Math 235: Mathematical Problem Solving, Fall 2020: Homework 5

Darij Grinberg

November 5, 2020

1 EXERCISE 1

1.1 Problem

Let $n \in \mathbb{N}$ and $a \in \mathbb{N}$. Prove that $an + 1 \mid \binom{(a+1)n}{n}$.

1.2 Solution

2 EXERCISE 2

2.1 PROBLEM

Let $m \in \mathbb{Z}$. Let P be a polynomial in a single variable x. Assume that P has degree $\leq m$. Prove the following:

- (a) The polynomial ΔP has degree $\leq m 1$.
- (b) The polynomial $\Delta^n P$ has degree $\leq m n$ for each $n \in \mathbb{N}$.

(c) For each $n \in \mathbb{N}$, we have

$$(\Delta^{n} P)(x) = \sum_{k=0}^{n} (-1)^{k} {n \choose k} P(x-k).$$

(d) For each $n \in \mathbb{N}$ satisfying n > m, we have

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} P(x-k) = 0.$$

(e) Assume that $m \ge 0$. The sequence (P(0), P(1), P(2), ...) is $(d_1, d_2, ..., d_{m+1})$ recurrent, where we set $d_i = (-1)^{i-1} \binom{m+1}{i}$ for each $i \in \{1, 2, ..., m+1\}$.

2.2 Solution

•••

3 EXERCISE 3

3.1 PROBLEM

Let $a, b, c \in \mathbb{N}$ be such that $c \leq b$ and $a \leq b$. Simplify

3.2 Solution

•••

4 EXERCISE 4

4.1 PROBLEM

Let $q \in \mathbb{R}$ and $s \in \mathbb{R}$. Define a sequence (a_0, a_1, a_2, \ldots) of reals recursively by

$$a_0 = s$$
, and
 $a_n = a_{n-1} (qa_{n-1} + 2)$

for each integer $n \geq 1$.

Find an explicit formula for a_n .

4.2 Solution

...

5 EXERCISE 5

5.1 Problem

Define a sequence (a_1, a_2, a_3, \ldots) of integers recursively by

$$a_1 = 1,$$
 $a_2 = 1,$ $a_3 = 3,$ and
 $a_n = \frac{a_{n-1}^2 - a_{n-2}^2}{a_{n-3}}$ for each integer $n \ge 4.$

Compute a_n explicitly (in terms of sequences we already know).

5.2 Solution

•••

6 EXERCISE 6

6.1 Problem

Let $n \in \mathbb{N}$. Let \mathbb{N}_2 denote the set $\{2, 3, 4, \ldots\}$. Prove that there is a unique lacunar subset T of \mathbb{N}_2 such that $n = \sum f_t$.

T of \mathbb{N}_2 such that $n = \sum_{t \in T} f_t$. (For example, $28 = f_3 + f_5 + f_8 = \sum_{t \in \{3,5,8\}} f_t$.)

6.2 Solution

•••

7 Exercise 7

7.1 PROBLEM

Solve Exercise 5.2.1 if n is not known to the lecturer. That is, find a way to construct the moments a and b in Exercise 5.2.1 in such a way that the lecturer will know that these moments have arrived the very time they arrive (rather than only in hindsight).

7.2 Solution

8 EXERCISE 8

8.1 Problem

Let *n* and *k* be positive integers with $k \ge 2$. Let I_1, I_2, \ldots, I_n be *n* nonempty finite closed intervals on the real axis. Assume that for any *k* distinct elements $i_1, i_2, \ldots, i_k \in \{1, 2, \ldots, n\}$, at least two of the *k* intervals $I_{i_1}, I_{i_2}, \ldots, I_{i_k}$ intersect. Prove that there exist k - 1 reals $a_1, a_2, \ldots, a_{k-1}$ such that each of the intervals I_1, I_2, \ldots, I_n contains at least one of $a_1, a_2, \ldots, a_{k-1}$.

8.2 Solution

•••

...

9 EXERCISE 9

Let *n* be a positive integer. Let $(x_0, x_1, x_2, ...)$ be an *n*-periodic sequence of reals such that $x_0 + x_1 + \cdots + x_{n-1} = 0$. Prove that there exists some $k \in \{0, 1, ..., n-1\}$ such that every $m \ge k$ satisfies $x_k + x_{k+1} + \cdots + x_m \ge 0$.

9.1 Solution

•••

10 EXERCISE 10

10.1 Problem

A golden pair will mean a pair (x, y) of nonnegative integers such that $|x^2 - xy - y^2| = 1$. For example, (3, 2) is a golden pair, since $|3^2 - 3 \cdot 2 - 2^2| = |-1| = 1$. Prove the following:

(a) If (x, y) is a golden pair such that $(x, y) \neq (0, 1)$, then $x - y \ge 0$.

(b) If (x, y) is a golden pair such that $(x, y) \neq (0, 1)$, then (y, x - y) is a golden pair.

(c) If (x, y) is a golden pair such that $(x, y) \neq (0, 1)$ and $(x, y) \neq (1, 0)$, then y > 0.

(d) Find an explicit formula for all golden pairs different from (0, 1).

...

10.2 Remark

The word "golden" in "golden pair" refers to the resemblance of the equality $|x^2 - xy - y^2| = 1$ to the equation $\varphi^2 - \varphi - 1 = 0$ satisfied by the golden ratio $\varphi \approx 1.618$. Dividing the equation $|x^2 - xy - y^2| = 1$ by y^2 yields $\left| \left(\frac{x}{y} \right)^2 - \frac{x}{y} - 1 \right| = \frac{1}{y^2}$, which is a way of saying that $\frac{x}{y}$ is a close rational approximation to φ .]

10.3 Solution

References