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5. Math 235 Fall 2021, Worksheet 5: p-valuations

On this worksheet, we will see how prime numbers and p-valuations can help solve
problems in number theory.

As before, N means the set {0, 1, 2, . . .}.

5.1. Primes

We recall that an integer p is said to be prime if it is greater than 1 and its only pos-
itive divisors are 1 and p. Thus, the first 10 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
An integer that is prime is also called a prime number or, for short, a prime.

The following properties of primes are well-known (see, e.g., [Grinbe20, §9.1.2
and §9.1.3]):1

Proposition 5.1.1. Each integer n > 1 has at least one prime divisor.

Proposition 5.1.2. There are infinitely many primes.

Proposition 5.1.3. Let p be a prime. Then, each i ∈ {1, 2, . . . , p − 1} is coprime
to p.

Proposition 5.1.4. Let p be a prime. Let a ∈ Z. Then, we have either p | a, or the
integer p is coprime to a.

Proposition 5.1.5. Let p be a prime. Let a, b ∈ Z satisfy p | ab. Then, p | a or
p | b.

A crucial property of primes is that they are the “multiplicative building blocks”
of all positive integers. In other words:

Theorem 5.1.6 (Fundamental Theorem of Arithmetic). Let n be a positive integer.
Then, n can be represented as a product of primes. Moreover, this representation
is unique up to the order of the factors.

For instance, the integer 200 can be represented as a product of primes as follows:

200 = 2 · 2 · 2 · 5 · 5.

Of course, the factors in this product can be reordered at will (e.g., we can get
200 = 2 · 5 · 2 · 5 · 2). Theorem 5.1.6 yields that except for such reordering, there is
no other way to write 200 as a product of primes.

Note that Theorem 5.1.6 is perfectly valid for n = 1; in this case, the product is
empty (and thus equals 1 by definition).

1Recall that an integer a is said to be coprime to an integer b if gcd (a, b) = 1.
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Theorem 5.1.6 is [Grinbe20, Theorem 9.2.5]; its proof can be found in any text on
elementary number theory (and many others2). Alternatively, you can treat it as an
exercise (hint: use Proposition 5.1.1 for the existence part, and Proposition 5.1.5 for
the uniqueness).

The representation of a positive integer n as a product of primes is called the
prime factorization of n. (The definite article is more-or-less justified by the unique-
ness part of Theorem 5.1.6.)

5.2. p-valuations

We shall now introduce the notion of the “p-valuation” of an integer n (where p
is a prime). Roughly speaking, this is counting how often n can be divided by p
without remainder, or, equivalently, how often p appears in the prime factorization
of n (when n is positive). Here is the formal definition:

Definition 5.2.1. Let p be a prime.

(a) Let n be a nonzero integer. Then, vp (n) shall denote the largest m ∈ N such
that pm | n. This is well-defined (see [Grinbe19, Lemma 2.13.22] for a detailed
proof). This nonnegative integer vp (n) will be called the p-valuation (or the p-adic
valuation) of n.

(b) We extend this definition of vp (n) to the case of n = 0 by setting vp (0) :=
∞. Here, ∞ is a new symbol (“positive infinity”) that is supposed to model an
“infinitely large number”; to some extent, we can do basic arithmetic with it
(using the rules k + ∞ = ∞ + k = ∞ and k < ∞ for all integers k, as well as
∞ + ∞ = ∞), as long as we don’t involve it in subtraction, multiplication or
division. (See [Grinbe20, Definition 9.3.1 (b)] for the details of what can and
what cannot be done with ∞.)

Example 5.2.2. (a) We have v3 (18) = 2. Indeed, 2 is the largest m ∈ N such that
3m | 18 (because 32 | 18 but 33 ∤ 18).

(b) We have v3 (14) = 0. Indeed, 0 is the largest m ∈ N such that 3m | 14
(because 30 | 14 but 31 ∤ 14).

(c) We have v3 (51) = 1 and v3 (54) = 3.

(d) We have v3 (0) = ∞ (by Definition 5.2.1 (b)).

Let us now collect some properties of p-valuations. Almost all of them are easy
to prove, and all the proofs can be found in [Grinbe20, §9.3.1 and §9.3.2]:

Lemma 5.2.3. Let p be a prime. Let i ∈ N. Let n ∈ Z. Then, pi | n if and only if
vp (n) ≥ i.

2In particular, it appears in [Grinbe20, §9.2].
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Corollary 5.2.4. Let p be a prime. Let n ∈ Z. Then, vp (n) = 0 if and only if
p ∤ n.

Theorem 5.2.5. Let p be a prime.

(a) We have vp (ab) = vp (a) + vp (b) for any two integers a and b.

(b) We have vp (a + b) ≥ min
{

vp (a) , vp (b)
}

for any two integers a and b.

(c) We have vp (1) = 0.

(d) We have vp (q) =

{
1, if q = p;
0, if q ̸= p

for any prime q.

Corollary 5.2.6. Let p be a prime. Let a1, a2, . . . , ak be k integers. Then,
vp (a1a2 · · · ak) = vp (a1) + vp (a2) + · · ·+ vp (ak).

Proposition 5.2.7. Let p be a prime. Let n ∈ Z. Then, vp (|n|) = vp (n).

Corollary 5.2.8. Let p be a prime. Let a ∈ Z and k ∈ N. Then, vp
(
ak) = kvp (a).

Proposition 5.2.9. Let n be a positive integer. Let n = a1a2 · · · ak be a prime
factorization of n (where a1, a2, . . . , ak are primes). Let p be a prime. Then,

(the number of i ∈ {1, 2, . . . , k} such that ai = p) = vp (n) .

Of course, Proposition 5.2.9 just repeats what we have said just before Definition
5.2.1: The p-valuation of n is the number of times that p appears in the prime
factorization of n.

Thanks to Proposition 5.2.9, we can rewrite the prime factorization of a positive
integer in an “explicit” form, at least if one considers an infinite product that in-
volves p-valuations to be explicit. The infinite product is not as scary as it sounds:
It is an infinite product that has only finitely many factors different from 1. Such a
product is analogous to an infinite sum that has only finitely many addends differ-
ent from 0; it is always well-defined, because a factor that equals 1 does not affect
the product (just like an addend that equals 0 does not affect the sum).

Theorem 5.2.10 (canonical factorization, or explicit prime factorization). Let n be
a nonzero integer. Then:

(a) We have vp (n) = 0 for every prime p > |n|. (Note that “for every prime
p > |n|” is shorthand for “for every prime p satisfying p > |n|”.)

(b) The product ∏
p prime

pvp(n) has only finitely many factors different from 1,

and thus is well-defined.
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(c) We have
|n| = ∏

p prime
pvp(n).

(d) If n is positive, then
n = ∏

p prime
pvp(n).

The expression n = ∏
p prime

pvp(n) in Theorem 5.2.10 (d) is called the canonical

factorization of n. For example, the canonical factorization of 60 is

60 = 22 · 31 · 51 · 70 · 110 · 130 · 170 · · · ·︸ ︷︷ ︸
all exponents here are 0’s,
so all these factors equal 1

.

Of course, most people would write this as 60 = 22 · 3 · 5 (omitting exponents that
are 1, and omitting factors that are 1).

Theorem 5.2.10 is [Grinbe20, Theorem 9.3.17]. Its majestic look should not dis-
tract from the fact that it is an easy consequence of Proposition 5.2.9 and Theo-
rem 5.1.6. It is nevertheless quite useful. Some of its consequences (all proved in
[Grinbe20, §9.3.3]) are the following:

Proposition 5.2.11. Let n and m be integers. Then, n | m if and only if each prime
p satisfies vp (n) ≤ vp (m).

Corollary 5.2.12. Let n and m be two integers. Assume that

vp (n) = vp (m) for every prime p. (1)

(a) Then, |n| = |m|.
(b) If n and m are nonnegative, then n = m.

Corollary 5.2.13. Let n be a nonzero integer. Let a and b be two integers. Assume
that

a ≡ b mod pvp(n) for every prime p. (2)

Then, a ≡ b mod n.

Corollary 5.2.14. For each prime p, let bp be a nonnegative integer. Assume that
only finitely many primes p satisfy bp ̸= 0. Let n = ∏

p prime
pbp . Then,

vq (n) = bq for each prime q.
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Proposition 5.2.11 shows that divisibilities between integers can be proved “one
prime at a time”. Corollary 5.2.13 says the same about congruences (not surpris-
ingly, since a congruence a ≡ b mod n is just a divisibility n | a − b).

Corollary 5.2.12 (b) shows that a nonnegative integer is uniquely determined by
its p-valuations for all primes p. Let us use the above to thus determine the gcd
and the lcm of several integers through their p-valuations:3

Proposition 5.2.15. Let n1, n2, . . . , nk be finitely many integers, with k > 0. Let p
be a prime. Then:

(a) We have

vp (gcd (n1, n2, . . . , nk)) = min
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

.

(b) We have

vp (lcm (n1, n2, . . . , nk)) = max
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

.

You might know this proposition already, since it is simply the way to compute
gcds and lcms using prime factorizations4. This method of computing gcds and
lcms is not the fastest one, since it relies on prime factorizations5; but it is helpful
for a theoretical understanding of gcds and lcms.

A proof of Proposition 5.2.15 is given in the appendix (Section 5.6).

5.3. Example problems

We shall now see some applications of p-valuations.

Exercise 5.3.1. Let a, b, c be three integers.

(a) Prove that gcd (a, lcm (b, c)) = lcm (gcd (a, b) , gcd (a, c)).

(b) Prove that lcm (a, gcd (b, c)) = gcd (lcm (a, b) , lcm (a, c)).

Solution idea. Both parts of this exercise are known results about gcds and lcms
(known as the distributivity laws for gcd and lcm), and can be solved without any
recourse to prime numbers and p-valuations (see, e.g., [Grinbe19, Second solution

3We recall that lcm (n1, n2, . . . , nk) denotes the lowest common multiple (aka least common multi-
ple) of k integers n1, n2, . . . , nk.

4Namely: For gcd (n1, n2, . . . , nk), you take each prime to the smallest of the exponents with which
it appears in the prime factorizations of n1, n2, . . . , nk. For lcm (n1, n2, . . . , nk), you take each
prime to the largest of the exponents with which it appears in the prime factorizations of
n1, n2, . . . , nk.

5Using the Euclidean algorithm to compute gcds (and then the formula gcd (a, b) · lcm (a, b) = |ab|
to compute lcms using gcds) is faster. (Beware: It is not true that gcd (a, b, c) · lcm (a, b, c) = |abc|.
Instead, lcms of more than 2 numbers must be computed by iteration: for instance, lcm (a, b, c) =
lcm (a, lcm (b, c)).)
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to Exercise 2.13.11] for such solutions). However, by working “one prime at a time”
using p-valuations (and Proposition 5.2.15 in particular), they become straightfor-
ward. Here is how (see [Grinbe19, First solution to Exercise 2.13.11] for details):

(a) We need to prove that the two numbers gcd (a, lcm (b, c)) and
lcm (gcd (a, b) , gcd (a, c)) are equal. Since these two numbers are nonnegative in-
tegers, it suffices (by Corollary 5.2.12 (b)) to show that vp (gcd (a, lcm (b, c))) =
vp (lcm (gcd (a, b) , gcd (a, c))) for every prime p.

So let us do this now. Let p be a prime. Let x := vp (a) and y := vp (b) and
z := vp (c). Note that x, y, z ∈ N ∪ {∞}. Now, Proposition 5.2.15 (a) yields

vp (gcd (a, lcm (b, c))) = min


vp (a) , vp (lcm (b, c))︸ ︷︷ ︸

=max{vp(b),vp(c)}
(by Proposition 5.2.15 (b))


= min

vp (a)︸ ︷︷ ︸
=x

, max

vp (b)︸ ︷︷ ︸
=y

, vp (c)︸ ︷︷ ︸
=z




= min {x, max {y, z}} .

On the other hand, Proposition 5.2.15 (b) yields

vp (lcm (gcd (a, b) , gcd (a, c))) = max


vp (gcd (a, b))︸ ︷︷ ︸
=min{vp(a),vp(b)}

(by Proposition 5.2.15 (a))

, vp (gcd (a, c))︸ ︷︷ ︸
=min{vp(a),vp(c)}

(by Proposition 5.2.15 (a))


= max

min

vp (a)︸ ︷︷ ︸
=x

, vp (b)︸ ︷︷ ︸
=y

 , min

vp (a)︸ ︷︷ ︸
=x

, vp (c)︸ ︷︷ ︸
=z




= max {min {x, y} , min {x, z}} .

Our goal is to show that the left hand sides of these two equalities are equal. Of
course, it suffices to show that the right hand sides are equal, i.e., that we have

min {x, max {y, z}} = max {min {x, y} , min {x, z}} . (3)

(We note that the equality (3) is not merely sufficient, but also necessary for Exercise
5.3.1 (a) to hold, because x, y, z can take any values in N ∪ {∞}. Thus, there is no
risk that we have run into a dead end here.)

How do we prove an equality like (3)? The expert answer would be “this is a
tropical polynomial identity” (and such identities can be checked mechanically),
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but in our case there is a much easier method: The three “numbers” x, y, z ∈
N∪ {∞} (we are putting the word “numbers” in scare quotes because we allow ∞,
but this does not cause any problems) must be arranged in one of the six orders

x ≤ y ≤ z, x ≤ z ≤ y, y ≤ x ≤ z,
y ≤ z ≤ x, z ≤ x ≤ y, z ≤ y ≤ x,

which subdivides the problem into six possible cases; in each of these six cases,
we can explicitly compute and compare the two sides of (3). Here is a table of the
results:

case min {x, max {y, z}} max {min {x, y} , min {x, z}}

x ≤ y ≤ z x x

x ≤ z ≤ y x x

y ≤ x ≤ z x x

y ≤ z ≤ x z z

z ≤ x ≤ y x x

z ≤ y ≤ x y y

.

In each case, we see that min {x, max {y, z}} and max {min {x, y} , min {x, z}}
simplify to the same result, so that (3) follows. As explained above, this entails
that

vp (gcd (a, lcm (b, c))) = vp (lcm (gcd (a, b) , gcd (a, c))) .

Forget that we fixed p. We thus have shown that

vp (gcd (a, lcm (b, c))) = vp (lcm (gcd (a, b) , gcd (a, c)))

holds for each prime p. According to Corollary 5.2.12 (b), this entails that we have
gcd (a, lcm (b, c)) = lcm (gcd (a, b) , gcd (a, c)). Thus, Exercise 5.3.1 (a) is solved.

(Incidentally, there is an alternative way of proving (3), without analyzing all six
cases. Indeed, we can WLOG assume that y ≤ z, since y and z play symmetric
roles in (3). Assuming this, we can easily see that min {x, y} ≤ min {x, z}, so that
max {min {x, y} , min {x, z}} = min {x, z}. Thus, (3) rewrites as min {x, max {y, z}} =
min {x, z}. However, this is clear, since y ≤ z also implies max {y, z} = z. This
proof of (3) is short and slick, but our above proof has the advantage of following
a surefire strategy.)

(b) This is analogous to our above solution to Exercise 5.3.1 (a), except that gcd
and lcm trade places, as do min and max. Instead of (3), we now need to prove the
equality

max {x, min {y, z}} = min {max {x, y} , max {x, z}} .

We could again prove this by building a table; alternatively, we could obtain this
by applying (3) to −x, −y and −z instead of x, y and z (because min {−u,−v} =
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−max {u, v} and max {−u,−v} = −min {u, v} for any reals u, v). (Now, of course,
we need a symbol −∞.) This solves Exercise 5.3.1 (b).

The following exercise generalizes the fact that
√

2 is irrational (why?):

Exercise 5.3.2. Let k be a positive integer. Let w be a rational number such that
wk is an integer. Prove that w is an integer.

Solution idea. (See [Grinbe20, Exercise 9.3.2] for details.) If w = 0, then this is
obvious. Thus, we WLOG assume that w ̸= 0.

The number w is rational. Thus, we can write w in the form w = m/n for some
integers m and n with n ̸= 0. Consider these m and n. Note that m = nw (since
w = m/n) and thus m ̸= 0 (since n ̸= 0 and w ̸= 0).

From w = m/n, we obtain wk = (m/n)k = mk/nk. Hence, mk/nk is an integer
(since wk is an integer). Thus, nk | mk.

However, Proposition 5.2.11 (applied to nk and mk instead of n and m) shows
that nk | mk if and only if each prime p satisfies vp

(
nk) ≤ vp

(
mk). Since we have

nk | mk, we thus conclude that

each prime p satisfies vp

(
nk
)
≤ vp

(
mk
)

. (4)

Now, let p be a prime. Then, vp (n) and vp (m) are integers (since n ̸= 0 and
m ̸= 0). Corollary 5.2.8 yields vp

(
nk) = kvp (n) and vp

(
mk) = kvp (m). Hence,

kvp (n) = vp

(
nk
)
≤ vp

(
mk
)

(by (4))

= kvp (m) .

Dividing this inequality by k, we obtain vp (n) ≤ vp (m) (since k is positive).
Forget that we fixed p. Thus, we have shown that each prime p satisfies vp (n) ≤

vp (m). According to Proposition 5.2.11, this entails that n | m. Hence, w is an
integer (since w = m/n). This solves Exercise 5.3.2.

Exercise 5.3.3. Let n be a positive integer.

(a) Prove that

(the number of positive divisors of n) = ∏
p prime

(
vp (n) + 1

)
.

(The product on the right hand side is infinite, but it is well-defined, since only
finitely many of its factors differ from 1.)

(b) Prove that the number of positive divisors of n is even if and only if n is
not a perfect square.

(A perfect square means the square of an integer.)
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Solution idea. (a) (See [Grinbe19, Proposition 2.18.1 (b)] for details.) Let n = 2α3β5γ · · ·
be the canonical factorization of n; thus, α = v2 (n) and β = v3 (n) and γ = v5 (n)
and so on.6 Hence, ∏

p prime

(
vp (n) + 1

)
= (α + 1) (β + 1) (γ + 1) · · · . Thus, we must

prove that

(the number of positive divisors of n) = (α + 1) (β + 1) (γ + 1) · · · . (5)

Using Proposition 5.2.11, we can easily see that any positive divisor of n has the
form 2α′3β′5γ′ · · · for some sequence7(

α′, β′, γ′, . . .
)
∈ {0, 1, . . . , α} × {0, 1, . . . , β} × {0, 1, . . . , γ} × · · ·

(that is, for some α′ ∈ {0, 1, . . . , α} and some β′ ∈ {0, 1, . . . , β} and some γ′ ∈
{0, 1, . . . , γ} and so on). Moreover, any choice of sequence(

α′, β′, γ′, . . .
)
∈ {0, 1, . . . , α} × {0, 1, . . . , β} × {0, 1, . . . , γ} × · · ·

gives a different positive divisor 2α′3β′5γ′ · · · of n (since the prime factorization of
a positive integer is unique). Thus, we have found a bijection8 from the set

{0, 1, . . . , α} × {0, 1, . . . , β} × {0, 1, . . . , γ} × · · ·

to the set of all positive divisors of n. Therefore, the bijection principle9 yields

(the number of positive divisors of n)
= |{0, 1, . . . , α} × {0, 1, . . . , β} × {0, 1, . . . , γ} × · · · |
= |{0, 1, . . . , α}|︸ ︷︷ ︸

=α+1

· |{0, 1, . . . , β}|︸ ︷︷ ︸
=β+1

· |{0, 1, . . . , γ}|︸ ︷︷ ︸
=γ+1

· · · ·

 by the infinite product rule, which says
that |A1 × A2 × A3 × · · · | = |A1| · |A2| · |A3| · · · ·

for any sets A1, A2, A3, . . .


= (α + 1) (β + 1) (γ + 1) · · · .

This proves (5). Thus, Exercise 5.3.3 (a) is solved.

(b) This can be proved in a nice combinatorial way (see [Grinbe20, solution to
Exercise 3.8.3]), but let us derive it from part (a) instead. Indeed, we have the

6The pedantic reader should imagine that the Greek alphabet is infinite, so that there is one letter
for each prime.

7We are using the Cartesian product of infinitely many sets here. To recall: If A1, A2, A3, . . . are
infinitely many sets, then A1 × A2 × A3 × · · · means the set of all sequences (a1, a2, a3, . . .) with
a1 ∈ A1 and a2 ∈ A2 and a3 ∈ A3 and so on.

8i.e., bijective map
9The bijection principle says that if there is a bijection from a set X to a set Y, then |X| = |Y|.
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following chain of logical equivalences:

(the number of positive divisors of n is even)

⇐⇒
(

∏
p prime

(
vp (n) + 1

)
is even

)
(by Exercise 5.3.3 (a))

⇐⇒
(
vp (n) + 1 is even for at least one prime p

)(
since a product of integers is even if and only if

at least one of its factors is even

)
⇐⇒

(
vp (n) is odd for at least one prime p

)
⇐⇒ (n is not a perfect square) .

The last “⇐⇒” arrow here might need some justification. It is easier to prove the
contrapositive – i.e., to prove the equivalence(

vp (n) is even for all primes p
)
⇐⇒ (n is a perfect square) .

The “=⇒” direction of this equivalence follows from Theorem 5.2.10 (d), whereas
the “⇐=” direction follows from Corollary 5.2.8. (Convince yourself of all of this!)

In the next exercise, we will use the notation [j] for the set {1, 2, . . . , j} whenever
j ∈ N.

Exercise 5.3.4. Let n and u be positive integers. Let a1, a2, . . . , au be any integers.
Set au+1 = a1. Assume that

ai | an
i+1 for each i ∈ [u] .

Set m = nu−1 + nu−2 + · · ·+ n0. Prove that

a1a2 · · · au | (a1 + a2 + · · ·+ au)
m .

Solution idea. In view of Proposition 5.2.11, it suffices to show that each prime p
satisfies

vp (a1a2 · · · au) ≤ vp
(
(a1 + a2 + · · ·+ au)

m) .

So let p be a prime. Let

ki := vp (ai) for each i ∈ [u + 1] .

Note that ku+1 = k1, since au+1 = a1.
We WLOG assume that the smallest of the u “numbers”10 k1, k2, . . . , ku is ku.

(This is a valid WLOG assumption, since we can cyclically rotate our u integers

10The word “numbers” is in scare quotes, since some of them can be ∞.
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a1, a2, . . . , au without changing the exercise11; and when we do rotate them, their
p-valuations k1, k2, . . . , ku are rotated along with them.)

For each i ∈ [u], we have ai | an
i+1 (by assumption) and thus (by Proposition 5.2.11

again) vp (ai) ≤ vp
(
an

i+1
)
= nvp (ai+1) (by Corollary 5.2.8). In other words,

ki ≤ nki+1 for each i ∈ [u] (6)

(since ki = vp (ai) and ki+1 = vp (ai+1)). This quickly entails

ku−i ≤ niku for each i ∈ {0, 1, . . . , u − 1} (7)

(indeed, check this by induction on i). Now, Corollary 5.2.6 yields

vp (a1a2 · · · au) = vp (a1) + vp (a2) + · · ·+ vp (au) = k1 + k2 + · · ·+ ku =
u−1

∑
i=0

ku−i︸︷︷︸
≤niku

(by (7))

≤
u−1

∑
i=0

niku =
(

nu−1 + nu−2 + · · ·+ n0
)

︸ ︷︷ ︸
=m

ku

= mku. (8)

On the other hand, we claim that vp
(
(a1 + a2 + · · ·+ au)

m) ≥ mku. The easiest
way to prove this is probably the following: Each i ∈ [u] satisfies vp (ai) = ki ≥
ku (since ku is the smallest of the u numbers k1, k2, . . . , ku). In other words, each
of the u integers a1, a2, . . . , au has p-valuation ≥ ku, and thus is divisible by pku .
Hence, the sum a1 + a2 + · · ·+ au of these u integers is also divisible by pku . Thus,
vp (a1 + a2 + · · ·+ au) ≥ ku. Now, Corollary 5.2.8 yields

vp
(
(a1 + a2 + · · ·+ au)

m) = m vp (a1 + a2 + · · ·+ au)︸ ︷︷ ︸
≥ku

≥ mku.

Combining this with (8), we obtain vp (a1a2 · · · au) ≤ vp
(
(a1 + a2 + · · ·+ au)

m),
which is precisely what we wanted to prove.

The p-valuation of a factorial is particularly useful, as factorials often end up
involved in divisibilities. Here is an “explicit” formula ([Grinbe20, Theorem 9.3.25],
or, in an equivalent form, [Grinbe19, Exercise 2.17.2 (c)]):12

11i.e., replace a1, a2, . . . , au−1, au by a2, a3, . . . , au, a1, respectively
12Recall: If r is any real number, then ⌊r⌋ is defined to be the largest integer that is ≤ r. This integer

⌊r⌋ is called the floor of r. Equivalently, ⌊r⌋ can be described as the unique integer z satisfying
z ≤ r < z + 1. For instance, ⌊2.2⌋ = ⌊2.8⌋ = ⌊2⌋ = 2 and ⌊−3.1⌋ = ⌊−π⌋ = ⌊−4⌋ = −4.
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Theorem 5.3.1 (de Polignac’s formula). Let p be a prime. Let n ∈ N. Then,

vp (n!) = ∑
i≥1

⌊
n
pi

⌋
.

(The summation sign “ ∑
i≥1

” is shorthand for “ ∑
i∈{1,2,3,...}

”. The sum ∑
i≥1

⌊
n
pi

⌋
in this

equality is well-defined, since it has only finitely many nonzero addends.)

Example 5.3.2. Applying Theorem 5.3.1 to n = 42 and p = 5, we obtain

v5 (42!) = ∑
i≥1

⌊
42
5i

⌋
=

⌊
42
51

⌋
︸ ︷︷ ︸

=⌊8.4⌋=8

+

⌊
42
52

⌋
︸ ︷︷ ︸

=⌊1.68⌋=1

+

⌊
42
53

⌋
︸ ︷︷ ︸

=⌊0.336⌋=0

+

⌊
42
54

⌋
︸ ︷︷ ︸
=0

+

⌊
42
55

⌋
︸ ︷︷ ︸
=0

+ · · ·

= 8 + 1 + 0 + 0 + 0 + · · · = 9.

Theorem 5.3.1 is known as de Polignac’s formula or Legendre’s formula. Here is an
outline of a proof (first in an informal way, then formalized):

Proof of Theorem 5.3.1 (sketched). Classically, this is shown by expanding n! as the
product 1 · 2 · · · · · n and counting “how many ps come from each factor of this
product”. To wit, precisely ⌊n/p⌋ factors of the product 1 · 2 · · · · · n are multiples
of p (namely, p, 2p, 3p, . . . , ⌊n/p⌋ p), so that the product is divisible by p⌊n/p⌋. Thus,
its p-valuation is at least ⌊n/p⌋. However, this undercounts the p-valuation of this
product, since some of the multiples of p are actually multiples of p2, and thus
contribute 2 rather than 1 to its p-valuation13. Thus, we need to refine our tally
⌊n/p⌋ by adding the number of multiples of p2 that appear in this product. This
number is

⌊
n/p2⌋. Thus, the p-valuation of our product is at least ⌊n/p⌋+

⌊
n/p2⌋.

But we are still undercounting the p-valuation, since some of the multiples of p2 are
actually multiples of p3 and thus contribute 3 rather than 2. So we need to refine
our tally again, and this process goes on indefinitely until all possible powers of
p are dealt with. As a result, we conclude that the p-valuation of the product
1 · 2 · · · · · n is

⌊n/p⌋+
⌊

n/p2
⌋
+
⌊

n/p3
⌋
+ · · · = ∑

i≥1

⌊
n
pi

⌋
.

But this is precisely the claim of Theorem 5.3.1.

This argument can be made more formal by using a certain neat piece of notation
known as the Iverson bracket notation. To wit, if A is any logical statement, then we

13We are tacitly using Corollary 5.2.6 here, which lets us compute the p-valuation of a product by
adding together the p-valuations of its factors.
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define the truth value of A to be the integer

[A] :=

{
1, if A is true;
0, if A is false.

For example, [2 + 2 = 4] = 1 but [2 + 2 = 5] = 0.
Now, it is easy to see that each positive integer k satisfies⌊n

k

⌋
=

n

∑
m=1

[k | m] . (9)

(Indeed, the right hand side of this equality is a sum of 0’s and 1’s, and it has a 1
for each m ∈ {1, 2, . . . , n} that is a multiple of k. Thus, the total value of this sum is
the number of multiples of k that belong to {1, 2, . . . , n}. But this number is easily
seen to be

⌊n
k

⌋
, which is the left hand side.)

On the other hand, each positive integer m satisfies

vp (m) = ∑
i≥1

[
pi | m

]
. (10)

(Indeed, the right hand side is a sum of 0’s and 1’s, and it has a 1 for each i ∈
{1, 2, 3, . . .} that satisfies pi | m. However, the number of such i’s is vp (m), because
these i’s are precisely 1, 2, . . . , vp (m).)

Now, all that remains to be done is a simple computation: From n! = 1 · 2 · · · · · n,
we obtain

vp (n!) = vp (1 · 2 · · · · · n) = vp (1) + vp (2) + · · ·+ vp (n) (by Corollary 5.2.6)

=
n

∑
m=1

vp (m)︸ ︷︷ ︸
= ∑

i≥1
[pi|m]

(by (10))

=
n

∑
m=1

∑
i≥1︸ ︷︷ ︸

= ∑
i≥1

n
∑

m=1

[
pi | m

]
= ∑

i≥1

n

∑
m=1

[
pi | m

]
︸ ︷︷ ︸

=

⌊ n
pi

⌋
(by (9), applied to k=pi)

= ∑
i≥1

⌊
n
pi

⌋
.

This proves Theorem 5.3.1.

Here is one of many applications of de Polignac’s formula (see [Grinbe20, §9.3]
for more):

Exercise 5.3.5. Let n, a, b ∈ N.

(a) Prove that
(na)! (nb)!

a!b! (a + b)!n−1 is an integer.

(b) Assume that n > 0 and (a, b) ̸= (0, 0). Prove that the integer
(na)! (nb)!

a!b! (a + b)!n−1 is divisible by n.
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Solution idea. (a) We assume that n > 0. (The proof in the case when n = 0 is
similar, with minor changes.14) From n > 0, we obtain n ≥ 1, so that n − 1 ∈ N.
Hence, (a + b)!n−1 is an integer.

We must show that
(na)! (nb)!

a!b! (a + b)!n−1 is an integer. In other words, we must

show that a!b! (a + b)!n−1 | (na)! (nb)!. Because of Proposition 5.2.11 (applied to
a!b! (a + b)!n−1 and (na)! (nb)! instead of n and m), this will follow if we can show
that each prime p satisfies

vp

(
a!b! (a + b)!n−1

)
≤ vp ((na)! (nb)!) . (12)

Thus, we shall now focus on proving (12).
So let p be a prime. Applying Corollary 5.2.8 and Corollary 5.2.6, we find

vp

(
a!b! (a + b)!n−1

)
= vp (a!) + vp (b!) + (n − 1) vp ((a + b)!)

= ∑
i≥1

⌊
a
pi

⌋
+ ∑

i≥1

⌊
b
pi

⌋
+ (n − 1) ∑

i≥1

⌊
a + b

pi

⌋
(by Theorem 5.3.1)

= ∑
i≥1

(⌊
a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋)
(13)

14Alternatively, it is not hard to solve Exercise 5.3.5 (a) in the case when n = 0 directly, using

binomial coefficients. Namely, assume that n = 0. Recall that
(

p
q

)
=

p!
q! (p − q)!

for any

p ∈ N and q ∈ {0, 1, . . . , p}. Applying this to p = a + b and q = a, we obtain
(

a + b
a

)
=

(a + b)!
a! ((a + b)− a)!

=
(a + b)!

a!b!
. On the other hand, from n = 0, we obtain

(na)! (nb)!
a!b! (a + b)!n−1 =

(0a)! (0b)!
a!b! (a + b)!0−1 =

1 · 1
a!b! (a + b)!−1

(since (0a)! = 0! = 1 and (0b)! = 0! = 1 and 0 − 1 = −1)

=
(a + b)!

a!b!
=

(
a + b

a

)
. (11)

However, it is known that
(

p
q

)
is an integer whenever p ∈ N and q ∈ N. Applying this to

p = a + b and q = a, we conclude that
(

a + b
a

)
is an integer. In view of (11), this rewrites as

follows:
(na)! (nb)!

a!b! (a + b)!n−1 is an integer. Hence, Exercise 5.3.5 (a) is solved in the case when n = 0.
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and

vp ((na)! (nb)!)

= vp ((na)!) + vp ((nb)!) = ∑
i≥1

⌊
na
pi

⌋
+ ∑

i≥1

⌊
nb
pi

⌋
(by Theorem 5.3.1)

= ∑
i≥1

(⌊
na
pi

⌋
+

⌊
nb
pi

⌋)
. (14)

Hence, it will suffice to show that⌊
a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋
≤
⌊

na
pi

⌋
+

⌊
nb
pi

⌋
(15)

for every positive integer i (because once this is proved, we can obtain (12) by
summing (15) over all i ∈ {1, 2, 3, . . .}).

In order to prove (15), we will show the following lemma:

Lemma 5.3.3. Let x, y ∈ R and n ∈ N. Then,

⌊x⌋+ ⌊y⌋+ (n − 1) ⌊x + y⌋ ≤ ⌊nx⌋+ ⌊ny⌋ . (16)

Proof of Lemma 5.3.3. We recall the following easy property of the floor function: If
r ∈ R and k ∈ Z, then

⌊r + k⌋ = ⌊r⌋+ k. (17)
(Convince yourself that this is true!)

Now, let k ∈ Z be arbitrary. Let us see what happens to the two sides of the
inequality (16) if we replace x by x + k. Indeed, the left hand side becomes

⌊x + k⌋+ ⌊y⌋+ (n − 1)

(x + k) + y︸ ︷︷ ︸
=x+y+k


= ⌊x + k⌋︸ ︷︷ ︸

=⌊x⌋+k
(by (17), applied to r=x)

+ ⌊y⌋+ (n − 1) ⌊x + y + k⌋︸ ︷︷ ︸
=⌊x+y⌋+k

(by (17), applied to r=x+y)

= ⌊x⌋+ k + ⌊y⌋+ (n − 1) (⌊x + y⌋+ k)
= (⌊x⌋+ ⌊y⌋+ (n − 1) ⌊x + y⌋) + nk;

in other words, the left hand side increases by nk. On the other hand, the right
hand side of (16) becomesn (x + k)︸ ︷︷ ︸

=nx+nk

+ ⌊ny⌋ = ⌊nx + nk⌋︸ ︷︷ ︸
=⌊nx⌋+nk

(by (17), applied to nx and nk
instead of r and k)

+ ⌊ny⌋

= ⌊nx⌋+ nk + ⌊ny⌋ = (⌊nx⌋+ ⌊ny⌋) + nk;
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in other words, the right hand side also increases by nk. Thus, if we replace x by
x + k, then both sides of (16) increase by one and the same amount (namely, by nk).
Clearly, this increase does not change the validity of the inequality (16). Thus, we
can replace x by x + k without changing the validity of the inequality (16). Hence,
for the rest of the proof of (16), we can WLOG assume that 0 ≤ x < 1, because we
can always achieve this situation by replacing x by x + k for an appropriate k ∈ Z

(namely, for k = − ⌊x⌋). Thus, let us WLOG assume that 0 ≤ x < 1. For similar
reasons, we can WLOG assume that 0 ≤ y < 1. Let us assume this as well.

From 0 ≤ x < 1, we obtain ⌊x⌋ = 0. Similarly, ⌊y⌋ = 0. Thus, the inequality that
we must prove – namely, (16) – simplifies to

(n − 1) ⌊x + y⌋ ≤ ⌊nx⌋+ ⌊ny⌋ . (18)

From 0 ≤ x, we obtain x ≥ 0 and thus nx ≥ 0 (since n ≥ 0). Hence, ⌊nx⌋ ≥ 0
(because each real number r ≥ 0 satisfies ⌊r⌋ ≥ 0). Similarly, ⌊ny⌋ ≥ 0. Thus, the
right hand side of (18) is ≥ 0. Hence, (18) clearly holds if ⌊x + y⌋ = 0. For the rest
of this proof, we thus WLOG assume that ⌊x + y⌋ ̸= 0.

From 0 ≤ x < 1 and 0 ≤ y < 1, we obtain 0 ≤ x + y < 2. Thus, ⌊x + y⌋ is either
0 or 1. Since ⌊x + y⌋ ̸= 0, we thus obtain ⌊x + y⌋ = 1. Hence, 1 = ⌊x + y⌋ ≤ x + y
(since ⌊r⌋ ≤ r for each r ∈ R), and thus x + y ≥ 1.

However, it is well-known that ⌊r⌋ > r − 1 for each r ∈ R. Applying this to
r = nx, we obtain ⌊nx⌋ > nx − 1. Similarly, ⌊ny⌋ > ny − 1. Adding these two
inequalities together, we obtain

⌊nx⌋+ ⌊ny⌋ > (nx − 1) + (ny − 1) = n (x + y)︸ ︷︷ ︸
≥1

−2 ≥ n − 2.

Since ⌊nx⌋+ ⌊ny⌋ and n − 2 are integers, this entails ⌊nx⌋+ ⌊ny⌋ ≥ (n − 2) + 1 =
n − 1 = (n − 1) ⌊x + y⌋ (because ⌊x + y⌋ = 1). In other words, (n − 1) ⌊x + y⌋ ≤
⌊nx⌋ + ⌊ny⌋. Thus, we have proved (18). Since (18) is an equivalent restatement
of (16), we have therefore proved (16) as well. In other words, Lemma 5.3.3 is
proved.

The above proof of Lemma 5.3.3 illustrates a useful strategy (viz., transporting x
into the interval [0, 1) by subtracting an appropriate integer).

Let us now return to solving Exercise 5.3.5 (a). For each positive integer i, we
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have ⌊
a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋
=

⌊
a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a
pi +

b
pi

⌋ (
since

a + b
pi =

a
pi +

b
pi

)

≤
⌊

n · a
pi

⌋
+

⌊
n · b

pi

⌋  by Lemma 5.3.3,

applied to x =
a
pi and y =

b
pi


=

⌊
na
pi

⌋
+

⌊
nb
pi

⌋
. (19)

Thus, (15) is proven. As explained above, this completes the proof of (12).
Now, forget that we fixed p. We thus have shown that each prime p satisfies (12).

According to Proposition 5.2.11 (applied to a!b! (a + b)!n−1 and (na)! (nb)! instead

of n and m), this entails that a!b! (a + b)!n−1 | (na)! (nb)!. Therefore,
(na)! (nb)!

a!b! (a + b)!n−1

is an integer. This solves Exercise 5.3.5 (a).

(b) Let m :=
(na)! (nb)!

a!b! (a + b)!n−1 . We know from part (a) of this exercise that m is

an integer. We must show that m is divisible by n. In other words, we must show
that n | m. According to Proposition 5.2.11, it suffices to show that each prime p
satisfies vp (n) ≤ vp (m).

So let p be a prime. Our goal is to show that vp (n) ≤ vp (m). In other words,
our goal is to show that vp (m) ≥ vp (n).

From m =
(na)! (nb)!

a!b! (a + b)!n−1 , we obtain m · a!b! (a + b)!n−1 = (na)! (nb)!, so that

vp

(
m · a!b! (a + b)!n−1

)
= vp ((na)! (nb)!) = ∑

i≥1

(⌊
na
pi

⌋
+

⌊
nb
pi

⌋)
(by (14)) .

Therefore,

∑
i≥1

(⌊
na
pi

⌋
+

⌊
nb
pi

⌋)
= vp

(
m · a!b! (a + b)!n−1

)
= vp (m) + vp

(
a!b! (a + b)!n−1

)
(by Theorem 5.2.5 (a))

= vp (m) + ∑
i≥1

(⌊
a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋)
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(by (13)). Solving this equation for vp (m), we obtain

vp (m)

= ∑
i≥1

(⌊
na
pi

⌋
+

⌊
nb
pi

⌋)
− ∑

i≥1

(⌊
a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋)
= ∑

i≥1

(⌊
na
pi

⌋
+

⌊
nb
pi

⌋
−
(⌊

a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋))
. (20)

Thus, we need to show that the sum on the right hand side is ≥ vp (n) (since our
goal is to show that vp (m) ≥ vp (n)). The inequality (19) shows that each addend
in this sum is ≥ 0; thus, it will suffice to show that at least vp (n) many of these
addends are ≥ 1 each.

This is what we shall now do. To be specific, we set h := min
{

vp (a) , vp (b)
}

; this
is a nonnegative integer (since (a, b) ̸= (0, 0) entails that at least one of vp (a) and
vp (b) belongs to N). We will now show that each i ∈

{
h + 1, h + 2, . . . , h + vp (n)

}
satisfies ⌊

na
pi

⌋
+

⌊
nb
pi

⌋
−
(⌊

a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋)
≥ 1. (21)

[Proof of (21): Let i ∈
{

h + 1, h + 2, . . . , h + vp (n)
}

. Thus, h < i ≤ h + vp (n).
We have h = min

{
vp (a) , vp (b)

}
≤ vp (a) and

i ≤ h︸︷︷︸
≤vp(a)

+vp (n) ≤ vp (a) + vp (n) = vp (n) + vp (a) = vp (na)

(since Theorem 5.2.5 (a) yields vp (na) = vp (n) + vp (a)). In other words, vp (na) ≥
i. However, Lemma 5.2.3 (applied to na instead of n) yields that pi | na if and only
if vp (na) ≥ i. Hence, pi | na (since vp (na) ≥ i). Thus,

na
pi is an integer, so that⌊

na
pi

⌋
=

na
pi (since ⌊r⌋ = r for every integer r). Similarly,

⌊
nb
pi

⌋
=

nb
pi .

We note that a and b play symmetric roles in our claim. Thus, we can WLOG
assume that vp (a) ≤ vp (b) (since otherwise, we can just swap a with b). Hence,
h = min

{
vp (a) , vp (b)

}
= vp (a) (since vp (a) ≤ vp (b)). Hence, the inequality

h < i (which we know to hold) rewrites as vp (a) < i. In other words, we don’t
have vp (a) ≥ i. However, Lemma 5.2.3 (applied to a instead of n) yields that pi | a
if and only if vp (a) ≥ i. Hence, we don’t have pi | a (since we don’t have vp (a) ≥ i).

In other words,
a
pi is not an integer. Thus,

⌊
a
pi

⌋
<

a
pi (because if r ∈ R is not an

integer, then ⌊r⌋ < r).

Also, recall that any r ∈ R satisfies ⌊r⌋ ≤ r. Hence,
⌊

b
pi

⌋
≤ b

pi and
⌊

a + b
pi

⌋
≤

a + b
pi . We can multiply the latter inequality by n − 1 (indeed, n − 1 ≥ 0, because n

is a positive integer), and thus obtain (n − 1)
⌊

a + b
pi

⌋
≤ (n − 1)

a + b
pi .
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Now, using all the equalities and inequalities we have proved so far, we see that

⌊
na
pi

⌋
︸ ︷︷ ︸
=

na
pi

+

⌊
nb
pi

⌋
︸ ︷︷ ︸
=

nb
pi

−


⌊

a
pi

⌋
︸ ︷︷ ︸
<

a
pi

+

⌊
b
pi

⌋
︸ ︷︷ ︸
≤

b
pi

+ (n − 1)
⌊

a + b
pi

⌋
︸ ︷︷ ︸

≤(n−1)
a + b

pi


>

na
pi +

nb
pi −

(
a
pi +

b
pi + (n − 1)

a + b
pi

)
= 0.

Since
⌊

na
pi

⌋
+

⌊
nb
pi

⌋
−
(⌊

a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋)
is an integer, this entails

⌊
na
pi

⌋
+

⌊
nb
pi

⌋
−
(⌊

a
pi

⌋
+

⌊
b
pi

⌋
+ (n − 1)

⌊
a + b

pi

⌋)
≥ 1.

Thus, (21) is proved.]

Now, we are almost there: We know that all addends in the sum on the right
hand side of (20) are nonnegative (by (19)), and we also know that at least vp (n)
many of these addends are ≥ 1 each (indeed, (21) shows that the addends for i ∈{

h + 1, h + 2, . . . , h + vp (n)
}

are ≥ 1 each). Thus, the entire sum is ≥ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
vp(n) times

=

vp (n). Hence, the left hand side of (20) is also ≥ vp (n). In other words, we have
vp (m) ≥ vp (n). But proving this inequality was precisely our goal. Thus, we have
solved Exercise 5.3.5 (b).

5.4. Class problems

The following problems are to be discussed during class.

Exercise 5.4.1. Let n ∈ N. Let a and b be two coprime positive integers. Assume
that ab is the n-th power of a positive integer. Prove that a and b are n-th powers
of positive integers.

Exercise 5.4.2. Let a and b be two integers. Let i ∈ N be such that 2i > |b|.
Assume that ai | bi+1. Show that a | b.

Exercise 5.4.3. With how many 0s does the base-10 representation of the number
90! end?
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Exercise 5.4.4. Let a ∈ Z, and let n be a positive integer. Prove that

n! | an−1
n

∏
i=1

(
ai − 1

)
.

Exercise 5.4.5. Let p be a prime. Let a and b be two integers such that a ≡ b ̸≡
0 mod p. Let n be a positive integer.

(a) Prove that vp (an − bn) ≥ vp (a − b) + vp (n).

(b) Prove that vp (an − bn) = vp (a − b) + vp (n) if p ̸= 2.

(c) Prove that vp (an − bn) = vp (a − b) + vp (n) if p = 2 and a ≡ b mod 4.

(d) Find an example where p = 2 and a ≡ b mod 2 and vp (an − bn) >
vp (a − b) + vp (n).

5.5. Homework exercises

Solve 3 of the 6 exercises below and upload your solutions on gradescope by Octo-
ber 29.

Exercise 5.5.1. Let a, b, c ∈ Z. Prove that:

(a) We have

gcd (b, c) · gcd (c, a) · gcd (a, b) = gcd (a, b, c) · gcd (bc, ca, ab) .

(b) We have

lcm (b, c) · lcm (c, a) · lcm (a, b) = lcm (a, b, c) · lcm (bc, ca, ab) .

(c) Assume that a, b, c are nonzero. Then,

gcd (bc, ca, ab)
gcd (a, b, c)

=
lcm (bc, ca, ab)

lcm (a, b, c)
∈ Z.

Exercise 5.5.2. Fix a prime p. Let a and b be two integers satisfying gcd (a, b) = p.
What values can gcd

(
a5, b13) take?

Exercise 5.5.3. Let n, a, b, c ∈ N such that n is odd. Prove that

(na)! (nb)! (nc)!

a!b!c! ((b + c)! (c + a)! (a + b)!)(n−1)/2

is an integer.
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Exercise 5.5.4. Let n ∈ N. Prove that

(n + 1) lcm
((

n
0

)
,
(

n
1

)
, . . . ,

(
n
n

))
= lcm (1, 2, . . . , n + 1) .

Exercise 5.5.5. Let k and n be any two positive integers. Prove that an expression
of the form

±1
k
± 1

k + 1
± 1

k + 2
± · · · ± 1

k + n
(where each ± sign is either a + or a − sign) will never be an integer, no matter
what the ± signs are.

[Hint: Show that one of the numbers k, k+ 1, . . . , k+ n has a higher 2-valuation
than all of the others.]

Exercise 5.5.6. Let (u1, u2, u3, . . .) be a sequence of nonzero integers such that

every a, b ∈ {1, 2, 3, . . .} satisfy gcd (ua, ub) =
∣∣∣ugcd(a,b)

∣∣∣ .

(We have seen such a sequence in Exercise 3.7.4; another example is the Fibonacci
sequence because of [Grinbe20, Exercise 3.7.2].)

Prove that there exists a sequence (v1, v2, v3, . . .) of nonzero integers such that

each n ∈ {1, 2, 3, . . .} satisfies un = ∏
d|n

vd.

Here, the symbol “∏
d|n

” means a product over all positive divisors d of n. Thus,

the equality un = ∏
d|n

vd means

u1 = v1 for n = 1;
u2 = v1v2 for n = 2;
u3 = v1v3 for n = 3;
u4 = v1v2v4 for n = 4;
u5 = v1v5 for n = 5;
u6 = v1v2v3v6 for n = 6;

and so on.

Exercise 5.5.7. Prove that gcd (a, b) = gcd (a + b, lcm (a, b)) for any two integers
a and b.
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5.6. Appendix: Proof of Proposition 5.2.15

We shall now prove Proposition 5.2.15. First, we recall the universal properties of
gcds and lcms:

Theorem 5.6.1 (universal properties of gcd and lcm). Let b1, b2, . . . , bk be integers.
Let m ∈ Z.

(a) We have the following logical equivalence:

(m | bi for all i ∈ {1, 2, . . . , k}) ⇐⇒ (m | gcd (b1, b2, . . . , bk)) .

(b) We have the following logical equivalence:

(bi | m for all i ∈ {1, 2, . . . , k}) ⇐⇒ (lcm (b1, b2, . . . , bk) | m) .

So Theorem 5.6.1 (a) says that the common divisors of k integers b1, b2, . . . , bk
are precisely the divisors of gcd (b1, b2, . . . , bk); meanwhile, Theorem 5.6.1 (b) says
that the common multiples of k integers b1, b2, . . . , bk are precisely the multiples of
lcm (b1, b2, . . . , bk).

Theorem 5.6.1 (a) is proved in [Grinbe19, Theorem 2.9.21 (a)]. Theorem 5.6.1 (b)
is proved in [Grinbe19, Theorem 2.11.9 (a)].

Proof of Proposition 5.2.15 (sketched). (a) We WLOG assume that the k integers n1, n2, . . . , nk
are not all equal to 0 (since otherwise, the claim boils down to ∞ = min {∞, ∞, . . . , ∞}).
Thus, min

{
vp (n1) , vp (n2) , . . . , vp (nk)

}
is a nonnegative integer (not ∞).

Let g = gcd (n1, n2, . . . , nk). Then, g is a positive integer (since n1, n2, . . . , nk are
not all equal to 0). Hence, vp (g) is a nonnegative integer (not ∞).

For each i ∈ {1, 2, . . . , k}, we have g = gcd (n1, n2, . . . , nk) | ni (by the definition
of the gcd) and thus vp (g) ≤ vp (ni) (by Proposition 5.2.11, applied to n = g and
m = ni). Hence,

vp (g) ≤ min
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

(22)

(since min
{

vp (n1) , vp (n2) , . . . , vp (nk)
}
= vp (ni) for some i ∈ {1, 2, . . . , k}).

Now, assume (for the sake of contradiction) that the inequality (22) is strict (i.e.,
not an equality). Thus,

vp (g) < min
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

. (23)

Let i ∈ {1, 2, . . . , k}. Then, (23) becomes

vp (g) < min
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

≤ vp (ni) . (24)
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However, g = gcd (n1, n2, . . . , nk) | ni (by the definition of the gcd), so that
ni

g
∈ Z

(since g is a positive integer). Theorem 5.2.5 (a) yields vp

(
g · ni

g

)
= vp (g) +

vp

(
ni

g

)
, so that

vp

(
ni

g

)
= vp

g · ni

g︸ ︷︷ ︸
=ni

− vp (g)︸ ︷︷ ︸
<vp(ni)
(by (24))

> vp (ni)− vp (ni) = 0.

Thus, we don’t have vp

(
ni

g

)
= 0. However, Corollary 5.2.4 (applied to n =

ni

g
)

yields that vp

(
ni

g

)
= 0 if and only if p ∤

ni

g
. Hence, we don’t have p ∤

ni

g
(since

we don’t have vp

(
ni

g

)
= 0). In other words, we have p | ni

g
. Hence,

ni

g
/p ∈ Z. In

other words,
ni

pg
∈ Z (since

ni

g
/p =

ni

pg
). In other words, pg | ni.

Forget that we fixed i. We thus have shown that pg | ni for all i ∈ {1, 2, . . . , k}.
However, Theorem 5.6.1 (a) (applied to bi = ni and m = pg) shows that this is
equivalent to having pg | gcd (n1, n2, . . . , nk). Thus, we obtain pg | gcd (n1, n2, . . . , nk).
In view of gcd (n1, n2, . . . , nk) = g, this rewrites as pg | g. Hence,

g
pg

∈ Z. But this

contradicts
g

pg
=

1
p

/∈ Z. This contradiction shows that our assumption (viz., that

the inequality (22) is strict) was false. Hence, the inequality (22) cannot be strict,
i.e., must be an equality. In other words, we have

vp (g) = min
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

.

In view of g = gcd (n1, n2, . . . , nk), this rewrites as

vp (gcd (n1, n2, . . . , nk)) = min
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

.

Thus, Proposition 5.2.15 (a) is proved. (A different proof can be found in [Grinbe20,
proof of Proposition 9.3.11].)

(b) We WLOG assume that none of the k integers n1, n2, . . . , nk equals 0 (since
otherwise, the claim boils down to ∞ = max S for a set S that contains ∞). Thus,
max

{
vp (n1) , vp (n2) , . . . , vp (nk)

}
is a nonnegative integer (not ∞).

Let ℓ = lcm (n1, n2, . . . , nk). Then, ℓ is a positive integer (since none of n1, n2, . . . , nk
equals 0). Hence, vp (ℓ) is a nonnegative integer (not ∞).

For each i ∈ {1, 2, . . . , k}, we have

ni | ℓ (25)
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(because the definition of an lcm yields ni | lcm (n1, n2, . . . , nk) = ℓ) and thus
vp (ni) ≤ vp (ℓ) (by Proposition 5.2.11, applied to n = ni and m = ℓ). In other
words, for each i ∈ {1, 2, . . . , k}, we have vp (ℓ) ≥ vp (ni). Hence,

vp (ℓ) ≥ max
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

(26)

(since max
{

vp (n1) , vp (n2) , . . . , vp (nk)
}
= vp (ni) for some i ∈ {1, 2, . . . , k}).

Now, assume (for the sake of contradiction) that the inequality (26) is strict (i.e.,
not an equality). Thus,

vp (ℓ) > max
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

. (27)

Hence, vp (ℓ) > max
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

≥ 0. Thus, we don’t have
vp (ℓ) = 0. However, Corollary 5.2.4 (applied to n = ℓ) yields that vp (ℓ) = 0 if
and only if p ∤ ℓ. Hence, we don’t have p ∤ ℓ (since we don’t have vp (ℓ) = 0). In
other words, we have p | ℓ. Hence, ℓ/p ∈ Z.

Let i ∈ {1, 2, . . . , k}. Then, (27) becomes

vp (ℓ) > max
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

≥ vp (ni) . (28)

Furthermore, ni | ℓ (by (25)), so that
ℓ

ni
∈ Z (since ni ̸= 0 (because none of

n1, n2, . . . , nk equals 0)). Theorem 5.2.5 (a) yields vp

(
ni ·

ℓ

ni

)
= vp (ni) + vp

(
ℓ

ni

)
,

so that

vp

(
ℓ

ni

)
= vp

ni ·
ℓ

ni︸ ︷︷ ︸
=ℓ

− vp (ni) = vp (ℓ)︸ ︷︷ ︸
>vp(ni)
(by (28))

−vp (ni) > vp (ni)− vp (ni) = 0.

Thus, we don’t have vp

(
ℓ

ni

)
= 0. However, Corollary 5.2.4 (applied to n =

ℓ

ni
)

yields that vp

(
ℓ

ni

)
= 0 if and only if p ∤

ℓ

ni
. Hence, we don’t have p ∤

ℓ

ni
(since

we don’t have vp

(
ℓ

ni

)
= 0). In other words, we have p | ℓ

ni
. Hence,

ℓ

ni
/p ∈ Z.

In other words,
ℓ/p
ni

∈ Z (since
ℓ

ni
/p =

ℓ/p
ni

). In other words, ni | ℓ/p (since

ℓ/p ∈ Z).
Forget that we fixed i. We thus have shown that ni | ℓ/p for all i ∈ {1, 2, . . . , k}.

However, Theorem 5.6.1 (b) (applied to bi = ni and m = ℓ/p) shows that this is
equivalent to lcm (n1, n2, . . . , nk) | ℓ/p (since ℓ/p ∈ Z). Thus, we obtain
lcm (n1, n2, . . . , nk) | ℓ/p. In view of lcm (n1, n2, . . . , nk) = ℓ, this rewrites as ℓ | ℓ/p.
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Hence,
ℓ/p
ℓ

∈ Z (since ℓ is positive). But this contradicts
ℓ/p
ℓ

=
1
p

/∈ Z. This

contradiction shows that our assumption (viz., that the inequality (26) is strict) was
false. Hence, the inequality (26) cannot be strict, i.e., must be an equality. In other
words, we have

vp (ℓ) = max
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

.

In view of ℓ = lcm (n1, n2, . . . , nk), this rewrites as

vp (lcm (n1, n2, . . . , nk)) = max
{

vp (n1) , vp (n2) , . . . , vp (nk)
}

.

Thus, Proposition 5.2.15 (b) is proved.
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