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4. Math 235 Fall 2021, Worksheet 4: Algebraic
tricks

This worksheet is devoted to some ways in which skilled algebraic manipulations
(in the sense of high-school algebra: combining terms, expanding products, etc.)
can help solve problems.

As before, N means the set {0, 1, 2, . . .}.

4.1. Example problems

We begin with a fairly classical inequality:

Exercise 4.1.1. Let a, b, c be three real numbers. Prove the inequality

a2 + b2 + c2 ≥ bc + ca + ab.

Solution idea. There is a one-paragraph solution:

First solution to Exercise 4.1.1. Recall that x2 ≥ 0 for each real number x. Hence, we
have (b− c)2 ≥ 0 and (c− a)2 ≥ 0 and (a− b)2 ≥ 0. However, by a straightforward
computation, we can verify that

(
a2 + b2 + c2

)
− (bc + ca + ab) =

1
2

(b− c)2︸ ︷︷ ︸
≥0

+ (c− a)2︸ ︷︷ ︸
≥0

+ (a− b)2︸ ︷︷ ︸
≥0


≥ 1

2
(0 + 0 + 0) = 0.

Thus, a2 + b2 + c2 ≥ bc + ca + ab, so that the exercise is solved.

Clearly, the trick in this solution was to rewrite
(
a2 + b2 + c2)− (bc + ca + ab) as

1
2

(
(b− c)2 + (c− a)2 + (a− b)2

)
. This can indeed be verified by a straightforward

computation (just expand both sides), but how could this be discovered? Con-
fronted with the expression

(
a2 + b2 + c2)− (bc + ca + ab), how would you know

to rewrite it as
1
2

(
(b− c)2 + (c− a)2 + (a− b)2

)
?

There are several other solutions that are easier to find:

Second solution to Exercise 4.1.1. The numbers a, b, c play symmetric roles in the ex-
ercise. Thus, we can permute them without changing the claim of the exercise. (For
instance, we can swap a with b, or cyclically rotate a, b, c.) By an appropriate such
permutation, we can achieve a situation in which c is the largest of the three num-
bers a, b, c. So let us WLOG assume that we are in this situation. Then, c ≥ a and
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c ≥ b, so that c− a ≥ 0 and c− b ≥ 0 and therefore (c− a) (c− b) ≥ 0. (By the way,
the same conclusion could be obtained if c was the smallest of a, b, c.) However,(

a2 + b2 + c2
)
− (bc + ca + ab) = a2 + b2 − ab︸ ︷︷ ︸

=(a−b)2+ab

+c2 − bc− ca

= (a− b)2 + ab + c2 − bc− ca︸ ︷︷ ︸
=(c−a)(c−b)

= (a− b)2︸ ︷︷ ︸
≥0

+ (c− a) (c− b)︸ ︷︷ ︸
≥0

≥ 0 + 0 = 0.

That is, a2 + b2 + c2 ≥ bc + ca + ab. Exercise 4.1.1 is solved again.

Third solution to Exercise 4.1.1. The expression
(
a2 + b2 + c2)− (bc + ca + ab) (viewed

as a polynomial in any of a, b, c) is quadratic, so we use the time-tested method of
“completing the square” (the same method used, e.g., to rewrite a2 + 7a + 2 as(

a +
7
2

)2

− 41
4

). We treat a as the variable and b and c as constants. We obtain

(
a2 + b2 + c2

)
− (bc + ca + ab) =

(
a− b + c

2

)2

+
3
4

(
b2 − 2bc + c2

)
︸ ︷︷ ︸

=(b−c)2

=

(
a− b + c

2

)2

︸ ︷︷ ︸
≥0

+
3
4
(b− c)2︸ ︷︷ ︸
≥0

≥ 0 +
3
4

0 = 0.

In other words, a2 + b2 + c2 ≥ bc + ca + ab. Exercise 4.1.1 is solved again.

There are many other solutions. The first solution is arguably the most elegant,
not last because it can be used to prove the following generalization:

Proposition 4.1.1. For any n reals a1, a2, . . . , an, we have

a2
1 + a2

2 + · · ·+ a2
n ≥ a1a2 + a2a3 + a3a4 + · · ·+ an−1an + ana1.

Proof. Adapt the above first solution to Exercise 4.1.1. (Exercise!)

Let us now return to the topic of divisibility.

Exercise 4.1.2. Let P (x) be a polynomial in a single variable x with integer coef-
ficients. Let a and b be two integers. Prove that a− b | P (a)− P (b).
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Solution idea. This is particularly easy using the substitution principle for congru-
ences (from worksheet 3): Indeed, set n = a − b. Then, a ≡ b mod n (why?), so
that P (a) ≡ P (b)mod n (by the substitution principle). However, this means that
n | P (a)− P (b). In view of n = a− b, this becomes a− b | P (a)− P (b), and we
are done.

However, let us give a more direct proof, as it is instructive in its own way. It
relies on the following identity, which is one of the most important identities in
mathematics:

Theorem 4.1.2 (generalized geometric series formula). Let a and b be any two
numbers (not necessarily integers), and let m ∈N. Then,

am − bm = (a− b)
(

am−1 + am−2b + am−3b2 + · · ·+ abm−2 + bm−1
)

︸ ︷︷ ︸
=

m−1
∑

k=0
akbm−1−k

.

For example, for m = 4, this is saying that

a4 − b4 = (a− b)
(

a3 + a2b + ab2 + b3
)

.

For m = 3, this is saying that

a3 − b3 = (a− b)
(

a2 + ab + b2
)

.

The m = 2 case, of course, should be particularly familiar:

a2 − b2 = (a− b) (a + b) .

Why am I calling Theorem 4.1.2 the “generalized geometric series formula”? Because
setting b = 1 in Theorem 4.1.2 yields

am − 1 = (a− 1)
(

am−1 + am−2 + am−3 + · · ·+ a + 1
)

,

whence
am−1 + am−2 + am−3 + · · ·+ a + 1 =

am − 1
a− 1

(if a 6= 1) ,

which is a well-known formula for the sum of a (finite) geometric series. (The infinite
version follows by letting m→ ∞.)

Theorem 4.1.2 is not hard to prove by induction on m (see, e.g., [Grinbe19, solu-
tion to Exercise 1]), but it is more instructive to prove it directly using a string of
cancellations:
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Proof of Theorem 4.1.2. By the law of distributivity, we have

(a− b)
(

am−1 + am−2b + am−3b2 + · · ·+ abm−2 + bm−1
)

= (a− b) am−1︸ ︷︷ ︸
=am−am−1b

+ (a− b) am−2b︸ ︷︷ ︸
=am−1b−am−2b2

+ (a− b) am−3b2︸ ︷︷ ︸
=am−2b2−am−3b3

+ · · ·+ (a− b) abm−2︸ ︷︷ ︸
=a2bm−2−abm−1

+ (a− b) bm−1︸ ︷︷ ︸
=abm−1−bm

=
(

am − am−1b
)
+
(

am−1b− am−2b2
)
+
(

am−2b2 − am−3b3
)

+ · · ·+
(

a2bm−2 − abm−1
)
+
(

abm−1 − bm
)

. (1)

A close look at the right hand side reveals that almost all of its terms cancel each
other: To wit, each term other than the “bookend terms” am and bm has the form
am−ibi for some i ∈ {1, 2, . . . , m− 1}, and appears once with a + sign and once
with a − sign (which, of course, means that its two appearances cancel out). Thus,
the right hand side equals am − bm. Thus, (1) simplifies to

(a− b)
(

am−1 + am−2b + am−3b2 + · · ·+ abm−2 + bm−1
)
= am − bm.

This proves Theorem 4.1.2. (A pedantic reader will observe that our “cancellation”
argument does not work for m = 0, in which case there are no terms on the right
hand side to begin with. But this case can be safely left aside as obvious.)

We can now finish our second, direct solution to Exercise 4.1.2: Write the poly-

nomial P (x) in the form P (x) =
d
∑

m=0
pmxm, where p0, p1, . . . , pd are integers (the

coefficients of P (x)). Then, P (a) =
d
∑

m=0
pmam and P (b) =

d
∑

m=0
pmbm, so that

P (a)− P (b) =
d

∑
m=0

pmam −
d

∑
m=0

pmbm

=
d

∑
m=0

pm (am − bm)︸ ︷︷ ︸
=(a−b)(am−1+am−2b+am−3b2+···+abm−2+bm−1)

(by Theorem 4.1.2)

=
d

∑
m=0

pm (a− b)
(

am−1 + am−2b + am−3b2 + · · ·+ abm−2 + bm−1
)

= (a− b) ·
d

∑
m=0

pm

(
am−1 + am−2b + am−3b2 + · · ·+ abm−2 + bm−1

)
︸ ︷︷ ︸

This is obviously an integer!

.

This immediately yields a− b | P (a)− P (b). Thus, Exercise 4.1.2 is solved again.
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Some more comments are worth making here. First, Theorem 4.1.2 has an ana-
logue for am + bm instead of a + b, which however requires m to be odd:

Theorem 4.1.3. Let a and b be any two numbers (not necessarily integers), and
let m ∈N be odd. Then,

am + bm = (a + b)
(

am−1 − am−2b + am−3b2 ± · · · − abm−2 + bm−1
)

︸ ︷︷ ︸
=

m−1
∑

k=0
(−1)m−1−kakbm−1−k

.

Proof. Apply Theorem 4.1.2 to −b instead of b, and use the fact that (−b)m = −bm

(which is a consequence of m being odd).

For example, for m = 3, Theorem 4.1.3 is saying that

a3 + b3 = (a + b)
(

a2 − ab + b2
)

(2)

for any numbers a and b.
When m is even, there is no such formula as Theorem 4.1.3, and indeed am + bm

is not usually divisible by a + b in this case (for example, a = 1 and b = 2 and
m = 2).

Let us also state the “cancellation” argument that we used to simplify the right
hand side of (1) explicitly as a theorem:

Theorem 4.1.4. Let u and v be two integers such that u − 1 ≤ v. Let as be a
number for each s ∈ {u, u + 1, . . . , v + 1}. Then,

v

∑
s=u

(as − as+1) = au − av+1.

Proof. We have

v

∑
s=u

(as − as+1) = (au − au+1) + (au+1 − au+2) + (au+2 − au+3) + · · ·+ (av − av+1) .

If v ≥ u, then all terms on the right hand side cancel out except for the two “bookend
terms” au and av+1; thus we are left with the difference au − av+1. Thus, Theorem 4.1.4
holds if v ≥ u. The case v = u− 1 is even more obvious (as the theorem is just saying that
0 = 0 in that case).

Alternatively, Theorem 4.1.4 can also be proved by a completely straightforward induc-
tion on v.
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Theorem 4.1.4 is called the telescope principle for sums since the cancelling terms
in the proof make the sum “fold like a telescope”. Here is an alternative version of
the principle (with “backward” instead of “forward” differences):

Theorem 4.1.5 (telescope principle for sums). Let u and v be two integers such
that u− 1 ≤ v. Let as be a number for each s ∈ {u− 1, u, . . . , v}. Then,

v

∑
s=u

(as − as−1) = av − au−1.

Proof. The same cancellation argument as in Theorem 4.1.4 works here, except that the can-
celling terms are slightly further from each other. Alternatively, this can easily be derived
from Theorem 4.1.4 as follows: Set

bi := −ai−1 for each i ∈ {u, u + 1, . . . , v + 1} .

Then, for each s ∈ {u, u + 1, . . . , v}, we have

bs︸︷︷︸
=−as−1

− bs+1︸︷︷︸
=−a(s+1)−1=−as

= (−as−1)− (−as) = as − as−1.

Hence,
v

∑
s=u

(bs − bs+1)︸ ︷︷ ︸
=as−as−1

=
v

∑
s=u

(as − as−1) .

Comparing this with

v

∑
s=u

(bs − bs+1) = bu︸︷︷︸
=−au−1

− bv+1︸︷︷︸
=−a(v+1)−1

=−av

(by Theorem 4.1.4, applied to bi instead of ai)

= (−au−1)− (−av) = av − au−1,

we obtain
v
∑

s=u
(as − as−1) = av − au−1. This proves Theorem 4.1.5.

The telescope principle is often useful in computing or simplifying sums. When

one applies Theorem 4.1.4 to simplify a sum of the form
v
∑

s=u
(as − as+1) (or Theorem

4.1.5 to simplify a sum of the form
v
∑

s=u
(as − as−1)), one says that the sum telescopes

to au − av+1 (or av − au−1, respectively). Here is one less trivial example of a sum
that telescopes:
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Exercise 4.1.3. Let n ∈N. Prove that

n

∑
k=0

(−1)k k! (n− k)! =


2 (n + 1)!

n + 2
, if n is even;

0, if n is odd.

Solution idea. We want to make the sum telescope. That is, we want to write the
addend (−1)k k! (n− k)! in the form ak − ak+1 for some numbers a0, a1, . . . , an+1.
What are these numbers a0, a1, . . . , an+1 ? (They are not determined uniquely, but
we hope that we can find some good choice.)

Let us get the (−1)k out of the way first. To have (−1)k k! (n− k)! = ak − ak+1 is
tantamount to having k! (n− k)! = (−1)k (ak − ak+1). If we set

bi := (−1)i ai for each i ∈ {0, 1, . . . , n + 1} ,

then the latter equation rewrites as k! (n− k)! = bk + bk+1, because we have

bk︸︷︷︸
=(−1)kak

+ bk+1︸︷︷︸
=(−1)k+1ak+1

=−(−1)kak+1

= (−1)k ak − (−1)k ak+1 = (−1)k (ak − ak+1) .

Thus, we want to find n+ 2 numbers b0, b1, . . . , bn+1 such that k! (n− k)! = bk + bk+1
for all k ∈ {0, 1, . . . , n}.

We fix k ∈ {0, 1, . . . , n} and start playing around with k! (n− k)!. On the one

hand, from (k + 1)! = (k + 1) · k!, we obtain k! =
(k + 1)!

k + 1
, so that

k! (n− k)! =
(k + 1)!

k + 1
· (n− k)!

=
(k + 1)! (n− k)!

k + 1
. (3)

On the other hand, from (n− k + 1)! = (n− k + 1) · (n− k)!, we obtain (n− k)! =
(n− k + 1)!

n− k + 1
, so that

k! (n− k)! = k! · (n− k + 1)!
n− k + 1

=
k! (n− k + 1)!

n− k + 1
. (4)

A ray of hope shines through: The numerator in (3) is the same as the numerator
in (4) with k replaced by k + 1. That is, if the numerator in (4) was bk, then the
numerator in (3) would be bk+1. In order to obtain bk + bk+1, we thus somehow
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need to add the numerators and hope the result is still k! (n− k)!. And we would
also want the denominators to disappear, or at least to become independent of k.

This is a lot to wish for, but it does indeed come true! The helpful fairy here is
the following lemma:

Lemma 4.1.6 (equal fractions lemma). Let a, b, c, d, x be five real numbers such
that b 6= 0 and d 6= 0 and b + d 6= 0 and

x =
a
b
=

c
d

.

Then,
x =

a + c
b + d

.

In other words, this lemma is saying that if two fractions are equal, then the
fraction obtained by adding their numerators and adding their denominators is
also equal to them (as long as the denominator is nonzero). The proof is so easy
that one might question whether the lemma deserves a name; but my view is that
it does for its usefulness.

Now, recall the equalities (3) and (4). Thanks to these two equalities, we can
apply Lemma 4.1.6 to x = k! (n− k)! and a = (k + 1)! (n− k)! and b = k + 1 and
c = k! (n− k + 1)! and d = n− k + 1. We thus obtain

k! (n− k)!

=
(k + 1)! (n− k)! + k! (n− k + 1)!

(k + 1) + (n− k + 1)

=
(k + 1)! (n− k)! + k! (n− k + 1)!

n + 2
(since (k + 1) + (n− k + 1) = n + 2)

=
(k + 1)! (n− k)!

n + 2
+

k! (n− k + 1)!
n + 2

=
k! (n− k + 1)!

n + 2
+

(k + 1)! (n− k)!
n + 2

. (5)

Now it is clear what to do: We set

bi :=
i! (n− i + 1)!

n + 2
for each i ∈ {0, 1, . . . , n + 1} . (6)

Then, (5) rewrites as
k! (n− k)! = bk + bk+1. (7)

If we furthermore set

ai := (−1)i bi for each i ∈ {0, 1, . . . , n + 1} (8)
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(so that we have bi = (−1)i ai, as intended above), then we have

(−1)k k! (n− k)!︸ ︷︷ ︸
=bk+bk+1

(by (7))

= (−1)k (bk + bk+1) = (−1)k bk + (−1)k︸ ︷︷ ︸
=−(−1)k+1

bk+1

= (−1)k bk︸ ︷︷ ︸
=ak

(by (8))

− (−1)k+1 bk+1︸ ︷︷ ︸
=ak+1
(by (8))

= ak − ak+1.

Forget that we fixed k. We thus have proved that (−1)k k! (n− k)! = ak− ak+1 for
all k ∈ {0, 1, . . . , n} (where the bi are defined by (6), and the ai are defined by (8)).
Thus,

n

∑
k=0

(−1)k k! (n− k)!︸ ︷︷ ︸
=ak−ak+1

=
n

∑
k=0

(ak − ak+1) = a0 − an+1

(by the telescope principle1). In view of

a0 = (−1)0︸ ︷︷ ︸
=1

b0 (by (8))

= b0 =
0! (n− 0 + 1)!

n + 2
(by (6))

=
(n + 1)!

n + 2

and

an+1 = (−1)n+1 (n + 1)!
n + 2

(by a similar computation) ,

we can rewrite this as

n

∑
k=0

(−1)k k! (n− k)! =
(n + 1)!

n + 2
− (−1)n+1 (n + 1)!

n + 2

=
(

1− (−1)n+1
)

︸ ︷︷ ︸
=

2, if n is even;
0, if n is odd

(n + 1)!
n + 2

=

{
2, if n is even;
0, if n is odd

· (n + 1)!
n + 2

=


2 (n + 1)!

n + 2
, if n is even;

0, if n is odd.

This solves Exercise 4.1.3.

1or, to be specific, by Theorem 4.1.4, applied to u = 0 and v = n
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Many other examples of the use of the telescope principle are found in [Grinbe20,
§4.1.4].

Let us go back to some number theory:

Exercise 4.1.4. Let n be a positive integer. Let u be the number of pairs (j, k) of

positive integers satisfying
1
j
− 1

k
=

1
n

.

Prove that u is the number of all integers i ∈ {1, 2, . . . , n− 1} satisfying i | n2.

Solution idea. (See [Grinbe20, §A.11.5] for details.) The core of the solution is the
following chain of equivalences (which holds for any three nonzero numbers j, k, n,
not just for integers):(

1
j
− 1

k
=

1
n

)
⇐⇒ (nk− nj = jk) (here, we multiplied both sides by njk)
⇐⇒ (nk− nj− jk = 0)

⇐⇒
(

nk− nj− jk + n2 = n2
) (

here, we added n2 to both sides
for no visible reason

)
⇐⇒

(
(n− j) (n + k) = n2

) (
since nk− nj− jk + n2 = (n− j) (n + k)

)
.

This transformation is known as Simon’s favorite factoring trick (a moniker it has
gotten on the early 2000’s webforums; its discovery, I am sure, predates whatever
Simon it is referring to). In a way, it is similar to “completing the square”: a
quadratic expression (in our case, nk− nj− jk) is made to factor by adding a new
addend to it.

The trick gives the exercise away. Indeed, replacing the condition
1
j
− 1

k
=

1
n

in the exercise by the equivalent relation (n− j) (n + k) = n2, we see immediately
what these pairs (j, k) have to do with divisors of n2. Namely, if (j, k) is a pair of

positive integers satisfying
1
j
− 1

k
=

1
n

, then n− j is an integer i ∈ {1, 2, . . . , n− 1}

satisfying i | n2 (indeed, (n− j) (n + k) = n2 yields that n− j | n2, and furthermore
it shows that n− j is positive (why?); but n− j is also ≤ n− 1 (since j ≥ 1)). Thus,
we have found a map

from the set
{

pairs (j, k) of positive integers satisfying
1
j
− 1

k
=

1
n

}
to the set

{
integers i ∈ {1, 2, . . . , n− 1} satisfying i | n2

}
which sends a pair (j, k) to n− j. Let us denote this map by f .
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Conversely, we can define a map g

from the set
{

integers i ∈ {1, 2, . . . , n− 1} satisfying i | n2
}

to the set
{

pairs (j, k) of positive integers satisfying
1
j
− 1

k
=

1
n

}

which sends each i in the former set to the pair
(

n− i,
n2

i
− n

)
. It is straight-

forward to check that this map g is well-defined and inverse to f . (Indeed, the

definition of g was obtained by solving for the pair (j, k) satisfying
1
j
− 1

k
=

1
n

and

n− j = i.)
Now, the map f is invertible (since g is inverse to f ), thus a bijection2. Hence, we

have found a bijection

from the set
{

integers i ∈ {1, 2, . . . , n− 1} satisfying i | n2
}

to the set
{

pairs (j, k) of positive integers satisfying
1
j
− 1

k
=

1
n

}
(namely, f ). This shows that these two sets have the same size. In other words, the
number of all integers i ∈ {1, 2, . . . , n− 1} satisfying i | n2 equals the number of all

pairs (j, k) of positive integers satisfying
1
j
− 1

k
=

1
n

. Since the latter number is u,

we have thus solved Exercise 4.1.4.

We now come back to inequalities:

Exercise 4.1.5. Let a, b, c be three nonnegative reals. Prove the inequality

a3 + b3 + c3 ≥ 3abc.

Solution idea. This is similar to Exercise 4.1.1, in that there is again a magical one-
paragraph solution:

First solution to Exercise 4.1.5. Expanding the product
(a + b + c)

(
a2 + b2 + c2 − bc− ca− ab

)
, we obtain

(a + b + c)
(

a2 + b2 + c2 − bc− ca− ab
)

= a3 + b3 + c3 − 3abc. (9)

2Reminder: “Bijection” means “bijective map” (also known as “one-to-one correspondence”).
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Hence,

a3 + b3 + c3 − 3abc = (a + b + c)︸ ︷︷ ︸
≥0

(
a2 + b2 + c2 − bc− ca− ab

)
︸ ︷︷ ︸

≥0
(since Exercise 4.1.1

says that a2+b2+c2≥bc+ca+ab)

≥ 0.

In other words, a3 + b3 + c3 ≥ 3abc. This solves Exercise 4.1.5.

This is nice, but again completely unmotivated: How would one find the identity
(9) if one didn’t already know its left hand side?

There are, in fact, several ways. One is to treat a, b, c as indeterminates and try
to factor the polynomial a3 + b3 + c3 − 3abc. Factoring a multivariate polynomial
is not trivial, but there are algorithms that do it mechanically (see, e.g., https:
//math.stackexchange.com/q/3127648 for an outline of such an algorithm). Sadly,
these algorithms are too slow to be useful on an exam, particularly when one is
not sure whether a nontrivial factorization actually exists (very often, it does not,
so one would just waste time looking for one!) and whether it will be helpful to
solving the problem.

But when general methods fail, tricks can save the day. One trick is to reduce
the polynomial to a univariate one by fixing two of a, b, c. For example, if b = 1
and c = 1, then the polynomial a3 + b3 + c3 − 3abc becomes a3 + 13 + 13 − 3a · 1 ·
1 = a3 − 3a + 2, which can be easily factored by finding rational roots (see the
Wikipedia page for “rational root theorem” for how this works). Thus one obtains
the factorization a3 − 3a + 2 = (a + 2) (a− 1)2. Likewise, setting b = 2 and c = 1,
one obtains the factorization (a + 3)

(
a2 − 3a + 3

)
. Of course, one should not forget

simple cases like b = 0 and c = 0, in which case the factorization a3 comes out, or
b = 0 and c = 1, in which case it is (a + 1)

(
a2 − a + 1

)
. Based on these examples,

one might suspect that a + b + c is always a factor in the factorization; that is, there
should be some polynomial P in a, b, c such that

a3 + b3 + c3 − 3abc = (a + b + c) · P (a, b, c) .

This polynomial P should be quadratic (for degree reasons), and it can be found
by polynomial division (dividing a3 + b3 + c3 − 3abc by a + b + c), again treating b
and c as constants (but not specifying their values). Thus one is led to (9).

Yet another way to discover (9) (using less work but more insight) is the follow-

Darij Grinberg

https://math.stackexchange.com/q/3127648
https://math.stackexchange.com/q/3127648
https://en.wikipedia.org/wiki/Rational_root_theorem#Examples
https://en.wikipedia.org/wiki/Rational_root_theorem#Examples


Math 235 Fall 2021, Worksheet 4, version February 4, 2022 page 13

ing:

a3 + b3 + c3 − 3abc

= a3 + b3 − (a + b)3︸ ︷︷ ︸
=a3+3a2b+3ab2+b3

+ (a + b)3 + c3 − 3abc

= a3 + b3 −
(

a3 + 3a2b + 3ab2 + b3
)

︸ ︷︷ ︸
=−3a2b−3ab2

=−3ab(a+b)

+ (a + b)3 + c3︸ ︷︷ ︸
=((a+b)+c)((a+b)2−(a+b)c+c2)

(by (2), applied to a+b and c
instead of a and b)

−3abc

= −3ab (a + b) + ((a + b) + c)
(
(a + b)2 − (a + b) c + c2

)
− 3abc

= −3ab (a + b)− 3abc︸ ︷︷ ︸
=−3ab(a+b+c)

+ ((a + b) + c)︸ ︷︷ ︸
=a+b+c

(
(a + b)2 − (a + b) c + c2

)
= −3ab (a + b + c) + (a + b + c)

(
(a + b)2 − (a + b) c + c2

)
= (a + b + c)

(
−3ab +

(
(a + b)2 − (a + b) c + c2

))
︸ ︷︷ ︸

=a2+b2+c2−bc−ca−ab
(by expanding the squares and products)

= (a + b + c)
(

a2 + b2 + c2 − bc− ca− ab
)

.

However, discovering (9) is not the only way to solve Exercise 4.1.5. There are
several other approaches. Here is one that is particularly dear to my heart.

We recall our Third solution to Exercise 4.1.1 above. In that solution, we have
“completed a square”, which was possible because the polynomial in question was
quadratic. Unfortunately, our polynomial a3 + b3 + c3 − 3abc is cubic in each of its
variables, so this does not work. However, we can do something ludicrous: We
introduce another variable in which the polynomial will have a lower degree!

For brevity, we set F (a, b, c) := a3 + b3 + c3 − 3abc (so that the claim of Ex-
ercise 4.1.5 can be rewritten as F (a, b, c) ≥ 0), and we consider the polynomial
F (a + d, b + d, c + d), where d is a new indeterminate. (That is, we shift each of
a, b, c by the same indeterminate amount d.) It is easy to see that this new poly-
nomial F (a + d, b + d, c + d) will have degree at most 2 in d, since the d3-terms all
cancel out:

F (a + d, b + d, c + d) = (a + d)3 + (b + d)3 + (c + d)3︸ ︷︷ ︸
=3d3+(lower powers of d)

−3 (a + d) (b + d) (c + d)︸ ︷︷ ︸
=d3+(lower powers of d)

(where we treat a, b, c as constants). This makes F (a + d, b + d, c + d) a good candi-
date for “completing the square”.

Actually computing this polynomial F (a + d, b + d, c + d) reveals that it is not
quadratic but linear in d:

F (a + d, b + d, c + d) =
(

a3 + b3 + c3 − 3abc
)
+ 3d

(
a2 + b2 + c2 − bc− ca− ab

)
.
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This is not quite what we wanted (there is no square to complete), but it is just as
useful, as it points us in a new direction: For any d ≥ 0 and any a, b, c ∈ R, we
have

F (a + d, b + d, c + d) =
(

a3 + b3 + c3 − 3abc
)

︸ ︷︷ ︸
=F(a,b,c)

+3d
(

a2 + b2 + c2 − bc− ca− ab
)

︸ ︷︷ ︸
≥0

(by Exercise 4.1.1)

≥ F (a, b, c) + 3d · 0 = F (a, b, c) . (10)

In other words, if we shift each of a, b, c to the right3 by one and the same nonneg-
ative amount d, then the value F (a, b, c) can only increase. Thus, conversely, if we
shift each of a, b, c to the left by one and the same nonnegative amount d, then the
value F (a, b, c) can only decrease. However, by this kind of left-shift, we can always
achieve a case in which one of a, b, c is 0 (we just keep shifting until the smallest
of a, b, c reaches 0; in other words, we shift to the left by min {a, b, c}). Thus, if we
can show that F (a, b, c) ≥ 0 in this simple case, then we will be able to conclude
that F (a, b, c) ≥ 0 always holds (i.e., holds for all nonnegative reals a, b, c) – because
shifting a, b, c back can only increase F (a, b, c).

The simple case deserves its name. To wit, if one of a, b, c is 0, then 3abc = 0, so
that F (a, b, c) = a3 + b3 + c3 ≥ 0 obviously. Thus, we have again solved Exercise
4.1.5, but this time without factoring F (a, b, c). Again, this solution can be written
up pretty neatly:

Second solution to Exercise 4.1.5. Let m := min {a, b, c}. Thus, we have m ≤ a and
m ≤ b and m ≤ c, but m is one of the three numbers a, b, c. The latter fact yields
m ≥ 0.

Next, let α := a−m and β := b−m and γ := c−m. Then, α, β, γ are nonnegative
reals (since m ≤ a and m ≤ b and m ≤ c), and at least one of them is 0 (since m is
one of the three numbers a, b, c). Hence, αβγ = 0. However, from α = a− m, we
obtain a = α + m and similarly b = β + m and c = γ + m. Thus,

a3 + b3 + c3 − 3abc

= (α + m)3 + (β + m)3 + (γ + m)3 − 3 (α + m) (β + m) (γ + m)

= α3 + β3 + γ3︸ ︷︷ ︸
≥0

(since α,β,γ are nonnegative)

−3 αβγ︸︷︷︸
=0

+3m
(

α2 + β2 + γ2 − βγ− γα− αβ
)

︸ ︷︷ ︸
≥0

(by Exercise 4.1.1, applied to α,β,γ instead of a,b,c)

(this can be checked by straightforward computation)
≥ 0− 3 · 0 + 3m · 0 = 0.

In other words, a3 + b3 + c3 ≥ 3abc. This solves Exercise 4.1.5 again.
(Note that we have implicitly used m ≥ 0. Do you see where?)

3on the real axis
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One more factorization problem (this time explicitly stated as one):

Exercise 4.1.6. Factor the polynomial

x (y− z)3 + y (z− x)3 + z (x− y)3 .

Solution idea. As already discussed in the solution to Exercise 4.1.5, this sort of exer-
cise can be solved mechanically by a computer: There are algorithms for factoring a
polynomial with integer coefficients. On an exam, however, tricks are more useful.

One trick that helps here is identifying factors: We just try to find the factors of the
factorization one after the other, by asking ourselves what these factors can be. The
more factors we find, the easier it becomes to find the rest, because we can divide
our known factors out4 and get a polynomial of smaller degree. Our polynomial

P (x, y, z) := x (y− z)3 + y (z− x)3 + z (x− y)3

has degree 4; thus, if we can find two linear factors, then the quotient by them will
have degree 2, which sounds rather manageable.

How do we find factors? If Q (x, y, z) is a factor of P (x, y, z), then P (x, y, z)
will always be 0 whenever Q (x, y, z) is 0. Thus, if we know a large set on which
P (x, y, z) is 0, then a factor of P (x, y, z) is not far away. (I am not explaining what
“large” means, so this should not be taken too literally.)

We are in luck: Our polynomial P (x, y, z) is 0 whenever x = y. Indeed, if x = y,
then

P (x, y, z) = x︸︷︷︸
=y

(y− z)3 + y

z− x︸︷︷︸
=y

3

+ z (x− y)3︸ ︷︷ ︸
=0

(since x=y)

= y (y− z)3 + y (z− y)3︸ ︷︷ ︸
=−(y−z)3

= y (y− z)3 − y (y− z)3 = 0.

In other words, our polynomial P (x, y, z) is 0 whenever the linear polynomial x− y
is 0. This suggests that x− y should be a factor of P (x, y, z). For analogous reasons,
y− z and z− x should be factors of P (x, y, z) as well. Thus, we try to successively
divide P (x, y, z) by x− y, y− z and z− x, and see what comes out.

This works indeed, and what comes out is x + y + z. Thus, we obtain

P (x, y, z) = (x− y) (y− z) (z− x) (x + y + z) .

Our factorization is therefore

x (y− z)3 + y (z− x)3 + z (x− y)3 = (x− y) (y− z) (z− x) (x + y + z) .

4using polynomial division (e.g., treating x as a variable and y and z as constants)
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Of course, once this factorization has been found, verifying it is a matter of just
expanding both sides; thus, you don’t need to write up the above thinking process
on an exam.

Here is another way to find this factorization: Let f = y− z and g = z− x. Then,
f + g = (y− z) + (z− x) = y− x = − (x− y), so that x − y = − ( f + g). Thus,
(x− y)3 = (− ( f + g))3 = − ( f + g)3. Now,

x

y− z︸ ︷︷ ︸
= f


3

+ y

z− x︸ ︷︷ ︸
=g

3

+ z (x− y)3︸ ︷︷ ︸
=−( f+g)3

= x f 3 + yg3 + z
(
− ( f + g)3

)
= x f 3 + yg3 − z ( f + g)3︸ ︷︷ ︸

= f 3+3 f 2g+3 f g2+g3

= x f 3 + yg3 − z
(

f 3 + 3 f 2g + 3 f g2 + g3
)

=
(

x f 3 − z f 3
)

︸ ︷︷ ︸
=(x−z) f 3

+
(

yg3 − zg3
)

︸ ︷︷ ︸
=(y−z)g3

−
(

z · 3 f 2g + z · 3 f g2
)

︸ ︷︷ ︸
=3z f g( f+g)

= (x− z)︸ ︷︷ ︸
=−(z−x)=−g
(since z−x=g)

f 3 + (y− z)︸ ︷︷ ︸
= f

g3 − 3z f g ( f + g)

= (−g) f 3 + f g3︸ ︷︷ ︸
=− f g( f 2−g2)

−3z f g ( f + g)

= − f g
(

f 2 − g2
)

︸ ︷︷ ︸
=( f−g)( f+g)

−3z f g ( f + g)

= − f g ( f − g) ( f + g)− 3z f g ( f + g)
= f︸︷︷︸

=y−z

g︸︷︷︸
=z−x

( f + g)︸ ︷︷ ︸
=−(x−y)

(− ( f − g)− 3z)︸ ︷︷ ︸
=−(x+y+z)

(by easy computation)

= (y− z) (z− x) (− (x− y)) (− (x + y + z))
= (x− y) (y− z) (z− x) (x + y + z) .

See also [Grinbe20, Exercise 1.1.7] for an exercise similar to Exercise 4.1.6.

4.2. Class problems

The following problems are to be discussed during class.
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Exercise 4.2.1. Let n ≥ 2 be an integer. Simplify the product
n
∏

k=2

k− 1
k + 1

.

[Hint: The telescope principle applies to products just as it does to sums.]

Exercise 4.2.2. Solve Exercise 1.3.1 from worksheet 1 again using the telescope
principle.

(Here is the exercise: Let n be a positive integer. For each k ∈ {1, 2, . . . , n− 1},
we let

ak := (n− k)
k−2

∏
i=0

(n− i) = (n− k) (n− k + 2) (n− k + 3) · · · n.

Prove that
n−1

∑
k=1

ak = n!− 1.

)

Exercise 4.2.3. Let a and b be positive integers such that (a, b) 6= (1, 1). Prove
that a4 + 4b4 cannot be prime.

Exercise 4.2.4. Let n ∈N. Let P (x) be an arbitrary polynomial of degree smaller
than n in a single variable x. Prove that

n

∑
k=0

(−1)k
(

n
k

)
P (k) = 0.

Exercise 4.2.5. Let x, y, z be three positive reals such that xyz = 1. Simplify

1
1 + x + xy

+
1

1 + y + yz
+

1
1 + z + zx

.

4.3. Homework exercises

Solve 3 of the 6 exercises below and upload your solutions on gradescope by Octo-
ber 22.

Exercise 4.3.1. Let n be a positive integer. Let u be the number of pairs (j, k) of

positive integers satisfying
1
j
+

1
k
=

1
n

.

Prove that u is the number of all positive divisors of n2.
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Exercise 4.3.2. Let n ≥ 2 be an integer. Simplify the product
n
∏

k=2

k3 − 1
k3 + 1

.

Exercise 4.3.3. Prove that

a (a− b) (a− c) + b (b− c) (b− a) + c (c− a) (c− b) ≥ 0

for any three nonnegative reals a, b, c.
[Hint: Don’t look for a factorization! This polynomial does not have a non-

trivial factorization.]

Exercise 4.3.4. Let a, b, c be three real numbers such that (a + b + c)3 = a3 + b3 +
c3. Prove that (a + b + c)n = an + bn + cn for each odd positive integer n.

Exercise 4.3.5. Let n > 1 be an integer. Factor the polynomial(
1 + x + x2 + · · ·+ xn

)2
− xn

as a product of two non-constant polynomials.

Exercise 4.3.6. Let n be a positive integer. Let g (x) denote the polynomial
−
(
x1 + x2 + · · ·+ xn). Let h (x) denote the polynomial

n

∑
k=0

(g (x))k = (g (x))0 + (g (x))1 + (g (x))2 + · · ·+ (g (x))n .

Prove that the coefficients of the powers x2, x3, . . . , xn in h (x) are 0.
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