Math 235: Mathematical Problem Solving, Fall 2020: Homework 2

Darij Grinberg

October 7, 2020

1 EXERCISE 1

1.1 PROBLEM

Let $n \in \mathbb{N}$. Let a_1, a_2, \ldots, a_n be n odd integers. Prove that

 $a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n + a_na_1 \equiv n \mod 4.$

1.2 Solution

2 EXERCISE 2

2.1 PROBLEM

Let a and b be two coprime positive integers.

...

- (a) Prove that there do not exist any positive integers x and y satisfying ab = xa + yb.
- (b) Prove that there do **not** exist any $x, y \in \mathbb{N}$ satisfying ab a b = xa + yb.

2.2 Solution

3 EXERCISE 3

3.1 PROBLEM

Let n and m be two coprime positive integers. Let $u \in \mathbb{Z}$. Prove that

 $(u^{n}-1)(u^{m}-1) | (u-1)(u^{mn}-1).$

3.2 Solution

•••

•••

4 EXERCISE 4

4.1 Problem

Let $n, m \in \mathbb{N}$ satisfy n > 0. Prove the following:

(a) We have
$$\frac{m}{n} \binom{n}{m} = \binom{n-1}{m-1}$$
.
(b) We have $\frac{\gcd(n,m)}{n} \binom{n}{m} \in \mathbb{Z}$.

4.2 Solution

...

5 EXERCISE 5

5.1 Problem

Let n, i and j be positive integers such that i < n and j < n. Prove that

$$\gcd\left(\binom{n}{i},\binom{n}{j}\right) > 1.$$

5.2 Solution

6 EXERCISE 6

6.1 PROBLEM

Let *n* be a positive integer. We let $\phi(n)$ denote the number of all $i \in \{1, 2, ..., n\}$ satisfying $i \perp n$. (For example, $\phi(12) = 4$, because there are exactly 4 numbers $i \in \{1, 2, ..., 12\}$ satisfying $i \perp 12$: namely, 1, 5, 7 and 11.)

(a) Prove that $\phi(n)$ is even if n > 2.

(b) Prove that the sum of all $i \in \{1, 2, ..., n\}$ satisfying $i \perp n$ equals $\frac{1}{2}n\phi(n)$ if n > 1.

[Remark: The function $\phi : \{1, 2, 3, ...\} \to \mathbb{N}$ that sends each positive integer n to $\phi(n)$ is known as the *Euler totient function* (or the *phi-function*). Here is a table of its first few values:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	
$\phi\left(n ight)$	1	1	2	2	4	2	6	4	6	4	10	4	12]

Can you spot any patterns?]

6.2 SOLUTION

•••

...

7 Exercise 7

7.1 PROBLEM

Let $(f_0, f_1, f_2, ...)$ be the Fibonacci sequence. Find $\sum_{k=2}^{\infty} \frac{f_k}{f_{k-1}f_{k+1}}$.

7.2 Solution

•••

8 EXERCISE 8

8.1 PROBLEM

(a) Prove that

$$\sum_{i=0}^{n} \binom{i}{k} = \binom{n+1}{k+1}$$

for each $n \in \mathbb{N}$ and $k \in \mathbb{N}$.

(b) Prove that

$$\sum_{k=0}^{m} \left(-1\right)^{k} \binom{n}{k} = \left(-1\right)^{m} \binom{n-1}{m}$$

for each $n \in \mathbb{C}$ and $m \in \mathbb{N}$.

8.2 Solution

9 EXERCISE 9

9.1 PROBLEM

Let (f_0, f_1, f_2, \ldots) be the Fibonacci sequence. Prove that

$$2^{n-1} \cdot f_n = \sum_{k=0}^n \binom{n}{2k+1} 5^k \qquad \text{for each } n \in \mathbb{N}.$$

•••

...

10 EXERCISE 10

10.1 PROBLEM

Let $(f_0, f_1, f_2, ...)$ be the Fibonacci sequence. For this exercise, we also set $f_{-1} = 1$.

For any $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, define the rational number $\binom{n}{k}_{F}$ (a slight variation on the corresponding binomial coefficient) by

$$\binom{n}{k}_{F} = \begin{cases} \frac{f_n f_{n-1} \cdots f_{n-k+1}}{f_k f_{k-1} \cdots f_1}, & \text{if } n \ge k \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Prove that $\binom{n}{k}_{F} = \binom{n}{n-k}_{F}$ for any $n \in \mathbb{N}$ and $k \in \mathbb{N}$.
- (b) Let n be a positive integer, and let $k \in \mathbb{N}$ be such that $n \geq k$. Prove that

$$\binom{n}{k}_{F} = f_{k+1}\binom{n-1}{k}_{F} + f_{n-k-1}\binom{n-1}{k-1}_{F}.$$

(c) Prove that $\binom{n}{k}_{F} \in \mathbb{N}$ for any $n \in \mathbb{N}$ and $k \in \mathbb{N}$.

10.2 Solution

References