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3. Math 235 Fall 2021, Worksheet 3: Modular
arithmetic

Modular arithmetic was introduced by Gauss, and has since become one of the
most fundamental tools in number theory (and, via its generalization to arbitrary
ideals in rings, in abstract algebra). We will state its foundational results without
proof, as the proofs are both easy and easily found in the literature.

As before, N means the set {0, 1, 2, . . .}.

3.1. Congruence

The fundamental notion of modular arithmetic is congruence modulo n:

Definition 3.1.1. Let n, a, b ∈ Z. We say that a is congruent to b modulo n if and
only if n | a− b. We shall use the notation “a ≡ b mod n” for “a is congruent to
b modulo n”.

We furthermore shall use the notation “a 6≡ b mod n” for “a is not congruent
to b modulo n”.

For example:

• We have 3 ≡ 7 mod 2, since 2 | 3− 7 = −4.

• We have 3 6≡ 6 mod 2, since 2 - 3− 6 = −3.

• Two integers a and b satisfy a ≡ b mod 0 if and only if a = b. (Indeed,
a ≡ b mod 0 is defined to mean 0 | a− b, but the latter divisibility happens
only when a− b = 0, which is tantamount to saying a = b.)

• We have a ≡ b mod 1 for any two integers a and b.

The relation “a ≡ b mod n”, as a relation between the two integers a and b (for
fixed n), is called a congruence modulo n.

Here are some basic rules for dealing with congruences (prove them yourself, or
see [Grinbe19, §2.3] for the proofs):

Proposition 3.1.2. Let n ∈ Z and a ∈ Z. Then, a ≡ 0 mod n if and only if n | a.
(Thus, in particular, n ≡ 0 mod n always holds.)

Proposition 3.1.3. Let a, b, n ∈ Z. Then, a ≡ b mod n if and only if there exists
some d ∈ Z such that b = a + nd.

Proposition 3.1.4. Let a, b, c, n ∈ Z. Then, a − b ≡ c mod n if and only if a ≡
b + c mod n.
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Proposition 3.1.5. Let n ∈ Z.
(a) We have a ≡ a mod n for every a ∈ Z. (This is called the reflexivity of

congruence.)
(b) If a, b, c ∈ Z satisfy a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n. (This

is called the transitivity of congruence.)
(c) If a, b ∈ Z satisfy a ≡ b mod n, then b ≡ a mod n. (This is called the

symmetry of congruence.)
(d) If a1, a2, b1, b2 ∈ Z satisfy a1 ≡ b1 mod n and a2 ≡ b2 mod n, then

a1 + a2 ≡ b1 + b2 mod n; (1)
a1 − a2 ≡ b1 − b2 mod n; (2)

a1a2 ≡ b1b2 mod n. (3)

(e) Let m ∈ Z be such that m | n. If a, b ∈ Z satisfy a ≡ b mod n, then
a ≡ b mod m.

Proposition 3.1.6. Let n, a, b ∈ Z be such that a ≡ b mod n. Then, ak ≡ bk mod n
for each k ∈N.

Proposition 3.1.5 (b) allows us to chain congruences together like equalities (as
long as they all are congruences modulo the same n). Proposition 3.1.5 (c) allows
us to turn them around. Combined with Proposition 3.1.5 (a) (which says that any
equality is a congruence), these two facts reveal that congruence modulo n (for
fixed n ∈ Z) is an equivalence relation. We will often use this implicitly when we
chain congruences (modulo the same n) together. For example, we will write

a ≡ b ≡ c ≡ d mod n

to mean that a ≡ b mod n and b ≡ c mod n and c ≡ d mod n. Such a chain of
congruences then implies that any of the four numbers a, b, c, d is congruent to any
other modulo n (since congruence modulo n is an equivalence relation). Equality
signs (=) can also appear in such a chain, since Proposition 3.1.5 (a) says that any
equality is a congruence.

Proposition 3.1.5 (d) allows us to add, subtract and multiply (but not divide) two
congruences together. Finally, Proposition 3.1.6 allows us to take congruences to
k-th powers whenever k ∈N.

Before stating any more general properties, let us see how the ones above can be
used:

Exercise 3.1.1. Let n ∈N. Show that 7 | 32n+1 + 2n+2.

Solution to Exercise 3.1.1. We have 32 = 9 ≡ 2 mod 7. Thus, Proposition 3.1.6 (ap-
plied to 7, 32, 2 and n instead of n, a, b and k) yields

(
32)n ≡ 2n mod 7. Multiplying

this congruence1 by the obvious congruence 3 ≡ 3 mod 7, we obtain
(
32)n · 3 ≡

1i.e., applying (3)
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2n · 3 mod 7. Thus, 32n+1 =
(
32)n · 3 ≡ 2n · 3 mod 7. On the other hand, 2n+2 =

2n · 22 = 2n · 4, so that 2n+2 ≡ 2n · 4 mod 7 (since any equality is a congruence).
Now, adding the two congruences2 32n+1 ≡ 2n · 3 mod 7 and 2n+2 ≡ 2n · 4 mod 7,

we obtain

32n+1 + 2n+2 ≡ 2n · 3 + 2n · 4 = 2n · (3 + 4)︸ ︷︷ ︸
=7

= 2n · 7 ≡ 0 mod 7

(since 2n · 7 is clearly divisible by 7). In other words, 7 | 32n+1 + 2n+2. This solves
Exercise 3.1.1.

3.2. The substitution principle

Let us state some further general properties of congruences.
We know from Proposition 3.1.5 (d) that we can add or subtract any two congru-

ences. Thus, by induction, we can add or multiply any finite number of congru-
ences together:

Proposition 3.2.1. Let n be an integer. Let S be a finite set. For each s ∈ S, let as
and bs be two integers. Assume that

as ≡ bs mod n for each s ∈ S. (4)

Then,
∑
s∈S

as ≡ ∑
s∈S

bs mod n and ∏
s∈S

as ≡∏
s∈S

bs mod n.

As a consequence of all the properties stated above, we can substitute numbers
inside a congruence. That is, the following principle holds:

Substitution principle for congruences: Let a, b, n be three integers satisfy-
ing a ≡ b mod n. Let E be a “reasonable” expression that contains a in it.
If we substitute all of the a’s in E by b’s3, then the resulting expression
F will satisfy E ≡ F mod n.

For example, if a, b, n are three integers satisfying a ≡ b mod n, then a3 + 7a2 −
5 ≡ b3 + 7b2 − 5 mod n. Informally speaking, this is because the congruence a ≡
b mod n allows us to substitute b for a in a3 + 7a2 − 5 (in the same way as a =
b would lead us to a3 + 7a2 − 5 = b3 + 7b2 − 5). Formally speaking, this is a
consequence of Proposition 3.1.5 and Proposition 3.1.6 (see [Grinbe20, Example
3.2.13] and [Grinbe19, §2.5] for details).

2i.e., applying (1)
3More generally, we can replace some of the a’s in E by b’s. For example, we can replace the first

two a’s in a3 + a2 + a by b’s, obtaining b3 + b2 + a.
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When I stated the substitution principle for congruences, I did not specify what
“reasonable” means. And indeed, there are some limits to the principle: While
it is true that a ≡ b mod n implies a2 ≡ b2 mod n, it is not true that a ≡ b mod n
implies 2a ≡ 2b mod n (counterexample: n = 2, a = 0 and b = 2). Thus, while
we can substitute integers in the base of a power (because of Proposition 3.1.6), we
cannot substitute integers in the exponent of a power (since there is no analogue
of Proposition 3.1.6 that would say that ka ≡ kb mod n for each k ∈ N). Likewise,
substitution is not allowed in fractions or more complicated functions. It is best
to read “reasonable” as “polynomial” in the substitution principle (with the caveat
that all coefficients of the polynomial must be integers, and that the exponents are
not to be changed).

Using the substitution principle, we can rewrite our above solution to Exercise
3.1.1 to make it much shorter:

Solution to Exercise 3.1.1 (shortened version). We have 32 = 9 ≡ 2 mod 7. Thus, 32n+1 = 32︸︷︷︸
≡2 mod 7

n

· 3 ≡ 2n · 3 mod 7 (here, we have used the substitution principle to sub-

stitute 2 for 32). Hence, (again using the substitution principle) we have

32n+1︸ ︷︷ ︸
≡2n·3 mod 7

+ 2n+2︸︷︷︸
=2n·22=2n·4

≡ 2n · 3 + 2n · 4 = 2n · (3 + 4)︸ ︷︷ ︸
=7

= 2n · 7 ≡ 0 mod 7

(since 2n · 7 is clearly divisible by 7). In other words, 7 | 32n+1 + 2n+2. This solves
Exercise 3.1.1.

3.3. Congruence vs. remainders

When n is a positive integer, congruences modulo n are closely related to remain-
ders upon division by n. We recall how the latter are defined (and introduce some
notation for them):

Definition 3.3.1. Let n be a positive integer. Let u ∈ Z. Then, there exists a
unique pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r. The entries q and
n of this pair are denoted by u//n and u%n, and are called the quotient and the
remainder of the division of u by n.

For instance, 17//5 = 3 and 17%5 = 2.
Here are some basic properties of quotients and remainders (see [Grinbe19, §2.6]

for the proofs of the first two propositions):

Proposition 3.3.2. Let n be a positive integer. Let u ∈ Z.
(a) Then, u%n ∈ {0, 1, . . . , n− 1} and u%n ≡ u mod n.
(b) We have n | u if and only if u%n = 0.
(c) If c ∈ {0, 1, . . . , n− 1} is such that c ≡ u mod n, then c = u%n.
(d) We have u = (u//n) n + (u%n).
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Proposition 3.3.3. Let n be a positive integer. Let u and v be integers. Then,
u ≡ v mod n if and only if u%n = v%n.

Proposition 3.3.4. Let n be a positive integer. Let u ∈ Z. Then, u//n =
⌊u

n

⌋
.

Proposition 3.3.3 lets us turn congruences between integers into equalities be-
tween their remainders, and vice versa. Here is an example of how this can be
useful:

Exercise 3.3.1. What is the last (i.e., least significant) digit of the number 777

? (Recall that abc
means a(b

c), not
(
ab)c

, since the latter could equally well be
written abc.)

Solution idea. With a computer, you could just compute the number (it has 695975
digits) and look at its last digit. But this is clearly not a viable strategy for an exam.
(Besides, a modern examiner could equally well ask for 777777

.) What to do?
For each positive integer m, the last digit of m is the remainder m%10 (why?).

So we must compute 777
%10. To this purpose, it suffices to “simplify 777

modulo
10”, that is, find some smaller integer m such that 777 ≡ m mod 10. (Once such
an m is found, we will then be able to apply Proposition 3.3.3 and conclude that
777

%10 = m%10. The remainder m%10 should be easier to compute.)
As a warmup, let us first do this with 77. To make this task more manageable,

we observe that 77 = 72·3+1 =
(
72)3 · 7, so we try to simplify 72 first. (This is an

instance of “exponentiating by squaring”, a well-known computational trick.) This
is easy: We have 72 = 49 ≡ −1 mod 10. Hence,

77 =

 72︸︷︷︸
≡−1 mod 10

3

· 7 ≡ (−1)3 · 7 = −7 ≡ 3 mod 10.

Thus, Proposition 3.3.3 yields 77%10 = 3%10 = 3.
Now, let us come back to 777

. Knowing that 77 ≡ 3 mod 10, it is tempting to con-
clude that 777 ≡ 73 mod 10 (by substituting 3 for 77 in the exponent). Unfortunately,
this is a misuse of the substitution principle, since we are not allowed to substitute
in an exponent. (Although it would happen to produce the right answer in this
particular case!)
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Instead, we look at the first few powers of 7 modulo 10:

70 ≡ 1 mod 10;

71 ≡ 7 mod 10;

72 ≡ −1 mod 10;

73 ≡ −7 mod 10;

74 ≡ 1 mod 10;

75 ≡ 7 mod 10;

76 ≡ −1 mod 10;
. . . .

(We could equally well have used 9 and 3 instead of −1 and −7, since −1 ≡
9 mod 10 and −7 ≡ 3 mod 10. However, the minus signs feel more natural.) A
pattern is easily spotted: The right hand sides repeat every 4 lines. That is, we have

7k+4 ≡ 7k mod 10 for each k ∈N. (5)

This pattern is easily proved, too (just observe that 7k+4 = 7k · 74︸︷︷︸
≡1 mod 10

≡ 7k · 1 =

7k mod 10).
Using (5), we see (by induction on m) that

7k+4m ≡ 7k mod 10 for each k ∈N and m ∈N.

Hence, for each nonnegative integer n, we have

7n ≡ 7n%4 mod 10

(because n = n%4+ 4 (n//4)). Applying this to n = 77, we obtain 777 ≡ 777%4 mod 10.
Now we need to find 77%4. This is no harder than the remainder 77%10 we

computed above; we get 77%4 = 3. Hence,

777 ≡ 777%4 = 73 ≡ −7 mod 10.

Thus, Proposition 3.3.3 yields 777
%10 = (−7)%10 = 3, and we are done.

3.4. More example problems

So much for the basics. Here are some more interesting problems:

Exercise 3.4.1. Let P (x) be a univariate polynomial with integer coefficients.
That is, there exist constant integers u0, u1, . . . , ud such that each x ∈ Z satisfies

P (x) =
d
∑

k=0
ukxk.
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Consider an integer sequence (s0, s1, s2, . . .) defined recursively by setting

s0 = 0

and
si = P (si−1) for each i ≥ 1.

Prove the following: If a and b are two nonnegative integers satisfying a | b,
then sa | sb.

[Example: If P (x) = x2 + 1, then this sequence has recurrence relation si =
P (si−1) = s2

i−1 + 1, so its first 7 entries are

s0 = 0, s1 = 02 + 1 = 1, s2 = 12 + 1 = 2, s3 = 22 + 1 = 5,

s4 = 52 + 1 = 26, s5 = 262 + 1 = 677, s6 = 6772 + 1 = 458 330.

It is easy to check that s2 divides s4 and s6, and that s3 divides s6, as the exercise
claims.]

Solution idea. This is similar to a property of the Fibonacci sequence we have seen
on worksheet 1 (Exercise 1.1.1 (e)). Unfortunately, there is no “addition formula”
this time, as our sequence (s0, s1, s2, . . .) is a lot less “well-behaved” (at least when
P (x) has degree > 1). However, its simple recursion offers an advantage to work-
ing modulo n. To wit, the following holds:

Claim 1: Let n ∈ Z, and let i, j ∈ N satisfy si ≡ sj mod n. Then, si+1 ≡
sj+1 mod n.

[Proof of Claim 1: We know that P (x) is a polynomial with integer coefficients.
Hence, the substitution principle for congruences tells us that si ≡ sj mod n entails
P (si) ≡ P

(
sj
)

mod n 4. In other words, si+1 ≡ sj+1 mod n (since the recurrence
relation of our sequence entails si+1 = P (si) and sj+1 = P

(
sj
)
). Thus, Claim 1

follows.]

Claim 1 can easily be leveraged to “move by multiple steps”:

4If you don’t believe this, just check it by hand: Write the polynomial P as P (x) =
d
∑

k=0
ukxk with

integer coefficients u0, u1, . . . , ud. Then, P (si) =
d
∑

k=0
uksk

i and P
(
sj
)
=

d
∑

k=0
uksk

j . However, from

si ≡ sj mod n, we obtain sk
i ≡ sk

j mod n for each k ∈ N (by Proposition 3.1.6). Multiplying

this congruence by uk (that is, by the obvious congruence uk ≡ uk mod n), we obtain uksk
i ≡

uksk
j mod n. Summing these congruences over all k ∈ {0, 1, . . . , d} (using Proposition 3.2.1), we

obtain
d
∑

k=0
uksk

i ≡
d
∑

k=0
uksk

j mod n. In other words, P (si) ≡ P
(
sj
)

mod n (since P (si) =
d
∑

k=0
uksk

i

and P
(
sj
)
=

d
∑

k=0
uksk

j ).
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Claim 2: Let n ∈ Z and k ∈ N, and let i, j ∈ N satisfy si ≡ sj mod n.
Then, si+k ≡ sj+k mod n.

[Proof of Claim 2: Induction on k, using Claim 1 in the induction step.]

From Claim 2, in turn, we obtain the following claim, which is essentially a
restatement of the exercise:

Claim 3: Let a ∈N and k ∈N. Then, sak ≡ 0 mod sa.

[Proof of Claim 3: We induct on k. The base case (k = 0) is obvious, since sa·0 =
s0 = 0 ≡ 0 mod sa. For the induction step, we fix some ` > 0, and assume (as IH5)
that Claim 3 holds for k = `− 1. We must prove that Claim 3 holds for k = `.

Our IH says that sa(`−1) ≡ 0 mod sa. This can be rewritten as sa(`−1) ≡ s0 mod sa
(since s0 = 0). Hence, Claim 2 (applied to i = a (`− 1) and j = 0 and n = sa and
k = a) yields sa(`−1)+a ≡ s0+a mod sa. In view of a (`− 1) + a = a`, this rewrites as

sa` ≡ s0+a = sa ≡ 0 mod sa.

In other words, Claim 3 holds for k = `. This completes the induction step, so that
Claim 3 is proven.]

Now, if a and b are two nonnegative integers satisfying a | b, then we can write b
as b = ak for some k ∈N, and therefore Claim 3 yields sb ≡ 0 mod sa; but this says
precisely that sa | sb. Thus, the exercise is solved.

The above solution illustrates a general tactic: that of using congruences as scaf-
folding to prove divisibilities. Of course, congruences are themselves divisibilities
(a ≡ b mod n means nothing but n | a − b), but it is often more convenient to
write them as congruences (particularly as this makes the substitution principle
available).

There are other ways to use congruences as well. One is by exploiting their “veto
power” over equations. The underlying idea is stupid: If a, b, n are integers such
that a 6≡ b mod n, then a 6= b. This turns out to be surprisingly useful:

Exercise 3.4.2. Find all pairs (x, y) of nonnegative integers satisfying 2x− 1 = 3y.

Solution idea. The only such pairs are (1, 0) and (2, 1).
In fact, it is easy to check that (1, 0) and (2, 1) are such pairs; thus, we only need

to show that there are no others. So we assume (for the sake of contradiction) that
(x, y) is a pair of nonnegative integers satisfying 2x− 1 = 3y and (x, y) 6= (1, 0) and
(x, y) 6= (2, 1). Thus, we can easily see that x > 2 (why?), so that 2x is divisible by
8. That is, 2x ≡ 0 mod 8. Hence, from 2x − 1 = 3y, we obtain 3y = 2x︸︷︷︸

≡0 mod 8

−1 ≡

5Recall: “IH” = “induction hypothesis”.
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0− 1 ≡ 7 mod 8. However, a look at the powers of 3 modulo 8 shows that this is
impossible:

30 ≡ 1 mod 8,

31 ≡ 3 mod 8,

32 ≡ 1 mod 8,

33 ≡ 3 mod 8,
. . .

(it is clear that the right hand sides repeat every 2 lines, and that 7 is not among
them). Thus, the exercise is solved.

3.5. Modular inverses and cancellation

In general, it is not allowed to cancel factors from congruences, even if the factors
are nonzero. For instance, it is not true that 6a ≡ 6b mod 4 implies a ≡ b mod 4; a
counterexample is easy to find (for instance, a = 0 and b = 2). However, cancella-
tion is allowed when the factor being cancelled is coprime to the modulus6. To wit,
the following holds ([Grinbe20, Lemma 3.5.11]):7

Lemma 3.5.1. Let a, b, c, n be integers such that a is coprime to n and such that
ab ≡ ac mod n. Then, b ≡ c mod n.

Better yet, even some sort of “division” is possible modulo n, as long as we
divide by an integer coprime to the modulus:

Theorem 3.5.2. Let a and n be two coprime integers. Then, there exists an a′ ∈ Z

such that aa′ ≡ 1 mod n.

For example, if a = 2 and n = 5, then we can take a′ = 3 (since this satisfies
aa′ = 2 · 3 = 6 ≡ 1 mod 5).

The integer a′ in Theorem 3.5.2 is not unique, but it is “unique modulo n” (that
is, any two valid candidates for a′ are mutually congruent modulo n). We call
such an integer a′ a modular inverse to a modulo n. It does indeed behave like an
inverse for a modulo n, in the sense that multiplication by a′ undoes multiplication
by a modulo n. Thus, Lemma 3.5.1 follows easily from Theorem 3.5.2 (just pick
a modular inverse a′ for a modulo n, and multiply both sides of the congruence
ab ≡ ac mod n with a′).

Theorem 3.5.2, in turn, can be proved using the Bezout theorem, which says that
if a and b are two integers, then gcd (a, b) can be written in the form gcd (a, b) =
xa + yb for some integers x and y. We refer to [Grinbe20, Theorem 3.5.9 (b)] for the

6The modulus in a congruence a ≡ b mod n is defined to be the number n.
7Recall that two integers u and v are said to be coprime if they satisfy gcd (u, v) = 1. Instead of

saying “u and v are coprime”, we also say “u is coprime to v”.
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detailed proof of Theorem 3.5.2 (and to [Grinbe20, Theorem 3.4.5] for the proof of
the Bezout theorem8).

Here are some applications of modular inverses and Lemma 3.5.1 in particular.
The first is a piece of a greater result known as the Chinese Remainder Theorem:

Exercise 3.5.1. Let p and q be two coprime integers. Let a and b be any two
integers. Prove that there exists some integer x such that

x ≡ a mod p and x ≡ b mod q.

Solution idea. We are looking for an integer x satisfying the two congruences x ≡
a mod p and x ≡ b mod q. The first congruence means that p | x− a; in other words,
it means that x− a = up for some integer u. Thus, our x needs to satisfy x− a = up
for some integer u; in other words, it needs to have the form x = a + up for some
integer u. Now, it remains to find u in such a way that the second congruence x ≡
b mod q will be satisfied as well. Upon substituting a + up for x, this congruence
x ≡ b mod q rewrites as a + up ≡ b mod q, which is equivalent to up ≡ b− a mod q.
To find u, we thus want to “divide b− a by p” modulo q. Fortunately, we have a
tool for this: modular inverses. To wit, Theorem 3.5.2 (applied to p and q instead of
a and n) yields that there exists some p′ ∈ Z such that pp′ ≡ 1 mod q. Multiplying
by this p′ is like dividing by p. Thus, we set u = p′ (b− a), and then we have
up = pu = pp′︸︷︷︸

≡1 mod q

(b− a) ≡ b − a mod q, which is precisely what we wanted.

Thus, setting u = p′ (b− a) and x = a + up gives us the x we were looking for (or,
to be precise, one such x).

Incidentally, when writing up a solution like this, you do not need to describe the
thought process as I did above; all you need is to describe the x and prove that it works.
This allows you to be much shorter. Here is how the above solution will look like when
shortened like this:

First solution to Exercise 3.5.1. Theorem 3.5.2 (applied to p and q instead of a and n) yields
that there exists some p′ ∈ Z such that pp′ ≡ 1 mod q. Consider this p′. Set u := p′ (b− a),
and set x := a + up. Then,

x = a + u p︸︷︷︸
≡0 mod p

≡ a + u · 0 = a mod p

and

x = a + up︸︷︷︸
=pu

= a + p u︸︷︷︸
=p′(b−a)

= a + pp′︸︷︷︸
≡1 mod q

(b− a) ≡ a + 1 (b− a) = b mod q.

Thus, we have found an integer x satisfying x ≡ a mod p and x ≡ b mod q. This solves
Exercise 3.5.1.

8Actually, proving the Bezout theorem makes for a nice exercise in strong induction. (Hint:
gcd (a, b) = gcd (b, a) = gcd (a, b− a).)
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This solution is short and slick, but one thing might be missing: symmetry. This is, of
course, a “first-world problem” (there is nothing wrong with a non-symmetric solution),
but it is a bit jarring to see the construction of x being “biased towards p” while the
conditions that it is meant to satisfy are symmetric. And indeed, there is an even nicer,
symmetric solution around, although this one might be harder to come up with:

Second solution to Exercise 3.5.1. Theorem 3.5.2 (applied to p and q instead of a and n) yields
that there exists some p′ ∈ Z such that pp′ ≡ 1 mod q. Theorem 3.5.2 (applied to q and p
instead of a and n) yields that there exists some q′ ∈ Z such that qq′ ≡ 1 mod p. Consider
these integers p′ and q′. Now, set x = pp′b + qq′a. Then,

x = p︸︷︷︸
≡0 mod p

p′b + qq′︸︷︷︸
≡1 mod p

a ≡ 0p′b + 1a = a mod p

and similarly x ≡ b mod q. So we have found our x, and rather explicitly in fact.

Here is another application of modular inverses:

Exercise 3.5.2. Let p be a prime number. Let a, b ∈ Z and k ∈ {0, 1, . . . , p− 1} be
such that a ≡ b mod p. Prove that(

a
k

)
≡
(

b
k

)
mod p.

[Example: If p = 3 and a = 5 and b = 8 and k = 2, then this is saying that(
5
2

)
≡
(

8
2

)
mod 3. Note how this would be false for k = 3. In a way, this is

a – somewhat limited – instance of the substitution principle for congruences
holding even beyond its “reasonable” assumptions.]

Solution idea. First of all, this all wouldn’t make sense if
(

a
k

)
and

(
b
k

)
were not

integers. Fortunately,
(

a
k

)
and

(
b
k

)
are indeed integers (see, e.g., [Grinbe18, proof

of Theorem 1.3.16] for the reason why).
The definition of binomial coefficients yields(

a
k

)
=

a (a− 1) (a− 2) · · · (a− k + 1)
k!

and (6)(
b
k

)
=

b (b− 1) (b− 2) · · · (b− k + 1)
k!

. (7)

Now, the substitution principle for congruences yields

a (a− 1) (a− 2) · · · (a− k + 1) ≡ b (b− 1) (b− 2) · · · (b− k + 1)mod p

Darij Grinberg
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(since a ≡ b mod p). In view of (6) and (7), we can rewrite this congruence as

k! ·
(

a
k

)
≡ k! ·

(
b
k

)
mod p. (8)

If we could cancel k! from this congruence, we would be done.
Fortunately, we can indeed do this. Indeed, if you know some basic number

theory, you will recognize that k ∈ {0, 1, . . . , p− 1} entails that the integer k! is
coprime to p, and therefore Lemma 3.5.1 allows us to cancel k! from (8). If you
don’t, you can get to the same conclusion by a step-by-step procedure: After all, k!
is the product 1 · 2 · · · · · k. Thus, the congruence (8) rewrites as

1 · 2 · · · · · k ·
(

a
k

)
≡ 1 · 2 · · · · · k ·

(
b
k

)
mod p. (9)

However, each of the k integers 1, 2, . . . , k is coprime to p (since k ∈ {0, 1, . . . , p− 1}
and since p is prime) and therefore can be cancelled from a congruence modulo
p (by Lemma 3.5.1). Hence, we can cancel all these k integers 1, 2, . . . , k from (9),

one after the other. At the end, we obtain
(

a
k

)
≡
(

b
k

)
mod p, so the exercise is

solved.

3.6. Class problems

The following problems are to be discussed during class.

Exercise 3.6.1. Prove that there exist no two rational numbers a and b such that
a2 + b2 = 3.

Exercise 3.6.2. Let k ∈ N, and let m be a positive integer. Define a sequence
(c0, c1, c2, . . .) of integers by setting

cn =

(
n
k

)
%m for each n ∈N.

Prove that this sequence is purely periodic.
[Example: If k = 2 and m = 2, then this sequence is

(0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, . . .) ,

which is purely periodic with a period of 4 (the entries 0, 0, 1, 1 repeat endlessly).
Note that this period is larger than m, which illustrates that the substitution
principle for congruences does not apply to polynomials with non-integer coef-

ficients: For instance, we have 1 ≡ 3 mod 2, but
(

1
2

)
6≡
(

3
2

)
mod 2.]

Darij Grinberg
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Exercise 3.6.3. Prove that there exist infinitely many primes that are congruent
to 3 modulo 4.

Exercise 3.6.4. Let p be a prime.

(a) Prove that p |
(

p
k

)
for each k ∈ {1, 2, . . . , p− 1}.

(b) Prove that (a + b)p ≡ ap + bp mod p for any integers a and b.
(c) Prove that ap ≡ a mod p for any integer a.
(d) Prove that ap−1 ≡ 1 mod p for any integer a that is not divisible by p.

Parts (c) and (d) of Exercise 3.6.4 are known as Fermat’s Little Theorem.

Exercise 3.6.5. Let p be a prime. Prove that there exists a positive integer n such
that p | 2n + 3n + 6n − 1.

3.7. Homework exercises

Solve 3 of the 6 exercises below and upload your solutions on gradescope by Octo-
ber 15.

Exercise 3.7.1. Let p be a prime. Let k ∈N.
(a) Prove that (

k
p− 1

)
≡
{

1, if k ≡ −1 mod p;
0, if k 6≡ −1 mod p

mod p.

(b) Prove that (
k
p

)
≡
⌊

k
p

⌋
mod p.

Exercise 3.7.2. A polynomial p (x) with rational coefficients is called integer-
valued if it has the property that p (a) ∈ Z for each a ∈ Z.

An integer-valued polynomial p (x) is called congruence-preserving if it has the
following additional property: If n, a, b are three integers satisfying a ≡ b mod n,
then p (a) ≡ p (b)mod n.

The substitution principle for congruences yields that every polynomial with
integer coefficients is congruence-preserving.

On the other hand, the polynomial p (x) =
x (x− 1)

2
=

(
x
2

)
is integer-valued

but not congruence-preserving (because 1 ≡ 3 mod 2 but p (1) 6≡ p (3)mod 2).
Prove that the polynomial

p (x) =
x2 (x2 − 1

)
2

=

(
x2

2

)

Darij Grinberg
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is integer-valued and congruence-preserving (despite not having integer coeffi-
cients). Thus, all inclusions in

{polynomials with integer coefficients}
⊆ {congruence-preserving integer-valued polynomials}
⊆ {integer-valued polynomials}

are strict.

Exercise 3.7.3. Let m and n be two coprime positive integers. Prove that

m−1

∑
k=0

⌊
kn
m

⌋
=

(m− 1) (n− 1)
2

.

Exercise 3.7.4. Let P (x) and (s0, s1, s2, . . .) be as in Exercise 3.4.1. Prove that

gcd (sa, sb) =
∣∣∣sgcd(a,b)

∣∣∣ for any a, b ∈N.

[Hint: Show that gcd (sa, sb) = gcd (sa, sb−a) whenever a ≤ b; then argue
by strong induction as in the proof of the Bezout theorem ([Grinbe20, proof of
Theorem 3.4.5]).]

Exercise 3.7.5. Let p be a prime such that p ≡ 3 mod 4.
(a) Prove that there exists no c ∈ Z such that c2 ≡ −1 mod p.
(b) Prove that if a, b ∈ Z are two integers satisfying a2 + b2 ≡ 0 mod p, then a

and b are multiples of p.
(c) Prove that there exist no two rational numbers a and b such that a2 + b2 = p.
[Hint: For part (a), apply Exercise 3.6.4 (d) and note that (p− 1) /2 is odd. For

part (b), use modular inverses modulo p. Note that part (c) generalizes Exercise
3.6.1.]

Exercise 3.7.6. Prove that there exist infinitely many primes that are congruent
to 1 modulo 4.

[Hint: You can use Exercise 3.7.5 (a).]
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