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2. Math 235 Fall 2021, Worksheet 2: The
Pigeonhole Principles

There are several results known as “the pigeonhole principle”. They are all fairly
trivial facts in elementary set theory, and are often used (both in mathematics and
in everyday logic) without explicit reference. Here are some of them:

Theorem 2.0.1. Assume you have chosen k elements from an n-element set S.
(a) If k > n, then at least two of your chosen elements must be equal.
(b) If k = n and no two of your chosen elements are equal, then you must have

chosen all elements of S.
(c) If k < n, then there is at least one element of S that is not among your

chosen elements.
(d) If k = n and each element of S is among your chosen elements, then no

two of your chosen elements are equal.

The name “pigeonhole principle” refers to a widespread illustration of this prin-
ciple in terms of pigeons and pigeonholes. Namely, by viewing S as a set of pi-
geonholes, and your k chosen elements as k pigeons, you can rewrite Theorem 2.0.1
as follows:1

Theorem 2.0.2. Assume that k pigeons are nesting in n pigeonholes.
(a) If k > n, then at least two pigeons share a pigeonhole.
(b) If k = n and no two pigeons share a pigeonhole, then all pigeonholes are

inhabited.
(c) If k < n, then there is at least one pigeonhole that has no pigeon.
(d) If k = n and each pigeonhole is inhabited, then no two pigeons share a

pigeonhole.

The best formulation of Theorem 2.0.1 for use in mathematical proofs is the
following:

Theorem 2.0.3. Let f : U → V be a map between two finite sets U and V.
(a) If |U| > |V|, then f cannot be injective.
(b) If |U| = |V| and f is injective, then f is bijective.
(c) If |U| < |V|, then f cannot be surjective.
(d) If |U| = |V| and f is surjective, then f is bijective.

Some even more elementary facts are occasionally known as “the pigeonhole
principle” as well. For instance:

1The pigeonhole principles are also known as “box principles” or “Dirichlet’s principles” among
people with a less vivid imagination.
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Theorem 2.0.4. Let A and B be two subsets of a finite set C.
(a) If |A|+ |B| > |C|, then A ∩ B ̸= ∅.
(b) If |A|+ |B| = |C| and A ∩ B = ∅, then A ∪ B = C.
(c) If |A|+ |B| < |C|, then A ∪ B ̸= C.
(d) If |A|+ |B| = |C| and A ∪ B = C, then A ∩ B = ∅.

Theorem 2.0.4 (a) is actually a trivial corollary of the fact that |A ∪ B| = |A|+ |B|
whenever A and B are disjoint (and of the fact that a larger set cannot fit into
a smaller one); however, it is philosophically similar to Theorem 2.0.3 (a). (Both
theorems are saying something along the lines of “when things take up too much
space in total, they have to overlap”.) Likewise, the remaining parts of Theorem
2.0.4 are akin to the corresponding parts of Theorem 2.0.3.

There are more complicated versions of the pigeonhole principle around (but all
based on the same rough ideas). We will encounter one of them on this worksheet.

As before, N means the set {0, 1, 2, . . .}.

2.1. Example problems

Here are a few simple applications of the pigeonhole principle. More can be found
in [Grinbe20, Chapter 6] and in various other sources (some of which are listed at
the beginning of [Grinbe20, Chapter 6]).

Exercise 2.1.1. Prove that there are two people alive right now with the exact
same number of hairs on their heads.

Solution idea. We can safely assume that any human has at most 5 000 000 hairs on
their head (in fact, the typical number of hairs on a human head is around 100 000),
but the world population is far larger (over 7 billion). Thus, we can apply Theorem
2.0.3 (a) to U = {humans alive right now} and V = {0, 1, . . . , 5 000 000} and to f
being the map that sends each person to their number of hairs. We thus conclude
that this map cannot be injective, i.e., it sends two people to the same number. But
this means that these two people have the same number of hairs.

(Alternatively, it suffices to find two baldies.)

Example 2.1.1 is surprisingly old; it appeared in a 1622 book by Jean Leurechon
(see [RitHee13]).

Exercise 2.1.2. Let X be an n-element set. Let f : X → X be any map. Let
x ∈ X. Prove that there exist two integers i and j such that 0 ≤ i < j ≤ n and
f i (x) = f j (x).

[Example: Let X be the 12-element set {0, 1, . . . , 11}, and let f : X → X be the
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map given by the following picture:
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.

(Here, an arrow from node “i” to node “j” means that f (i) = j.) Now, if x = 0,
then f 1 (x) = f 4 (x), so that there exist two integers i and j such that 0 ≤ i < j ≤
12 and f i (x) = f j (x) (namely, i = 1 and j = 4).]

Solution idea. The n + 1 elements f 0 (x) , f 1 (x) , . . . , f n (x) all belong to the n-
element set X. Hence, Theorem 2.0.1 (a) (applied to k = n + 1) shows that two of
them are equal. But this is precisely what we claim.

Exercise 2.1.3. Let n ≥ 1. Let a1, a2, . . . , an be any n integers. Prove that there
exist some p, q ∈ {1, 2, . . . , n} with p ≤ q and n | ap + ap+1 + · · ·+ aq.

Solution idea. For each i ∈ {0, 1, . . . , n}, we let bi be the remainder that the integer
a1 + a2 + · · · + ai leaves when divided by n. (Note that a1 + a2 + · · · + a0 is the
empty sum, thus equals 0.)

Thus, we have defined n + 1 remainders b0, b1, . . . , bn. These n + 1 remainders all
are contained in the n-element set {0, 1, . . . , n − 1}, so that Theorem 2.0.1 (a) yields
that two of them are equal. In other words, there exist integers i and j such that
0 ≤ i < j ≤ n and bi = bj. Consider these i and j.

The equality bi = bj means that the integers a1 + a2 + · · ·+ ai and a1 + a2 + · · ·+ aj
leave the same remainder when divided by n. But this, in turn, entails that their
difference is divisible by n 2. However, their difference is

(a1 + a2 + · · ·+ ai)−
(
a1 + a2 + · · ·+ aj

)
= −

(
ai+1 + ai+2 + · · ·+ aj

)
2We are here using the following fundamental fact about remainders: If two integers u and v leave

the same remainder when divided by n, then their difference u − v is divisible by n. To prove
this, simply write u = nq1 + r and v = nq2 + r (with q1 and q2 being the quotients and r being
the common remainder), and subtract.

The converse also holds: If the difference u − v of two integers u and v is divisible by n, then
they leave the same remainder when divided by n. This will all become really obvious once we
know modular arithmetic.
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(since i < j). Hence, we have shown that −
(
ai+1 + ai+2 + · · ·+ aj

)
is divisible by n.

In other words, ai+1 + ai+2 + · · ·+ aj is divisible by n (since the sign of an integer
clearly does not affect divisibility). Hence, there exist some p, q ∈ {1, 2, . . . , n} with
p ≤ q and n | ap + ap+1 + · · ·+ aq (namely, p = i + 1 and q = j).

Exercise 2.1.4. Let n ≥ 2 be an integer. At a conference long ago, n scientists
have met; some of them have exchanged handshakes among each other3. Prove
that two of these n scientists have shaken the same number of hands during the
conference. (We assume that any pair of scientists shakes hands at most once.
We also assume that no one shakes their own hands.)

[Example: Let n = 6, and consider the following situation:

A

B

C

D

E

F

.

Here, A, B, C, D, E, F are the 6 scientists, and a line segment connects any pair of
scientists that has exchanged a handshake. Thus, scientist A has shaken 2 hands;
B has shaken 3 hands; C has shaken 5 hands; D has shaken 2 hands; etc.. Thus,
A and D have shaken the same number of hands.]

Solution idea. (See [Grinbe20, §6.2.2] for details.) Assume the contrary. Thus, any
two distinct scientists have shaken different numbers of hands.

Let U be the set of our n scientists. Let V be the set {0, 1, . . . , n − 1}. Thus, both
U and V are n-element sets; hence, |U| = |V|. From n ≥ 2, we obtain n − 1 ̸= 0
and 0 ∈ V and n − 1 ∈ V.

Define a map f : U → V as follows: For each scientist s ∈ U, we let f (s) be the
number of hands that s has shaken. This is well-defined, because s has shaken at
most n − 1 hands4 and thus we have f (s) ∈ {0, 1, . . . , n − 1} = V.

We have assumed that any two distinct scientists have shaken different numbers
of hands. In other words, the map f is injective. Hence, Theorem 2.0.3 (b) yields
that f is bijective (since |U| = |V|). Thus, in particular, f is surjective. Hence, there

3Handshakes (a form of greeting popular in the distant past) are understood to be symmetric: If a
shakes b’s hands, then b also shakes a’s hands.

4Here we use our assumptions that any pair of scientists shakes hands at most once, and that no
one shakes their own hands.
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exists a scientist a ∈ U such that f (a) = n − 1 (since n − 1 ∈ V), and there exists a
scientist b ∈ U such that f (b) = 0 (since 0 ∈ V). Consider these a and b. Note that
a ̸= b (why?).

Now, f (a) = n − 1 shows that a must have shaken everyone’s hands (except for
a themselves) (why?). Hence, a must have shaken b’s hands in particular (since
a ̸= b). On the other hand, f (b) = 0 shows that b must have shaken no hands
at all. The previous two sentences contradict each other. Thus, Exercise 2.1.4 is
solved.

One of the more advanced versions of the pigeonhole principle is the following
generalization of Theorem 2.0.3 (a):

Theorem 2.1.1. Let f : U → V be a map between two finite sets U and V. Let
m ∈ N.

If |U| > m · |V|, then there exist m + 1 distinct elements u1, u2, . . . , um+1 of U
such that

f (u1) = f (u2) = · · · = f (um+1) .

Proof of Theorem 2.1.1. Assume that |U| > m · |V|.
I am sure you will agree that if you sum the number 1 over all elements of U, you get

∑
u∈U

1 = |U| · 1 = |U| . (1)

However, for each u ∈ U, there is a unique v ∈ V satisfying f (u) = v (obviously). Thus,
we can break up the sum ∑

u∈U
1 as follows:

∑
u∈U

1 = ∑
v∈V

∑
u∈U;

f (u)=v

1. (2)

Now, for each v ∈ V, let n (v) be the number of all u ∈ U satisfying f (u) = v. (In other
words, n (v) denotes the number of times that the map f takes the value v.) Hence, (2)
becomes

∑
u∈U

1 = ∑
v∈V

∑
u∈U;

f (u)=v

1

︸ ︷︷ ︸
=n(v)·1

(since this sum has n(v) many
addends, and each addend is 1)

= ∑
v∈V

n (v) · 1 = ∑
v∈V

n (v) .

Thus,

∑
v∈V

n (v) = ∑
u∈U

1 = |U| (by (1))

> m · |V| . (3)
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However, if each v ∈ V would satisfy n (v) ≤ m, then we would have

∑
v∈V

n (v)︸ ︷︷ ︸
≤m

≤ ∑
v∈V

m = |V| · m = m · |V| ,

which would contradict (3). Thus, it is not true that each v ∈ V satisfies n (v) ≤ m. In other
words, there exists some v ∈ V that satisfies n (v) > m. Consider this v. From n (v) > m,
we obtain n (v) ≥ m + 1. In other words, there are at least m + 1 different elements u ∈ U
satisfying f (u) = v (since n (v) was defined as the number of such u). In other words,
there exist m + 1 distinct elements u1, u2, . . . , um+1 of U such that

f (u1) = f (u2) = · · · = f (um+1) = v.

This proves Theorem 2.1.1.

The following exercise is known as the Erdös–Szekeres theorem:

Exercise 2.1.5. Let n, m ∈ N. Let a = (a1, a2, . . . , ak) be a sequence of real num-
bers with length k > nm. Prove that a has

• a weakly increasing subsequence of length n + 1 (i.e., there exist integers
i1, i2, . . . , in+1 satisfying 1 ≤ i1 < i2 < · · · < in+1 ≤ k and ai1 ≤ ai2 ≤ · · · ≤
ain+1), or

• a strictly decreasing subsequence of length m + 1 (i.e., there exist integers
i1, i2, . . . , im+1 satisfying 1 ≤ i1 < i2 < · · · < im+1 ≤ k and ai1 > ai2 > · · · >
aim+1).

[Example: If n = 2 and m = 2 and a = (1, 4, 3, 5, 2), then a has the strictly
decreasing subsequence (4, 3, 2) of length 3. It is easy to construct examples
where a has a weakly increasing subsequence of length 3 instead, or when a has
both.]

Solution idea. Assume the contrary. Thus, a has neither a weakly increasing subse-
quence of length n + 1 nor a strictly decreasing subsequence of length m + 1.

We shall use the notation [p] for the set {1, 2, . . . , p}, where p is an arbitrary
nonnegative integer.

We define a map f : [k] → [n] as follows: For each j ∈ [k], we let f (j) be the
maximum length of a weakly increasing subsequence of

(
a1, a2, . . . , aj

)
that ends

with aj (that is, the maximum p ∈ N such that there exist integers i1, i2, . . . , ip
satisfying 1 ≤ i1 < i2 < · · · < ip = j and ai1 ≤ ai2 ≤ · · · ≤ aip). This f (j) really
belongs to [n] (why?5), so this map f is well-defined.

We have |[k]| = k > nm = mn = m · |[n]|. Hence, Theorem 2.1.1 (applied to
U = [k] and V = [n]) shows that there exist m + 1 distinct elements u1, u2, . . . , um+1
of [k] such that

f (u1) = f (u2) = · · · = f (um+1) . (4)

5Hint: Recall us “assuming the contrary”.
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Consider these m + 1 elements. WLOG assume that u1 < u2 < · · · < um+1. If
some i ∈ [m] would satisfy aui ≤ aui+1 , then it would satisfy f (ui+1) ≥ f (ui) + 1
(why?), which would contradict (4). Hence, the subsequence

(
au1 , au2 , . . . , aum+1

)
of

a is strictly decreasing. This contradicts our assumption (why?). Thus, Exercise
2.1.5 is solved.

2.2. Class problems

The following problems are to be discussed during class.
Again, we will use the notation [p] for the set {1, 2, . . . , p}, where p is an arbitrary

nonnegative integer.

Exercise 2.2.1. Let n be a positive integer. Let S be an (n + 1)-element subset of
[2n]. Prove the following:

(a) There exist two distinct elements s and t of S such that s = t + n.
(b) There exist two distinct elements s and t of S such that |s − t| = 1.
(c) There exist two distinct elements s and t of S such that gcd (s, t) = 1.
(d) There exist two distinct elements s and t of S such that s | t.

Exercise 2.2.2. Let a and b be two positive integers. Prove that the fraction
a
b

,
expanded in the decimal system, is periodic (although not necessarily purely
periodic).

Exercise 2.2.3. Let ( f0, f1, f2, . . .) be the Fibonacci sequence. Let m be a positive
integer. For each i ∈ N, let gi be the remainder of fi upon division by m. Prove
that the sequence (g0, g1, g2, . . .) is purely periodic.

Exercise 2.2.4. Let m and n be two positive integers. At a symposium long

ago,
(

m + n − 2
m − 1

)
scientists have met; some of them have exchanged handshakes

among each other. Prove that

• you can find m of these scientists that have all shaken each other’s hands,
or

• you can find n of these scientists among which no two have shaken each
other’s hands.

(We make the same assumptions about handshakes as in Exercise 2.1.4.)

The next exercise is slightly geometric. We treat the Euclidean plane as the vector
space R2, identifying each point p on the plane with the pair

(
xp, yp

)
of its Carte-

sian coordinates. A lattice point means a point p = (x, y) ∈ R2 whose coordinates x
and y are integers.
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Exercise 2.2.5. Five lattice points are chosen in the plane. Prove that you can
always choose two of these five points such that the midpoint between these two
points is again a lattice point.

2.3. Homework exercises

Solve 3 of the 6 exercises below and upload your solutions on gradescope by Octo-
ber 8.

Don’t be worried if your solutions do not use the pigeonhole principle in any of
its forms! Due to the simplicity of the principle, it is fairly easy to avoid it or use
something equivalent.

Exercise 2.3.1. Let S be a 10-element subset of the set {1, 2, . . . , 100}. Prove that
there exist two disjoint nonempty subsets A and B of S such that ∑

a∈A
a = ∑

b∈B
b.

(Note that A and B are allowed to have any positive sizes, including 1.)
[Example: If S = {3, 9, 13, 19, 26, 60, 74, 80, 84, 94}, then ∑

a∈A
a = ∑

b∈B
b is satisfied

for A = {3, 9, 94} and B = {26, 80} (as well as for various other choices).]

Exercise 2.3.2. A number of people have been settled in n apartments
B1, B2, . . . , Bn (with each person settled in exactly one apartment). (Roommates
are allowed.) Now, all these people are removed from their apartments and re-
settled in n + 1 new apartments C1, C2, . . . , Cn+1 in such a way that none of these
n + 1 new apartments stays empty.

A person is said to have gained space if he has fewer roommates after the reset-
tlement than he used to have before.

Prove that at least two people have gained space.

Exercise 2.3.3. Consider any six points on the circumference of a circle with
radius 1. Prove that some two of these six points have distance ≤ 1.

The next exercise uses the ceiling of a real number: If x is a real number, then the
ceiling of x is defined to be the smallest integer that is ≥ x. This ceiling is denoted
by ⌈x⌉. For instance, ⌈2⌉ = 2 and ⌈2.5⌉ = 3 and ⌈π⌉ = 4 and ⌈−π⌉ = 3.

Exercise 2.3.4. Let N be an n-element set with n > 0. Let A1, A2, . . . , Aq be

finitely many 2-element subsets of N. Let m =

⌈
2q
n

⌉
. Prove that we can find

a strictly increasing sequence (i1 < i2 < · · · < im) of m elements of {1, 2, . . . , q}
such that ∣∣∣Aij ∩ Aij+1

∣∣∣ ≥ 1 for each j ∈ {1, 2, . . . , m − 1} .

[Example: Let n = 5 and N = {1, 2, 3, 4, 5} and q = 6 and

A1 = {1, 2} , A2 = {3, 5} , A3 = {1, 4} ,
A4 = {2, 3} , A5 = {3, 5} , A6 = {4, 5} .

Darij Grinberg



Math 235 Fall 2021, Worksheet 2, version October 18, 2023 page 9

We have m =

⌈
2q
n

⌉
=

⌈
2 · 6

5

⌉
= 3. Thus, the exercise claims that there exists

a strictly increasing sequence (i1 < i2 < i3) of 3 elements of {1, 2, 3, 4, 5, 6} such
that

∣∣Ai1 ∩ Ai2

∣∣ ≥ 1 and
∣∣Ai2 ∩ Ai3

∣∣ ≥ 1. And indeed, we can pick i1 = 1 and
i2 = 3 and i3 = 6 for example.]

The next two exercises are more loosely related to the pigeonhole principle (to
Theorem 2.0.4 if any):

Exercise 2.3.5. Let A be a rectangular matrix with real entries. Assume that the
entries in each row of A are weakly increasing from left to right. Now we sort
the entries in each column of A so that they become weakly increasing from top
to bottom. (Each entry stays within its column.) Thus, we obtain a new matrix
B. Prove that the entries in each row of B are still weakly increasing from left to
right.

[Example: If A =

 1 3 6
2 2 5
1 2 3

, then B =

 1 2 3
1 2 5
2 3 6

.]

As for the next one, I’m not sure if it’s easier with the pigeonhole principle than
without, but it’s certainly one option:

Exercise 2.3.6. Let q = (q1, q2, q3, . . .) be a sequence of positive integers that is
weakly increasing (that is, we have q1 ≤ q2 ≤ q3 ≤ · · · ) and unbounded from
above (that is, for each positive integer N, there exists some i ≥ 1 such that
qi ≥ N).

For each positive integer k, let t (k) be the number of entries of q that do not
exceed k (that is, the number of all positive integers i such that qi ≤ k).

Prove that the two sets

Q := {qn + n − 1 | n is a positive integer} = {q1 + 0, q2 + 1, q3 + 2, . . .}

and

T := {t (n) + n | n is a positive integer} = {t (1) + 1, t (2) + 2, t (3) + 3, . . .}

are disjoint and their union is {1, 2, 3, . . .}.

[Example: If qi = i for each i, then t (k) = k for each k, and we have Q =
{odd positive integers} and T = {even positive integers}.

If qi = pi for each i for some fixed positive integer p, then6 t (k) =

⌊
k
p

⌋
for

each k, and we have

Q = {positive integers that leave the remainder p when divided by p + 1}

Darij Grinberg



Math 235 Fall 2021, Worksheet 2, version October 18, 2023 page 10

and
T = {all other positive integers} ,

although this takes some moments to convince yourself of.
If qi = i2 for each i, then t (k) =

⌊√
k
⌋

for each k, and we have

Q =
{

n2 + n − 1 | n is a positive integer
}
= {1, 5, 11, 19, . . .}

and
T =

{⌊√
n
⌋
+ n | n is a positive integer

}
= {2, 3, 4, 6, 7, . . .} .

Many other examples can be constructed (and have, in fact, appeared on con-
tests!).]
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