied; however, it survives as an inequality:

Proposition 6.1.14. Let A ∈ Cn×m and B ∈ Cm×p be two matrices. Then,

|A| · |B| ≥ |AB| .

Proof. We must prove that (|A| · |B|)i,k ≥ |AB|i,k for all i ∈ [n] and k ∈ [p].
So let i ∈ [n] and k ∈ [p]. Then, the definition of the product of two matrices

yields

(|A| · |B|)i,k =
m

∑
j=1
|A|i,j︸ ︷︷ ︸
=|Ai,j|

· |B|j,k︸ ︷︷ ︸
=|Bj,k|

=
m

∑
j=1

∣∣Ai,j
∣∣ · ∣∣Bj,k

∣∣︸ ︷︷ ︸
=|Ai,jBj,k|

=
m

∑
j=1

∣∣Ai,jBj,k
∣∣ ≥ ∣∣∣∣∣ m

∑
j=1

Ai,jBj,k

∣∣∣∣∣
(by the triangle inequality). In view of

|AB|i,k =
∣∣∣(AB)i,k

∣∣∣ = ∣∣∣∣∣ m

∑
j=1

Ai,jBj,k

∣∣∣∣∣ ,

we can rewrite this as (|A| · |B|)i,k ≥ |AB|i,k, qed.

Corollary 6.1.15. Let A ∈ Cn×n and k ∈N. Then, |A|k ≥
∣∣Ak
∣∣.

Proof. Induction on k, using Proposition 6.1.14 (and the fact that |In| = In).

It is not easy to characterize when the inequality in Proposition 6.1.14 becomes
an equality. However, conclusions can be drawn in some cases. The following
proposition considers the case when the matrix B is a column vector (which we call
x to avoid unusual notations):

Proposition 6.1.16. Let A ∈ Cn×m and x ∈ Cm. Then:

(a) We have |A| · |x| ≥ |Ax|.
(b) If at least one row of A is positive and we have A ≥ 0 and |Ax| = A · |x|,

then |x| = ωx for some ω ∈ C satisfying |ω| = 1.

(c) If x > 0 and Ax = |A| x, then A = |A| (so that A ≥ 0).
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Proof. (a) follows from Proposition 6.1.14.

(b) Assume that at least one row of A is positive and we have A ≥ 0 and |Ax| =
A · |x|.

We have assumed that at least one row of A is positive. Let the i-th row of A be
positive. Thus, the numbers Ai,j are positive reals for all j ∈ [m].

Write x = (x1, x2, . . . , xm)
T. Thus, |x| = (|x1| , |x2| , . . . , |xm|)T.

From |Ax| = A · |x|, we obtain

(the i-th entry of |Ax|) = (the i-th entry of A · |x|) =
m

∑
j=1

Ai,j ·
∣∣xj
∣∣︸ ︷︷ ︸

=|Ai,jxj|
(since A≥0 and thus Ai,j≥0)

=
m

∑
j=1

∣∣Ai,jxj
∣∣ ,

so that
m

∑
j=1

∣∣Ai,jxj
∣∣ = (the i-th entry of |Ax|) = |the i-th entry of Ax|

=

∣∣∣∣∣ m

∑
j=1

Ai,jxj

∣∣∣∣∣
(since the i-th entry of Ax is

m
∑

j=1
Ai,jxj). This is an equality case of the triangle

inequality. Thus, the complex numbers Ai,jxj for all j ∈ [m] have the same argument
(by Proposition 6.1.1 (b)). In other words, the numbers xj for all j ∈ [m] have the
same argument (since all the Ai,j are positive reals and thus we have arg

(
Ai,jxj

)
=

arg xj). Let ϕ be this argument, and let ω := e−iϕ. Then, ω is a complex number
satisfying |ω| = 1, and the numbers ωx1, ωx2, . . . , ωxn are nonnegative reals. This
shows that ωx ≥ 0, so that |ωx| = ωx. However, Exercise 6.1.2 yields |ωx| =
|ω|︸︷︷︸
=1

· |x| = |x|. Comparing these two equalities, we obtain |x| = ωx. Theorem

6.1.16 (b) is thus proven.

(c) Suppose x > 0 and Ax = |A| x. We must show that A = |A| (so that A ≥ 0).
Write x = (x1, x2, . . . , xm)

T. Thus, x1, x2, . . . , xm are positive reals (since x > 0).
Fix i ∈ [n]. Then,

(the i-th entry of Ax) = (the i-th entry of |A| x) .

In other words,
m

∑
j=1

Ai,jxj =
m

∑
j=1

∣∣Ai,j
∣∣ xj︸ ︷︷ ︸

=|Ai,jxj|
(since xj is a positive real)

=
m

∑
j=1

∣∣Ai,jxj
∣∣ .

January 4, 2022



Math 504 notes page 231

This shows that
m
∑

j=1
Ai,jxj is a nonnegative real. Furthermore, we obtain

m

∑
j=1

Ai,jxj =
m

∑
j=1

∣∣Ai,jxj
∣∣ ≥ ∣∣∣∣∣ m

∑
j=1

Ai,jxj

∣∣∣∣∣ (by the triangle inequality)

≥
m

∑
j=1

Ai,jxj.

This is a chain of inequalities in which the first and the last side are equal. Thus,
all inequalities in it must be equalities. In particular, we thus have equality in the

triangle inequality
m
∑

j=1

∣∣Ai,jxj
∣∣ ≥ ∣∣∣∣∣ m

∑
j=1

Ai,jxj

∣∣∣∣∣. Hence, the complex numbers Ai,jxj for

all j ∈ [m] have the same argument (by Proposition 6.1.1 (b)). Their sum
m
∑

j=1
Ai,jxj

therefore has the same argument as them; but since we know that this sum
m
∑

j=1
Ai,jxj

is a nonnegative real, we thus conclude that this common argument is 0. In other
words, the complex numbers Ai,jxj for all j ∈ [m] are nonnegative reals. Since
x1, x2, . . . , xm are positive reals, this means that the Ai,j for all j ∈ [m] are nonnega-
tive reals. Since we have proved this for all i ∈ [n], we thus conclude that all entries
of A are nonnegative reals. Hence, A ≥ 0, so that A = |A|. This proves Theorem
6.1.16 (c).

Proposition 6.1.17. (a) If A, B, C, D ∈ Cn×m satisfy A ≤ B and C ≤ D, then
A + C ≤ B + D.

(b) If A, B ∈ Cn×m and C ∈ Cm×p satisfy A ≤ B and 0 ≤ C, then AC ≤ BC.

(c) If A, B ∈ Cn×m and C ∈ Cp×n satisfy A ≤ B and 0 ≤ C, then CA ≤ CB.

(d) If A, B ∈ Cn×m and C, D ∈ Cm×p satisfy 0 ≤ A ≤ B and 0 ≤ C ≤ D, then
0 ≤ AC ≤ BD.

(e) If A, B ∈ Cn×n satisfy 0 ≤ A ≤ B, and if k ∈N, then 0 ≤ Ak ≤ Bk.

Proof. (a) For all i and j, we have Ai,j ≤ Bi,j and Ci,j ≤ Di,j and therefore Ai,j +Ci,j ≤
Bi,j + Di,j. But this means A + C ≤ B + D.

(b) Assume A ≤ B and 0 ≤ C. Let i ∈ [n] and k ∈ [p]. The definition of the
product of two matrices yields

(AC)i,k =
m

∑
j=1

Ai,jCj,k with (BC)i,k =
m

∑
j=1

Bi,jCj,k.

The right hand side of the first equality is ≤ to the right hand side of the second,
because all j ∈ [m] satisfy Ai,j ≤ Bi,j (since A ≤ B) and Cj,k ≥ 0 (since 0 ≤ C).

January 4, 2022



Math 504 notes page 232

Thus, we obtain (AC)i,k ≤ (BC)i,k. Since we have proved this for all i and k, we
thus obtain AC ≤ BC. This proves Proposition 6.1.17 (b).

(c) Similar to (b).

(d) Part (b) yields AC ≤ BC. Part (c) (applied to C, D and B instead of A, B and
C) yields BC ≤ BD. Since the relation ≤ is transitive, we can conclude AC ≤ BD
from these two inequalities.

(e) Follows from (d) by induction on k.

Exercise 6.1.4. 2 Let n, m, p be three positive integers.

(a) Show that any two positive matrices A ∈ Rn×m and B ∈ Rm×p satisfy
AB > 0.

(b) Now, assume that m > 1. Find an example of two nonzero nonnegative
matrices A ∈ Rn×m and B ∈ Rm×p that nevertheless satisfy AB = 0.

6.2. The spectral radius

Definition 6.2.1. The spectral radius ρ (A) of a matrix A ∈ Cn×n (with n > 0) is
defined to be the largest absolute value of an eigenvalue of A. That is,

ρ (A) := max {|λ| | λ ∈ σ (A)} .

Note that ρ (A) is always a nonnegative real.

Some examples:

• If A = diag (λ1, λ2, . . . , λn), then ρ (A) = max {|λ1| , |λ2| , . . . , |λn|}. More
generally, this is true if A is a triangular matrix with diagonal entries λ1, λ2, . . . , λn.

• By Exercise 3.4.2 (equivalence A ⇐⇒ C), a square matrix A satisfies ρ (A) = 0
if and only if A is nilpotent.

The following is obvious:

Lemma 6.2.2. Let λ ∈ C and A ∈ Cn×n (where n > 0). Then, ρ (λA) = |λ| · ρ (A).

It is furthermore easy to see that each n × n-matrix A ∈ Cn×n (with n > 0)
satisfies ρ

(
AT) = ρ (A∗) = ρ (A).

Theorem 6.2.3. Let A ∈ Cn×n and B ∈ Rn×n be such that B ≥ |A| and n > 0.
Then, ρ (A) ≤ ρ (B).
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Proof of Theorem 6.2.3. If ρ (A) = 0, then this is obvious. So, WLOG assume that
ρ (A) > 0.

We can thus scale both matrices A and B by the positive real
1

ρ (A)
. This does

not break the inequality B ≥ |A|, and also does not break the claim ρ (A) ≤ ρ (B)
(by Lemma 6.2.2).

Thus, we WLOG assume that ρ (A) = 1. (This is achieved by the scaling we just
mentioned.)

This yields that A has an eigenvalue λ with |λ| = 1. Let λ be such an eigenvalue,
and let v be a nonzero λ-eigenvector. Thus, Av = λv. Hence,

Amv = λmv for any m ∈N. (119)

(This follows easily by induction on m.)
Now, we must prove ρ (A) ≤ ρ (B). In other words, we must prove that 1 ≤ ρ (B)

(since ρ (A) = 1). Assume the contrary. Thus, ρ (B) < 1. Hence, all eigenvalues of
B have absolute value < 1. Therefore, Corollary 3.5.2 (applied to B instead of A)
shows that lim

m→∞
Bm = 0. Therefore, lim

m→∞
Bm · |v| = 0.

However, let m ∈N. Then, B ≥ |A| ≥ 0 entails Bm ≥ |A|m (by Proposition 6.1.17
(e)). Also, |A|m ≥ |Am| (by Corollary 6.1.15). Thus, Bm ≥ |A|m ≥ |Am|. Hence,
using Proposition 6.1.17 (b), we obtain

Bm · |v| ≥ |Am| · |v| (since |v| ≥ 0)
≥ |Amv| (by Proposition 6.1.14)
= |λmv| (by (119))
= |λm|︸︷︷︸

=|λ|m=1
(since |λ|=1)

· |v| (by Exercise 6.1.2)

= |v| .

Taking limits as m → ∞, we obtain lim
m→∞

Bm · |v| ≥ lim
m→∞

|v| = |v| 6= 0 (since v is

nonzero). This contradicts lim
m→∞

Bm · |v| = 0. This contradiction shows that our
assumption was false, and the proof of Theorem 6.2.3 is complete.

Corollary 6.2.4. Let A ∈ Cn×n and B ∈ Rn×n be such that B ≥ |A| and n > 0.
Then, ρ (A) ≤ ρ (|A|) ≤ ρ (B).

Proof. Applying Theorem 6.2.3 to |A| instead of B, we get ρ (A) ≤ ρ (|A|).
Applying Theorem 6.2.3 to |A| instead of A, we get ρ (|A|) ≤ ρ (B) (since
| |A| | = |A|).

Hence, Corollary 6.2.4 is proved.
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Corollary 6.2.5. Let A ∈ Rn×n and B ∈ Rn×n satisfy B ≥ A ≥ 0 and n > 0. Then,
ρ (A) ≤ ρ (B).

Proof. We have |A| = A. Thus, we can apply Theorem 6.2.3.

Corollary 6.2.6. Let A ∈ Rn×n satisfy A ≥ 0 and n > 0.

(a) If Ã is a principal submatrix of A (that is, a matrix obtained from A by
removing a bunch of rows along with the corresponding columns), then ρ

(
Ã
)
≤

ρ (A).

(b) We have max {Ai,i | i ∈ [n]} ≤ ρ (A).

(c) If Ai,i > 0 for some i ∈ [n], then ρ (A) > 0.

Proof. (a) Let Ã be a principal submatrix of A. For simplicity, I assume that Ã is A
with the n-th row and the n-th column removed54. Thus,

A =

(
Ã y
x λ

)
(in block-matrix notation) (120)

for some nonnegative x ∈ R1×(n−1), y ∈ R(n−1)×1 and λ ∈ R. Let

B :=
(

Ã 0
0 0

)
(in block-matrix notation) , (121)

where the three 0s have the same dimensions as the x, y and λ above. Comparing
(120) with (121), we see that A ≥ B (since x ≥ 0 and y ≥ 0 and λ ≥ 0). Also, Ã ≥ 0
(since A ≥ 0) and thus B ≥ 0. Thus, A ≥ B ≥ 0. Hence, Corollary 6.2.5 (applied to
B and A instead of A and B) yields ρ (B) ≤ ρ (A).

However, it is easy to see from (121) that σ (B) = σ
(

Ã
)
∪ {0} (for example, be-

cause we can pick any Schur triangularization (U, T) of Ã, and then obtain a Schur

triangularization (U′, T′) of B by setting U′ =
(

U 0
0 1

)
and T′ =

(
T 0
0 0

)
).

Hence, ρ (B) = ρ
(

Ã
)

(because inserting 0 into a set of nonnegative reals cannot

change the maximum of this set). Hence, ρ (B) ≤ ρ (A) rewrites as ρ
(

Ã
)
≤ ρ (A).

This proves Corollary 6.2.4 (a).

(b) We must show that Ai,i ≤ ρ (A) for all i ∈ [n].
So let i ∈ [n]. Then, the 1 × 1-matrix

(
Ai,i

)
is a principal submatrix of A

(obtained by removing all rows of A other than the i-th one, and all columns of
A other than the i-th one). Hence, part (a) yields ρ

((
Ai,i

))
≤ ρ (A). However,

since the only eigenvalue of the 1× 1-matrix
(

Ai,i
)

is Ai,i, we have ρ
((

Ai,i
))

=

54The proof in the general case is similar; it just requires more notational work.
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|Ai,i| = Ai,i (since A ≥ 0). Therefore, Ai,i = ρ
((

Ai,i
))
≤ ρ (A). This proves

Corollary 6.2.4 (b).

(c) Follows from (b).

Exercise 6.2.1. 1 Let A ∈ Rn×n satisfy A > 0 and n > 0. Prove that ρ (A) > 0.

Exercise 6.2.2. 2 Let A ∈ Cn×n and B ∈ Rn×n be such that B > |A| and n > 0.
Prove that ρ (A) < ρ (B).

[Hint: Show that there exists some real λ > 1 such that B ≥ λ · |A|.]

Let us next prove some more bounds for ρ (A) when A is a nonnegative matrix.
We will use the following notions:55

Definition 6.2.7. Let F be a field. Let A ∈ Fn×m.

(a) The column sums of A are the m sums

n

∑
i=1

Ai,j = (the sum of all entries of the j-th column of A)

for j ∈ [m].

(b) The row sums of A are

m

∑
j=1

Ai,j = (the sum of all entries of the i-th row of A)

for i ∈ [n].

(c) Now, assume that F = C and n > 0 and m > 0. Then, we set

||A||∞ := (the largest row sum of |A|) = max
i∈[n]

m

∑
j=1

∣∣Ai,j
∣∣

and

||A||1 := (the largest column sum of |A|) = max
j∈[m]

n

∑
i=1

∣∣Ai,j
∣∣ .

These two numbers ||A||∞ and ||A||1 are called the ∞-norm and the 1-norm of A
(for reasons that will be explained in a later chapter).

55Recall that max
i∈I

ai is a shorthand notation for max {ai | i ∈ I} (when I is a set and ai is a real

number for each i ∈ I).
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Example 6.2.8. The column sums of a 2× 2-matrix
(

a b
c d

)
are a + c and b + d,

whereas its row sums are a + b and c + d.

Warning 6.2.9. Let A be a matrix. Then, the sum of all rows of A is a row vector
whose entries are the column sums (not the row sums!) of A. Likewise, the sum
of all columns of A is a column vector whose entries are the row sums (not the
column sums!) of A.

The following is obvious:

Remark 6.2.10. Let A ∈ Fn×m be a matrix over a field F.

(a) The row sums of A are the column sums of AT, and vice versa.

(b) If F = C and n > 0 and m > 0, then ||A||∞ =
∣∣∣∣AT

∣∣∣∣
1 and ||A||1 =

∣∣∣∣AT
∣∣∣∣

∞.

We can now bound the spectral radius of a matrix in terms of its 1-norm and its
∞-norm:

Lemma 6.2.11. Let A ∈ Cn×n with n > 0. Then:

(a) We have ρ (A) ≤ ||A||∞.

(b) If A ≥ 0 and if all row sums of A are equal, then ρ (A) = ||A||∞.

(c) We have ρ (A) ≤ ||A||1.

(d) If A ≥ 0 and if all column sums of A are equal, then ρ (A) = ||A||1.

Proof. (a) We have ρ (A) = |λ| for some eigenvalue λ of A (by the definition
of ρ (A)). Consider this λ, and let v = (v1, v2, . . . , vn)

T ∈ Cn be a nonzero λ-
eigenvector of A. Then, Av = λv.

Choose an i ∈ [n] such that |vi| = max {|v1| , |v2| , . . . , |vn|}. Then, |vi| > 0 (since
v is nonzero). Furthermore,∣∣vj

∣∣ ≤ |vi| for each j ∈ [n] (122)

(since |vi| = max {|v1| , |v2| , . . . , |vn|}).
Now, the i-th entry of the column vector Av is

n
∑

j=1
Ai,jvj (by the definition of the

product Av); however, the same entry is λvi (since Av = λv). Comparing these two
facts, we obtain

λvi =
n

∑
j=1

Ai,jvj.
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Taking absolute values on both sides of this equality, we obtain

|λvi| =
∣∣∣∣∣ n

∑
j=1

Ai,jvj

∣∣∣∣∣ ≤ n

∑
j=1

∣∣Ai,jvj
∣∣︸ ︷︷ ︸

=|Ai,j|·|vj|≤|Ai,j|·|vi|
(by (122))

(by the triangle inequality)

≤
n

∑
j=1

∣∣Ai,j
∣∣ · |vi| .

Since |λvi| = |λ| · |vi|, we can rewrite this as

|λ| · |vi| ≤
n

∑
j=1

∣∣Ai,j
∣∣ · |vi| .

Since |vi| > 0, we can cancel |vi| from this inequality, and thus we obtain

|λ| ≤
n

∑
j=1

∣∣Ai,j
∣∣ = (the i-th row sum of |A|)

≤ (the largest row sum of |A|) = ||A||∞ .

Since ρ (A) = |λ|, this rewrites as ρ (A) ≤ ||A||∞. This proves Lemma 6.2.11 (a).

(b) Assume that A ≥ 0 and that all row sums of A are equal. Let e = (1, 1, . . . , 1)T ∈
Rn, and let κ be the common value of the row sums of A. Then, all row sums of
A equal κ; in other words, we have Ae = κe (since Ae is the column vector whose
entries are the row sums of A, whereas κe is the column vector whose entries are
κ, κ, . . . , κ︸ ︷︷ ︸

n times

). Hence, κ is an eigenvalue of A (since e 6= 0), so that ρ (A) ≥ |κ| = κ

(since A ≥ 0 entails κ ≥ 0).
On the other hand, |A| = A (since A ≥ 0). Now, Lemma 6.2.11 (a) yields

ρ (A) ≤ ||A||∞ =

the largest row sum of |A|︸︷︷︸
=A

 = (the largest row sum of A) = κ

(since all row sums of A are κ). Combining this with ρ (A) ≥ κ, we obtain ρ (A) =
κ = ||A||∞. This proves Lemma 6.2.11 (b).

(c) This follows by applying Lemma 6.2.11 (a) of the lemma to AT instead of A,
and recalling that

∣∣∣∣AT
∣∣∣∣

∞ = ||A||1 and ρ
(

AT) = ρ (A).

(d) This follows by applying Lemma 6.2.11 (b) of the lemma to AT instead of A,
and recalling that

∣∣∣∣AT
∣∣∣∣

∞ = ||A||1 and ρ
(

AT) = ρ (A) and the row sums of AT

are the column sums of A.
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Remark 6.2.12. We note that the converse of Lemma 6.2.11 (b) is false: For ex-

ample, the 3× 3-matrix A :=

 1 0 0
0 0 1
0 0 0

 satisfies A ≥ 0 and ρ (A) = ||A||∞,

but the row sums of A are not all equal.

Next, let us bound the spectral radius ρ (A) of a matrix A from both sides when
A ≥ 0:

Theorem 6.2.13. Let A ∈ Rn×n satisfy A ≥ 0 and n > 0. Then,

(the smallest row sum of A) ≤ ρ (A) ≤ (the largest row sum of A) .

Proof. We have |A| = A (since A ≥ 0). Now, Lemma 6.2.11 (a) yields

ρ (A) ≤ ||A||∞ =

the largest row sum of |A|︸︷︷︸
=A

 = (the largest row sum of A) .

Hence, it remains to prove that (the smallest row sum of A) ≤ ρ (A).
Let r1, r2, . . . , rn be the row sums of A. Let ri be the smallest among them. We

must thus prove that ri ≤ ρ (A). If ri = 0, then this is obvious. So let WLOG assume
that ri > 0. Hence, all n numbers r1, r2, . . . , rn are positive (since the smallest among
them is ri > 0) and thus nonzero.

Let B the n× n-matrix whose (u, v)-th entry is
ri

ru
Au,v for all u, v ∈ [n]. 56 Thus,

B is obtained from the matrix A by scaling each row by a certain positive real factor
(namely,

ri

ru
for the u-th row) chosen in such a way that the row sums all become ri.

Hence, the matrix B is ≥ 0 (since A ≥ 0, and since all n numbers r1, r2, . . . , rn are
positive), and its row sums are all equal to ri. Hence, Lemma 6.2.11 (b) (applied to
B instead of A) yields

ρ (B) = ||B||∞ =

the largest row sum of |B|︸︷︷︸
=B

(since B≥0)


= (the largest row sum of B) = ri (123)

(since all row sums of B are ri). However, for each u, v ∈ [n], we have
ri

ru
Au,v ≤ Au,v

(since ri ≤ ru (because ri is the smallest among the numbers r1, r2, . . . , rn)). In
other words, B ≤ A (since the entries of B are the numbers

ri

ru
Au,v, whereas the

56This is well-defined, since ru 6= 0 (because all n numbers r1, r2, . . . , rn are nonzero).
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corresponding entries of A are Au,v). Hence, Corollary 6.2.5 (applied to B and A
instead of A and B) yields ρ (B) ≤ ρ (A). Thus, (123) becomes ri = ρ (B) ≤ ρ (A).
This proves Theorem 6.2.13.

Corollary 6.2.14. Let A ∈ Rn×n satisfy A ≥ 0 and n > 0. Let x1, x2, . . . , xn be any
n positive reals. Then,

min
i∈[n]

n

∑
j=1

xi

xj
Ai,j ≤ ρ (A) ≤ max

i∈[n]

n

∑
j=1

xi

xj
Ai,j.

Proof. Let D = diag (x1, x2, . . . , xn). Then, DAD−1 is the n× n-matrix whose (i, j)-
th entry is xi Ai,jx−1

j =
xi

xj
Ai,j for all i, j ∈ [n]. Thus, DAD−1 ≥ 0 (since A ≥ 0 and

since x1, x2, . . . , xn are positive). Hence, Theorem 6.2.13 (applied to DAD−1 instead
of A) yields(

the smallest row sum of DAD−1
)
≤ ρ

(
DAD−1

)
≤
(

the largest row sum of DAD−1
)

.

In view of ρ
(

DAD−1) = ρ (A) (which is a consequence of the fact that the matrices
DAD−1 and A are similar and thus have the same spectrum), we can rewrite this
as(

the smallest row sum of DAD−1
)
≤ ρ (A) ≤

(
the largest row sum of DAD−1

)
.

Now, it remains only to notice that the row sums of DAD−1 are exactly the sums
n
∑

j=1

xi

xj
Ai,j for i ∈ [n].

Remark 6.2.15. If the matrix A in Corollary 6.2.14 is positive, then there is a
choice of x1, x2, . . . , xn > 0 such that both of the inequalities become equalities.
(This follows from Theorem 6.3.2 (c) further below.)

Corollary 6.2.16. Let A ∈ Rn×n satisfy A ≥ 0 and n > 0.
Let x ∈ Rn satisfy x > 0.
Let α be a nonnegative real. Then:

(a) If Ax ≥ αx, then ρ (A) ≥ α.

(b) If Ax > αx, then ρ (A) > α.

(c) If Ax ≤ αx, then ρ (A) ≤ α.

(d) If Ax < αx, then ρ (A) < α.

Proof. Write x as x = (x1, x2, . . . , xn)
T. Then, the n numbers x1, x2, . . . , xn are pos-

itive reals (since x > 0); hence, their reciprocals 1/x1, 1/x2, . . . , 1/xn are well-
defined positive reals as well.
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(a) Assume that Ax ≥ αx. Then, for each i ∈ [n], we have

n

∑
j=1

Ai,jxj = (the i-th entry of Ax)

≥ (the i-th entry of αx) (since Ax ≥ αx)
= αxi. (124)

However, Corollary 6.2.14 (applied to 1/xk instead of xk) yields

min
i∈[n]

n

∑
j=1

1/xi

1/xj
Ai,j ≤ ρ (A) ≤ max

i∈[n]

n

∑
j=1

1/xi

1/xj
Ai,j.

The first of these two inequalities yields

ρ (A) ≥ min
i∈[n]

n

∑
j=1

1/xi

1/xj
Ai,j︸ ︷︷ ︸

=
1
xi

Ai,jxj

= min
i∈[n]

n

∑
j=1

1
xi

Ai,jxj = min
i∈[n]

1
xi

n

∑
j=1

Ai,jxj︸ ︷︷ ︸
≥αxi

(by (124))

≥ min
i∈[n]

1
xi
· αxi︸ ︷︷ ︸
=α

= min
i∈[n]

α = α.

This proves Corollary 6.2.16 (a).

(b) The proof is analogous to the proof of Corollary 6.2.16 (a), but uses > signs
instead of ≥ signs.

(c) The proof is similar to the proof of Corollary 6.2.16 (a), but uses > signs
instead of ≥ signs and uses max instead of min.

(d) The proof is analogous to the proof of Corollary 6.2.16 (c).

Corollary 6.2.17. Let A ∈ Rn×n satisfy A > 0 and n > 0 and ρ (A) = 1. Let
w ∈ Rn satisfy w ≥ 0 and w 6= 0. Then:

(a) We always have Aw > 0.

(b) If Aw ≥ w, then Aw = w > 0.

Proof. Write the vector w as w = (w1, w2, . . . , wn)
T. Then, the numbers w1, w2, . . . , wn

are nonnegative reals (since w ≥ 0). Moreover, at least one k ∈ [n] satisfies wk 6= 0
(since w 6= 0). Consider this k. Thus, wk > 0 (since w ≥ 0).

(a) For each i ∈ [n], the i-th entry of Aw is
n
∑

j=1
Ai,jwj. This is a sum of nonnegative

addends (since A > 0 and w ≥ 0), and at least one of these addends is actually
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positive (indeed, A > 0 entails Ai,k > 0 and thus Ai,k︸︷︷︸
>0

wk︸︷︷︸
>0

> 0). Hence, this sum is

positive. We have thus shown that for each i ∈ [n], the i-th entry of Aw is positive.
In other words, Aw > 0. This proves Corollary 6.2.17 (a).

(b) Assume that Aw ≥ w. Let z := Aw− w. Then, z = Aw− w ≥ 0. However,
Corollary 6.2.17 (a) also yields Aw > 0.

We claim that z = 0. Indeed, assume the contrary. Thus, z 6= 0. Hence, Corollary
6.2.17 (a) (applied to z instead of w) yields Az > 0. Therefore, AAw > Aw (since
AAw− Aw = A (Aw− w)︸ ︷︷ ︸

=z

= Az > 0). Also, A ≥ 0 (since A > 0). Hence, Corollary

6.2.16 (b) (applied to x = Aw and α = 1) yields ρ (A) > 1, which contradicts
ρ (A) = 1. This contradiction shows that our assumption was wrong. Hence, z = 0
is proved. Thus, Aw = w (since Aw − w = z = 0). Hence, w = Aw > 0. This
proves Corollary 6.2.17 (b).

6.3. Perron–Frobenius theorems

We now come to the most important results about nonnegative matrices: the
Perron–Frobenius theorems.

6.3.1. Motivation

Let us first motivate the theorems using a less general (but more intuitive) setting.
Recall a standard situation in probability theory: Consider a system (e.g., a slot

machine) that can be in one of n possible states s1, s2, . . . , sn. Every minute, the
system randomly changes states according to the following rule: If the system is
in state si, then it changes to state sj with probability Pi,j, where P is a (fixed, pre-
determined) nonnegative n× n-matrix whose row sums all equal 1 (such a matrix
is called row-stochastic). This is commonly known as a Markov chain.

Given such a Markov chain, one often wonders about its “steady state”: If you
wait long enough, how likely is the system to be in a given state?

Example 6.3.1. Let P =

(
0.9 0.1
0.5 0.5

)
. This corresponds to a system that has two

states s1 and s2, and the probability of going from state s1 to state s2 (any given
minute) is 0.1, whereas the probability of going from state s1 to state s1 (that is,
staying at state s1) is 0.9, and the probability of going from state s2 to either state
is 0.5.

We encode the two states s1 and s2 as the basis vectors e1 = (1, 0) and e2 =
(0, 1) of the vector space R1×2 (we work with row vectors here for convenience).
Thus, a probability distribution on the set of states (i.e., a distribution of the form
“state s1 with probability a1 and state s2 with probability a2”) corresponds to a
row vector (a1, a2) ∈ R1×2 satisfying a1 ≥ 0 and a2 ≥ 0 and a1 + a2 = 1.
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If we start at state s1 and let k minutes pass, then the probability distribution
for the resulting state is s1Pk (why?). More generally, if we start with a probabil-
ity distribution d ∈ R1×2 and let k minutes pass, then the resulting state will be
distributed according to dPk (why?). So our question about the steady state can
be rewritten as follows: What is lim

k→∞
dPk ? Does this limit even exist?

We can notice one thing right away: If the limit lim
k→∞

dPk exists, then this limit

is a left 1-eigenvector of P, in the sense that it is a row vector y such that yP = y
(because if we set y = lim

k→∞
dPk, then we have y = lim

k→∞
dPk = lim

k→∞
d Pk+1︸︷︷︸
=PkP

=(
lim
k→∞

dPk
)

P = yP). Since it is furthermore a probability distribution (because

it is a limit of probability distributions), we can easily compute it (indeed, our
matrix P has only one left 1-eigenvector up to scaling, and the scaling factor is
uniquely determined by the requirement that it be a probability distribution).
We obtain

lim
k→∞

dPk =

(
5
6

,
1
6

)
.

But does this limit actually exist? Yes: In our specific example, it does; but
this isn’t quite that obvious. Note that this limit (known as the steady state of the
Markov chain) actually does not depend on the starting distribution d.

Does this generalize? Not always. Here are two examples where things go bad:

• If P = I2 =

(
1 0
0 1

)
, then lim

k→∞
dPk = d for each d, so the limits do depend

on d.

• If P =

(
0 1
1 0

)
, then lim

k→∞
dPk does not exist unless d = (0.5, 0.5), since in

all other cases the sequence
(
dPk)

k≥0 oscillates between (a1, a2) and (a2, a1).

Perhaps surprisingly, such bad cases are an exception. For most row-stochastic
matrices P (that is, nonnegative matrices whose row sums all equal 1), there is a
unique steady state (i.e., left 1-eigenvector whose entries sum up to 1), and it can be
obtained as lim

k→∞
dPk for any starting distribution d. To be more precise, this holds

whenever P is positive (i.e., all Pi,j > 0). Some weaker assumptions also suffice.
More general versions of these facts hold even if we don’t assume P to be row-

stochastic, but merely require P > 0 (or P ≥ 0 with some extra conditions). These
will be the Perron and Perron–Frobenius theorems.

6.3.2. The theorems

We can now state the Perron and Perron–Frobenius theorems; we will prove them
later:
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Theorem 6.3.2 (Perron theorem). Let A ∈ Rn×n satisfy A > 0 and n > 0. Then:

(a) We have ρ (A) > 0.

(b) The number ρ (A) is an eigenvalue of A and has algebraic multiplicity 1
(and therefore geometric multiplicity 1 as well).

(c) There is a unique ρ (A)-eigenvector x = (x1, x2, . . . , xn)
T ∈ Cn of A with

x1 + x2 + · · ·+ xn = 1. This eigenvector x is furthermore positive. (It is called
the Perron vector of A.)

(d) There is a unique vector y = (y1, y2, . . . , yn)
T ∈ Cn such that yT A =

ρ (A) yT and x1y1 + x2y2 + · · ·+ xnyn = 1. This vector y is also positive.

(e) We have (
1

ρ (A)
A
)m
→ xyT as m→ ∞.

(f) The only eigenvalue of A that has absolute value ρ (A) is ρ (A) itself.

We will prove this soon, but first we have two more theorems to state. The
Perron theorem applies to positive matrices; but some parts of it can be adapted
to the more general situation of a nonnegative matrix. If we require nothing other
than nonnegativity, then only two statements hold:

Theorem 6.3.3 (Perron–Frobenius theorem 1). Let A ∈ Rn×n satisfy A ≥ 0 and
n > 0. Then:

(a) The number ρ (A) is an eigenvalue of A.

(b) The matrix A has a nonzero nonnegative ρ (A)-eigenvector.

To get stronger statements without requiring A > 0, we need two further prop-
erties of A.

Definition 6.3.4. Let A ∈ Rn×n be an n× n-matrix with n > 0.

(a) We say that A is reducible if there exist two disjoint nonempty subsets I and
J of [n] such that I ∪ J = [n] and such that

Ai,j = 0 for all i ∈ I and j ∈ J.

Equivalently, A is reducible if and only if there exists a permutation matrix P ∈
Rn×n such that

P−1AP =

(
B C

0(n−r)×r D

)
for some 0 < r < n

and some matrices B, C, D.

(Note that P−1AP is the matrix obtained from A by permuting the rows and then
permuting the columns using the same permutation.)
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(b) We say that A is irreducible if A is not reducible.

(c) We say that A is primitive if there exists some m > 0 such that Am > 0.

Theorem 6.3.5 (Perron–Frobenius theorem 2). Let A ∈ Rn×n be nonnegative and
irreducible and satisfy n > 0. Then:

(a) We have ρ (A) > 0.

(b) The number ρ (A) is an eigenvalue of A and has algebraic multiplicity 1
(and therefore geometric multiplicity 1 as well).

(c) There is a unique ρ (A)-eigenvector x = (x1, x2, . . . , xn)
T ∈ Cn of A with

x1 + x2 + · · ·+ xn = 1. This eigenvector x is furthermore positive. (It is called
the Perron vector of A.)

(d) There is a unique vector y = (y1, y2, . . . , yn)
T ∈ Cn such that yT A =

ρ (A) yT and x1y1 + x2y2 + · · ·+ xnyn = 1. This vector y is also positive.

(e) Assume furthermore that A is primitive. We have(
1

ρ (A)
A
)m
→ xyT as m→ ∞.

(f) Assume again that A is primitive. The only eigenvalue of A that has abso-
lute value ρ (A) is ρ (A) itself.

Remark 6.3.6. If A is the row-stochastic matrix P corresponding to a Markov
chain, then:

• A is irreducible if and only if there is no set of states from which you cannot
escape (except for the empty set and for the set of all states);

• A is primitive if and only if there is an m > 0 such that we can get from
any state to any state in exactly m minutes (this technical condition rules
out the kind of “oscillation” that prevented us from finding a steady state

for P =

(
0 1
1 0

)
).

6.3.3. Proof of Perron

We shall now approach the proof of the Perron theorem (Theorem 6.3.2). We begin
with some notations:

Definition 6.3.7. For the rest of this subsection, we shall use the following nota-
tions:

Let n be a fixed positive integer. Let e := (1, 1, . . . , 1)T ∈ Rn.
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Remark 6.3.8. (a) An n× n-matrix A satisfies Ae = e if and only if all row sums
of A equal 1.

(b) An n× n-matrix A satisfies eT A = eT if and only if all column sums of A
equal 1.

Proof of Remark 6.3.8. (a) This is because the entries of the column vector Ae are the
row sums of A, while the entries of the column vector e are all 1.

(b) This is because the entries of the row vector eT A are the column sums of A,
while the entries of the row vector eT are all 1.

Next, we state a few lemmas. The first one is an instance of the obvious idea
that when some addends in a sum have different signs, they interfere destructively
with each other:

Lemma 6.3.9. Let y ∈ Rn and v = (v1, v2, . . . , vn)
T ∈ Rn be two column vectors

such that y ≥ 0 and y 6= 0 and yTv = 0. Let a1, a2, . . . , an be nonnegative reals.
Then, there exists some proper subset K of [n] such that∣∣∣∣∣ n

∑
k=1

akvk

∣∣∣∣∣ ≤ ∑
k∈K

ak |vk| .

Proof. Let

P := {k ∈ [n] | vk > 0} and N := {k ∈ [n] | vk < 0} .

Then, P and N are two disjoint subsets of [n], and every k ∈ [n] \ (P ∪ N) satisfies

vk = 0. Therefore, we can break up the sum
n
∑

k=1
akvk as follows:

n

∑
k=1

akvk = ∑
k∈P

ak vk︸︷︷︸
=|vk|

(since k∈P and thus vk>0)

+ ∑
k∈N

ak vk︸︷︷︸
=−|vk|

(since k∈N and thus vk<0)

= ∑
k∈P

ak |vk| − ∑
k∈N

ak |vk| . (125)

Note that both sums ∑
k∈P

ak |vk| and ∑
k∈N

ak |vk| are nonnegative (since a1, a2, . . . , an

are nonnegative). However, it is easy to see that |x− y| ≤ max {x, y} for any two
nonnegative reals x and y. Applying this to x = ∑

k∈P
ak |vk| and y = ∑

k∈N
ak |vk|, we

thus obtain ∣∣∣∣∣∑k∈P
ak |vk| − ∑

k∈N
ak |vk|

∣∣∣∣∣ ≤ max

{
∑
k∈P

ak |vk| , ∑
k∈N

ak |vk|
}

.
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Therefore, ∣∣∣∣∣∑k∈P
ak |vk| − ∑

k∈N
ak |vk|

∣∣∣∣∣ ≤ ∑
k∈K

ak |vk| , (126)

where K is either P or N depending on whether ∑
k∈P

ak |vk| ≥ ∑
k∈N

ak |vk| or not.

Consider this K. Clearly, K is a subset of [n].
We shall now show that K is a proper subset of [n]. Indeed, assume the contrary.

Thus, K = [n]. However, K is either P or N (by definition). We WLOG assume that
K = P (since the case K = N is analogous). Thus, P = K = [n]. In other words,
vk > 0 for each k ∈ [n] (by the definition of P). In other words, v > 0.

Write the vector y as y = (y1, y2, . . . , yn)
T. Then, at least one k ∈ [n] satisfies

yk 6= 0 (since y 6= 0). Consider this k. Then, yk > 0 (since y ≥ 0).

However, yTv =
n
∑

j=1
yjvj. This is a sum of nonnegative reals (since y ≥ 0 and v >

0), and at least one of its addends is actually positive (indeed, yk︸︷︷︸
>0

vk︸︷︷︸
>0

(since v>0)

> 0).

Thus, the entire sum is positive. Therefore, yTv > 0. But this contradicts yTv = 0.
This contradiction shows that our assumption was false. Hence, we have shown
that K is a proper subset of [n]. Furthermore, from (125), we obtain∣∣∣∣∣ n

∑
k=1

akvk

∣∣∣∣∣ =
∣∣∣∣∣∑k∈P

ak |vk| − ∑
k∈N

ak |vk|
∣∣∣∣∣ ≤ ∑

k∈K
ak |vk|

(by (126)). This proves Lemma 6.3.9.

The next three lemmas will help us derive some parts of Theorem 6.3.2 from
others:

Lemma 6.3.10 (crucifix lemma, stochastic case). Let A ∈ Rn×n satisfy A > 0 and
Ae = e. Let y ∈ Rn satisfy yT A = yT and y ≥ 0 and yTe = 1 (that is, the sum of
all entries of y is 1). Then,

Am → eyT as m→ ∞.

Proof. Write the vector y = (y1, y2, . . . , yn)
T. Then, the entries y1, y2, . . . , yn are

nonnegative reals (since y ≥ 0), and we have yTe = y1 + y2 + · · ·+ yn (since e =

(1, 1, . . . , 1)T). Hence, y1 + y2 + · · ·+ yn = yTe = 1.
Thus, the n numbers y1, y2, . . . , yn are nonnegative reals whose sum is 1 (since

y1 + y2 + · · ·+ yn = 1). Hence, all these n numbers y1, y2, . . . , yn lie in the interval
[0, 1]. In other words,

yj ∈ [0, 1] for each j ∈ [n] . (127)
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From Ae = e, we conclude that all row sums of A equal 1 (by Remark 6.3.8 (a)).
Since A > 0, this implies that all entries Au,v of A satisfy

0 < Au,v ≤ 1. (128)

Let
µ := 1−min {Au,v | u, v ∈ [n]} .

Then, 0 ≤ µ < 1 (by (128)). We claim the following:

Claim 1: For each i ∈ [n] and each proper subset K of [n], we have

∑
k∈K

Ai,k ≤ µ.

[Proof of Claim 1: Let i ∈ [n]. Let K be a proper subset of [n]. Then, there exists
at least one element j ∈ [n] satisfying j /∈ K. Consider this j. Then, ∑

k∈[n];
k/∈K

Ai,k ≥ Ai,j

(since A ≥ 0 entails that all Ai,k are nonnegative). However,

∑
k∈K

Ai,k = ∑
k∈[n]

Ai,k︸ ︷︷ ︸
=(the i-th row sum of A)

=1
(since all row sums of A equal 1)

− ∑
k∈[n];
k/∈K

Ai,k

︸ ︷︷ ︸
≥Ai,j

≤ 1− Ai,j︸︷︷︸
≥min{Au,v | u,v∈[n]}

≤ 1− v = µ (by the definition of µ) .

This proves Claim 1.]

Next, we claim:

Claim 2: For any i, j ∈ [n] and any m ∈N, we have∣∣∣∣(Am − eyT
)

i,j

∣∣∣∣ ≤ µm.

Once Claim 2 is proved, it will follow easily that
(

Am − eyT)
i,j → 0 as m → ∞

(because 0 ≤ µ < 1), so that Am → eyT, and the lemma will thus follow.
[Proof of Claim 2: We induct on m:
Base case: For any i, j ∈ [n], we have(

A0 − eyT
)

i,j
=
(

A0
)

i,j︸ ︷︷ ︸
=(In)i,j
=δi,j

−yj = δi,j︸︷︷︸
∈{0,1}

− yj︸︷︷︸
∈[0,1]

(by (127))

∈ [−1, 1]

and therefore
∣∣∣(A0 − eyT)

i,j

∣∣∣ ≤ 1 = µ0. In other words, Claim 2 holds for m = 0.
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Induction step: Let p ∈ N. Assume (as the induction hypothesis) that Claim 2
holds for m = p. We must now show that Claim 2 also holds for m = p + 1.

Let
B := Ap − eyT and C := Ap+1 − eyT.

Our induction hypothesis says that Claim 2 holds for m = p. In other words, for
all i, j ∈ [n], we have

∣∣∣(Ap − eyT)
i,j

∣∣∣ ≤ µp. In other words, for all i, j ∈ [n], we have∣∣Bi,j
∣∣ ≤ µp (129)

(since B = Ap − eyT).
Our goal is to show that Claim 2 holds for m = p + 1. In other words, our goal is

to show that for all i, j ∈ [n], we have
∣∣∣(Ap+1 − eyT)

i,j

∣∣∣ ≤ µp+1. In other words, our

goal is to show that for all i, j ∈ [n], we have
∣∣Ci,j

∣∣ ≤ µp+1 (since C = Ap+1 − eyT).
Fix i, j ∈ [n]. Thus we must prove that

∣∣Ci,j
∣∣ ≤ µp+1.

From B = Ap − eyT, we obtain

AB = A
(

Ap − eyT
)
= AAp︸︷︷︸

=Ap+1

− Ae︸︷︷︸
=e

yT = Ap+1 − eyT = C.

Hence, C = AB, so that (by the definition of the product of two matrices we have)

Ci,j =
n

∑
k=1

Ai,kBk,j. (130)

For each m ∈N, we have
yT Am = yT

(indeed, this is easily proved by induction on m, using the fact that yT A = yT).
Applying this to m = p, we obtain yT Ap = yT.

Recall that B•,j denotes the j-th column of the matrix B. We have

yT B︸︷︷︸
=Ap−eyT

= yT
(

Ap − eyT
)
= yT Ap︸ ︷︷ ︸

=yT

− yTe︸︷︷︸
=1

yT = yT − yT = 0,

and thus yTB•,j = 0 (since yTB•,j is the j-th entry of the row vector yTB). Also, from
yTe = 1 6= 0, we obtain y 6= 0. Hence, Lemma 6.3.9 (applied to B•,j and Bk,j and
Ai,k instead of v and vk and ai) yields that there exists some proper subset K of [n]
such that ∣∣∣∣∣ n

∑
k=1

Ai,kBk,j

∣∣∣∣∣ ≤ ∑
k∈K

Ai,k
∣∣Bk,j

∣∣ . (131)
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Consider this K. Now, from (130), we obtain

∣∣Ci,j
∣∣ = ∣∣∣∣∣ n

∑
k=1

Ai,kBk,j

∣∣∣∣∣ ≤ ∑
k∈K

Ai,k
∣∣Bk,j

∣∣︸ ︷︷ ︸
≤µp

(by (129),
applied to k instead of i)

(by (131))

≤ ∑
k∈K

Ai,k︸ ︷︷ ︸
≤µ

(by Claim 1)

µp (since Ai,k ≥ 0 for all k)

≤ µµp = µp+1.

As we explained above, this completes the induction step. Thus, Claim 2 is proved.]

Finishing the proof of Lemma 6.3.10 is now easy: We have 0 ≤ µ < 1 and
therefore µm → 0 as m→ ∞. Thus, Claim 2 shows that for any i, j ∈ [n], we have(

Am − eyT
)

i,j
→ 0 as m→ ∞.

In other words, Am − eyT → 0 as m → ∞. In other words, Am → eyT as m → ∞.
This proves Lemma 6.3.10.

Next, we generalize Lemma 6.3.10 by replacing e by an arbitrary positive vector
x:

Lemma 6.3.11 (crucifix lemma, general case). Let A ∈ Rn×n satisfy A > 0. Let
x ∈ Rn satisfy Ax = x and x > 0. Let y ∈ Rn satisfy yT A = yT and y ≥ 0 and
yTx = 1. Then,

Am → xyT as m→ ∞.

Proof. We can easily reduce this to Lemma 6.3.10.
Indeed, write the vector x as x = (x1, x2, . . . , xn)

T. Thus, x1, x2, . . . , xn are positive
reals (since x > 0). Let

D := diag (x1, x2, . . . , xn) .

Thus, we easily obtain De = x. Moreover, the matrix D is diagonal, so that DT = D.
Furthermore, we have

D−1AD > 0

(since the (u, v)-th entry of the matrix D−1AD is x−1
u︸︷︷︸
>0

Au,v︸︷︷︸
>0

xv︸︷︷︸
>0

> 0 for each

u, v ∈ [n]) and
D−1ADe = e
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(since A De︸︷︷︸
=x

= Ax = x = De) and

(Dy)T︸ ︷︷ ︸
=yT DT=yT D
(since DT=D)

D−1AD = yT DD−1︸ ︷︷ ︸
=In

AD = yT A︸︷︷︸
=yT

D = yTD

and
(Dy)T = yT DT︸︷︷︸

=D

= yTD ≥ 0

(since y ≥ 0 and D ≥ 0) and

(Dy)T︸ ︷︷ ︸
=yT D

e = yT De︸︷︷︸
=x

= yTx = 1.

Hence, we can apply Lemma 6.3.10 to D−1AD and Dy instead of A and y. We thus
obtain that (

D−1AD
)m
→ e (Dy)T as m→ ∞.

Since we have
(

D−1AD
)m

= D−1AmD for each m ∈ N (in fact, this is essentially
the equality (30) we proved long ago), we can rewrite this as

D−1AmD → e (Dy)T as m→ ∞

Multiplying both sides by D from the left and by D−1 from the right, we can
transform this into

Am → De (Dy)T D−1 as m→ ∞.

In other words,
Am → xyT as m→ ∞

(since De︸︷︷︸
=x

(Dy)T︸ ︷︷ ︸
=yT D

D−1 = xyT DD−1︸ ︷︷ ︸
=In

= xyT). This proves Lemma 6.3.11.

Lemma 6.3.12. Let A ∈ Cn×n and B ∈ Cn×n be two matrices such that ρ (A) = 1
and rank B ≤ 1. Assume that

Am → B as m→ ∞. (132)

Then:

(a) The number 1 is an eigenvalue of A and has algebraic multiplicity 1 (and
therefore geometric multiplicity 1 as well).

(b) There is at most one 1-eigenvector x = (x1, x2, . . . , xn)
T ∈ Cn of A with

x1 + x2 + · · ·+ xn = 1.

(c) There is at most one vector y = (y1, y2, . . . , yn)
T ∈ Cn such that yT A = yT

and x1y1 + x2y2 + · · ·+ xnyn = 1.

(d) The only eigenvalue of A that has absolute value 1 is 1.
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Proof. We know that A has a Schur triangularization. Let (U, T) be a Schur trian-
gularization of A. Then, U ∈ Cn×n is unitary and T ∈ Cn×n is upper-triangular and
A = UTU∗. Since U is unitary, we have U∗ = U−1, so that A = UT U∗︸︷︷︸

=U−1

= UTU−1.

Moreover, Proposition 2.3.6 shows that the diagonal entries of T are the eigenval-
ues of A (with their algebraic multiplicities). Let λ1, λ2, . . . , λn be these diagonal
entries, in the order in which they appear on the diagonal of T. Thus, λ1, λ2, . . . , λn
are the eigenvalues of A.

For each m ∈N, we have

Am =
(

UTU−1
)m (

since A = UTU−1
)

= UTmU−1

(this is essentially the equality (30) we proved long ago). Hence, our assumption
(132) can be rewritten as follows:

UTmU−1 → B as m→ ∞. (133)

Thus, Tm converges to a limit (namely, to U−1BU) as m→ ∞. Therefore, each entry
of Tm converges to a limit as m → ∞. In particular, lim

m→∞
(Tm)i,i is well-defined for

each i ∈ [n]. However, since T is an upper-triangular matrix with diagonal entries
λ1, λ2, . . . , λn, its m-th power Tm (for each m ∈ N) is an upper-triangular matrix
with diagonal entries λm

1 , λm
2 , . . . , λm

n . In particular, we have (Tm)i,i = λm
i for each

i ∈ [n]. Therefore, lim
m→∞

λm
i is well-defined for each i ∈ [n] (since we have shown

that lim
m→∞

(Tm)i,i is well-defined for each i ∈ [n]). This shows that

|λi| < 1 or λi = 1 for each i ∈ [n] . (134)

If we had |λi| < 1 for each i ∈ [n], then we would have ρ (A) < 1 (since
λ1, λ2, . . . , λn are the eigenvalues of A); but this would contradict ρ (A) = 1. Hence,
we cannot have |λi| < 1 for each i ∈ [n]. According to (134), this shows that at
least one i ∈ [n] satisfies λi = 1. In other words, 1 is an eigenvalue of A (since
λ1, λ2, . . . , λn are the eigenvalues of A). Moreover, (134) shows that the only eigen-
value of A that has absolute value 1 is 1. This proves Lemma 6.3.12 (d).

Let k be the number of all i ∈ [n] that satisfy λi = 1. The matrix lim
m→∞

Tm is an
upper-triangular matrix whose diagonal entries are lim

m→∞
λm

1 , lim
m→∞

λm
2 , . . . , lim

m→∞
λm

n

(since each Tm is an upper-triangular matrix whose diagonal entries are λm
1 , λm

2 , . . . , λm
n ).

In view of (134), we conclude that exactly k of these diagonal entries are nonzero
(since |λi| < 1 entails lim

m→∞
λm

i = 0, whereas λi = 1 entails lim
m→∞

λm
i = lim

m→∞
1m = 1).

Therefore, the matrix lim
m→∞

Tm has rank ≥ k (since the rank of an upper-triangular

matrix is always ≥ to the number of its diagonal entries that are nonzero57). There-
fore, the matrix U

(
lim

m→∞
Tm
)

U−1 has rank ≥ k as well (since U is invertible, so

57This can be proved in several ways; for example, nonzero diagonal entries can be used to create
a nonzero principal minor.

January 4, 2022



Math 504 notes page 252

that rank
(

U
(

lim
m→∞

Tm
)

U−1
)

= rank
(

lim
m→∞

Tm
)

). In other words, the matrix B

has rank ≥ k (since (133) yields U
(

lim
m→∞

Tm
)

U−1 = B). In view of the assumption

rank B ≤ 1, this entails k ≤ 1. In other words, at most one i ∈ [n] satisfies λi = 1
(since k is the number of all i ∈ [n] that satisfy λi = 1). In other words, the alge-
braic multiplicity of the eigenvalue 1 of A is at most 1 (since λ1, λ2, . . . , λn are the
eigenvalues of A). Since this multiplicity is at least 1 (because we know that 1 is an
eigenvalue of A), we thus conclude that this multiplicity is 1. This proves Lemma
6.3.12 (a).

The geometric multiplicity of the eigenvalue 1 of A is therefore also 1. Hence,
the 1-eigenvectors x = (x1, x2, . . . , xn)

T ∈ Cn of A form a 1-dimensional vector
subspace of Cn. Thus, at most one of these 1-eigenvectors x satisfies x1 + x2 + · · ·+
xn = 1. This proves Lemma 6.3.12 (b).

The matrices A and AT have the same characteristic polynomial, and thus have
the same eigenvalues with the same algebraic multiplicities. Hence, the algebraic
multiplicity of the eigenvalue 1 of AT equals the algebraic multiplicity of the eigen-
value 1 of A. Since the latter multiplicity is 1, we thus conclude that the former is
1 as well. Hence, the geometric multiplicity of the eigenvalue 1 of AT must also
equal 1.

The vectors y = (y1, y2, . . . , yn)
T ∈ Cn satisfying yT A = yT are the 1-eigenvectors

of AT (since the equality yT A = yT is equivalent to ATy = y (because yT A =(
ATy

)T)). Hence, they form a 1-dimensional vector subspace of Cn (since the ge-
ometric multiplicity of the eigenvalue 1 of AT is 1). Thus, at most one of these
vectors y satisfies x1y1 + x2y2 + · · ·+ xnyn = 1. This proves Lemma 6.3.12 (c).

Proving Theorem 6.3.2 is now an easy matter of combining lemmas:

Proof of Theorem 6.3.2. (a) We have A > 0. Thus, all the more, we have Ai,i > 0 for
some i ∈ [n]. Hence, Corollary 6.2.6 (c) yields ρ (A) > 0. This proves Theorem 6.3.2
(a).

This also shows that the matrix
1

ρ (A)
A is well-defined. Moreover,

1
ρ (A)

A >

0 (since A > 0). The matrix
1

ρ (A)
A has the same eigenvectors as A (with the

same algebraic multiplicities), while the corresponding eigenvalues are those of A

multiplied by
1

ρ (A)
. Hence, if we replace A by

1
ρ (A)

A, then the claim of Theorem

6.3.2 does not substantially change (i.e., it gets replaced by an equivalent claim).

Thus, let us replace A by
1

ρ (A)
A. This replacement causes ρ (A) to become 1

(since ρ

(
1

ρ (A)
A
)
=

1
ρ (A)

ρ (A) = 1). Thus, we have ρ (A) = 1 now.

Next, we shall show that A has a positive 1-eigenvector. Indeed, from ρ (A) = 1,
we see that A has an eigenvalue λ ∈ C with |λ| = 1. Consider this λ. Pick any
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nonzero λ-eigenvector z = (z1, z2, . . . , zn)
T ∈ Cn of A. Thus, Az = λz. Moreover,

z 6= 0 and thus |z| 6= 0. Also, clearly, |z| ≥ 0.
From A > 0, we obtain A = |A|. Hence,

A︸︷︷︸
=|A|

|z| = |A| · |z| ≥

∣∣∣∣∣∣ Az︸︷︷︸
=λz

∣∣∣∣∣∣ (by Proposition 6.1.16 (a))

= |λz| = |λ|︸︷︷︸
=1

· |z| = |z| .

Thus, Corollary 6.2.17 (b) (applied to w = |z|) yields A |z| = |z| > 0. In other
words, |z| is a positive 1-eigenvector of A.

We have thus constructed a positive 1-eigenvector of A. The same argument
(applied to AT instead of A) lets us construct a positive 1-eigenvector of AT (since
A > 0 entails AT > 0, and since ρ

(
AT) = ρ (A) = 1). Let these two eigenvectors

be x and y (with x being the 1-eigenvector of A and y being the one of AT). Thus,
x ∈ Rn satisfies Ax = x and x > 0, whereas y ∈ Rn satisfies ATy = y and y > 0.

Write the vectors x and y as x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T.
By scaling x by an appropriately chosen real scalar58, we can achieve x1 + x2 +
· · ·+ xn = 1. So we WLOG assume that x1 + x2 + · · ·+ xn = 1.

Moreover, by scaling y by an appropriately chosen positive real scalar 59, we can
achieve yTx = 1 (without disturbing the properties ATy = y and y > 0). So we
WLOG assume that yTx = 1. In other words, x1y1 + x2y2 + · · ·+ xnyn = 1 (since
yTx = x1y1 + x2y2 + · · ·+ xnyn).

By taking transposes on both sides of the equality ATy = y, we obtain yT A = yT

(since
(

ATy
)T

= yT A). Thus, Lemma 6.3.11 yields

Am → xyT as m→ ∞. (135)

This proves Theorem 6.3.2 (e) (since
1

ρ (A)
A = A (because ρ (A) = 1)).

The matrix xyT has rank

rank
(

xyT
)
≤ rank x ≤ 1

(since x is a column vector). Hence, we can apply Lemma 6.3.12 to B = xyT

(because of (135)).
Lemma 6.3.12 (a) tells us that the number 1 is an eigenvalue of A and has al-

gebraic multiplicity 1 (and therefore geometric multiplicity 1 as well). In view of
ρ (A) = 1, this proves Theorem 6.3.2 (b).

58namely, by the scalar
1

x1 + x2 + · · ·+ xn
59Specifically, we must scale y by

1
yTx

(which is a well-defined positive real scalar, since x > 0 and

y > 0 entail yTx > 0).
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Lemma 6.3.12 (d) tells us that the only eigenvalue of A that has absolute value 1
is 1. In view of ρ (A) = 1, this proves Theorem 6.3.2 (f).

We already know that x = (x1, x2, . . . , xn)
T ∈ Cn is an 1-eigenvector of A with

x1 + x2 + · · ·+ xn = 1. Moreover, Lemma 6.3.12 (b) tells us that there is at most
one such 1-eigenvector; therefore, x is the only such 1-eigenvector. This proves
Theorem 6.3.2 (c) (since ρ (A) = 1, and since we also know that x is positive).

We already know that y = (y1, y2, . . . , yn)
T ∈ Cn is a vector such that yT A = yT

and x1y1 + x2y2 + · · ·+ xnyn = 1. Moreover, Lemma 6.3.12 (c) tells us that there is
at most one such vector; therefore, y is the only such vector. This proves Theorem
6.3.2 (c) (since ρ (A) = 1, and since we know that y is positive).

We shall now prove the Perron–Frobenius theorems.
[...]
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[GelAnd17] Răzvan Gelca, Titu Andreescu, Putnam and Beyond, 2nd edition,
Springer 2017.

January 4, 2022

https://doi.org/10.1007/978-3-662-57265-8
https://doi.org/10.1007/978-3-662-57265-8
https://bookstore.ams.org/xyz-13
https://bookstore.ams.org/xyz-13
https://bookstore.ams.org/xyz-6
https://bookstore.ams.org/xyz-6
http://web.math.ucsb.edu/~padraic/ucsb_2013_14/math108b_w2014/math108b_w2014.html
http://web.math.ucsb.edu/~padraic/ucsb_2013_14/math108b_w2014/math108b_w2014.html
http://libgen.rs/book/index.php?md5=3270565F6D0052635A1550883588204C
http://libgen.rs/book/index.php?md5=F0E3884F2EFB5C1F0B08054605192F6A
https://www.jstor.org/stable/10.4169/j.ctt19b9mbq
https://www.jstor.org/stable/10.4169/j.ctt19b9mbq
https://www.jstor.org/stable/10.4169/j.ctt19b9mbq
https://kconrad.math.uconn.edu/blurbs/
https://doi.org/10.1007/b138656
https://www.math.nyu.edu/faculty/edwardsh/eserrata.pdf
https://doi.org/10.1007/978-0-8176-4446-8
https://www.math.ucla.edu/~rse/algebra_book.pdf
https://www.cis.upenn.edu/~jean/gbooks/geomath.html
https://doi.org/10.13001/ela.2020.5055
https://doi.org/10.13001/ela.2020.5055
https://doi.org/10.1007/978-3-319-58988-6
https://doi.org/10.1007/978-3-319-58988-6


Math 504 notes page 256

[Goodma15] Frederick M. Goodman, Algebra: Abstract and Concrete, edition 2.6, 1
May 2015.
http://homepage.math.uiowa.edu/~goodman/algebrabook.dir/book.
2.6.pdf .

[Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 Jan-
uary 2019.
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift
when the project gets updated; for a “frozen” version whose num-
bering is guaranteed to match that in the citations above, see https:
//github.com/darijgr/detnotes/releases/tag/2019-01-10 .

[Grinbe19] Darij Grinberg, Notes on linear algebra, 4th December 2019.
http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf

[Grinbe19] Darij Grinberg, The trace Cayley-Hamilton theorem, 14 July 2019.
https://www.cip.ifi.lmu.de/~grinberg/algebra/trach.pdf

[Grinbe21] Darij Grinberg, An Introduction to Algebraic Combinatorics [Math 701,
Spring 2021 lecture notes], 10 September 2021.
https://www.cip.ifi.lmu.de/~grinberg/t/21s/lecs.pdf

[Heffer20] Jim Hefferon, Linear Algebra, 4th edition 2020.
http://joshua.smcvt.edu/linearalgebra

[Ho14] Law Ka Ho, Variations and Generalisations to the Rearrangement Inequality,
Mathematical Excalibur 19, Number 3, pp. 1–2, 4.

[HorJoh13] Roger A. Horn, Charles R. Johnson, Matrix analysis, Cambridge Uni-
versity Press, 2nd edition 2013.
See https://www.cambridge.org/us/files/7413/7180/9643/Errata_
HJ_Matrix_Analysis_2nd_ed.pdf and https://www.kth.se/social/
files/5707c3bef2765428eba786d3/errata.pdf for errata.

[Hung07] Pham Kim Hung, Secrets in Inequalities, volume 1, GIL 2007.

[Ivanov08] Nikolai V. Ivanov, Linear Recurrences, 17 January 2008.
https://nikolaivivanov.files.wordpress.com/2014/02/
ivanov2008arecurrence.pdf

[KDLM05] Zoran Kadelburg, Dusan Dukic, Milivoje Lukic and Ivan Matic, Inequal-
ities of Karamata, Schur and Muirhead, and some applications, The teaching
of mathematics VIII (2005), issue 1, pp. 31–45.

[Knapp16] Anthony W. Knapp, Basic Algebra, digital second edition 2016.
http://www.math.stonybrook.edu/~aknapp/download.html

January 4, 2022

http://homepage.math.uiowa.edu/~goodman/algebrabook.dir/book.2.6.pdf
http://homepage.math.uiowa.edu/~goodman/algebrabook.dir/book.2.6.pdf
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
https://github.com/darijgr/detnotes/releases/tag/2019-01-10
https://github.com/darijgr/detnotes/releases/tag/2019-01-10
http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
https://www.cip.ifi.lmu.de/~grinberg/algebra/trach.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/21s/lecs.pdf
http://joshua.smcvt.edu/linearalgebra
https://www.math.hkust.edu.hk/excalibur/v19_n3.pdf
https://www.math.hkust.edu.hk/excalibur/v19_n3.pdf
http://www.cse.zju.edu.cn/eclass/attachments/2015-10/01-1446086008-145421.pdf
http://www.cse.zju.edu.cn/eclass/attachments/2015-10/01-1446086008-145421.pdf
https://www.cambridge.org/us/files/7413/7180/9643/Errata_HJ_Matrix_Analysis_2nd_ed.pdf
https://www.cambridge.org/us/files/7413/7180/9643/Errata_HJ_Matrix_Analysis_2nd_ed.pdf
https://www.kth.se/social/files/5707c3bef2765428eba786d3/errata.pdf
https://www.kth.se/social/files/5707c3bef2765428eba786d3/errata.pdf
http://refkol.ro/matek/mathbooks/!Books!/Secrets in Inequalities (volume 1) Pham Kim Hung.pdf
https://nikolaivivanov.files.wordpress.com/2014/02/ivanov2008arecurrence.pdf
https://nikolaivivanov.files.wordpress.com/2014/02/ivanov2008arecurrence.pdf
http://elib.mi.sanu.ac.rs/files/journals/tm/14/tm813.pdf
http://elib.mi.sanu.ac.rs/files/journals/tm/14/tm813.pdf
http://elib.mi.sanu.ac.rs/files/journals/tm/14/tm813.pdf
http://www.math.stonybrook.edu/~aknapp/download.html


Math 504 notes page 257

[Korner20] T. W. Körner, Where Do Numbers Come From?, Cambridge University
Press 2020.
See https://web.archive.org/web/20190813160507/https:
//www.dpmms.cam.ac.uk/~twk/Number.pdf for a preprint.
See https://www.dpmms.cam.ac.uk/~twk/ for errata and solutions.

[LaNaSc16] Isaiah Lankham, Bruno Nachtergaele, Anne Schilling, Linear Algebra
As an Introduction to Abstract Mathematics, 2016.
https://www.math.ucdavis.edu/~anne/linear_algebra/mat67_
course_notes.pdf

[Li99] Kin-Yin Li, Rearrangement Inequality, Mathematical Excalibur 4, Number
3, pp. 1–2, 4.

[LibLav15] Leo Liberti, Carlile Lavor, Six mathematical gems from the history of dis-
tance geometry, International Transactions in Operational Research 2015.
https://doi.org/10.1111/itor.12170

[Loehr14] Nicholas Loehr, Advanced Linear Algebra, CRC Press 2014.

[MaOlAr11] Albert W. Marshall, Ingram Olkin, Barry C. Arnold, Inequalities: The-
ory of Majorization and Its Applications, 2nd Edition, Springer 2011.

[Markus83] Aleksei Ivanovich Markushevich, Recursion sequences, Mir Publishers,
Moscow, 2nd printing 1983.

[Mate16] Attila Máté, The Cayley-Hamilton Theorem, version 28 March 2016.
http://www.sci.brooklyn.cuny.edu/~mate/misc/cayley_hamilton.
pdf

[Melian01] María Victoria Melián, Linear recurrence relations with constant coeffi-
cients, 9 April 2001.
http://matematicas.uam.es/~mavi.melian/CURSO_15_16/web_
Discreta/recurrence.pdf

[Nathan21] Melvyn B. Nathanson, The Muirhead-Rado inequality, 1 Vector majoriza-
tion and the permutohedron, arXiv:2109.01746v1.

[OmClVi11] Kevin C. O’Meara, John Clark, Charles I. Vinsonhaler, Advanced Topics
in Linear Algebra: Weaving Matrix Problems through the Weyr Form, Oxford
University Press 2011.
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