Math 235: Mathematical Problem Solving, Fall 2020: Homework 4

Darij Grinberg

October 30, 2020

1 EXERCISE 1

1.1 PROBLEM

Let u be a positive integer. Let $k \in \mathbb{N}$. Define a sequence (a_0, a_1, a_2, \ldots) of integers by setting

$$a_n = \binom{n}{k} \% u$$
 for each $n \in \mathbb{N}$.

Show that this sequence $(a_0, a_1, a_2, ...)$ is uk!-periodic.

1.2 Solution

•••

2 EXERCISE 2

2.1 PROBLEM

Let u and v be two integers. Let $(x_0, x_1, x_2, ...)$ be a (u, v)-recurrent sequence of integers with $x_0 = 0$.

Show that all $a, b \in \mathbb{N}$ satisfying $a \mid b$ satisfy $x_a \mid x_b$.

2.2 Solution

3 EXERCISE 3

3.1 Problem

Generalize the generalized Cassini identity¹ further, to a claim about two (a, b)-recurrent sequences (x_0, x_1, x_2, \ldots) and (y_0, y_1, y_2, \ldots) .

[Hint: The left hand side will be $x_{n+1}y_{n-1} - x_ny_n$.]

3.2 Solution

...

...

...

4 EXERCISE 4

4.1 Problem

Let a be any number. Let $(x_0, x_1, x_2, ...)$ and $(y_0, y_1, y_2, ...)$ be two (a, 1)-recurrent sequences of numbers with $x_0 = 0$. (We don't require anything of y_0 .) Let $n, m \in \mathbb{N}$ satisfy $n \ge m$. Prove that

 $x_{n-m}y_{n+m} = x_ny_n - (-1)^{n+m}x_my_m.$

4.2 Solution

5 EXERCISE 5

5.1 Problem

Let u and v be two integers such that $u \perp v$. Let (x_0, x_1, x_2, \ldots) be a (u, v)-recurrent sequence of integers with $x_0 = 0$ and $x_1 = 1$. Show that all $a, b \in \mathbb{N}$ satisfy $gcd(x_a, x_b) = |x_{gcd(a,b)}|$.

¹which says that $x_{n+1}x_{n-1} - x_n^2 = (-b)^{n-1} (x_2x_0 - x_1^2)$ for any (a, b)-recurrent sequence $(x_0, x_1, x_2, ...)$

5.2 Solution

6 EXERCISE 6

6.1 PROBLEM

Let $n \in \mathbb{N}$. Prove that there exists some $m \in \mathbb{N}$ such that $(\sqrt{2}-1)^n = \sqrt{m+1} - \sqrt{m}$.

6.2 Solution

7 EXERCISE 7

7.1 Problem

A sequence (a_0, a_1, a_2, \ldots) of numbers is defined recursively by $a_0 = -1$ and $a_1 = 0$ and $a_n = a_{n-1}^2 - n^2 a_{n-2} - 1$ for all $n \ge 1$. Find a_{100} .

7.2 Solution

•••

...

...

8 EXERCISE 8

8.1 Problem

Let $n \in \mathbb{N}$. Prove that $\left| \left(1 + \sqrt{2} \right)^n \right|$ is even if and only if n is odd.

8.2 Solution

•••

9 EXERCISE 9

9.1 Problem

Let m and k be two positive integers such that $m \mid k+1$. Define a sequence (a_0, a_1, a_2, \ldots) of positive integers recursively by

$$a_0 = 1,$$
 $a_1 = 1,$ $a_2 = m$ and
 $a_n = \frac{k + a_{n-1}a_{n-2}}{a_{n-3}}$ for each $n \ge 3$.

Prove that a_n is an integer for each $n \in \mathbb{N}$.

[**Hint:** Prove that each of the two subsequences $(a_0, a_2, a_4, a_6, \ldots)$ and $(a_1, a_3, a_5, a_7, \ldots)$ is (a, b)-recurrent for some integers a and b (but not the same integers for both subsequences!).]

9.2 Solution

10 EXERCISE 10

10.1 Problem

Let (a, a + d, a + 2d, a + 3d, ...) be any (infinite) arithmetic progression with $d \neq 0$. Prove that this arithmetic progression contains an infinite geometric progression as a subsequence (i.e., there is an infinite strictly increasing sequence $(i_0, i_1, i_2, ...)$ of nonnegative integers such that $(a + i_0d, a + i_1d, a + i_2d, ...)$ is a geometric progression) if and only if $\frac{a}{d} \in \mathbb{Q}$.

10.2 Solution

•••

...

References