Math 235: Mathematical Problem Solving, Fall 2020: Homework 6

Darij Grinberg

November 13, 2020

1 EXERCISE 1

1.1 PROBLEM

Let n be a positive integer. Consider a round-robin tournament in which n players participate. ("Round-robin" means that each pair of distinct players play exactly one match against one another.) No match ends with a draw.

A player a is said to have *directly owned* a player b if a has won the match against b.

A player a is said to have *indirectly owned* a player b if there exists a player c such that a has won a match against c and c has won a match against b.

Prove that there exists a player who has (directly or indirectly) owned all other players.

1.2 Solution

...

2 EXERCISE 2

2.1 Problem

Let $n \in \mathbb{N}$. Assume that $a_1, a_2, \ldots, a_{2n+1}$ are 2n+1 integers with the following property:

Weaker splitting property: If any of the first 2n numbers a_1, a_2, \ldots, a_{2n} is removed, then the remaining 2n numbers (including a_{2n+1}) can be split into two equinumerous heaps with equal sum. ("Equinumerous" means that each heap contains exactly n numbers.)

Prove that all 2n + 1 numbers $a_1, a_2, \ldots, a_{2n+1}$ are equal.

2.2 Solution

•••

3 EXERCISE 3

3.1 Problem

Let X be a finite set. Let n = |X|. Let $f : X \to X$ be a map. Let $x \in X$. Let $p, q \in \mathbb{N}$. Prove that there exists some $k \in \{1, 2, \ldots, n\}$ such that $f^{k+p}(x) = f^{2k+q}(x)$.

3.2 Solution

•••

4 EXERCISE 4

4.1 PROBLEM

Let X be a finite nonempty set. Let n = |X|. Let $f : X \to X$ be a map. Prove that $f^n(X) = f^{n-1}(X)$.

4.2 Solution

•••

5 EXERCISE 5

5.1 PROBLEM

Let X be a set. Let $f: X \to X$ be a map. Prove the following:

(a) If some $x \in X$ and $k \in \mathbb{N}$ satisfy $f^k(x) = f^{2k}(x)$, then $f^{ik}(x) = f^k(x)$ for every positive integer *i*.

Now, assume that X is finite, and let n = |X|. Then:

- (b) We have $f^{n!} = f^{2n!}$.
- (c) If f is a permutation of X, then $f^{n!} = id_X$.

•••

6 EXERCISE 6

6.1 PROBLEM

Complete the solution to Exercise 6.2.3 in the notes (about periodicity of $(x_0\%m, x_1\%m, x_2\%m, \ldots)$) by proving Claims 1, 2 and 3.

6.2 Solution

Let *m* be a positive integer. Let *a* and *b* be integers such that $b \perp m$. Let $(x_0, x_1, x_2, ...)$ be any (a, b)-recurrent sequence. Let *M* be the *m*-element set $\{0, 1, ..., m-1\}$.

For each integer z, let \tilde{z} denote the remainder z%m. Thus, every integer z satisfies $\tilde{z} = z\%m \in M$ and

$$\widetilde{z} = z\%m \equiv z \mod m$$
 (1)

Define a map $f: M \times M \to M \times M$ by

$$f((p,q)) = (q, \widetilde{aq + bp})$$
 for each $(p,q) \in M \times M$.

Let ω be the pair $(\tilde{x_0}, \tilde{x_1}) \in M \times M$. Now, we claim the following:

Claim 1: The map f is bijective (thus a permutation of the set $M \times M$).

Claim 2: We have $f((\widetilde{x}_i, \widetilde{x_{i+1}})) = (\widetilde{x_{i+1}}, \widetilde{x_{i+2}})$ for each $i \in \mathbb{N}$.

Claim 3: We have $(\widetilde{x_i}, \widetilde{x_{i+1}}) = f^i(\omega)$ for each $i \in \mathbb{N}$.

•••

7 EXERCISE 7

7.1 Problem

Improve Exercise 6.2.3 as follows:

Let m > 1 be an integer. Let a and b be integers such that $b \perp m$. Let $(x_0, x_1, x_2, ...)$ be any (a, b)-recurrent sequence. Prove that the sequence $(x_0\%m, x_1\%m, x_2\%m, ...)$ is k-periodic for some $k \in \{1, 2, ..., m^2 - 1\}$.

7.2 Solution

8 EXERCISE 8

8.1 Problem

Let $n \ge 3$ be an integer. Let $a_1, a_2, \ldots, a_{n-1}$ be any n-1 integers. Assume that $n \nmid a_1 - a_2$. Prove that there exists a nonempty subset I of $\{1, 2, \ldots, n-1\}$ such that

$$n \mid \sum_{i \in I} a_i.$$

8.2 SOLUTION

•••

...

9 EXERCISE 9

9.1 PROBLEM

For every $x \in \mathbb{R}$, we define the *fractional part* frac x of x to be the number $x - \lfloor x \rfloor$. Note that $0 \leq \operatorname{frac} x < 1$ for each $x \in \mathbb{R}$. Prove the following:

- (a) For each $x \in \mathbb{R}$ and each positive integer n, there exists a positive integer m such that frac (mx) is either $<\frac{1}{n}$ or $>\frac{n-1}{n}$.
- (b) For any positive real ε and any real z, there exists a positive integer m such that $|\sin(mz)| < \varepsilon$.

[Hint: For part (a), subdivide the half-open interval [0, 1) into n intervals

$$\left[\frac{0}{n},\frac{1}{n}\right), \quad \left[\frac{1}{n},\frac{2}{n}\right), \quad \dots, \quad \left[\frac{n-1}{n},\frac{n}{n}\right),$$

and argue that two of the numbers frac (0x), frac (1x),..., frac (nx) must lie in one of these n intervals. If these are frac (ix) and frac (jx) (with i < j), then what can you say about frac (jx - ix)?]

9.2 Solution

10 Exercise 10

10.1 PROBLEM

Let $R = \left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$. Find the smallest positive real ε such that the entire set R can be covered with 5 **closed** intervals of length ε each.

10.2 Solution

•••

...

References