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1. Introduction

From first year courses you will already be familiar with systems of linear equations, row-reduction and
eigenvalue methods, with emphasis on dimensions two and three. This course will build on those ideas.

One theme that we will emphasise is the notion of an algorithm, or in other words a completely prescribed
method that could be programmed into a computer that is guaranteed to solve a particular type of problem.

Date: December 10, 2019.

1

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en


It is an important conceptual point that almost all the problems in this course can be solved by a systematic
set of algorithms, most of which involve setting up a matrix, row-reducing it, and reading off some kind of
information from the result. These algorithms are similar to those used by programs such as Maple or the
linear algebra functions in Python1, and we will have various exercises using Python or Maple as well as
exercises where we carry out algorithms by hand. Depending on your learning style you may wish to start
by memorising the algorithms step by step. However, you should certainly aim to understand the conceptual
background well enough that you can see why the algorithms work and can reconstruct them for yourself
rather than learning them by rote.

We will also discuss some applications, including the following:

• Solution of certain systems of differential equations.
• Solution of difference equations.
• Markov chains as models of random processes.
• The Google PageRank algorithm for search engines.

2. Notation

Throughout these notes, the letters m and n will denote positive integers. Unless otherwise specified, the
word matrix means a matrix where the entries are real numbers.

Throughout these notes, R will denote the set of all real numbers, and Z will denote the set of all integers.
We will sometimes refer to a real number as a scalar .

We write Mm×n(R) to denote the set of all real m × n matrices, that is matrices with m rows and n
columns, with real numbers as entries.[

1 2 3
4 5 6

] 1 2
3 4
5 6


a 2× 3 matrix a 3× 2 matrix

As a short-hand, we write Mn(R) to stand for the set of real n × n (square) matrices. We write In for the
n × n identity matrix, so In ∈ Mn(R) is the diagonal matrix whose diagonal entries are 1, 1, . . . , 1 and all
other entries are 0’s. For example

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
The subscript n is often omitted when not needed; i.e., we can write I for In.

By an n-vector we mean a column vector with n entries, which is the same as an n× 1 matrix. We write
Rn for the set of all n-vectors.

The transpose of an m× n matrix A is the n×m matrix AT obtained by flipping A over, so the (i, j)’th
entry in AT is the same as the (j, i)’th entry in A. For example, we have

[
a1 a2 a3 a4
b1 b2 b3 b4

]T
=


a1 b1
a2 b2
a3 b3
a4 b4

 .
Note also that the transpose of a row vector is a column vector, for example

[
5 6 7 8

]T
=


5
6
7
8

 .
We will typically write column vectors in this way when it is convenient to lay things out horizontally.

1To be specific: in the SymPy library for Python.
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We will write ek for the k’th standard basis vector in Rn, or equivalently the k’th column in the identity
matrix In. (Here n is to be understood from the context.) For example, in the case n = 4 we have

e1 =


1
0
0
0

 e2 =


0
1
0
0

 e3 =


0
0
1
0

 e4 =


0
0
0
1

 .
Maple syntax is as follows:

• A row vector such as
[
1 2 3

]
can be entered as <1|2|3>.

• A column vector such as

1
2
3

 can be entered as <1,2,3> (with commas instead of bars).

• A matrix such as

[
1 2 3
4 5 6

]
can be entered as <<1|2|3>,<4|5|6>>.

• To multiply a matrix by a (column) vector, or a matrix by another matrix, or to take the dot product
of two vectors, use a dot. For example, if A has been set equal to a 2× 3 matrix, and v has been set
to a column vector of length 3, then you can type A.v to calculate the product Av.

• However, to multiply a vector or matrix by a scalar, you should use a star. If A and v are as above,
you should type 6*A and 7*v to calculate 6A and 7v.

• To calculate the transpose of A, you should type Transpose(A). However, this will only work if you
have previously loaded the linear algebra package, by typing with(LinearAlgebra).

• The n×n identity matrix In can be entered as IdentityMatrix(n). If you are working mostly with
3× 3 matrices (for example) you may wish to enter I3:=IdentityMatrix(3) as an abbreviation.

3. Products and transposes

We next recall some basic facts about products of matrices and transposes.
First, for column vectors u, v ∈ Rn, we define the dot product by the usual rule

u.v = u1v1 + · · ·+ unvn =

n∑
i=1

uivi.

For example, we have 
1
2
3
4

 .


1000
100
10
1

 = 1000 + 200 + 30 + 4 = 1234.

Next, recall that we can multiply an m× n matrix by a vector in Rn to get a vector in Rm.

Example 3.1. [
a b c
d e f

]xy
z

 =

[
ax+ by + cz
dx+ ey + fz

]
(2× 3 matrix)(vector in R3) = (vector in R2)

One way to describe the general rule is as follows. Let A be an m × n matrix. We can divide A into n
columns (each of which is a column vector in Rm). If we write ui for the i’th column, we get a decomposition

A =

 u1 · · · un

 .
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Alternatively, A has m rows, each of which is a row vector of length n, and so can be written as the transpose
of a column vector in Rn. If we write vj for the transpose of the j’th row, we get a decomposition

A =


vT1
...

vTm

 .
Now let t =

[
t1 · · · tn

]T
be a vector in Rn. The rule for multiplying a matrix by a vector is then

At =


vT1
...

vTm

 t =


v1.t

...

vm.t

 .
In Example 3.1 we have

v1 =

ab
c

 v2 =

de
f

 t =

xy
z

 At =

[
v1.t
v2.t

]
=

[
ax+ by + cz
dx+ ey + fz

]
as expected.

On the other hand, it is not hard to see that the same rule can also be written in the form

At = t1u1 + · · ·+ tnun.

In Example 3.1 we have

u1 =

[
a
d

]
u2 =

[
b
e

]
u3 =

[
c
f

]
t1 = x t2 = y t3 = z

so

t1u1 + t2u2 + t3u3 = x

[
a
d

]
+ y

[
b
e

]
+ z

[
c
f

]
=

[
ax+ by + cz
dx+ ey + fz

]
= At

as expected.

Example 3.2. Consider the case

A =


9 8
7 6
5 4
3 2

 t =

[
10

1000

]
At =


8090
6070
4050
2030

 .
We have

A =

 u1 u2

 =


vT1

vT2

vT3

vT4

 t =

[
t1
t2

]

where

u1 =


9
7
5
3

 u2 =


8
6
4
2

 v1 =

[
9
8

]
v2 =

[
7
6

]
v3 =

[
5
4

]
v4 =

[
3
2

] t1 = 10

t2 = 1000

The first approach gives

At =


v1.t
v2.t
v3.t
v4.t

 =


9× 10 + 8× 1000
7× 10 + 6× 1000
5× 10 + 4× 1000
3× 10 + 2× 1000

 =


8090
6070
4050
2030

 ,
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and the second gives

At = t1u1 + t2u2 = 10


9
7
5
3

+ 1000


8
6
4
2

 =


8090
6070
4050
2030

 .
As expected, the two answers are the same.

Next recall that the matrix product AB is only defined when the number of columns of A is the same as
the number of rows of B. In other words, A must be an m × n matrix and B must be an n × p matrix for
some positive integers n, m and p. It then works out that AB is an n × p matrix. To explain the rule for
multiplication, we divide A into rows as before, and we divide B into columns, say

B =

 w1 · · · wp


Because A is an m×n matrix, we see that each of the vectors vi has n entries. Because B is an n×p matrix,
we see that each of the vectors wj also has n entries. We can therefore form the dot product vi.wj . The
product matrix AB is then given by

AB =


vT1
...

vTm


 w1 · · · wp

 =


v1.w1 · · · v1.wp

...
. . .

...

vm.w1 · · · vm.wp


Although you may not have seen it stated in precisely this way before, a little thought should convince you
that this is just a paraphrase of the usual rule for multiplying matrices.

Remark 3.3. If A and B are numbers then of course AB = BA, but this does not work in general for
matrices. Suppose that A is an m× n matrix and B is an n× p matrix, so we can define AB as above.

(a) Firstly, BA may not even be defined. It is only defined if the number of columns of B is the same
as the number of rows of A, or in other words p = m.

(b) Suppose that p = m, so A is an m×n matrix, and B is an n×m matrix, and both AB and BA are
defined. We find that AB is an m×m matrix and BA is an n×n matrix. Thus, it is not meaningful
to ask whether AB = BA unless m = n.

(c) Suppose that m = n = p, so both A and B are square matrices of shape n×n. This means that AB
and BA are also n× n matrices. However, they are usually not equal. For example, we have1 0 0

0 2 0
0 0 3

 1 1 1
10 10 10
100 100 100

 =

 1 1 1
20 20 20
300 300 300


 1 1 1

10 10 10
100 100 100

1 0 0
0 2 0
0 0 3

 =

 1 2 3
10 20 30
100 200 300

 .
Proposition 3.4. If A is an m× n matrix and B is an n× p matrix then (AB)T = BTAT .

We first note that the dimensions match up so that this makes sense. As discussed above, the product
AB is an m × p matrix, so (AB)T is a p ×m matrix. On the other hand, BT is a p × n matrix and AT is
an n×m matrix so BTAT can be defined and it is another p×m matrix.

Note, however, that it would not generally be true (or even meaningful) to say that (AB)T = ATBT : to
make things work properly, the order of A and B must be reversed on the right hand side. Indeed, as AT

is an n×m matrix and BT is a p× n matrix then ATBT is not even defined unless p = m.
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To prove the proposition, we decompose A into rows and B into columns as before. This gives

AB =


uT1
...

uTm


 v1 · · · vp

 =

u1.v1 · · · u1.vp
...

. . .
...

um.v1 · · · um.vp



(AB)T =

u1.v1 · · · um.v1
...

. . .
...

u1.vp · · · um.vp

 =

v1.u1 · · · v1.um
...

. . .
...

vp.u1 · · · vp.um



BTAT =


vT1
...

vTp


 u1 · · · um

 =

v1.u1 · · · v1.um
...

. . .
...

vp.u1 · · · vp.um

 = (AB)T

Example 3.5. For A =

[
a b
c d

]
and B =

[
p q
r s

]
we have

AB =

[
a b
c d

] [
p q
r s

]
=

[
ap+ br aq + bs
cp+ dr cq + ds

]
(AB)T =

[
ap+ br aq + bs
cp+ dr cq + ds

]T
=

[
ap+ br cp+ dr
aq + bs cq + ds

]
BTAT =

[
p r
q s

] [
a c
b d

]
=

[
pa+ rb pc+ rd
qa+ sb qc+ sd

]
= (AB)T .

4. Matrices and linear equations

We next recall the familiar process of conversion between matrix equations and systems of linear equations.
For example, the system

w + 2x+ 3y + 4z = 1

5w + 6x+ 7y + 8z = 10

9w + 10x+ 11y + 12z = 100

is equivalent to the single matrix equation1 2 3 4
5 6 7 8
9 10 11 12



w
x
y
z

 =

 1
10
100

 .
Similarly, the system

a+ b+ c = 1

a+ 2b+ 4c = 2

a+ 3b+ 9c = 3

a+ 4b+ 16c = 4

a+ 5b+ 25c = 5

is equivalent to the single matrix equation
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25


ab
c

 =


1
2
3
4
5

 .
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The only point to watch here is that we need to move all constants to the right hand side, move all
variables to the left hand side, write the variables in the same order in each equation, and fill any gaps with
zeros. For example, the system

p+ 7s = q + 1

5r + 1 = 7q − p
r + s = p+ q

can be written more tidily as

p −q +0r +7s = 1
p −7q +5r +0s = −1
p +q −r −s = 0,

and then we can just read off the entries of the corresponding matrix equation1 −1 0 7
1 −7 5 0
1 1 −1 −1



p
q
r
s

 =

 1
−1
0

 .
Note that this kind of process only works well for linear equations, where every term is either a constant

or a constant times a variable. If we want to find x and y, and our equations involve terms like x2 or xy or
ex, then we will need a different approach. This course focusses on linear equations, but towards the end we
will show how matrices can be used in a less direct way to solve certain multivariable quadratic equations.

A matrix equation Ax = b can be expressed more compactly by just writing down the augmented matrix
[A|b], where b is added to A as an extra column at the right hand end. For example, the augmented
matrices for the three systems discussed above are

 1 2 3 4 1
5 6 7 8 10
9 10 11 12 100




1 1 1 1
1 2 4 2
1 3 9 3
1 4 16 4
1 5 25 5


 1 −1 0 7 1

1 −7 5 0 −1
1 1 −1 −1 0


If we want to record the names of the variables we can add them as an extra row, giving “matrices” as
follows:


1 2 3 4 1
5 6 7 8 10
9 10 11 12 100
w x y z




1 1 1 1
1 2 4 2
1 3 9 3
1 4 16 4
1 5 25 5
a b c




1 −1 0 7 1
1 −7 5 0 −1
1 1 −1 −1 0
p q r s



5. Reduced row-echelon form

Recall that a matrix is said to be zero if all its entries are zero, and nonzero otherwise. Thus, for example,

the matrix

[
2 0
0 0

]
is nonzero. This applies, in particular, to row and column vectors.

Definition 5.1. Let A be a matrix of real numbers. Recall that A is said to be in reduced row-echelon form
(RREF) if the following hold:

RREF0: Any rows of zeros come at the bottom of the matrix, after all the nonzero rows.
RREF1: In any nonzero row, the first nonzero entry is equal to 1. These entries are called pivots.
RREF2: In any nonzero row, the pivot is further to the right than the pivots in all previous rows.
RREF3: If a column contains a pivot, then all other entries in that column are zero.

We will also say that a system of linear equations (in a specified list of variables) is in RREF if the
corresponding augmented matrix is in RREF.
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If RREF0, RREF1 and RREF2 are satisfied but not RREF3 then we say that A is in (unreduced) row-
echelon form.

Example 5.2. Consider the matrices

A =

1 2 0
0 0 0
0 0 1

 B =

0 2 0
0 0 1
0 0 0


C =

0 1 0
0 0 1
1 0 0

 D =

1 0 2
0 1 0
0 0 1

 .
Here A is not in RREF because the middle row is zero and the bottom row is not, so condition RREF0 is
violated. The matrix B is also not in RREF because the first nonzero entry in the top row is 2 rather than
1, which violates RREF1. The matrix C is not in RREF because the pivot in the bottom row is to the left
of the pivots in the previous rows, violating RREF2. The matrix D is not in RREF because the last column
contains a pivot and also another nonzero entry, violating RREF3. On the other hand, the matrix

E =


1 2 0 3 0 4
0 0 1 5 0 6
0 0 0 0 1 7
0 0 0 0 0 0


is in RREF.

Example 5.3. The system of equations (x− z = 1 and y = 2) is in RREF because it has augmented matrix

A =

[
1 0 −1 1
0 1 0 2

]
which is in RREF. The system of equations (x+ y+ z = 1 and y+ z = 2 and z = 3) is not in RREF because
it has augmented matrix

B =

 1 1 1 1
0 1 1 2
0 0 1 3


which is not in RREF.

As we will recall in the next section, any system of equations can be converted to an equivalent system
that is in RREF. It is then easy to read off whether the new system has any solutions, and if so, to find them.
The general method is as follows (but it may be clearer to just look at the examples given afterwards).

Method 5.4. Suppose we have a system of linear equations corresponding to an augmented matrix that is
in RREF. We can then solve it as follows.

(a) Any row of zeros can just be discarded, as it corresponds to an equation 0 = 0 which is always true.
(b) If there is a pivot in the very last column (to the right of the bar) then the corresponding equation

is 0 = 1 which is always false, so the system has no solutions.
(c) Now suppose that there is no pivot to the right of the bar, but that every column to the left of the

bar has a pivot. Because of RREF3, this means that the only nonzero entries in the whole matrix
are the 1’s in the pivot positions, so each equation directly gives the value of one of the variables
and we have a unique solution.

(d) Suppose instead that there is no pivot to the right of the bar, but that only some of the columns to the
left of the bar contain pivots. Each column to the left of the bar corresponds to one of the variables.
Variables corresponding to columns with pivots are called dependent variables; the others are called
independent variables. If we move all independent variables to the right hand side, then each equation
expresses one dependent variable in terms of the independent variables. The independent variables
can take any values that we choose (so there will be infinitely many solutions). If we just want one
solution rather than all possible solutions, the simplest thing is to set all the independent variables
to be zero.

8



In the following examples, we will use the variables w, x, y and z.

Example 5.5. The augmented matrix 
1 0 0 1 0
0 1 1 0 0
0 0 0 0 1
0 0 0 0 0


is an instance of case (b). It corresponds to the system

w + z = 0

x+ y = 0

0 = 1

0 = 0

which has no solution. (A solution would mean a system of numbers w, x, y and z for which all four
equations are true. The third equation can never be true, so there is no solution. The fact that we can solve
the first two equations (and that the fourth one is always true) is not relevant here.)

Of course no one would be foolish enough to write down this system of equations directly. The point
is that we can start with a complicated system of equations and then apply row-reduction to simplify it.
The row-reduction process may lead to the equation 0 = 1, in which case we will conclude that the original
system had no solution.

Example 5.6. The augmented matrix 
1 0 0 0 10
0 1 0 0 11
0 0 1 0 12
0 0 0 1 13


corresponds to the system of equations w = 10, x = 11, y = 12 and z = 13. In this case the equations are
the solution; nothing needs to be done. This is an instance of case (c) in Method 5.4.

Example 5.7. The augmented matrix [
1 2 0 3 10
0 0 1 4 20

]
corresponds to the system of equations

w + 2x+ 3z = 10

y + 4z = 20.

There are pivots in the first and third columns, so the corresponding variables w and y are dependent whereas
x and z are independent. After moving the independent variables to the right hand side we get

w = 10− 2x− 3z

y = 20− 4z

which expresses the dependent variables in terms of the independent ones. As x and z can take any values,
we see that there are infinitely many solutions. This is an instance of case (d). Here it may be useful to
write the solution in the form

w
x
y
z

 =


10− 2x− 3z

x
20− 4z

z

 =


10
0
20
0

+ x


−2
1
0
0

+ z


−3
0
−4
1

 .
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6. Row operations

Definition 6.1. Let A be a matrix. The following operations on A are called elementary row operations:

ERO1: Exchange two rows.
ERO2: Multiply a row by a nonzero constant.
ERO3: Add a multiple of one row to another row.

We shall abbreviate “elementary row operation” as “row operation”.

Theorem 6.2. Let A be a matrix.

(a) By applying a sequence of row operations to A, one can obtain a matrix B that is in RREF.
(b) Although there are various different sequences that reduce A to RREF, they all give the same matrix

B at the end of the process.

Part (a) of Theorem 6.2 says that each matrix A can be transformed into a matrix that is in RREF by a
sequence of row operations. This transformation is called row reduction or reduction to RREF. In a moment
we will recall the method used to reduce a matrix to RREF. It is not too hard to analyse the method carefully
and check that it always works as advertised, which proves part (a) of the theorem. It is more difficult to
prove (b) directly, and we will only do so in Appendix C, using Proposition 20.6. With a more abstract point
of view, as in MAS277, it becomes much easier. Nonetheless, you should appreciate that (b) is an important
point.

Method 6.3. To reduce a matrix A to RREF, we do the following.

(a) If all rows are zero, then A is already in RREF, so we are done.
(b) Otherwise, we find a row that has a nonzero entry as far to the left as possible. Let this entry be u,

in the k’th column of the j’th row say. Because we went as far to the left as possible, all entries in
columns 1 to k − 1 of the matrix are zero.

(c) We now exchange the first row with the j’th row (which does nothing if j happens to be equal to 1).
(d) Next, we multiply the first row by u−1. We now have a 1 in the k’th column of the first row.
(e) We now subtract multiples of the first row from all the other rows to ensure that the k’th column

contains nothing except for the pivot in the first row.
(f) We now ignore the first row and apply row operations to the remaining rows to put them in RREF.
(g) If we put the first row back in, we have a matrix that is nearly in RREF, except that the first row

may have nonzero entries above the pivots in the lower rows. This can easily be fixed by subtracting
multiples of those lower rows.

While step (f) looks circular, it is not really a problem. Row-reducing a matrix with only one row is easy.
If we start with two rows, then when we get to step (f) we need to row-reduce a matrix with only one row,
which we can do; thus, the method works when there are two rows. If we start with three rows, then in
step (f) we need to row-reduce a matrix with two rows, which we can do; thus, the method works when there
are three rows. The pattern continues in the obvious way, which could be formalised as a proof by induction.

The method given above will work for any matrix, but in particular cases it may be possible to make the
calculation quicker by performing row operations in a different order. By part (b) of Theorem 6.2, this will
not affect the final answer.

Example 6.4. Consider the following sequence of reductions: 0 0 −2 −1 −13
−1 −2 −1 1 −2
−1 −2 0 −1 −8

 1−→

−1 −2 −1 1 −2
0 0 −2 −1 −13
−1 −2 0 −1 −8

 2−→

 1 2 1 −1 2
0 0 −2 −1 −13
−1 −2 0 −1 −8

 3−→

1 2 1 −1 2
0 0 −2 −1 −13
0 0 1 −2 −6

 4−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 1 −2 −6

 5−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 0 −5/2 −25/2

 6−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 0 1 5

 7−→

1 2 1 −1 2
0 0 1 0 4
0 0 0 1 5

 8−→

1 2 0 −1 −2
0 0 1 0 4
0 0 0 1 5

 9−→

1 2 0 0 3
0 0 1 0 4
0 0 0 1 5


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At stage 1 we exchange the first two rows as in step (c) of the method. At stage 2 we multiply the first row
by −1 as in step (d), then at stage 3 we add the first row to the third row as in (e). As in step (f), we now
ignore the first row temporarily and row-reduce the remaining two rows. There is nothing further to the left
than the −2 on the second row, so we do not need to do any swapping. We divide the second row by −2
(stage 4) then subtract the second row from the third (stage 5). We are now back at step (f): we need to
ignore the first two rows and row-reduce the last one. This just means multiplying by −2/5, which we do at
stage 6. To complete the row-reduction of the bottom two rows, we just need to subtract half the bottom
row from the middle row, which is stage 7. To complete the row-reduction of the whole matrix, we need to
clear the entries in row 1 above the pivots in rows 2 and 3 as in step (g). We do this by subtracting the
middle row from the top row (stage 8) and then adding the bottom row to the top row (stage 9).

Example 6.5. As another example, we will row-reduce the matrix

C =


1 2 −3 3 2 0
−1 −1 3 0 1 3
1 2 0 1 0 1
−1 −1 0 4 5 4
1 2 1 7 6 8

 .
The steps are as follows:

C →


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 3 −2 −2 1
0 1 −3 7 7 4
0 0 4 4 4 8

→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 3 −2 −2 1
0 0 −3 4 4 1
0 0 1 1 1 2

→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 −3 4 4 1
0 0 3 −2 −2 1

→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 7 7 7
0 0 0 −5 −5 −5

→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

→


1 0 −3 −3 −4 −6
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

→


1 0 0 0 −1 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

→


1 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0

 ,
Remark 6.6. We can ask Maple to do row reductions for us using the function ReducedRowEchelonForm.
This will only work if we have already loaded the linear algebra package, and it is convenient to introduce a
shorter name for the function at the same time. For example, we can check Example 6.4 as follows:

with(LinearAlgebra):

RREF := ReducedRowEchelonForm:

A :=

<< 0 | 0 | -2 | -1 | -13 >,

<-1 | -2 | -1 | 1 | -2 >,

<-1 | -2 | 0 | -1 | -8 >>;

RREF(A);

This will just give the final result of row-reduction, without any intermediate steps. If you want to check
your working you can instead enter
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with(Student[LinearAlgebra]):

GJET := GaussJordanEliminationTutor:

GJET(A);

This will open a new window in which you can click various buttons and so on to apply row operations. The
system should be fairly self-explanatory.

The equivalent in Python with SymPy is to enter

A = Matrix(

[[ 0 , 0 , -2 , -1 , -13 ],

[-1 , -2 , -1 , 1 , -2 ],

[-1 , -2 , 0 , -1 , -8 ]]

)

A.rref()[0]

Remark 6.7. The following principle is sometimes useful. Suppose we have a matrix A, and that A can be
converted to A′ by some sequence of row operations. Suppose that B is obtained by deleting some columns
from A, and that B′ is obtained by deleting the corresponding columns from A′. When we perform row
operations, the different columns do not interact in any way. It follows that B′ can be obtained from B by
performing the same sequence of row operations that we used to obtain A′ from A.

For example, take

A =

 0 0 −2 −1 −13
−1 −2 −1 1 −2
−1 −2 0 −1 −8

 A′ =

1 2 0 0 3
0 0 1 0 4
0 0 0 1 5


so Example 6.4 tells us that A→ A′. Now delete the middle column:

B =

 0 0 −1 −13
−1 −2 1 −2
−1 −2 −1 −8

 B′ =

1 2 0 3
0 0 0 4
0 0 1 5


The above principle tells us that B can be converted to B′ by row operations. Note, however, that in this
case B′ is not in RREF; if we want an RREF matrix, we need to perform some additional row operations.
In general B′ may or may not be in RREF depending on which columns we delete.

Theorem 6.8. Let A be an augmented matrix, and let A′ be obtained from A by a sequence of row operations.
Then the system of equations corresponding to A has the same solutions (if any) as the system of equations
corresponding to A′.

This should be fairly clear. The three types of elementary row operations correspond to reordering our
system of equations, multiplying both sides of one equation by a nonzero constant, and adding one equation
to another one. None of these operations changes the solution set. We thus have the following method:

Method 6.9. To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.
(b) Row-reduce it by Method 6.3.
(c) Convert it back to a new system of equations, which (by Theorem 6.8) will have exactly the same

solutions as the old ones.
(d) Read off the solutions by Method 5.4.

Example 6.10. We will try to solve the equations

2x + y + z = 1
4x + 2y + 3z = −1
6x + 3y − z = 11

12



The corresponding augmented matrix can be row-reduced as follows: 2 1 1 1
4 2 3 −1
6 3 −1 11

 1−→

 2 1 1 1
0 0 1 −3
0 0 −4 8

 2−→

 2 1 1 1
0 0 1 −3
0 0 0 −4

 3−→

 2 1 0 0
0 0 1 0
0 0 0 1


(At stage 1 we subtracted twice the first row from the second, and also subtracted three times the first row
from the third. At stage 2 we added four times the second row to the third. At stage 3 we multiplied the
last row by −1, then cleared the entries above all the pivots. Note that this is not a complete row-reduction
as defined in Method 6.3, since we have neglected to scale the first row by 2−1 (step (d) of Method 6.3).
Correspondingly, the matrix we obtained is not in RREF (it fails property RREF1). But it is still good
enough for solving the system.)

The row-reduced matrix corresponds to the system

2x+ y = 0

z = 0

0 = 1,

which has no solutions. This is an instance of case (b) in Method 5.4. We deduce that the original system
of equations has no solutions either.

Geometrically, each of our three equations defines a plane in three-dimensional space, and by solving the
three equations together we are looking for points where all three planes meet. Any two planes usually have
a line where they intersect, and if we take the intersection with a third plane then we usually get a single
point. However, this can go wrong if the planes are placed in a special way. In this example, the planes
2x+ y+ z = −1 and 4x+ 2y+ 3z = −1 intersect in the line where z = −3 and y = 2−2x. This runs parallel
to the third plane where 6x+ 3y − z = 11, but shifted sideways, so there is no point where all three planes
meet.

Example 6.11. We will solve the equations

a+ b+ c+ d = 4

a+ b− c− d = 0

a− b+ c− d = 0

a− b− c+ d = 0.

The corresponding augmented matrix can be row-reduced as follows:
1 1 1 1 4
1 1 −1 −1 0
1 −1 1 −1 0
1 −1 −1 1 0

 1−→


1 1 1 1 4
0 0 −2 −2 −4
1 −1 1 −1 0
0 0 −2 2 0

 2−→


1 1 1 1 4
0 0 1 1 2
1 −1 1 −1 0
0 0 1 −1 0

 3−→


1 1 0 0 2
0 0 1 1 2
1 −1 0 0 0
0 0 1 −1 0

 4−→


1 1 0 0 2
0 0 1 1 2
0 −2 0 0 −2
0 0 0 −2 −2

 5−→


1 1 0 0 2
0 0 1 1 2
0 1 0 0 1
0 0 0 1 1

 6−→
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
1 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 0 0 1 1

 7−→


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


Here, rather than slavishly following Method 6.3, we have applied row operations in a more creative order
to make the structure of the equations clearer. The stages are as follows:

1 We subtract the first row from the second, and the third from the fourth.
2 We multiply the second and fourth rows by −1/2.
3 We subtract the second row from the first, and the fourth from the third.
4 We subtract the first row from the third, and the second from the fourth.
5 We multiply the third and fourth rows by −1/2.
6 We subtract the third row from the first, and the fourth from the second.
7 We exchange the second and third rows.

The final matrix corresponds to the equations a = 1, b = 1, c = 1 and d = 1, which give the unique solution
to the original system of equations.

Remark 6.12. Often we want to solve a homogeneous equation Ax = 0, where the right hand side is zero.
This means that the relevant augmented matrix is [A|0]. Row operations will not change the fact that the
last column is zero, so the RREF of [A|0] will just be [A′|0], where A′ is the RREF of A. In this context we
can save writing by leaving out the extra column and just working with A.

Example 6.13. Consider the homogeneous system

a+ b+ c+ d+ e+ f = 0

2a+ 2b+ 2c+ 2d− e− f = 0

3a+ 3b− c− d− e− f = 0

The corresponding unaugmented matrix can be row-reduced as follows:1 1 1 1 1 1
2 2 2 2 −1 −1
3 3 −1 −1 −1 −1

→
1 1 0 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1


(details are left to the reader). The final matrix corresponds to the homogeneous system

a+ b = 0 c+ d = 0 e+ f = 0.

There are pivots in columns 1, 3 and 5, meaning that a, c and e are dependent variables, and b, d and f are
independent. After moving the independent variables to the right hand side, the solution becomes a = −b,
c = −d and e = −f . If we prefer we can introduce new variables λ, µ and ν, and say that the general
solution is

a = −λ c = −µ e = −ν
b = λ d = µ f = ν

for arbitrary values of λ, µ and ν.

7. Linear combinations

Definition 7.1. Let v1, . . . , vk and w be vectors in Rn. We say that w is a linear combination of v1, . . . , vk
if there exist scalars λ1, . . . , λk such that

w = λ1v1 + · · ·+ λkvk.

In the same way, the notion of a linear combination is defined for row vectors instead of columns. (But it
offers nothing new, since a row vector w is a linear combination of k row vectors v1, . . . , vk if and only if its
transpose wT is a linear combination of vT1 , . . . , v

T
k .)
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Example 7.2. Consider the following vectors in R4:

v1 =


1
−1
0
0

 v2 =


0
1
−1
0

 v3 =


0
0
1
−1

 w =


1
10
100
−111


If we take λ1 = 1 and λ2 = 11 and λ3 = 111 we get

λ1v1 + λ2v2 + λ3v3 =


1
−1
0
0

+


0
11
−11

0

+


0
0

111
−111

 =


1
10
100
−111

 = w,

which shows that w is a linear combination of v1, v2 and v3.

Example 7.3. Consider the following vectors in R4:

v1 =


0
1
2
3

 v2 =


0
1
4
9

 v3 =


0
1
8
27

 v4 =


0
1
16
81

 w =


1
1
1
1

 .
Any linear combination of v1, . . . , v4 has the form

λ1v1 + λ2v2 + λ3v3 + λ4v4 =


0

λ1 + λ2 + λ3 + λ4
2λ1 + 4λ2 + 8λ3 + 16λ4
3λ1 + 9λ2 + 27λ3 + 81λ4

 .
In particular, the first component of any such linear combination is zero. (You should be able to see this
without needing to write out the whole formula.) As the first component of w is not zero, we see that w is
not a linear combination of v1, . . . , v4.

Example 7.4. Consider the following vectors in R3:

v1 =

1
1
1

 v2 =

1
2
1

 v3 =

1
3
1

 v4 =

1
4
1

 v5 =

1
5
1

 w =

−1
0
1

 .
Any linear combination of v1, . . . , v5 has the form

λ1v1 + · · ·+ λ5v5 =

 λ1 + λ2 + λ3 + λ4 + λ5
λ1 + 2λ2 + 3λ3 + 4λ4 + 5λ5
λ1 + λ2 + λ3 + λ4 + λ5

 .
In particular, the first and last components of any such linear combination are the same. Again, you should
be able to see this without writing the full formula. As the first and last components of w are different, we
see that w is not a linear combination of v1, . . . , v5.

Example 7.5. Let v1, v2 and w be vectors in R3 (so we can think about them geometrically). For simplicity,
assume that all three vectors are nonzero, and that v1 and v2 do not point in the same direction, nor do
they point in opposite directions. This will mean that there is a unique plane P that passes through v1, v2
and the origin. It is not hard to see that P is just the set of all possible linear combinations of v1 and v2.
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Thus, our vector w is a linear combination of v1 and v2 if and only if w lies in the plane P .

We now want to explain a more systematic way to check whether a given vector is a linear combination

of some given list of vectors. Note that for any k-vector λ =
[
λ1 · · · λk

]T
we have

Aλ =
[
v1 · · · vk

] λ1...
λk

 = λ1v1 + · · ·+ λkvk,

which is the general form for a linear combination of v1, . . . , vk. This makes it clear that w is a linear
combination of v1, . . . , vk if and only if there is a vector λ which solves the matrix equation Aλ = w. Using
Theorem 6.8 we see that the equation Aλ = w has the same solutions as the equation A′λ = w′, which can
be solved easily by Method 5.4. We thus arrive at the following method:

Method 7.6. Suppose we have vectors v1, . . . , vk ∈ Rn and another vector w ∈ Rn, and we want to express
w as a linear combination of the vi (or show that this is not possible).

(a) We first let A be the matrix whose columns are the vectors vi:

A =
[
v1 · · · vk

]
∈Mn×k(R).

(b) We then append w as an additional column to get an augmented matrix

B =
[
v1 · · · vk w

]
=
[
A w

]
.

This corresponds to the matrix equation Aλ = w.
(c) Row-reduce B by Method 6.3 to get a matrix B′ = [A′|w′] in RREF.
(d) If B′ has a pivot in the last column, then w is not a linear combination of the vectors v1, . . . , vk.

(e) If B′ has no pivot in the last column, then we can use Method 5.4 to find a vector λ =
[
λ1 · · · λk

]T
satisfying A′λ = w′. We then have Aλ = w and λ1v1 + · · · + λkvk = w, showing that w is a linear
combination of v1, . . . , vk.

Example 7.7. Consider the vectors

v1 =


11
11
1
1

 v2 =


1
11
11
1

 v3 =


1
1
11
11

 w =


121
221
1211
1111

 .
We ask whether w can be expressed as a linear combination w = λ1v1 +λ2v2 +λ3v3, and if so, what are the
relevant values λ1, λ2 and λ3? Following Method 7.6, we write down the augmented matrix [v1|v2|v3|w] and
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row-reduce it:
11 1 1 121
11 11 1 221
1 11 11 1211
1 1 11 1111

 1−→


1 1 11 1111
11 1 1 121
11 11 1 221
1 11 11 1211

 2−→


1 1 11 1111
0 −10 −120 −12100
0 0 −120 −12000
0 10 0 100

 3−→


1 1 11 1111
0 1 12 1210
0 0 1 100
0 1 0 10

 4−→


1 1 0 11
0 1 0 10
0 0 1 100
0 1 0 10

 5−→


1 0 0 1
0 1 0 10
0 0 1 100
0 0 0 0


(1: move the bottom row to the top; 2: subtract multiples of row 1 from the other rows; 3: divide rows 2,3
and 4 by −10, −120 and 10; 4: subtract multiples of row 3 from the other rows; 5: subtract multiples of row
2 from the other rows.)

The final matrix corresponds to the system of equations

λ1 = 1 λ2 = 10 λ3 = 100 0 = 0

so we conclude that

w = v1 + 10v2 + 100v3.

In particular, w can be expressed as a linear combination of v1, v2 and v3. We can check the above equation
directly:

v1 + 10v2 + 100v3 =


11
11
1
1

+


10
110
110
10

+


100
100
1100
1100

 =


121
221
1211
1111

 = w.

Example 7.8. Consider the vectors

a1 =

 2
−1
0

 a2 =

 3
0
−1

 a3 =

 0
3
−2

 b =

1
2
3


To test whether b is a linear combination of a1, a2 and a3, we write down the relevant augmented matrix
and row-reduce it: 2 3 0 1

−1 0 3 2
0 −1 −2 3

 1−→

 1 0 −3 −2
0 1 2 −3
2 3 0 1

 2−→

 1 0 −3 −2
0 1 2 −3
0 3 6 5

 3−→

 1 0 −3 −2
0 1 2 −3
0 0 0 14

 4−→

 1 0 −3 −2
0 1 2 −3
0 0 0 1

 5−→

 1 0 −3 0
0 1 2 0
0 0 0 1


(Stage 1: move the top row to the bottom, and multiply the other two rows by −1; Stage 2: subtract 2
times row 1 from row 3; Stage 3: subtract 3 times row 2 from row 3; Stage 4: divide row 3 by 14; Stage 5:
subtract multiples of row 3 from rows 1 and 2.)

The last matrix has a pivot in the rightmost column, corresponding to the equation 0 = 1. This means
that the equation λ1a1 + λ2a2 + λ3a3 = b cannot be solved for λ1, λ2 and λ3, or in other words that b is not
a linear combination of a1, a2 and a3.

We can also see this in a more direct but less systematic way, as follows. It is easy to check that
b.a1 = b.a2 = b.a3 = 0, which means that b.(λ1a1 + λ2a2 + λ3a3) = 0 for all possible choices of λ1, λ2 and
λ3. However, b.b = 14 > 0, so b cannot be equal to λ1a1 + λ2a2 + λ3a3.
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8. Linear independence

Definition 8.1. Let V = v1, . . . , vk be a list of vectors in Rn. A linear relation between the vectors vi is
a relation of the form λ1v1 + · · · + λkvk = 0, where λ1, . . . , λk are scalars. In other words, it is a way of
expressing 0 as a linear combination of V.

For any list we have the trivial linear relation 0v1 + 0v2 + · · · + 0vk = 0. There may or may not be any
nontrivial linear relations.

If the list V has a nontrivial linear relation, we say that it is a linearly dependent list. If the only linear
relation on V is the trivial one, we instead say that V is linearly independent . We will often omit the word
“linearly” for the sake of brevity.

All this language is defined in the same way for row vectors instead of column vectors.

Example 8.2. Consider the list V given by

v1 =


1
1
0
0

 v2 =


0
0
1
1

 v3 =


1
0
0
1

 v4 =


0
1
1
0

 .
There is a nontrivial linear relation v1 + v2 − v3 − v4 = 0, so the list V is dependent.

Example 8.3. (a) Consider the list A given by

a1 =

[
1
2

]
a2 =

[
12
1

]
a3 =

[
−1
−1

]
a4 =

[
3
1

]
.

Just by writing it out, you can check that

3a1 + a2 + 3a3 − 4a4 = 0.

3a1

a2

3a3

−4a4

This is a nontrivial linear relation on the list A, so A is dependent.
(b) Consider the list B given by

b1 =

[
1
0

]
b2 =

[
2
0

]
b3 =

[
0
1

]
.

This list B, too, is dependent, since 2b1−1b2+0b3 = 0. (This shows that even the smaller list (b1, b2)
is dependent.)

Example 8.4. Consider the list U given by

u1 =


1
1
0
0

 u2 =


0
1
1
0

 u3 =


0
0
1
1

 .
We claim that this is independent. To see this, consider a linear relation λ1u1 + λ2u2 + λ3u3 = 0. Writing
this out, we get 

λ1
λ1 + λ2
λ2 + λ3
λ3

 =


0
0
0
0

 .
By looking at the first and last rows we see that λ1 = λ3 = 0. By looking at the second row we get
λ2 = −λ1 = 0 as well so our relation is the trivial relation. As the only linear relation is the trivial one, we
see that U is independent.
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Lemma 8.5. Let v and w be vectors in Rn, and suppose that v 6= 0 and that the list (v, w) is linearly
dependent. Then there is a number α such that w = αv.

Proof. Because the list is dependent, there is a linear relation λv + µw = 0 where λ and µ are not both
zero. There are apparently three possibilities: (a) λ 6= 0 and µ 6= 0; (b) λ = 0 and µ 6= 0; (c) λ 6= 0 and
µ = 0. However, case (c) is not really possible. Indeed, in case (c) the equation λv + µw = 0 would reduce
to λv = 0, and we could multiply by λ−1 to get v = 0; but v 6= 0 by assumption. In case (a) or (b) we can
take α = −λ/µ and we have w = αv. �

There is a systematic method using row-reduction for checking linear (in)dependence, as we will explain
shortly. We first need a preparatory observation.

Definition 8.6. Let B be a p× q matrix. We say that B is wide if p < q, or square if p = q, or tall if p > q.[
1 2 3
4 5 6

] 1 2 1
2 3 2
1 2 1

 1 1
0 0
1 1


wide square tall

Lemma 8.7. Let B be a p× q matrix in RREF.

(a) If B is wide then it is impossible for every column to contain a pivot.
(b) If B is square then the only way for every column to contain a pivot is if B = Iq.
(c) If B is tall then the only way for every column to contain a pivot is if B consists of Iq with (p− q)

rows of zeros added at the bottom (so B =

[
Iq

0(p−q)×q

]
).

For example, the only 5× 3 RREF matrix with a pivot in every column is this one:

[
I3

02×3

]
=


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


Proof. There is at most one pivot in every row, making at most p pivots altogether. If B is wide then we
have q columns with q > p, so there are not enough pivots to have one in every column. This proves (a).

Now suppose instead that B does have a pivot in every column, so there are q pivots and we must have
p ≥ q. As B is in RREF we know that all entries above or below a pivot are zero. As there is a pivot in every
column it follows that the pivots are the only nonzero entries in B. Every nonzero row contains precisely
one pivot, so there must be q nonzero rows. The remaining (p− q) rows are all zero, and they must occur at
the bottom of B (because B is in RREF). Now the top q× q block contains q pivots which move to the right
as we go down the matrix. It is easy to see that the only possibility for the top block is Iq, which proves (b)
and (c). �

Method 8.8. Let V = v1, . . . , vm be a list of vectors in Rn. We can check whether this list is dependent as
follows.

(a) Form the n×m matrix

A =

 v1 . . . vm


whose columns are the vectors vi.

(b) Row-reduce A to get another n×m matrix B in RREF.
(c) If every column of B contains a pivot (so B has the form discussed in Lemma 8.7) then V is

independent.
(d) If some column of B has no pivot, then the list V is dependent. Moreover, we can find the coefficients

λi in a nontrivial linear relation by solving the vector equation Bλ = 0 (which is easy because B is
in RREF).
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Remark 8.9. If m > n then V is automatically dependent and we do not need to go through the method.
(For example, any list of 5 vectors in R3 is automatically dependent, any list of 10 vectors in R9 is automat-
ically dependent, and so on.) Indeed, in this case the matrices A and B are wide, so it is impossible for B
to have a pivot in every column. However, this line of argument only tells us that there exists a nontrivial
relation λ1v1 + · · ·+ λmvm = 0, it does not tell us the coefficients λi. If we want to find the λi then we do
need to go through the whole method as explained above.

We will give some examples of using the above method, and then explain why the method is correct.

Example 8.10. In example 8.2 we considered the list

v1 =


1
1
0
0

 v2 =


0
0
1
1

 v3 =


1
0
0
1

 v4 =


0
1
1
0

 .
We can write down the corresponding matrix and row-reduce it as follows:

1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0

 1−→


1 0 1 0
0 0 −1 1
0 1 0 1
0 0 1 −1

 2−→


1 0 1 0
0 1 0 1
0 0 1 −1
0 0 −1 1

 3−→


1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0


The end result has no pivot in the last column, so the original list is dependent. To find a specific linear
relation, we solve the equation 

1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0



λ1
λ2
λ3
λ4

 =


0
0
0
0


to get λ1 = −λ4, λ2 = −λ4 and λ3 = λ4 with λ4 arbitrary. Taking λ4 = 1 gives (λ1, λ2, λ3, λ4) =
(−1,−1, 1, 1), corresponding to the relation −v1 − v2 + v3 + v4 = 0.

Example 8.11. In Example 8.3 (a) we considered the list

a1 =

[
1
2

]
a2 =

[
12
1

]
a3 =

[
−1
−1

]
a4 =

[
3
1

]
.

Here we have 4 vectors in R2, so they must be dependent by Remark 8.9. Thus, there exist nontrivial linear
relations

λ1a1 + λ2a2 + λ3a3 + λ4a4 = 0.

To actually find such a relation, we write down the corresponding matrix and row-reduce it as follows:[
1 12 −1 3
2 1 −1 1

]
−→
[
1 12 −1 3
0 −23 1 −5

]
−→
[
1 12 −1 3
0 1 −1/23 5/23

]
−→
[
1 0 −11/23 9/23
0 1 −1/23 5/23

]
We now need to solve the matrix equation

[
1 0 −11/23 9/23
0 1 −1/23 5/23

]
λ1
λ2
λ3
λ4

 =

[
0
0

]

As this is in RREF, we can just read off the solution: λ1 = 11
23λ3 −

9
23λ4 and λ2 = 1

23λ3 −
5
23λ4 with λ3 and

λ4 arbitrary. If we choose λ3 = 23 and λ4 = 0 we get (λ1, λ2, λ3, λ4) = (11, 1, 23, 0) so we have a relation

11a1 + a2 + 23a3 + 0a4 = 0.

(You should check directly that this is correct.) Alternatively, we can choose λ3 = 3 and λ4 = −4. Using
the equations λ1 = 11

23λ3 −
9
23λ4 and λ2 = 1

23λ3 −
5
23λ4 we get λ1 = 3 and λ2 = 1 giving a different relation

3a1 + a2 + 3a3 − 4a4 = 0.

This is the relation that we observed in Example 8.3 (a).
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Example 8.12. In Example 8.4 we considered the list U given by

u1 =


1
1
0
0

 u2 =


0
1
1
0

 u3 =


0
0
1
1

 .
We can write down the corresponding matrix and row-reduce it as follows:

1 0 0
1 1 0
0 1 1
0 0 1

→


1 0 0
0 1 0
0 1 1
0 0 1

→


1 0 0
0 1 0
0 0 1
0 0 1

→


1 0 0
0 1 0
0 0 1
0 0 0


The final matrix has a pivot in every column, as in Lemma 8.7. It follows that the list U is independent.

Proof of correctness of Method 8.8. Put

A =

 v1 · · · vm


as in step (a) of the method, and letB be the RREF form ofA. Note that for any vector λ =

[
λ1 . . . λm

]T ∈
Rm, we have

Aλ =

 v1 · · · vm


λ1...
λm

 = λ1v1 + · · ·+ λmvm.

Thus, linear relations on our list are just the same as solutions to the homogeneous equation Aλ = 0. By
Theorem 6.8, these are the same as solutions to the equation Bλ = 0, which can be found by Method 5.4.
If there is a pivot in every column then none of the variables λi is independent, so the only solution is
λ1 = λ2 = · · · = λm = 0. Thus, the only linear relation on V is the trivial one, which means that the list V
is linearly independent.

Suppose instead that some column (the k’th one, say) does not contain a pivot. Then in Method 5.4 the
variable λk will be independent, so we can choose λk = 1. This will give us a nonzero solution to Bλ = 0,
or equivalently Aλ = 0, corresponding to a nontrivial linear relation on V. This shows that V is linearly
dependent. �

9. Spanning sets

Definition 9.1. Suppose we have a list V = v1, . . . , vm of vectors in Rn. We say that the list spans Rn if
every vector in Rn can be expressed as a linear combination of v1, . . . , vm.

Example 9.2. Consider the list V = v1, v2, v3, v4, where

v1 =


0
1
2
3

 v2 =


0
1
4
9

 v3 =


0
1
8
27

 v4 =


0
1
16
81


In Example 7.3 we saw that the vector w =

[
1 1 1 1

]T
is not a linear combination of this list, so the list

V does not span R4.

Example 9.3. Consider the list V = v1, v2, v3, v4, v5, where

v1 =

1
1
1

 v2 =

1
2
1

 v3 =

1
3
1

 v4 =

1
4
1

 v5 =

1
5
1

 .
In Example 7.4 we saw that the vector w =

[
−1 0 1

]T
is not a linear combination of this list, so the list

V does not span R3.
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Example 9.4. Similarly, Example 7.8 shows that the list

A =

 2
−1
0

 ,
 3

0
−1

 ,
 0

3
−2


does not span R3.

Example 9.5. Consider the list U = u1, u2, u3, where

u1 =

1
1
0

 u2 =

1
0
1

 u3 =

0
1
1

 .
We will show that these span R3. Indeed, for any vector v =

[
x y z

]T ∈ R3 we can put

λ1 =
x+ y − z

2
λ2 =

x− y + z

2
λ3 =

−x+ y + z

2
and we find that

λ1u1 + λ2u2 + λ3u3 =

(x+ y − z)/2
(x+ y − z)/2

0

+

(x− y + z)/2
0

(x− y + z)/2

+

 0
(−x+ y + z)/2
(−x+ y + z)/2


=

(x+ y − z + x− y + z)/2
(x+ y − z − x+ y + z)/2
(x− y + z − x+ y + z)/2

 =

xy
z

 = v.

This expresses v as a linear combination of the list U , as required.

Example 9.6. Consider the list A = a1, a2, a3 where

a1 =

[
1
2

]
a2 =

[
2
3

]
a3 =

[
3
5

]
.

Let v =

[
x
y

]
be an arbitrary vector in R2. Just by expanding out the right hand side, we see that[

x
y

]
= (2y − 4x)

[
1
2

]
+ (x− y)

[
2
3

]
+ x

[
3
5

]
,

or in other words
v = (2y − 4x)a1 + (x− y)a2 + xa3.

This expresses an arbitrary vector v ∈ R2 as a linear combination of a1, a2 and a3, proving that the list A
spans R2.

In this case there are actually many different ways in which we can express v as a linear combination of
a1, a2 and a3. Another one is

v = (y − 3x)a1 + (2x− 2y)a2 + ya3.

We now discuss a systematic method for spanning problems.

Method 9.7. Let V = v1, . . . , vm be a list of vectors in Rn. We can check whether this list spans Rn as
follows.

(a) Form the m× n matrix

C =


vT1
...

vTm


whose rows are the row vectors vTi .

(b) Row-reduce C to get another m× n matrix D in RREF.
(c) If every column of D contains a pivot (so D has the form discussed in Lemma 8.7) then V spans Rn.
(d) If some column of D has no pivot, then the list V does not span Rn.
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Remark 9.8. This is almost exactly the same as Method 8.8, except that here we start by building a matrix
whose rows are vTi , whereas in Method 8.8 we start by building a matrix whose columns are vi. Equivalently,
the matrix C in this method is the transpose of the matrix A in Method 8.8. Note, however, that transposing
does not interact well with row-reduction, so the matrix D is not the transpose of B.

Remark 9.9. If m < n then the matrices C and D above will be wide, so D cannot have a pivot in every
column, so the list V cannot span Rn. For example, no list of 4 vectors can span R6, and any list that spans
R8 must contain at least 8 vectors and so on.

We will give some examples of using this method, then explain why it works.

Example 9.10. Consider the list

v1 =


0
1
2
3

 v2 =


0
1
4
9

 v3 =


0
1
8
27

 v4 =


0
1
16
81


as in Example 9.2 (so n = m = 4). The relevant matrix C is

C =


0 1 2 3
0 1 4 9
0 1 8 27
0 1 16 81


The first column is zero, and will remain zero no matter what row operations we perform. Thus C cannot
reduce to the identity matrix, so V does not span R4 (as we already saw by a different method). In fact the
row-reduction is

C →


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


but it is not really necessary to go through the whole calculation.

Example 9.11. Consider the list

v1 =

1
1
1

 v2 =

1
2
1

 v3 =

1
3
1

 v4 =

1
4
1

 v5 =

1
5
1

 .
as in Example 9.3 (so n = 3 and m = 5). The relevant row-reduction is

1 1 1
1 2 1
1 3 1
1 4 1
1 5 1

→


1 1 1
0 1 0
0 2 0
0 3 0
0 4 0

→


1 0 1
0 1 0
0 0 0
0 0 0
0 0 0


At the end of the process the last column does not contain a pivot (so the top 3×3 block is not the identity),
so the original list does not span R3. Again, we saw this earlier by a different method.

Example 9.12. For the list

A =

 2
−1
0

 ,
 3

0
−1

 ,
 0

3
−2


in Example 9.4, the relevant row-reduction is2 −1 0

3 0 −1
0 3 −2

→
1 − 1

2 0
3 0 −1
0 3 −2

→
1 − 1

2 0
0 3

2 −1
0 3 −2

→
1 − 1

2 0
0 1 − 2

3
0 0 0

→
1 0 − 1

3
0 1 − 2

3
0 0 0

 .
In the last matrix the third column has no pivot, so the list does not span R3.
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Example 9.13. Consider the list U = u1, u2, u3 from Example 9.5.

u1 =

1
1
0

 u2 =

1
0
1

 u3 =

0
1
1

 .
The relevant row-reduction is1 1 0

1 0 1
0 1 1

→
1 1 0

0 −1 1
0 1 1

→
1 1 0

0 1 −1
0 0 2

→
1 1 0

0 1 0
0 0 1

→
1 0 0

0 1 0
0 0 1


The end result is the identity matrix, so the list U spans R3.

Example 9.14. Consider the list A =

[
1
2

]
,

[
2
3

]
,

[
3
5

]
from Example 9.6. The relevant row-reduction is1 2

2 3
3 5

→
1 2

0 −1
0 −1

→
1 2

0 1
0 −1

→
 1 0

0 1
0 0


In the last matrix, the top 2× 2 block is the identity. This means that the list A spans R2.

We now explain why Method 9.7 is valid.

Lemma 9.15. Let C be an m×n matrix, and let C ′ be obtained from C by a single elementary row operation.
Let s be a row vector of length n. Then s can be expressed as a linear combination of the rows of C if and
only if it can be expressed as a linear combination of the rows of C ′.

Proof. Let the rows of C be r1, . . . , rm. Suppose that s is a linear combination of these rows, say

s = λ1r1 + λ2r2 + λ3r3 + · · ·+ λmrm.

(a) Suppose that C ′ is obtained from C by swapping the first two rows, so the rows of C ′ are r2, r1, r3, . . . , rm.
The sequence of numbers λ2, λ1, λ3, . . . , λm satisfies

s = λ2r2 + λ1r1 + λ3r3 + · · ·+ λmrm,

which expresses s as a linear combination of the rows of C ′. The argument is essentially the same if
we exchange any other pair of rows.

(b) Suppose instead that C ′ is obtained from C by multiplying the first row by a nonzero scalar u, so
the rows of C ′ are ur1, r2, . . . , rm. The sequence of numbers u−1λ1, λ2, . . . , λm then satisfies

s = (u−1λ1)(ur1) + λ2r2 + · · ·+ λmrm,

which expresses s as a linear combination of the rows of C ′. The argument is essentially the same if
we multiply any other row by a nonzero scalar.

(c) Suppose instead that C ′ is obtained from C by adding u times the second row to the first row, so
the rows of C ′ are r1 + ur2, r2, r3, . . . , rm. The sequence of numbers λ1, λ2 − uλ1, λ3, . . . , λm then
satisfies

λ1(r1 + ur2) + (λ2 − uλ1)r2 + λ3r3 + · · ·+ λmrm = λ1r1 + λ2r2 + · · ·+ λmrm = s,

which expresses s as a linear combination of the rows of C ′. The argument is essentially the same if
add a multiple of any row to any other row.

This proves half of the lemma: if s is a linear combination of the rows of C, then it is also a linear combination
of the rows of C ′. We also need to prove the converse: if s is a linear combination of the rows of C ′, then
it is also a linear combination of the rows of C. We will only treat case (c), and leave the other two cases
to the reader. The rows of C ′ are then r1 + ur2, r2, r3, . . . , rm. As s is a linear combination of these rows,
we have s = µ1(r1 + ur2) + µ2r2 + · · ·+ µmrm for some numbers µ1, . . . , µm. Now the sequence of numbers
µ1, (µ2 + uµ1), µ3, . . . , µm satisfies

s = µ1r1 + (µ2 + uµ1)r2 + µ3r3 + · · ·+ µmrm,

which expresses s as a linear combination of the rows of C. �
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Corollary 9.16. Let C be an m× n matrix, and let D be obtained from C by a sequence of elementary row
operations. Let s be a row vector of length n. Then s can be expressed as a linear combination of the rows
of C if and only if it can be expressed as a linear combination of the rows of D.

Proof. Just apply the lemma to each step in the row-reduction sequence. �

Lemma 9.17. Let D be an m× n matrix in RREF.

(a) Suppose that every column of D contains a pivot. Then m ≥ n, the top n × n block of D is the
identity, and everything below that block is zero. In this case every row vector of length n can be
expressed as a linear combination of the rows of D.

(b) Suppose instead that the k’th column of D does not contain a pivot. Then the standard basis vector
ek cannot be expressed as a linear combination of the rows of D.

Proof. (a) Suppose that every column of D contains a pivot. Lemma 8.7 tells us that m ≥ n and that

D =

[
In

0(m−n)×n

]
. Thus, the first n rows are the standard basis vectors

r1 = eT1 =
[
1 0 0 · · · 0

]
r2 = eT2 =

[
0 1 0 · · · 0

]
r3 = eT3 =

[
0 0 1 · · · 0

]
· · · · · · · · · · · ·

rn = eTn =
[
0 0 0 · · · 1

]
and ri = 0 for i > n. This means that any row vector v =

[
v1 v2 · · · vn

]
can be expressed as

v =
[
v1 0 0 · · · 0

]
+[

0 v2 0 · · · 0
]

+[
0 0 v3 · · · 0

]
+

· · · · · · · · · · · · · · · · · · · · ·+[
0 0 0 · · · vn

]
=v1r1 + v2r2 + v3r3 + · · ·+ vnrn,

which is a linear combination of the rows of D.
(b) The argument here is most easily explained by an example. Consider the matrix

D =

0 1 2 3 0 4 5 0
0 0 0 0 1 6 7 0
0 0 0 0 0 0 0 1


This is in RREF, with pivots in columns 2, 5 and 8. Let ri be the i’th row, and consider a linear
combination

s = λ1r1 + λ2r2 + λ3r3 =
[
0 λ1 2λ1 3λ1 λ2 4λ1 + 6λ2 5λ1 + 7λ2 λ3

]
.

Note that the entries in the pivot columns 2, 5 and 8 of s are just the coefficients λ1, λ2 and λ3.
This is not a special feature of this example: it simply reflects the fact that pivot columns contain
nothing except the pivot. Now choose a non-pivot column, say column number 6, and consider the
standard basis vector e6. Suppose we try to write e6 as λ1r1 +λ2r2 +λ3r3, or in other words to solve

[ 0 0 0 0 0 1 0 0 ]
= [ 0 λ1 2λ1 3λ1 λ2 4λ1 + 6λ2 5λ1 + 7λ2 λ3 ].

By looking in column 2, we see that λ1 has to be zero. By looking in column 5, we see that λ2 has to be
zero. By looking in column 8, we see that λ3 has to be zero. This means that λ1r1 +λ2r2 +λ3r3 = 0,
so λ1r1 + λ2r2 + λ3r3 cannot be equal to e6.

This line of argument works more generally. Suppose that D is an RREF matrix and that the
k’th column has no pivot. We claim that ek is not a linear combination of the rows of D. We can
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remove any rows of zeros from D without affecting the question, so we may assume that every row
is nonzero, so every row contains a pivot. Suppose that ek = λ1r1 + · · ·+ λmrm say. By looking in
the column that contains the first pivot, we see that λ1 = 0. By looking in the column that contains
the second pivot, we see that λ2 = 0. Continuing in this way, we see that all the coefficients λi are
zero, so

∑
i λiri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

�

Proof of correctness of Method 9.7. We form a matrix C as in step (b) of the method. Recall that V spans
Rn if and only if every column vector is a linear combination of the column vectors vi. It is clear that this
happens if and only if every row vector is a linear combination of the row vectors vTi , which are the rows of
C. By Corollary 9.16, this happens if and only if every row vector is a linear combination of the rows of D.
Lemma 9.17 tells us that this happens if and only if D has a pivot in every column. �

We can now prove the following result, which is one of a number of things that go by the name “duality”.

Proposition 9.18. Let P be an m× n matrix.

(a) The columns of P are linearly independent in Rm if and only if the columns of PT span Rn.
(b) The columns of P span Rm if and only if the columns of PT are linearly independent in Rn.

Proof. Applying Method 8.8 to the columns of P is the same as applying Method 9.7 to the columns of PT .
Similarly, applying Method 9.7 to the columns of P is the same as applying Method 8.8 to the columns of
PT . �

Remark 9.19. The way we have phrased the proposition reflects the fact that we have chosen to work
with column vectors as far as possible. However, one can define what it means for row vectors to span or be
linearly independent, in just the same way as we did for column vectors. We can then restate the proposition
as follows:

(a) The columns of P are linearly independent if and only if the rows of P span.
(b) The columns of P span if and only if the rows of P are linearly independent.

10. Bases

Definition 10.1. A basis for Rn is a linearly independent list of vectors in Rn that also spans Rn.

Remark 10.2. Any basis for Rn must contain precisely n vectors. Indeed, Remark 8.9 tells us that a
linearly independent list can contain at most n vectors, and Remark 9.9 tells us that a spanning list must
contain at least n vectors. As a basis has both these properties, it must contain precisely n vectors.

Example 10.3. Consider the list U = (u1, u2, u3), where

u1 =

1
0
0

 u2 =

1
1
0

 u3 =

1
1
1

 .
For an arbitrary vector v =

[
a b c

]T
we have

(a− b)u1 + (b− c)u2 + cu3 =

a− b0
0

+

b− cb− c
0

+

cc
c

 =

ab
c

 = v,

which expresses v as a linear combination of u1, u2 and u3. This shows that U spans R3. Now suppose we
have a linear relation λ1u1 + λ2u2 + λ3u3 = 0. This means thatλ1 + λ2 + λ3

λ2 + λ3
λ3

 =

0
0
0

 ,
from which we read off that λ3 = 0, then that λ2 = 0, then that λ1 = 0. This means that the only linear
relation on U is the trivial one, so U is linearly independent. As it also spans, we conclude that U is a basis.
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Proposition 10.4. Suppose we have a list V = (v1, . . . , vn) of n vectors in Rn, and we put

A =

 v1 . . . vn


(which is an n × n square matrix). Then V is a basis if and only if the equation Aλ = x has a unique
solution for every x ∈ Rn.

Proof. (a) Suppose that V is a basis. In particular, this means that an arbitrary vector x ∈ Rn can be
expressed as a linear combination

x = λ1v1 + · · ·+ λnvn.

Thus, if we form the vector λ =
[
λ1 · · · λn

]T
, we have

Aλ =

 v1 · · · vn


λ1...
λn

 = λ1v1 + · · ·+ λnvn = x,

so λ is a solution to the equation Aλ = x. Suppose that µ is another solution, so we also have

µ1v1 + · · ·+ µnvn = x.

By subtracting this from the earlier equation, we get

(λ1 − µ1)v1 + · · ·+ (λn − µn)vn = 0.

This is a linear relation on the list V. However, V is assumed to be a basis, so in particular it is
linearly independent, so the only linear relation on V is the trivial one. This means that all the
coefficients λi − µi are zero, so the vector λ is the same as the vector µ. In other words, λ is the
unique solution to Aλ = x, as required.

(b) We now need to prove the converse. Suppose that for every x ∈ Rn, the equation Aλ = x has a
unique solution. Equivalently, for every x ∈ Rn, there is a unique sequence of coefficients λ1, . . . , λn
such that λ1v1 + . . . + λnvn = x. Firstly, we can temporarily ignore the uniqueness, and just note
that every element x ∈ Rn can be expressed as a linear combination of v1, . . . , vn. This means that
the list V spans Rn. Next, consider the case x = 0. The equation Aλ = 0 has λ = 0 as one solution.
By assumption, the equation Aλ = 0 has a unique solution, so λ = 0 is the only solution. Using
the above equation for Aλ, we can restate this as follows: the only sequence (λ1, . . . , λn) for which
λ1v1 + · · ·+ λnvn = 0 is the sequence (0, . . . , 0). In other words, the only linear relation on V is the
trivial one. This means that V is linearly independent, and it also spans Rn, so it is a basis.

�

This gives us a straightforward method to check whether a list is a basis.

Method 10.5. Let V = (v1, . . . , vm) be a list of vectors in Rn.

(a) If m 6= n then V is not a basis.
(b) If m = n then we form the matrix

A =

 v1 . . . vm


and row-reduce it to get a matrix B.

(c) If B = In then V is a basis; otherwise, it is not.

Proof of correctness of Method 10.5. Step (a) is justified by Remark 10.2, so for the rest of the proof we can
assume that n = m.

Suppose that A row-reduces to In. Fix a vector x ∈ Rn, and consider the equation Aλ = x. This
corresponds to the augmented matrix [A|x]. If we perform the same row operations on [A|x] as we did to
convert A to In, we will obtain a matrix of the form [In|x′]. Theorem 6.8 tells us that the solutions to
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Aλ = x are the same as the solutions to Inλ = x′, so it is clear that λ = x′ is the unique solution. Thus the
hypothesis of Proposition 10.4 is satisfied, and we can conclude that V is a basis.

Now suppose instead that row-reduction of A leads to a matrix B in RREF that is not equal to In. We
know that In is the only square RREF matrix with a pivot in every column, so B cannot have a pivot in
every column. Method 8.8 therefore tells us that the list V is linearly dependent, so it cannot be a basis. �

Example 10.6. Consider the vectors

v1 =


1
2
3
2
1

 v2 =


3
2
1
2
3

 v3 =


1
1
1
1
1

 v4 =


1
3
5
3
1

 v5 =


5
3
1
3
5


To decide whether they form a basis, we construct the corresponding matrix A and start row-reducing it:

1 3 1 1 5
2 2 1 3 3
3 1 1 5 1
2 2 1 3 3
1 3 1 1 5

→


1 3 1 1 5
0 −4 −1 1 −7
0 −8 −2 2 −14
0 −4 −1 1 −7
0 0 0 0 0

→


1 3 1 1 5
0 −4 −1 1 −7
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Already after the first step we have a row of zeros, and it is clear that we will still have a row of zeros after
we complete the row-reduction, so A does not reduce to the identity matrix, so the vectors vi do not form a
basis.

Example 10.7. Consider the vectors

p1 =


1
1
11
1

 p2 =


1
11
1
11

 p3 =


1
1
1
11

 p4 =


1
11
11
11


To decide whether they form a basis, we construct the corresponding matrix A and row-reduce it:

1 1 1 1
1 11 1 11
11 1 1 11
1 11 11 11

→


1 1 1 1
0 10 0 10
0 −10 −10 0
0 10 10 10

→


1 1 1 1
0 1 0 1
0 1 1 0
0 1 1 1

→


1 1 1 1
0 1 0 1
0 1 1 0
0 0 0 1

→


1 1 1 1
0 1 0 1
0 0 1 −1
0 0 0 1

→


1 0 1 0
0 1 0 1
0 0 1 −1
0 0 0 1


After a few more steps, we obtain the identity matrix. It follows that the list p1, p2, p3, p4 is a basis.

Now suppose that the list V = v1, . . . , vn is a basis for Rn, and that w is another vector in Rn. By
the very definition of a basis, it must be possible to express w (in a unique way) as a linear combination
w = λ1v1 + · · ·+ λnvn. If we want to find the coefficients λi, we can use Method 7.6. That method can be
streamlined slightly in this context, as follows.

Method 10.8. Let V = v1, . . . , vn be a basis for Rn, and let w be another vector in Rn.

(a) Let B be the matrix

B =
[
v1 · · · vn w

]
∈Mn×(n+1)(R).

(b) Let B′ be the RREF form of B. Then B′ will have the form [In|λ] for some column vector

λ =

λ1...
λn

 .
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(c) Now w = λ1v1 + · · ·+ λnvn.

It is clear from our discussion of Method 7.6 and Method 10.5 that this is valid.

Example 10.9. We will express the vector q =


0.9
0.9
0

10.9

 in terms of the basis p1, p2, p3, p4 introduced in

Example 10.7. We form the relevant augmented matrix, and apply the same row-reduction steps as in
Example 10.7, except that we now have an extra column.

1 1 1 1 0.9
1 11 1 11 0.9
11 1 1 11 0
1 11 11 11 10.9

→


1 1 1 1 0.9
0 10 0 10 0
0 −10 −10 0 −9.9
0 10 10 10 10

→


1 1 1 1 0.9
0 1 0 1 0
0 1 1 0 0.99
0 1 1 1 1

→


1 1 1 1 0.9
0 1 0 1 0
0 1 1 0 0.99
0 0 0 1 0.01

→


1 1 1 1 0.9
0 1 0 1 0
0 0 1 −1 0.99
0 0 0 1 0.01

→


1 0 1 0 0.9
0 1 0 1 0
0 0 1 −1 0.99
0 0 0 1 0.01

→


1 0 1 0 0.9
0 1 0 0 −0.01
0 0 1 0 1
0 0 0 1 0.01

→


1 0 0 0 −0.1
0 1 0 0 −0.01
0 0 1 0 1
0 0 0 1 0.01


The final result is [I4|λ], where λ =

[
−0.1 −0.01 1 0.01

]T
. This means that q can be expressed in terms

of the vectors pi as follows:

q = −0.1p1 − 0.01p2 + p3 + 0.01p4.

Example 10.10. One can check that the vectors u1, u2, u3 and u4 below form a basis for R4.

u1 =


1
1
2
1
3
1
4

 u2 =


1
2
1
3
1
4
1
5

 u3 =


1
3
1
4
1
5
1
6

 u4 =


1
4
1
5
1
6
1
7

 v =


1

1

1

1


We would like to express v in terms of this basis. The matrix formed by the vectors ui is called the Hilbert
matrix ; it is notoriously hard to row-reduce. We will therefore use Maple:

with(LinearAlgebra):

RREF := ReducedRowEchelonForm;

u[1] := <1,1/2,1/3,1/4>;

u[2] := <1/2,1/3,1/4,1/5>;

u[3] := <1/3,1/4,1/5,1/6>;

u[4] := <1/4,1/5,1/6,1/7>;

v := <1,1,1,1>;

B := <u[1]|u[2]|u[3]|u[4]|v>;

RREF(B);

Maple tells us that 
1 1/2 1/3 1/4 1

1/2 1/3 1/4 1/5 1
1/3 1/4 1/5 1/6 1
1/4 1/5 1/6 1/7 1

→


1 0 0 0 −4
0 1 0 0 60
0 0 1 0 −180
0 0 0 1 140

 .
We conclude that

v = −4u1 + 60u2 − 180u3 + 140u4.

The equivalent in Python with SymPy is to enter
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B = Matrix([

[1,1/2,1/3,1/4],

[1/2,1/3,1/4,1/5],

[1/3,1/4,1/5,1/6],

[1/4,1/5,1/6,1/7],

[1,1,1,1]

]).T

B.rref()[0]

Proposition 10.11. Let A be an n × n matrix. Then the columns of A form a basis for Rn if and only if
the columns of AT form a basis for Rn.

Proof. Suppose that the columns of A form a basis. This means in particular that the columns of A are
linearly independent, so the columns of AT span Rn by part (a) of Proposition 9.18. Also, the columns of A
must span Rn (by the other half of the definition of a basis) so the columns of AT are linearly independent
by part (b) of Proposition 9.18. As the columns of AT are linearly independent and span Rn, they form a
basis.

The converse is proved in the same way. �

Proposition 10.12. Let V be a list of n vectors in Rn (so the number of vectors is the same as the number
of entries in each vector).

(a) If the list is linearly independent then it also spans, and so is a basis.
(b) If the list spans then it is also linearly independent, and so is a basis.

(However, these rules are not valid for lists of length different from n.)

Proof. Let A be the matrix whose columns are the vectors in V.

(a) Suppose that V is linearly independent. Let B be the matrix obtained by row-reducing A. Method 8.8
tells us that B has a pivot in every column. As B is also square, we must have B = In. Method 10.5
therefore tells us that V is a basis.

(b) Suppose instead that V (which is the list of columns of A) spans Rn. By Proposition 9.18, we
conclude that the columns of AT are linearly independent. Now AT has n columns, so we can apply
part (a) to deduce that the columns of AT form a basis. By Proposition 10.11, the columns of A
must form a basis as well.

�

11. Elementary matrices and invertibility

Definition 11.1. Fix an integer n ≥ 0. We define n× n matrices as follows.

(a) Suppose that 1 ≤ p ≤ n and that λ is a nonzero real number. We then let Dp(λ) be the matrix that
is the same as In except that (Dp(λ))pp = λ.

(b) Suppose that 1 ≤ p, q ≤ n with p 6= q, and that µ is an arbitrary real number. We then let Epq(µ)
be the matrix that is the same as In except that (Epq(µ))pq = µ.

(c) Suppose again that 1 ≤ p, q ≤ n with p 6= q. We let Fpq be the matrix that is the same as In except
that (Fpq)pp = (Fpq)qq = 0 and (Fpq)pq = (Fpq)qp = 1.

An elementary matrix is a matrix of one of these types.

Example 11.2. In the case n = 4, we have

D2(λ) =


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1

 E24(µ) =


1 0 0 0
0 1 0 µ
0 0 1 0
0 0 0 1

 F24 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


Elementary matrices correspond precisely to row operations, as explained in the next result.

Proposition 11.3. Let A be an n × m matrix, and let A′ be obtained from A by a single row operation.
Then A′ = UA for some elementary matrix U ∈Mn(R). In more detail:
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(a) Let A′ be obtained from A by multiplying the p’th row by λ. Then A′ = Dp(λ)A.
(b) Let A′ be obtained from A by adding µ times the q’th row to the p’th row. Then A′ = Epq(µ)A.
(c) Let A′ be obtained from A by exchanging the p’th row and the q’th row. Then A′ = FpqA.

Proof. We will not give a formal proof, as examples are more illuminating: if we take

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


then

D2(λ)A =


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1



a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


a11 a12 a13 a14
λa21 λa22 λa23 λa24
a31 a32 a33 a34
a41 a42 a43 a44


and

E24(µ)A =


1 0 0 0
0 1 0 µ
0 0 1 0
0 0 0 1



a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


a11 a12 a13 a14

a21 + µa41 a22 + µa42 a23 + µa43 a24 + µa44
a31 a32 a33 a34
a41 a42 a43 a44


and

F24A =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


a11 a12 a13 a14
a41 a42 a43 a44
a31 a32 a33 a34
a21 a22 a23 a24

 �

Corollary 11.4. Let A and B be n×m matrices, and suppose that A can be converted to B by a sequence
of row operations. Then B = UA for some n× n matrix U that can be expressed as a product of elementary
matrices.

Proof. The assumption is that there is a sequence of n ×m matrices A0, A1, . . . , Ar starting with A0 = A
and ending with Ar = B such that Ai is obtained from Ai−1 by a single row operation. By the Proposition,
this means that there is an elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take U = UrUr−1 · · ·U1 and we have
B = UA as required. �

Theorem 11.5. Let A be an n×n matrix. Then the following statements are equivalent: if any one of them
is true then they are all true, and if any one of them is false then they are all false.

(a) A can be row-reduced to In.
(b) The columns of A are linearly independent.
(c) The columns of A span Rn.
(d) The columns of A form a basis for Rn.
(e) AT can be row-reduced to In.
(f) The columns of AT are linearly independent.
(g) The columns of AT span Rn.
(h) The columns of AT form a basis for Rn.
(i) There is a matrix U such that UA = In.
(j) There is a matrix V such that AV = In.

Moreover, if these statements are all true then there is a unique matrix U that satisfies UA = In, and this is
also the unique matrix that satisfies AU = In (so the matrix V in (j) is necessarily the same as the matrix
U in (i)).
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Proof. It is clear from Proposition 10.11 that statements (d) and (h) are equivalent. Furthermore, Propo-
sition 10.12 shows that statements (b), (c) and (d) are equivalent. Moreover, Method 8.8 shows that the
columns of A are linearly independent if and only if A can be row-reduced to an RREF matrix in which
every column contains a pivot; but such a matrix has to be In because of Lemma 8.7 (b) (since it is square).
Hence, we see that statements (a) and (b) are equivalent. Thus, statements (a), (b), (c), (d) and (h) are
equivalent. The same argument, applied to AT instead of A, shows that statements (e), (f), (g), (h) and (d)
are equivalent. Combining, we conclude that statements (a) to (h) are all equivalent. If these statements
hold then in particular A row-reduces to In, so Corollary 11.4 tells us that there exists a matrix U with
UA = In, so (i) holds. Similarly, if (a) to (h) hold then AT row-reduces to In, so Corollary 11.4 tells us that
there exists a matrix W with WAT = In. Taking the transpose (and remembering Proposition 3.4) gives
AWT = In, so we can take V = WT to see that (j) holds.

Conversely, suppose that (i) holds. Let v1, . . . , vr be the columns of A. As we have discussed previously, a
linear relation λ1v1+· · ·+λnvn = 0 gives a vector λ with Aλ = 0. As UA = In this gives λ = UAλ = U0 = 0,
so our linear relation is the trivial one. We conclude that the columns vi are linearly independent, so (b)
holds (as do the equivalent statements (a) to (h)). Similarly, if we assume that (j) holds then V TAT = In
and we can use this to show that the columns of AT are linearly independent, which is statement (f). It is
now clear that all the statements (a) to (j) are equivalent.

Now suppose we have matrices U and V as in (i) and (j). Consider the product UAV . Using UA = In,
we see that UAV = V . Using AV = In, we also see that UAV = U . It follows that U = V .

Moreover, this calculation also gives uniqueness. Suppose we have two matrices U1 and U2 with U1A =
U2A = In. This means that (i) holds and (j) is equivalent to (i) so there is a matrix V with AV = In.
By considering U1AV as before we see that U1 = V . If we instead consider U2AV we see that U2 = V , so
U1 = U2. Thus, there is a unique matrix satisfying (i). By a very similar argument, there is a unique matrix
satisfying (j). �

Definition 11.6. We say that A is invertible if (any one of) the conditions (a) to (j) in Theorem 11.5 hold.
If so, we write A−1 for the unique matrix satisfying A−1A = In = AA−1 (which exists by the Theorem).

Remark 11.7. It is clear from Theorem 11.5 that A is invertible if and only if AT is invertible.

Example 11.8. All elementary matrices are invertible. More precisely:

(a) Dp(λ
−1)Dp(λ) = In, so Dp(λ) is invertible with inverse Dp(λ

−1). For example, when n = 4 and
p = 2 we have

D2(λ)D2(λ−1) =


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 λ−1 0 0
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4.

(b) Epq(µ)Epq(−µ) = In, so Epq(µ) is invertible with inverse Epq(−µ). For example, when n = 4 and
p = 2 and q = 4 we have

E24(µ)E24(−µ) =


1 0 0 0
0 1 0 µ
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 −µ
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4.

(c) F 2
pq = In, so Fpq is invertible and is its own inverse. For example, when n = 4 and p = 2 and q = 4

we have

F 2
24 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4.

Proof. All the equalities claimed here follow from Proposition 11.3. For example, in order to see that
Epq(µ)Epq(−µ) = In, we can proceed as follows: Proposition 11.3 (b) shows that the matrix Epq(−µ)In is
obtained from In by adding −µ times the q’th row to the p’th row. In other words, the matrix Epq(−µ) is
obtained from In by adding −µ times the q’th row to the p’th row. But Proposition 11.3 (b) further shows
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that the matrix Epq(µ)Epq(−µ) is obtained from Epq(−µ) by adding µ times the q’th row to the p’th row.
Combining these, we see that the matrix Epq(µ)Epq(−µ) is obtained from In by first adding −µ times the
q’th row to the p’th row, and then adding µ times the q’th row to the p’th row. But these two operations
obviously undo each other. Hence, Epq(µ)Epq(−µ) = In. Similar reasoning proves the other equalities. �

Proposition 11.9. If A and B are invertible n × n matrices, then AB is also invertible, and (AB)−1 =
B−1A−1. More generally, if A1, A2, . . . , Ar are invertible n × n matrices, then the product A1A2 · · ·Ar is
also invertible, with

(A1A2 · · ·Ar)−1 = A−1r · · ·A−12 A−11 .

Proof. For the first claim, put C = AB and D = B−1A−1. We then have DC = B−1A−1AB, but the term
A−1A in the middle is just In, so DC = B−1InB. Here InB is just the same as B, so DC = B−1B = In.
Similarly CD = ABB−1A−1 = AInA

−1 = AA−1 = In. This shows that D is an inverse for C, so C is
invertible with C−1 = D as claimed.

For the more general statement, we put P = A1A2 · · ·Ar and Q = A−1r · · ·A−12 A−11 . We then have

PQ = A1 · · ·Ar−2Ar−1ArA−1r A−1r−1A
−1
r−2 · · ·A

−1
1

= A1 · · ·Ar−2Ar−1A−1r−1A
−1
r−2 · · ·A

−1
1

= A1 · · ·Ar−2A−1r−2 · · ·A
−1
1

= · · ·
= A1A

−1
1

= In.

In the same way, we also see that QP = In. This shows that Q is an inverse for P . �

Corollary 11.10. Let A and B be n×m matrices, and suppose that A can be converted to B by a sequence
of row operations. Then B = UA for some invertible n× n matrix U .

Proof. Corollary 11.4 tells us that B = UA for some matrix U that is a product of elementary matrices.
Example 11.8 and Proposition 11.9 then tell us that U is invertible. �

If we want to know whether a given matrix A is invertible, we can just row-reduce it and check whether
we get the identity. We can find the inverse by a closely related procedure.

Method 11.11. Let A be an n × n matrix. Form the augmented matrix [A|In] and row-reduce it. If the
result has the form [In|B], then A is invertible with A−1 = B. If the result has any other form then A is not
invertible.

Proof of correctness. Let [T |B] be the row-reduction of [A|In]. It follows that T is the row-reduction of
A, so A is invertible if and only if T = In. Suppose that this holds, so [A|In] reduces to [In|B]. As in
Corollary 11.4 we see that there is a matrix U (which can be written as a product of elementary matrices)
such that [In|B] = U [A|In] = [UA|U ]. This gives B = U and UA = In so BA = In, so B = A−1. �

Example 11.12. Consider the matrix A =

1 a b
0 1 c
0 0 1

. We have the following row-reduction:

 1 a b 1 0 0
0 1 c 0 1 0
0 0 1 0 0 1

→
 1 0 b− ac 1 −a 0

0 1 c 0 1 0
0 0 1 0 0 1

→
 1 0 0 1 −a ac− b

0 1 0 0 1 −c
0 0 1 0 0 1


We conclude that A−1 =

1 −a ac− b
0 1 −c
0 0 1

. It is a straightforward exercise to check this directly:

1 a b
0 1 c
0 0 1

1 −a ac− b
0 1 −c
0 0 1

 =

1 0 0
0 1 0
0 0 1

 =

1 −a ac− b
0 1 −c
0 0 1

1 a b
0 1 c
0 0 1

 .
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Example 11.13. Consider the matrix A =

1 1 1
1 2 4
1 3 9

. We have the following row-reduction:

 1 1 1 1 0 0
1 2 4 0 1 0
1 3 9 0 0 1

→
 1 1 1 1 0 0

0 1 3 −1 1 0
0 2 8 −1 0 1

→
 1 0 −2 2 −1 0

0 1 3 −1 1 0
0 0 2 1 −2 1

→
 1 0 0 3 −3 1

0 1 0 −5/2 4 −3/2
0 0 1 1/2 −1 1/2


We conclude that

A−1 =

 3 −3 1
−5/2 4 −3/2
1/2 −1 1/2

 .
12. Determinants

We now record some important facts about determinants. The proofs are given in Appendix B, which will
not be covered in lectures and will not be examinable. For completeness we start with the official definition:

Definition 12.1. Let A be an n×n matrix, and let aij denote the entry in the i’th row of the j’th column.
We define

det(A) =
∑
σ

sgn(σ)

n∏
i=1

ai,σ(i), (1)

where the sum runs over all permutations σ of the set {1, . . . , n}, and sgn(σ) is the signature of σ.
The equation (1) is known as the Leibniz formula for determinants.

Remark 12.2. In Python with SymPy you can calculate the determinant of A by entering det(A). In
Maple you need to enter Determinant(A). As with many other matrix functions, this will only work if you
have already entered with(LinearAlgebra) to load the linear algebra package. You may also wish to enter
det:=Determinant, after which you will be able to use the shorter notation det(A).

Further details are given in the appendix. In this section we will not use the definition directly, but instead
we will use various properties and methods of calculation that are proved in the appendix.

Example 12.3. For a 2× 2 matrix A =

[
a b
c d

]
we have the familiar formula det(A) = ad− bc. For a 3× 3

matrix A =

a b c
d e f
g h i

 we have

det(A) = aei− afh− bdi+ bfg + cdh− ceg.

For a 1× 1 matrix A =
[
a
]
, the determinant det(A) equals its unique entry a. For more details of how this

matches up with Definition 12.1, see Examples B.8 and B.9 in Appendix B.

Example 12.4. Let A be an n× n matrix.

(a) We say that A is upper-triangular if all entries of A below the diagonal are zero. In this case, the
determinant is just the product of the diagonal entries: det(A) = a11a22 · · · ann =

∏n
i=1 aii. For

example, we have

det


1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

 = 1× 5× 8× 10 = 400.

(b) Similarly, we say that A is lower-triangular if all the entries of A above the diagonal are zero. In
this case, the determinant is just the product of the diagonal entries.
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(c) In particular, if A is a diagonal matrix (so all entries off the diagonal are zero), then both (a) and (b)
apply and we have det(A) =

∏n
i=1 aii.

(d) In particular, we have det(In) = 1.

All these facts follow from Proposition B.11.

Example 12.5. If any row or column of A is zero, then det(A) = 0. �

Proposition 12.6. The determinants of elementary matrices are det(Dp(λ)) = λ and det(Epq(µ)) = 1 and
det(Fpq) = −1.

Proof. See Proposition B.12. �

Proposition 12.7. For any square matrix A, we have det(AT ) = det(A).

Proof. See Corollary B.16. �

Theorem 12.8. If A and B are n× n matrices, then det(AB) = det(A) det(B).

Proof. See Theorem B.17. �

Method 12.9. Let A be an n× n matrix. We can calculate det(A) by applying row operations to A until
we reach a matrix B for which we know det(B), keeping track of some factors as we go along.

(a) Every time we multiply a row by a number λ, we record the factor λ.
(b) Every time we exchange two rows, we record the factor −1.

Let µ be the product of these factors: then det(A) = det(B)/µ.

In this method, we can if we wish continue the row reduction until we reach a matrix B in RREF. Then
B will either be the identity (in which case det(B) = 1 and det(A) = 1/µ) or B will have a row of zeros (in
which case det(A) = det(B) = 0). However, it will often be more efficient to stop the row-reduction at an
earlier stage.

Example 12.10. Take A =


3 5 5 5
1 3 5 5
1 1 3 5
1 1 1 3

. We can row-reduce this (not quite to RREF, but to an upper-

triangular matrix) as follows:

A −→


0 2 2 −4
0 2 4 2
0 0 2 2
1 1 1 3

 1
8−→


0 1 1 −2
0 1 2 1
0 0 1 1
1 1 1 3

 −→


0 1 1 −2
0 0 1 3
0 0 1 1
1 1 1 3



−→


0 1 1 −2
0 0 0 2
0 0 1 1
1 1 1 3

 −1−−→


0 1 1 −2
1 1 1 3
0 0 1 1
0 0 0 2

 −1−−→


1 1 1 3
0 1 1 −2
0 0 1 1
0 0 0 2

 = B

The steps are as follows:

(1) We add multiples of row 4 to the other rows. This does not give any factor for the determinant.
(2) We multiply each of the first three rows by 1

2 , which gives an overall factor of 1
2 ×

1
2 ×

1
2 = 1

8 . We
have written this on the relevant arrow.

(3) We subtract row 1 from row 2.
(4) We subtract row 3 from row 2.
(5) We exchange rows 2 and 4, giving a factor of −1.
(6) We exchange rows 1 and 2, giving another factor of −1.

The final matrix B is upper-triangular, so its determinant is just the product of the diagonal entries, which
is det(B) = 2. The product of the factors is µ = 1/8, so det(A) = det(B)/µ = 16.
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Example 12.11. Take A =


1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

. We can start row-reducing as follows:

A =


1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

 −→


1 2 3 4
1 1 1 1
2 2 2 2
3 3 3 3

 −→


1 2 3 4
1 1 1 1
0 0 0 0
0 0 0 0

 = B.

(In the first step we subtract row 1 from each of the other rows, and in the second we subtract multiples of
row 2 from rows 3 and 4.) As B has two rows of zeros, we see that det(B) = 0. The method therefore tells
us that det(A) = 0 as well.

Definition 12.12. Let A be an n× n matrix, and let p and q be integers with 1 ≤ p, q ≤ n.

(a) We let Mpq be the matrix obtained by deleting the p’th row and the q’th column from A. This is a
square matrix of shape (n− 1)× (n− 1).

(b) We put mpq = det(Mpq).
(c) We let adj(A) denote the n× n matrix with entries adj(A)qp = (−1)p+qmpq. (Note that we have qp

on the left and pq on the right here.)

We call the matrices Mpq the minor matrices for A, and the numbers mpq the minor determinants. The
matrix adj(A) is called the adjugate (or sometimes the classical adjoint) of A.

Proposition 12.13. The determinant det(A) can be “expanded along the first row”, in the sense that

det(A) = a11m11 − a12m12 + · · · ± a1nm1n =

n∑
j=1

(−1)1+ja1jm1j .

More generally, it can be expanded along the p’th row for any p, in the sense that

det(A) =

n∑
j=1

(−1)p+japjmpj .

Similarly, it can be expanded down the q’th column for any q, in the sense that

det(A) =

n∑
i=1

(−1)i+qaiqmiq.

Example 12.14. Consider the matrix

A =


a 0 b c
0 0 0 d
e f g h
i 0 j k

 .
We expand along the second row, to take advantage of the fact that that row contains many zeros. This
gives

det(A) = (−1)2+10×m21 + (−1)2+20×m22 + (−1)2+30×m23 + (−1)2+4d×m24 = dm24.

We will write B for the minor matrix obtained by deleting from A the row and column containing d, which
leaves

B =

a 0 b
e f g
i 0 j

 .
By definition, we have m24 = det(B), so det(A) = d det(B).
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To evaluate det(B), we expand down the middle column. Again, there is only one nonzero term. The
number f appears in the (2, 2) slot, so it comes with a sign (−1)2+2 = +1. The complementary minor

matrix, obtained by deleting the middle row and the middle column, is C =

[
a b
i j

]
. We thus have

det(B) = (−1)2+2f det(C) = f(aj − bi),

and so det(A) = df(aj − bi) = adfj − bdfi.

Example 12.15. Consider the matrix

U =


1 0 1 0
0 1 1 1
1 1 1 0
1 1 1 1


Expanding along the top row gives

det(U) = det(V1)− 0× det(V2) + det(V3)− 0× det(V4),

where

V1 =

1 1 1
1 1 0
1 1 1

 V2 =

0 1 1
1 1 0
1 1 1

 V3 =

0 1 1
1 1 0
1 1 1

 V4 =

0 1 1
1 1 1
1 1 1

 .
In V1 the first and last rows are the same, so after a single row operation we have a row of zeros, which
means that det(V1) = 0. We need not work out det(V2) and det(V4) because they will be multiplied by zero
anyway. This just leaves det(U) = det(V3), which we can expand along the top row again:

det(V3) = 0× det

[
1 0
1 1

]
− det

[
1 0
1 1

]
+ det

[
1 1
1 1

]
= 0− 1 + 0 = −1.

We conclude that det(U) = −1. It is a good exercise to obtain the same result by row-reduction.

Proof of Proposition 12.13. See Proposition B.24 and Proposition B.25. �

Theorem 12.16. Let A be an n× n matrix.

(a) If det(A) 6= 0 then we can define A−1 = adj(A)/det(A), and this matrix satisfies A−1A = In and
also AA−1 = In. In other words, A−1 is an inverse for A. In this case, the only vector v ∈ Rn
satisfying Av = 0 is the vector v = 0.

(b) If det(A) = 0 then there is no matrix B with BA = In, and similarly there is no matrix C with
AC = In. In other words, A has no inverse. Moreover, in this case there exists a nonzero vector v
with Av = 0.

Proof. (a) Theorem B.29 proves most of part (a); the rest of part (a) is obvious: If A has an inverse
A−1, and v ∈ Rn is a vector satisfying Av = 0, then v = Iv = A−1Av = A−10 = 0.

(b) Assume that det(A) = 0. Then, if B was an n × n matrix with BA = In, then we would have
det(BA) = det(In) = 1, while Theorem B.17 would yield det(BA) = det(B) det(A) = 0 (since
det(A) = 0); these two equalities clearly cannot coexist. Thus, there is no matrix B with BA = In.
Similarly, there is no matrix C with AC = In. In other words, statement (j) of Theorem 11.5 does
not hold. Thus, statement (b) of Theorem 11.5 does not hold either. This means that the columns
of A are linearly dependent. Denoting these columns by v1, . . . , vn, we thus have a nontrivial linear
relation λ1v1 + · · · + λnvn = 0. This relation can be rewritten as Av = 0, where v is the (nonzero)

vector
[
λ1 · · · λn

]T
.

�

While the above formula for A−1 is theoretically appealing, it is not usually very efficient, especially for
large matrices. Method 11.11 is generally better.
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Example 12.17. For a 2× 2 matrix A =

[
a b
c d

]
, the minor matrices are 1× 1 matrices or in other words

just numbers, so mij = det(Mij) = Mij . Specifically, we have

m11 = d m12 = c

m21 = b m22 = a

so

adj(A) =

[
+m11 −m21

−m12 +m22

]
=

[
d −b
−c a

]
,

so

A−1 = adj(A)/ det(A) =
1

ad− bc

[
d −b
−c a

]
.

Of course this formula is well known and can be derived in more elementary ways.

Example 12.18. Consider an upper-triangular matrix A =

1 a b
0 1 c
0 0 1

. This has det(A) = 1 by Exam-

ple 12.4 (a). The minor determinants are

m11 = det

[
1 c
0 1

]
= 1 m12 = det

[
0 c
0 1

]
= 0 m13 = det

[
0 1
0 0

]
= 0

m21 = det

[
a b
0 1

]
= a m22 = det

[
1 b
0 1

]
= 1 m23 = det

[
1 a
0 0

]
= 0

m31 = det

[
a b
1 c

]
= ac− b m32 = det

[
1 b
0 c

]
= c m33 = det

[
1 a
0 1

]
= 1.

We now form the adjugate, remembering that adj(A)ij = (−1)i+jmji (with the indices backwards).

adj(A) =

+m11 −m21 +m31

−m12 +m22 −m32

+m13 −m23 +m33

 =

1 −a ac− b
0 1 −c
0 0 1

 .
We also have A−1 = adj(A)/ det(A) but det(A) = 1 so A−1 = adj(A). Note that this is the same answer as
we obtained in Example 11.12.

Example 12.19. Consider the matrix

P =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .
The corresponding minor matrices are as follows:

M11 =

1 1 0
0 1 1
0 0 1

 M12 =

0 1 0
0 1 1
0 0 1

 M13 =

0 1 0
0 0 1
0 0 1

 M14 =

0 1 1
0 0 1
0 0 0


M21 =

1 0 0
0 1 1
0 0 1

 M22 =

1 0 0
0 1 1
0 0 1

 M23 =

1 1 0
0 0 1
0 0 1

 M24 =

1 1 0
0 0 1
0 0 0


M31 =

1 0 0
1 1 0
0 0 1

 M32 =

1 0 0
0 1 0
0 0 1

 M33 =

1 1 0
0 1 0
0 0 1

 M34 =

1 1 0
0 1 1
0 0 0


M41 =

1 0 0
1 1 0
0 1 1

 M42 =

1 0 0
0 1 0
0 1 1

 M43 =

1 1 0
0 1 0
0 0 1

 M44 =

1 1 0
0 1 1
0 0 1


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By inspection, each of these matrices is either upper-triangular or lower-triangular, so in each case the
determinant is the product of the diagonal entries. This gives

m11 = 1 m12 = 0 m13 = 0 m14 = 0

m21 = 1 m22 = 1 m23 = 0 m24 = 0

m31 = 1 m32 = 1 m33 = 1 m34 = 0

m41 = 1 m42 = 1 m43 = 1 m44 = 1

and thus

adj(P ) =


+m11 −m21 +m31 −m41

−m12 +m22 −m32 +m42

+m13 −m23 +m33 −m43

−m14 +m24 −m34 +m44

 =


1 −1 1 −1
0 1 −1 1
0 0 1 −1
0 0 0 1


As P is upper-triangular, it is easy to see that det(P ) = 1 and so P−1 is the same as adj(P ).

13. Eigenvalues and eigenvectors

Definition 13.1. Let A be an n×n matrix, and let λ be a real number. A λ-eigenvector for A is a nonzero
vector v ∈ Rn with the property that Av = λv. We say that λ is an eigenvalue of A if there exists a
λ-eigenvector for A.

Remark 13.2. Note that the whole theory of eigenvalues and eigenvectors only makes sense for square
matrices. If A is not square then the vectors Av and λv will have different dimensions, so we cannot ask for
them to be equal.

Remark 13.3. Note that if Av = λv then Av points in exactly the same direction as v (if λ > 0) or in the
opposite direction (if λ < 0) or Av = 0 (if λ = 0). All three of these are rather special situations that are
unlikely to hold for a randomly chosen vector v.

Remark 13.4. We will mostly focus on real eigenvalues and eigenvectors. However, you should be aware
that many aspects of the theory work better if we also consider complex eigenvalues and eigenvectors (even
if the entries in the matrix are all real).

Example 13.5. Consider the case

A =

[
1 1
1 1

]
a =

[
1
1

]
b =

[
1
−1

]
.

We have

Aa =

[
1 1
1 1

] [
1
1

]
=

[
2
2

]
= 2a Ab =

[
1 1
1 1

] [
1
−1

]
=

[
0
0

]
= 0b

so a is a 2-eigenvector and b is a 0-eigenvector, so 2 and 0 are eigenvalues. Now consider a number λ 6= 0, 2.

Suppose we have A [ xy ] = λ [ xy ] or equivalently

[
x+ y
x+ y

]
=

[
λx
λy

]
. This means that x+y = λx and x+y = λy.

Subtracting these gives λ(x − y) = 0 but λ 6= 0 so x = y. Substituting this back in gives 2x = λx or
(λ− 2)x = 0, and λ 6= 2 so we can divide by λ− 2 to get x = 0. We have also seen that y = x, so [ xy ] = [ 00 ].
This means that there is no λ-eigenvector, so λ is not an eigenvalue. It follows that 0 and 2 are the only
eigenvalues of A.

We can also reach the same conclusion by row-reduction. To solve the equation Av = λv we need to

row-reduce the matrix A− λI2 =

[
1− λ 1

1 1− λ

]
. The first step is to subtract 1− λ times row 2 from row

1, giving

[
0 1− (1− λ)2

1 1− λ

]
. Here we have

1− (1− λ)2 = 2λ− λ2 = λ(2− λ),

which is nonzero because λ 6∈ {0, 2}. We can thus divide the first row by this to get

[
0 1
1 1− λ

]
, and a couple

more steps reduce this to the identity matrix I2. This means that the equation (A−λI2)v = 0 has the same
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solutions as the equation I2v = 0, namely v = 0. As there are no nonzero solutions, we see that λ is not an
eigenvalue.

Example 13.6. Consider the matrix

A =


1 1 1 1
0 2 2 2
0 0 3 3
0 0 0 4


and the vectors

a =


1
0
0
0

 b =


1
1
0
0

 c =


3
4
2
0

 d =


8
12
9
3

 .
We have

Ad =


1 1 1 1
0 2 2 2
0 0 3 3
0 0 0 4




8
12
9
3

 =


32
48
36
12

 = 4d,

which means that d is a 4-eigenvector for A, and 4 is an eigenvalue of A. Equally direct calculation shows
that Aa = a and Ab = 2b and Ac = 3c, so a, b and c are also eigenvectors, and 1, 2 and 3 are also eigenvalues
of A. Using the general theory that we will discuss below, we can show that

(a) The only 1-eigenvectors are the nonzero multiples of a.
(b) The only 2-eigenvectors are the nonzero multiples of b.
(c) The only 3-eigenvectors are the nonzero multiples of c.
(d) The only 4-eigenvectors are the nonzero multiples of d.
(e) There are no more eigenvalues: if λ is a real number other than 1, 2, 3 and 4, then the equation

Av = λv has v = 0 as the only solution, so there are no λ-eigenvectors.

Remark 13.7. You can ask Maple to calculate the eigenvalues of A by entering Eigenvalues(A). If A is
an n × n matrix, then this will give a column vector of length n whose entries are the eigenvalues. One
can also enter Eigenvectors(A) to find the eigenvectors. In typical cases this will give a pair of things, the
first of which is the vector of eigenvalues, and the second of which is a square matrix whose columns are the
corresponding eigenvectors. However, there are some subtleties about what happens if some eigenvalues are
repeated; we postpone any discussion of this. Python equivalents are A.eigenvals() and A.eigenvects().

Definition 13.8. Let A be an n× n matrix. We define

χA(t) = det(A− t In)

(where In is the identity matrix, as usual). This is called the characteristic polynomial of A.

Note that some authors have a slightly different convention, and define the characteristic polynomial to be
det(tIn−A). In particular, if you enter CharacteristicPolynomial(A,t) in Maple you will get det(tIn−A).
It is easy to relate these conventions, because det(tIn − A) = (−1)n det(A− t In). Note also that in Maple
we need to specify the variable t as well as the matrix A. If you just enter CharacteristicPolynomial(A)
you will get an error. The corresponding syntax in Python is A.charpoly(t); this calculates det(tIn − A),
so we do not need to correct the sign.

Example 13.9. For any 2× 2 matrix A =

[
a b
c d

]
we have A− tI2 =

[
a− t b
c d− t

]
so

χA(t) = det

[
a− t b
c d− t

]
= (a− t)(d− t)− bc = t2 − (a+ d)t+ (ad− bc).

For example, when A =

[
1 2
3 4

]
we have

χA(t) = t2 − (1 + 4)t+ (1× 4− 2× 3) = t2 − 5t− 2.
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Example 13.10. Consider the matrix

A =

−1 0 1
1 −1 0
0 1 −1

 .
The characteristic polynomial is

χA(t) = det

−1− t 0 1
1 −1− t 0
0 1 −1− t


= (−1− t) det

[
−1− t 0

1 −1− t

]
− 0 det

[
1 0
0 −1− t

]
+ det

[
1 −1− t
0 1

]
= (−1− t)3 − 0 + 1 = 1− (1 + t)3 = −3t− 3t2 − t3.

Note that λ is an eigenvalue of A if and only if there is a nonzero solution to the equation Au = λu, or
equivalently the equation (A − λIn)u = 0. Moreover, if B is an n × n matrix then the equation Bu = 0
has a nonzero solution iff B is not invertible iff det(B) = 0 (by Theorem 12.16). Using this, we obtain the
following result:

Theorem 13.11. Let A be a square matrix. Then the eigenvalues of A are the roots of the characteristic
polynomial χA(t).

Corollary 13.12. For any n×n matrix A we have χA(t) = χAT (t), so A and AT have the same eigenvalues.

Proof. As ITn = In, we have (A− tIn)T = AT − tIn. Now, χAT (t) = det(AT − tIn) = det((A− tIn)T ), which
is the same as det(A− tIn) by Proposition 12.7. �

Example 13.13. We will find the eigenvalues and eigenvectors of the matrix

A =

−1 1 0
−1 0 1
−1 0 0

 .
The characteristic polynomial is

χA(t) = det

−1− t 1 0
−1 −t 1
−1 0 −t


= (−1− t) det

[
−t 1
0 −t

]
− det

[
−1 1
−1 −t

]
+ 0 det

[
−1 −t
−1 0

]
= −t2(1 + t)− (t+ 1) + 0 = −(1 + t2)(1 + t).

As 1 + t2 is always positive, the only way −(1 + t2)(1 + t) can be zero is if t = −1. Thus, the only real
eigenvalue of A is −1. (There are also complex eigenvalues, namely i and −i, but we will only consider the
real ones here.) When λ = −1 we have

A− λI3 = A+ I3 =

 0 1 0
−1 1 1
−1 0 1

 .
To find an eigenvector of eigenvalue −1, we need to solve the equation (A+ I3)u = 0, or equivalently 0 1 0

−1 1 1
−1 0 1

xy
z

 =

0
0
0

 ,
or equivalently

y = 0 − x+ y + z = 0 − x+ z = 0.
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These equations reduce to x = z with y = 0, soxy
z

 =

z0
z

 = z

1
0
1

 .
This means that the (−1)-eigenvectors are just the nonzero multiples of the vector

1
0
1

.

In the above example we solved the equation (A + I3)u = 0 in a rather ad hoc way. A more systematic
approach would be use row reduction, as follows.

Method 13.14. Suppose we have an n×n matrix A, and we want to find the eigenvalues and eigenvectors.

(a) Calculate the characteristic polynomial χA(t) = det(A− tIn).
(b) Find all the real roots of χA(t), and list them as λ1, . . . , λk. These are the eigenvalues of A.
(c) For each eigenvalue λi, row-reduce the matrix A− λiIn to get a matrix B.
(d) Read off solutions to the equation Bu = 0 as in Method 5.4. These are the λi-eigenvectors of the

matrix A.

Remark 13.15. When trying to carry out this method, you might find at step (c) that B is the identity
matrix, so the equation Bu = 0 in step (d) just gives u = 0. You might then be tempted to say that 0 is an
eigenvector of A. This is incorrect: the zero vector is, by definition, not an eigenvector. If you find yourself
in this situation, then you have made a mistake. Either λi is not really an eigenvalue, or there is an error
in your row reduction. You should go back and check your work.

Example 13.16. Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that

χA(t) = (t− 14)2(t− 16)(t− 20).

The eigenvalues of A are the roots of χA(t), namely 14, 16 and 20. To find the eigenvectors of eigenvalue
14, we write down the matrix A− 14I4 and row-reduce it to get a matrix B as follows:

A− 14I4 =


2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

 = B.

If we write u =
[
a b c d

]T
, then the equation Bu = 0 just gives a+ b = c+d = 0, so a = −b and c = −d

(with b and d arbitrary), so

u =


−b
b
−d
d


for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero vectors of the above form.
(Recall that eigenvectors are nonzero, by definition.)

Remark 13.17. Using Maple, we find that one eigenvalue of the matrix

A =


−1 0 0 −1
1 1 −1 −1
1 1 −1 0
−1 −1 −1 −1


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is

λ = −1

2
+

√
X

24
+

√
5

4
− X

24
+

√
27

2X

where X = 10 + Y + 28/Y and Y = (892 + 36
√

597)1/3. This level of complexity is quite normal, even for
matrices whose entries are all 0 or ±1. Most examples in this course are carefully constructed to have simple
eigenvalues and eigenvectors, but you should be aware that this is not typical. The methods that we discuss
will work perfectly well for all matrices, but in practice we need to use computers to do the calculations.
Also, it is rarely useful to work with exact expressions for the eigenvalues when they are as complicated as
those above. Instead we should use the numerical approximation λ ' 1.496698205.

Example 13.18. Consider the matrix

A =


3 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0


We will take it as given that the characteristic polynomial is

χA(t) = (t+ 1)(t+ 2)(t− 2)(t− 4),

so the eigenvalues are −1, −2, 2 and 4. To find the eigenvectors of eigenvalue 2, we write down the matrix
A− 2I4 and row-reduce it to get a matrix B in RREF:

1 0 0 2
0 −2 2 0
0 2 −2 0
2 0 0 −2

 −→


1 0 0 2
0 −2 2 0
0 2 −2 0
0 0 0 −6

 −→


1 0 0 2
0 2 −2 0
0 0 0 0
0 0 0 −6

 −→


1 0 0 2
0 1 −1 0
0 0 0 0
0 0 0 1

 −→


1 0 0 0
0 1 −1 0
0 0 0 1
0 0 0 0

 .
If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives a = b− c = d = 0, so

u =


0
c
c
0

 = c


0
1
1
0


for some c ∈ R. The eigenvectors of eigenvalue 2 are precisely the nonzero vectors of the above form. In

particular, the vector
[
0 1 1 0

]T
is an eigenvector of eigenvalue 2.

There is an important connecton between eigenvectors and linear independence, as follows.

Proposition 13.19. Let A be a d× d matrix, and let v1, . . . , vn be eigenvectors of A. This means that each
vi is nonzero and there is a scalar λi such that Avi = λivi. Suppose also that the eigenvalues λ1, . . . , λn are
all different. Then the list v1, . . . , vn is linearly independent.

Proof. We first consider the case n = 2, where we just have an eigenvector v1 with eigenvalue λ1, and another
eigenvector v2 with a different eigenvalue λ2 (so λ1 − λ2 6= 0). Suppose we have a linear relation

α1v1 + α2v2 = 0. (P)

We now multiply both sides of this vector equation by the matrix A − λ2I. Because Avi = λivi we have
(A− λ2I)v1 = (λ1 − λ2)v1 and (A− λ2I)v2 = 0, so we get

(λ1 − λ2)α1v1 = 0.

As the number λ1 − λ2 and the vector v1 are nonzero, we can conclude that α1 = 0. If we instead multiply
equation (P) by A− λ1I we get

(λ2 − λ1)α2v2 = 0.

As the number λ2− λ1 and the vector v2 are nonzero, we can conclude that α2 = 0. We have now seen that
α1 = α2 = 0, so the relation (P) is the trivial relation. As this works for any linear relation between v1 and
v2, we see that these vectors are linearly independent.
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Now consider instead the case n = 3. Suppose we have a linear relation

α1v1 + α2v2 + α3v3 = 0. (Q)

We multiply this by A−λ3I, remembering that (A−λ3I)vi = (λi−λ3)vi, which is zero for i = 3. This gives

(λ1 − λ3)α1v1 + (λ2 − λ3)α2v2 = 0. (R)

We now multiply (R) by A− λ2I. The term involving v2 goes away because (A− λ2)v2 = 0, so we are just
left with

(λ1 − λ2)(λ1 − λ3)α1v1 = 0.

By assumption, the eigenvalues λ1, λ2 and λ3 are all different, so the number (λ1 − λ2)(λ1 − λ3) is nonzero.
The vector v1 is also nonzero (because eigenvectors are nonzero by definition) so we can conclude that α1 = 0.
Similarly:

• If we multiply (Q) by (A−λ1I)(A−λ3I) then the first and third terms go away and we are left with
(λ2 − λ1)(λ2 − λ3)α2v2 = 0, which implies that α2 = 0.

• If we multiply (Q) by (A − λ1I)(A − λ2I) then the first and second terms go away and we are left
with (λ3 − λ1)(λ3 − λ2)α3v3 = 0, which implies that α3 = 0.

We have now seen that α1 = α2 = α3 = 0, so the relation (Q) is the trivial relation. As this works for any
linear relation between v1, v2 and v3, we see that these vectors are linearly independent.

The general case works the same way. Suppose we have a linear relation

α1v1 + · · ·+ αnvn = 0. (S)

For any index k, we can multiply by all the matrices A − λiI for i 6= k. This makes all the terms go away
except for the k’th term, leaving ∏

i 6=k

(λk − λi)

αkvk = 0.

As all the eigenvalues λj are assumed to be different, the product
∏
i 6=k(λk−λi) is nonzero, so we can divide

by it to get αkvk = 0. As vk 6= 0 this gives αk = 0. This works for all k, so (S) is the trivial relation. �

Remark 13.20. We can reorganise the proof as an induction on the number n of eigenvectors. The case
n = 1 is trivial, because if we take a nonzero vector v1 then the list consisting of just v1 is always independent.
Suppose we know that the proposition is true for any list of n − 1 eigenvectors with distinct eigenvalues.
Suppose we have a list v1, . . . , vn as in the Proposition, and a linear relation

α1v1 + · · ·+ αn−1vn−1 + αnvn = 0. (P)

We multiply by A− λnI and note that the last term goes away, leaving

(λ1 − λn)α1v1 + · · ·+ (λn−1 − λn)αn−1vn−1 = 0. (Q)

This is a linear relation on the list v1, . . . , vn−1. However, that list is independent by the induction hypothesis,
so relation (Q) must be the trivial relation, which means that

(λ1 − λn)α1 = · · · = (λn−1 − λn)αn−1 = 0.

As all the eigenvalues are assumed to be distinct, we can divide by the numbers λi − λn to get

α1 = · · · = αn−1 = 0.

Substituting this into (P) gives αnvn = 0 but vn 6= 0 so αn = 0. Thus, relation (P) is the trivial relation, as
required. This completes the induction step, so the Proposition holds for all n.

Remark 13.21. Proposition 13.19 can be generalised as follows. Suppose we have:

• A d× d matrix A
• A list λ1, . . . , λr of distinct eigenvalues
• A linearly independent list V1 = (v1,1, . . . , v1,h1

) of eigenvectors, all with eigenvalue λ1
• A linearly independent list V2 = (v2,1, . . . , v2,h2) of eigenvectors, all with eigenvalue λ2
• · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
• A linearly independent list Vr = (vr,1, . . . , vr,hr

) of eigenvectors, all with eigenvalue λr
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We can then combine the lists V1, . . . ,Vr into a single list

W = (v1,1, · · · , v1,h1 , v2,1, · · · , v2,h2 , · · · , vr,1, · · · , vr,hr ).

One can then show that the combined list W is linearly independent.

Proposition 13.22. Let A be an n×n matrix, and suppose that A has eigenvalues λ1, . . . , λn which are all
different. Let ui be an eigenvector for A with eigenvalue λi. Then the list U = u1, . . . , un is a basis for Rn.

Proof. Proposition 13.19 tells us that U is linearly independent. We therefore have a linearly independent
list of length n in Rn, so it must be a basis by Proposition 10.12. �

Example 13.23. Consider the matrix A =

1 1 1
0 2 2
0 0 3

. It is easy to see that χA(t) = det(A − tI) =

(1 − t)(2 − t)(3 − t), so the eigenvalues are 1, 2 and 3. Suppose we have eigenvectors u1, u2 and u3, where
uk has eigenvalue k. The Proposition then tells us that the list u1, u2, u3 is automatically a basis for R3. We
can find the eigenvectors explicitly using Method 13.14. The relevant row-reductions and eigenvectors are
shown below:

A− I =

0 1 1
0 1 2
0 0 2

 →

0 1 0
0 0 1
0 0 0

 u1 =

1
0
0


A− 2I =

−1 1 1
0 0 2
0 0 1

 →

1 −1 0
0 0 1
0 0 0

 u2 =

1
1
0


A− 3I =

−2 1 1
0 −1 2
0 0 0

 →

1 0 −3/2
0 1 −2
0 0 0

 u3 =

3/2
2
1

 .
Proposition 13.22 now tells us that the vectors uk form a basis. This can be checked more directly by forming
the matrix U = [u1|u2|u3] and row-reducing it:

U =

1 1 3/2
0 1 2
0 0 1

→
1 1 0

0 1 0
0 0 1

→
1 0 0

0 1 0
0 0 1

 = I3.

As U reduces to the identity matrix, Method 10.5 tells us that the columns uk form a basis, as expected.

Example 13.24. Consider the matrixA =

[
0 1
−1 0

]
. The characteristic polynomial is χA(t) = det

[
−t 1
−1 −t

]
=

t2 + 1. For all t ∈ R we have t2 + 1 ≥ 1 > 0, so the characteristic polynomial has no real roots, so there are
no real eigenvalues or eigenvectors. However, if we use complex numbers we can say that the eigenvalues are
i and −i, with corresponding eigenvectors

u1 =

[
1
i

]
u2 =

[
1
−i

]
,

which form a basis for C2.

Remark 13.25. Examples 13.23 and 13.24 illustrate the typical case. If we pick an n×n matrix at random,
it will usually have n different eigenvalues (some of which will usually be complex), and so the corresponding
eigenvectors will form a basis for Cn. However, there are some exceptions, as we will see in the next two
examples. Such exceptions usually arise because of some symmetry or other interesting feature of the problem
that gives rise to the matrix.

Example 13.26. Consider the matrix A =

5 5 0
0 5 5
0 0 5

. We have χA(t) = (5− t)3, so the only eigenvalue is

5. The eigenvectors are the solutions of (A− 5I)u = 0. If u =
[
x y z

]T
then this reduces to 5y = 5z = 0
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so y = z = 0 and u is a multiple of the vector a =

1
0
0

. This means that any two eigenvectors are multiples

of each other, and so are linearly dependent. Thus, we cannot find a basis consisting of eigenvectors.

Example 13.27. Consider the matrix

0 0 5
0 5 0
5 0 0

. The characteristic polynomial is

χA(t) = det

−t 0 5
0 5− t 0
5 0 −t

 = −tdet

[
5− t 0

0 −t

]
+ 5 det

[
0 5− t
5 0

]
= −125 + 25t+ 5t2 − t3 = −(t− 5)(t2 − 25) = −(t− 5)(t− 5)(t+ 5)

= −(t− 5)2(t+ 5).

This shows that the only eigenvalues are 5 and −5 (and we would not get any more if we allowed complex
numbers). Thus, Proposition 13.22 cannot be used here, because we do not have three different eigenvalues.
Nonetheless, in this example it turns out that there is still a basis consisting of eigenvectors, even though
Proposition 13.22 cannot be used to prove that fact. Indeed, we can take

u1 =

1
0
1

 u2 =

0
1
0

 u3 =

 1
0
−1

 .
It is straightforward to check that Au1 = 5u1 and Au2 = 5u2 and Au3 = −5u3, so the ui are eigenvectors
with eigenvalues 5, 5 and −5 respectively. It is also easy to see that the vectors ui form a basis, either by

row-reducing the matrix [u1|u2|u3] or by noting that an arbitrary vector v =
[
x y z

]T
can be expressed

in a unique way as a linear combination of the ui, namely

v =

xy
z

 =

(x+ z)/2
0

(x+ z)/2

+

0
y
0

+

(x− z)/2
0

(z − x)/2

 =
x+ z

2
u1 + yu2 +

x− z
2

u3.

14. Diagonalisation

We next show how eigenvectors can be used to transform various problems about square matrices to
problems about diagonal matrices, which are generally much easier.

Definition 14.1. We write diag(λ1, . . . , λn) for the n× n matrix such that the entries on the diagonal are
λ1, . . . , λn and the entries off the diagonal are zero.

Example 14.2. diag(5, 6, 7, 8) =


5 0 0 0
0 6 0 0
0 0 7 0
0 0 0 8


Definition 14.3. Let A be an n× n matrix. To diagonalise A means to give an invertible matrix U and a
diagonal matrix D such that U−1AU = D (or equivalently A = UDU−1). We say that A is diagonalisable
if there exist matrices U and D with these properties.

Proposition 14.4. Suppose we have a basis u1, . . . , un for Rn such that each vector ui is an eigenvector for
A, with eigenvalue λi say. Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have
a diagonalisation of A. Moreover, every diagonalisation of A occurs in this way.

To prove this, we need two standard facts about matrix multiplication.
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Lemma 14.5. Let A and U be n×n matrices, let λ1, . . . , λn be real numbers, and put D = diag(λ1, . . . , λn).
Let u1, . . . , un be the columns of U . Then

AU =

 Au1 · · · Aun


UD =

 λ1u1 · · · λnun

 .
Proof. First let the rows of A be aT1 , . . . , a

T
n . By the definition of matrix multiplication, we have

AU =

a1.u1 · · · a1.un
...

. . .
...

an.u1 · · · an.un



The p’th column is

a1.up...
an.up

, and this is just the definition of Aup. In other words, we have

AU =

 Au1 · · · Aun


as claimed. For the second claim, we will just give an example that makes the pattern clear. If U =a b c
d e f
g h i

 then

UD =

a b c
d e f
g h i

λ1 0 0
0 λ2 0
0 0 λ3

 =

λ1a λ2b λ3c
λ1d λ2e λ3f
λ1g λ2h λ3i


Everything in the first column gets multiplied by λ1, everything in the second column gets multiplied by λ2
and everything in the third column gets multiplied by λ3. In other words, we have u1 u2 u3

λ1 0 0
0 λ2 0
0 0 λ3

 =

 λ1u1 λ2u2 λ3u3


as claimed. �

Proof of Proposition 14.4. First suppose we have a basis u1, . . . , un of eigenvectors with eigenvalues λ1, . . . , λn.
Put U = [u1| · · · |un]. As the columns of U form a basis for Rn, Theorem 11.5 tells us that U is invertible.
Moreover, Lemma 14.5 tells us that AU = [Au1| · · · |Aun], but ui is assumed to be an eigenvector of eigen-
value λi, so Aui = λiui, so AU = [λ1u1| · · · |λnun]. The other half of Lemma 14.5 tells us that UD can
be described in the same way, so AU = UD. It follows that U−1AU = U−1UD, which is the same as D
because U−1U = In, so U−1AU = D. Alternatively, from the equation UD = AU we can also see that
UDU−1 = AUU−1 = A.

Finally, this whole argument can be reversed in a straightforward way. Suppose we have an invertible
matrix U and a diagonal matrix D = diag(λ1, . . . , λn) such that U−1AU = D. We let u1, . . . , un be the
columns of U , and note that these form a basis for Rn, because U is assumed to be invertible. The equation
U−1AU = D implies that UD = UU−1AU = AU . In the light of Lemma 14.5, we conclude that λ1u1 · · · λnun

 =

 Au1 · · · Aun

 .
From this it is clear that Aui = λiui for all i, so ui is an eigenvector of eigenvalue λi. �

We can now recycle some examples from Section 10.
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Example 14.6. Consider the matrix A =

1 1 1
0 2 2
0 0 3

. In Example 13.23 we saw that the following vectors

are eigenvectors for A with eigenvalues λ1 = 1 and λ2 = 2 and λ3 = 3:

u1 =

1
0
0

 u2 =

1
1
0

 u3 =

3/2
2
1

 .
It follows that if we put

U =

 u1 u2 u3

 =

1 1 3/2
0 1 2
0 0 1

 D =

λ1 0 0
0 λ2 0
0 0 λ3

 =

1 0 0
0 2 0
0 0 3


then A = UDU−1. To understand this explicitly we need to calculate U−1. In Example 11.12, we saw that1 a b

0 1 c
0 0 1

−1 =

1 −a ac− b
0 1 −c
0 0 1

 .
By taking a = 1 and b = 3/2 and c = 2 we get

U−1 =

1 −1 1/2
0 1 −2
0 0 1

 .
We thus have

DU−1 =

1 0 0
0 2 0
0 0 3

1 −1 1/2
0 1 −2
0 0 1

 =

1 −1 1/2
0 2 −4
0 0 3


UDU−1 =

1 1 3/2
0 1 2
0 0 1

1 −1 1/2
0 2 −4
0 0 3

 =

1 1 1
0 2 2
0 0 3


As expected, this is the same as A.

Example 14.7. In Example 13.24 we showed that the matrix A =

[
0 1
−1 0

]
does not have any real eigen-

values or eigenvectors, but that over the complex numbers we have eigenvectors u1 =

[
1
i

]
and u2 =

[
1
−i

]
with eigenvalues λ1 = i and λ2 = −i. We thus have a diagonalisation with U = [u1|u2] =

[
1 1
i −i

]
and

D =

[
i 0
0 −i

]
. Here the standard formula for the inverse of a 2× 2 matrix gives

U−1 =
1

−2i

[
−i −1
−i 1

]
=

[
1/2 −i/2
1/2 i/2

]
.

This gives

UDU−1 =

[
1 1
i −i

] [
i 0
0 −i

] [
1/2 −i/2
1/2 i/2

]
=

[
i −i
−1 −1

] [
1/2 −i/2
1/2 i/2

]
=

[
0 1
−1 0

]
.

As expected, this is the same as A.

Example 14.8. In Example 13.26 we saw that there is no basis of eigenvectors for the matrix A =5 5 0
0 5 5
0 0 5

. It follows that this matrix is not diagonalisable.

It is possible to understand non-diagonalisable matrices in great detail using the theory of Jordan blocks.
However, we will not cover Jordan blocks in this course.
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One point about eigenvectors and diagonalisation is that they make it easy to understand the powers Ak

of a matrix A, which are required for many applications. First note that if v is an eigenvector of eigenvalue
λ, we have

Av = λv

A2v = A(Av) = A(λv) = λAv = λ2v

A3v = A(A2v) = A(λ2v) = λ2Av = λ3v

and so on, so Akv = λkv for all k. On the left hand side here we have powers of the matrix A, which are
hard to calculate, but on the right hand side we just have powers of the number λ, which are easy. This can
be souped up to give a formula for Ak, as follows.

Proposition 14.9. Suppose we have a diagonalisation A = UDU−1, where D = diag(λ1, . . . , λn) say. Then
for all k ≥ 0 we have Dk = diag(λk1 , . . . , λ

k
n) and

Ak = UDkU−1 = U diag(λk1 , . . . , λ
k
n) U−1.

Proof. First, we have

A4 = (UDU−1)4 = UDU−1 UDU−1 UDU−1 UDU−1.

Now U−1U = In and multiplication by In does not do anything, so we can discard the terms U−1U leaving

A4 = UDDDDU−1 = UD4U−1.

It is clear that the general case works the same way, so Ak = UDkU−1 for all k. One could give a more
formal proof by induction if desired. Next, it is clear from the definition of matrix multiplication that

diag(λ1, . . . , λn) diag(µ1, . . . , µn) = diag(λ1µ1, . . . , λnµn).

From this it is not hard to deduce that

diag(λ1, . . . , λn)k = diag(λk1 , . . . , λ
k
n).

(Again, a formal proof would go by induction on k.) �

Example 14.10. We will diagonalise the matrix

A =


3 2 1 0
0 0 0 −1
0 0 0 −2
0 0 0 −3


and thus find the powers Ak. As A− tI4 is upper-triangular we see that the determinant is just the product
of the diagonal terms. This gives

χA(t) = det(A− tI4) = t2(t− 3)(t+ 3),

and it follows that the eigenvalues are λ1 = λ2 = 0 and λ3 = 3 and λ4 = −3. Consider the vectors

u1 =


1
0
−3
0

 u2 =


2
−3
0
0

 u3 =


1
0
0
0

 u4 =


2
−3
−6
−9


It is straightforward to check that Au1 = Au2 = 0 and Au3 = 3u3 and Au4 = −3u4, so the vectors ui are
eigenvectors for A, with eigenvalues 0, 0, 3 and −3 respectively. (These vectors were found by row-reducing
the matrices A− λiI4 in the usual way, but we will not write out the details.) Now put

U =


1 2 1 2
0 −3 0 −3
−3 0 0 −6
0 0 0 −9

 V =
1

9


0 0 −3 2
0 −3 0 1
9 6 3 −2
0 0 0 −1

 D =


0 0 0 0
0 0 0 0
0 0 3 0
0 0 0 −3


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The columns of U are u1, . . . , u4. One can check directly that UV = I4, so U is invertible with U−1 = V .
Using Theorem 11.5, it follows that the vectors ui form a basis. We now see that A = UDU−1, and thus
that Ak = UDkU−1. More explicitly, we have

Ak =
1

9


1 2 1 2
0 −3 0 −3
−3 0 0 −6
0 0 0 −9




0 0 0 0
0 0 0 0
0 0 3k 0
0 0 0 (−3)k




0 0 −3 2
0 −3 0 1
9 6 3 −2
0 0 0 −1



= 3k−2


1 2 1 2
0 −3 0 −3
−3 0 0 −6
0 0 0 −9




0 0 0 0
0 0 0 0
9 6 3 −2
0 0 0 (−1)k+1

 = 3k−2


9 6 3 −2(1 + (−1)k)
0 0 0 3(−1)k

0 0 0 6(−1)k

0 0 0 9(−1)k


Example 14.11. We will diagonalise the matrix

A =


2 2 2 2
2 5 5 2
2 5 5 2
2 2 2 2

 .
We first need to calculate the characteristic polynomial, which is the determinant of the matrix

B = A− tI4 =


2− t 2 2 2

2 5− t 5 2
2 5 5− t 2
2 2 2 2− t

 .
We will calculate this by Method 12.9 (which involves row-reducing B and keeping track of various factors
that arise from the row operations). The row-reduction proceeds as follows:2

2− t 2 2 2
2 5− t 5 2
2 5 5− t 2
2 2 2 2− t

 −→


2− t 2 2 2
2 5− t 5 2
0 t −t 0
t 0 0 −t

 1/t2−−−→


2− t 2 2 2

2 5− t 5 2
0 1 −1 0
1 0 0 −1

 −→


0 0 4 4− t
0 0 10− t 4
0 1 −1 0
1 0 0 −1

 −1−−→


1 0 0 −1
0 0 10− t 4
0 1 −1 0
0 0 4 4− t

 −1−−→


1 0 0 −1
0 1 −1 0
0 0 10− t 4
0 0 4 4− t


(In the first step we subtracted row 1 from row 4, and row 2 from row 3. We then multiplied rows 3 and 4
by 1/t, then subtracted multiples of rows 3 and 4 from rows 1 and 2. Finally we swapped rows 1 and 4, and
then swapped rows 2 and 3.)

If we call the final matrix C, we can expand down the columns to get

det(C) = det

[
10− t 4

4 4− t

]
= (10− t)(4− t)− 16 = t2 − 14t+ 24 = (t− 2)(t− 12).

The product of the factors associated with the row-reduction steps is µ = (1/t2).(−1)2 = 1/t2. We therefore
have

χA(t) = det(B) = det(C)/µ = (t− 2)(t− 12)t2.

This means that the eigenvalues of A are 2, 12 and 0.
To find an eigenvector of eigenvalue 2 we need to row-reduce the matrix A− 2I4, which is just the matrix

B with t = 2. We can therefore substitute t = 2 in C and then perform a few more steps to complete the

2This is not a complete row-reduction; we perform just enough row operations to render the determinant easy to compute.
Also, it should be noticed that we are tacitly assuming that t 6= 0, since some of our row operations will involve division by t.

However, it is easy to check that the end result (a formula for det(C)) will hold in the t = 0 case as well.
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row-reduction.

A− 2I4 →


1 0 0 −1
0 1 −1 0
0 0 8 4
0 0 4 2

→


1 0 0 −1
0 1 −1 0
0 0 1 1/2
0 0 0 0

→


1 0 0 −1
0 1 0 1/2
0 0 1 1/2
0 0 0 0

 .
The eigenvector u1 =

[
w x y z

]T
of eigenvalue 2 must therefore satisfy w − z = x + z/2 = y +

z/2 = 0, so u1 = z
[
1 −1/2 −1/2 1

]T
, with z arbitrary. It will be convenient to take z = 2 so

u1 =
[
2 −1 −1 2

]T
.

Next, to find an eigenvector of eigenvalue 12 we need to row-reduce the matrix A − 12I4, which is just
the matrix B with t = 12. We can therefore substitute t = 12 in C and then perform a few more steps to
complete the row-reduction.

A− 12I4 →


1 0 0 −1
0 1 −1 0
0 0 −2 4
0 0 4 −8

→


1 0 0 −1
0 1 −1 0
0 0 1 −2
0 0 0 0

→


1 0 0 −1
0 1 0 −2
0 0 1 −2
0 0 0 0


From this we find that u2 =

[
1 2 2 1

]T
is an eigenvector of eigenvalue 12.

Finally, we need to find the eigenvectors of eigenvalue 0. Our reduction B → C involved division by t, so
it is not valid in this case where t = 0. We must therefore start again and row-reduce the matrix A−0I4 = A
directly, but that is easy: 

2 2 2 2
2 5 5 2
2 5 5 2
2 2 2 2

→


2 2 2 2
0 3 3 0
0 0 0 0
0 0 0 0

→


1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0

 .
We conclude that the eigenvectors of eigenvalue 0 are the vectors v =

[
w x y z

]T
with w+z = x+y = 0,

and any such vector can be written in the form

v =


w
x
−x
−w

 = w


1
0
0
−1

+ x


0
1
−1
0

 .
We therefore take

u3 =
[
1 0 0 −1

]T
u4 =

[
0 1 −1 0

]T
.

Now put

U = [u1|u2|u3|u4] =


2 1 1 0
−1 2 0 1
−1 2 0 −1
2 1 −1 0

 D =


2 0 0 0
0 12 0 0
0 0 0 0
0 0 0 0


We next need to check that U is invertible and find the inverse. The systematic approach would be to
row-reduce the matrix [U |I4] to get a matrix of the form [I4|V ], then we could conclude that U is invertible
with U−1 = V . We will not write this out, but instead we will just record the answer. Put

V =
1

10


2 −1 −1 2
1 2 2 1
5 0 0 −5
0 5 −5 0

 .
One can then check by just multiplying out that UV = I4, so U−1 = V . We therefore have a diagonalisation
A = UDU−1 = UDV .
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15. Differential equations

In this section we will explain how eigenvectors can be used to solve certain systems of coupled differential
equations (of a type that are common in applications). First suppose that x is a function of t, and satisfies
the equation

ẋ = ax

for some constant a. It is standard, and easy to check, that we must have x = eatc for some constant c.
When t = 0 we have eat = 1 and so x = c. In other words, c is just the initial value of x at t = 0.

Now suppose we have variables x1, x2 and x3 satisfying equations of the same type:

ẋ1 = a1 x1

ẋ2 = a2 x2

ẋ3 = a3 x3.

These equations can evidently be solved separately to give

x1 = ea1tc1

x2 = ea2tc2

x3 = ea3tc3

for some constants c1, c2 and c3. We can write the equations and the solution in matrix form as follows:

d

dt

x1x2
x3

 =

a1 0 0
0 a2 0
0 0 a3

x1x2
x3

 x1x2
x3

 =

ea1t 0 0
0 ea2t 0
0 0 ea3t

c1c2
c3

 .
This was easy because the different variables do not interact with each other at all, so we just have diagonal
matrices. If we call the diagonal matrix on the left D, then it is natural to call the matrix on the right eDt.
With this notation, the equation is ẋ = Dx and the solution is x = eDtc.

Now consider instead a system where we do have interaction, such as

ẋ1 = a11x1 + a12x2 + a13x3

ẋ2 = a21x1 + a22x2 + a23x3

ẋ3 = a31x1 + a32x2 + a33x3.

This can be written in matrix form as ẋ = Ax, where

x =

x1x2
x3

 A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
It is assumed here that the coefficients aij are constants, not depending on t or the variables xi. Suppose
we can diagonalise A, as A = UDU−1 say, with

D =

λ1 0 0
0 λ2 0
0 0 λ3

 .
The equation ẋ = Ax then becomes ẋ = UDU−1x, or equivalently U−1ẋ = DU−1x. If we put y = U−1x,
this becomes ẏ = Dy. As D is diagonal we can solve for the three variables yi separately, giving yi = eλitbi
for some constants bi, or equivalently y = eDtb. This in turn gives x = Uy = UeDtb. It is sometimes
convenient to put c = Ub, so b = U−1c, and the solution can be written as x = UeDtU−1c. When t = 0 we
find that eDt is the identity matrix and so x = UU−1c = c. Thus, c is just the initial value of x.

Example 15.1. Suppose that

ẋ1 = x1 + x2 + x3

ẋ2 = 2x2 + 2x3

ẋ3 = 3x3,
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with x1 = x2 = 0 and x3 = 1 at t = 0. This can be written as ẋ = Ax, where A is the matrix

1 1 1
0 2 2
0 0 3


occurring in Example 14.6. As we saw there, we have a diagonalisation A = UDU−1, where

U =

1 1 3/2
0 1 2
0 0 1

 D =

1 0 0
0 2 0
0 0 3

 U−1 =

1 −1 1/2
0 1 −2
0 0 1

 .
It follows that x = UeDtU−1c, where c =

[
0 0 1

]T
is the specified initial value for x. This gives

x =

1 1 3/2
0 1 2
0 0 1

et 0 0
0 e2t 0
0 0 e3t

1 −1 1/2
0 1 −2
0 0 1

0
0
1



=


et e2t 3

2e
3t

0 e2t 2e3t

0 0 e3t


1/2
−2
1



=


1
2e
t − 2e2t + 3

2e
3t

−2e2t + 2e3t

e3t

.
Example 15.2. Suppose we have

ẋ = ẏ = ż = x+ y + z

with x = z = 0 and y = 1 at t = 0. This can be written as v̇ = Av, where

v =

xy
z

 A =

1 1 1
1 1 1
1 1 1

 .
The characteristic polynomial is

χA(t) = det

1− t 1 1
1 1− t 1
1 1 1− t


= (1− t)((1− t)2 − 1)− (1− t− 1) + (1− (1− t))
= 3t2 − t3 = t2(3− t).

This shows that the eigenvalues are 0 and 3. If we put

u1 =

 1
−1
0

 u2 =

 0
1
−1

 u3 =

1
1
1


we find that Au1 = Au2 = 0 and Au3 = 3u3. Thus, the vectors ui form a basis for R3 consisting of
eigenvectors for A, with eigenvalues 0, 0 and 3 respectively. This means that we have a diagonalisation
A = UDU−1, where

U =

 1 0 1
−1 1 1
0 −1 1

 D =

0 0 0
0 0 0
0 0 3

 .
We can find U−1 by the following row-reduction: 1 0 1 1 0 0

−1 1 1 0 1 0
0 −1 1 0 0 0

→
 1 0 1 1 0 0

0 0 3 1 1 1
0 −1 1 0 0 0

→
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 1 0 0 2/3 −1/3 −1/3
0 0 1 1/3 1/3 1/3
0 −1 0 −1/3 −1/3 2/3

→
 1 0 0 2/3 −1/3 −1/3

0 1 0 1/3 1/3 −2/3
0 0 1 1/3 1/3 1/3

 .
The conclusion is that

U−1 =
1

3

2 −1 −1
1 1 −2
1 1 1

 .
The solution to our differential equation is now v = UeDtU−1c, where c is the initial value of v. We are

given that x = z = 0 and y = 1 at t = 0, which means that c =
[
0 1 0

]T
, soxy

z

 =
1

3

 1 0 1
−1 1 1
0 −1 1

1 0 0
0 1 0
0 0 e3t

2 −1 −1
1 1 −2
1 1 1

 .
0

1
0


=

1

3

 1 0 e3t

−1 1 e3t

0 −1 e3t

−1
1
1

 =

(e3t − 1)/3
(e3t + 2)/3
(e3t − 1)/3

 .
16. Difference equations

We now discuss another kind of naturally occurring problem that can be solved by diagonalisation. It
should be admitted that the method explained here is not the most efficient possible, but it explains some
ideas that are less visible in more streamlined methods.

Example 16.1. Suppose it is given that the sequence a0, a1, a2, . . . satisfies

(a) a0 = −1
(b) a1 = 0
(c) ai+2 = 6ai+1 − 8ai for all i ≥ 2.

This gives

a2 = 6a1 − 8a0 = 6× 0− 8× (−1) = 8

a3 = 6a2 − 8a1 = 6× 8− 8× 0 = 48

a4 = 6a3 − 8a2 = 6× 48− 8× 8 = 224

and so on. We would like to find a formula giving an for all n. The first step is to reformulate the problem in

terms of vectors and matrices. We put vi =

[
ai
ai+1

]
∈ R2, so conditions (a) and (b) tell us that v0 =

[
−1
0

]
.

Condition (c) tells us that

vn+1 =

[
an+1

an+2

]
=

[
an+1

6an+1 − 8an

]
=

[
0 1
−8 6

] [
an
an+1

]
=

[
0 1
−8 6

]
vn.

We write A =

[
0 1
−8 6

]
, so the above reads vn+1 = Avn. In particular, we have

v0 =

[
−1
0

]
v1 = Av0 = A

[
−1
0

]
v2 = Av1 = A2

[
−1
0

]
v3 = Av2 = A3

[
−1
0

]
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and so on, so vn = An
[
−1
0

]
for all n, which is already a useful answer. We can make it more explicit by

diagonalising A. The characteristic polynomial is

χA(t) = det

[
−t 1
−8 6− t

]
= t2 − 6t+ 8 = (t− 2)(t− 4),

so the eigenvalues are 2 and 4. Using the row-reductions

A− 2I =

[
−2 1
−8 4

]
→
[
1 −1/2
0 0

]
A− 4I =

[
−4 1
−8 2

]
→
[
1 −1/4
0 0

]
we see that the vector u1 =

[
1
2

]
is an eigenvector of eigenvalue 2, and the vector u2 =

[
1
4

]
is an eigenvector

of eigenvalue 4. We therefore have a diagonalisation A = UDU−1, where U =

[
1 1
2 4

]
(and therefore

U−1 =

[
2 −1/2
−1 1/2

]
) and D =

[
2 0
0 4

]
. This gives

vn = Anv0 = UDnU−1v0

=

[
1 1
2 4

] [
2n 0
0 4n

] [
2 −1/2
−1 1/2

] [
−1
0

]
=

[
2n 4n

2n+1 4n+1

] [
−2
1

]
=

[
4n − 2n+1

4n+1 − 2n+2

]
.

On the other hand, we have vn =

[
an
an+1

]
by definition, so

an = 4n − 2n+1 = 22n − 2n+1.

We will check that this formula does indeed give the required properties:

a0 = 20 − 21 = 1− 2 = −1

a1 = 22 − 22 = 0

6ai+1 − 8ai = 6(22i+2 − 2i+2)− 8(22i − 2i+1) = 24× 22i − 24× 2i − 8× 22i + 16× 2i

= 16× 22i − 8× 2i = 22i+4 − 2i+3

= 22(i+2) − 2(i+2)+1 = ai+2.

Example 16.2. We will find the sequence satisfying b0 = 3 and b1 = 6 and b2 = 14 and

bi+3 = 6bi − 11bi+1 + 6bi+2.

The first step is to note that the vectors vi =
[
bi bi+1 bi+2

]T
satisfy v0 =

[
3 6 14

]T
and

vi+1 =

bi+1

bi+2

bi+3

 =

 bi+1

bi+2

6bi − 11bi+1 + 6bi+2

 =

0 1 0
0 0 1
6 −11 6

 bi
bi+1

bi+2

 = Bvi,

where B =

0 1 0
0 0 1
6 −11 6

. It follows that vn = Bnv0 for all n, and bn is the top entry in the vector vn. To

evaluate this more explicitly, we need to diagonalise B. The characteristic polynomial is

χB(t) = det(B − tI3) = det

−t 1 0
0 −t 1
6 −11 6− t


= −tdet

[
−t 1
−11 6− t

]
− det

[
0 1
6 6− t

]
= −t(t2 − 6t+ 11)− (−6)

= 6− 11t+ 6t2 − t3 = (1− t)(2− t)(3− t).
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This shows that the eigenvalues are 1, 2 and 3. We can find the corresponding eigenvectors by row-reduction
as in Method 13.14:

B − I =

−1 1 0
0 −1 1
6 −11 5

 →

1 0 −1
0 1 −1
0 0 0

 u1 =

1
1
1



B − 2I =

−2 1 0
0 −2 1
6 −11 4

 →

1 0 −1/4
0 1 −1/2
0 0 0

 u2 =

1
2
4



B − 3I =

−3 1 0
0 −3 1
6 −11 3

 →

1 0 −1/9
0 1 −1/3
0 0 0

 u3 =

1
3
9

 .
This gives B = UDU−1, where

U =

1 1 1
1 2 3
1 4 9

 D =

1 0 0
0 2 0
0 0 3

 .
We will use the adjugate method to calculate U−1. (It would also work to row-reduce [U |I3] as in Method 11.11
instead.) The minor determinants are

m11 = 6 m12 = 6 m13 = 2

m21 = 5 m22 = 8 m23 = 3

m31 = 1 m32 = 2 m33 = 1.

This gives

adj(U) =

+m11 −m21 +m31

−m12 +m22 −m32

+m13 −m23 +m33

 =

 6 −5 1
−6 8 −2
2 −3 1

 .
We also have

det(U) = U11m11 − U12m12 + U13m13 = 6− 6 + 2 = 2,

so

U−1 =
adj(U)

det(U)
=

 3 −5/2 1/2
−3 4 −1
1 −3/2 1/2

 .
This gives

vn = Bnv0 = UDnU−1v0

=

1 1 1
1 2 3
1 4 9

1 0 0
0 2n 0
0 0 3n

 3 −5/2 1/2
−3 4 −1
1 −3/2 1/2

 3
6
14


=

1 2n 3n

1 2n+1 3n+1

1 2n+2 3n+2

1
1
1

 =

 1 + 2n + 3n

1 + 2n+1 + 3n+1

1 + 2n+2 + 3n+2

 .
Moreover, bn is the top entry in vn, so we conclude that

bn = 1 + 2n + 3n.

Example 16.3. The Fibonacci numbers are defined by F0 = 0 and F1 = 1 and Fn+2 = Fn + Fn+1. The

vectors vi =

[
Fi
Fi+1

]
therefore satisfy v0 =

[
0
1

]
and

vn+1 =

[
Fn+1

Fn+2

]
=

[
Fn+1

Fn + Fn+1

]
= Avn,
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where A =

[
0 1
1 1

]
. This has χA(t) = t2 − t− 1, which has roots λ1 = (1 +

√
5)/2 and λ2 = (1−

√
5)/2. To

find an eigenvector of eigenvalue λ1, we must solve[
0 1
1 1

] [
x
y

]
= λ1

[
x
y

]
.

The top row gives y = λ1x. The bottom row gives x + y = λ1y. After substituting y = λ1x this becomes
x + λ1x = λ21x, or (λ21 − λ1 − 1)x = 0. This holds automatically, because λ1 is a root of the equation

t2 − t − 1 = 0. We can thus choose x = 1 to get an eigenvector u1 =

[
1
λ1

]
of eigenvalue λ1. Similarly, we

have an eigenvector u2 =

[
1
λ2

]
of eigenvalue λ2, giving a diagonalisation A = UDU−1 with

U =

[
1 1
λ1 λ2

]
D =

[
λ1 0
0 λ2

]
.

Here det(U) = λ2 − λ1 = −
√

5 and so

U−1 =
−1√

5

[
λ2 −1
−λ1 1

]
.

This gives

vn = Anv0 = UDnU−1v0

=
−1√

5

[
1 1
λ1 λ2

] [
λn1 0
0 λn2

] [
λ2 −1
−λ1 1

] [
0
1

]
=

1√
5

[
λn1 λn2
λn+1
1 λn+1

2

] [
−1
1

]
=

[
(λn1 − λn2 )/

√
5

(λn+1
1 − λn+1

2 )/
√

5

]
.

On the other hand, we have vn =

[
Fn
Fn+1

]
by definition, so

Fn =
λn1 − λn2√

5
=

(1 +
√

5)n − (1−
√

5)n

2n
√

5
.

It is also useful to note here that λ1 ' 1.618033988 and λ2 ' −0.6180339880. As |λ1| > 1 and |λ2| < 1 we
see that |λn1 | → ∞ and |λn2 | → 0 as n → ∞. This means that when n is large we can neglect the λ2 term

and we have Fn ' λn1/
√

5.

Remark 16.4. There are some strong and obvious common patterns in the above three examples, and we
could streamline the method considerably by analysing and exploiting those patterns. However, we will not
pursue that here.

17. Markov chains

Suppose we have a system X that can be in various different states, which we will label as state 1 to state
n. Suppose that the system changes state in a random manner at regular intervals, say once per second.
Suppose we know that X is in state 3 at time t = 0. How can we find the probability that X is in state 5
at t = 26?

To study this question, we need to make a simplifying assumption. Suppose that X is in state i at time
t. We will write pj←−i for the probability that X is in state j at time t + 1. In principle this could depend
on the time t, the earlier history at times t− 1, t− 2 and so on, or on various influences outside the system.
We will assume that there is no such dependence: the transition probabilities pj←−i are just constants. A
random system with these properties is called a Markov chain.

There are very many applications of the theory of Markov chains as models of random systems in eco-
nomics, population biology, information technology and other areas.
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Definition 17.1. For a Markov chain with n states, the transition matrix is the n×n matrix P with entry
pj←−i in the i’th column of the j’th row. For example, when n = 4 we have

P =


p1←−1 p1←−2 p1←−3 p1←−4

p2←−1 p2←−2 p2←−3 p2←−4

p3←−1 p3←−2 p3←−3 p3←−4

p4←−1 p4←−2 p4←−3 p4←−4

 .
Example 17.2. We can draw a diagram of a 3-state Markov chain X as follows:

1 2 3
0.7 0.6

0.3 0.4 1.0

Each circle represents a state. The arrow labelled 0.7 (from state 1 to state 2) indicates that if X is in state
1, it will move to state 2 with probability 0.7. In other words p2←−1 = 0.7. For the above diagram, the
transition matrix is

P =

p1←−1 p1←−2 p1←−3

p2←−1 p2←−2 p2←−3

p3←−1 p3←−2 p3←−3

 =

0.3 0.0 0.0
0.7 0.4 0.0
0.0 0.6 1.0

 .
Example 17.3. Consider a two-state Markov chain which stays in the same state with probability 0.8, and
flips to the other state with probability 0.2. This can be drawn as follows:

1 2

0.2

0.2

0.8 0.8

Again, each circle represents a state. The arrow from state 1 to state 2 labelled 0.2 indicates that if X is in
state 1, it will move to state 2 with probability 0.2. In other words p2←−1 = 0.2.

The transition matrix is

P =

[
p1←−1 p1←−2

p2←−1 p2←−2

]
=

[
0.8 0.2
0.2 0.8

]
.

The transition matrix has an important property as follows:

Definition 17.4. A probability vector in Rn is a vector q =
[
q1 · · · qn

]T
such that 0 ≤ qi ≤ 1 for all i,

and
∑
i qi = 1. A stochastic matrix is a matrix where every column is a probability vector.

Lemma 17.5. The transition matrix of a Markov chain is stochastic.

Proof. Probabilities always lie between 0 and 1. If we are in state i at time t, then we must be in some
state at time t+ 1 (and we cannot be in two different states), so the sum of the probabilites for the various
different states must be equal to 1. In other words, we have

∑
j pj←−i = 1, and the probabilities pj←−i are

the entries in the i’th column of P , so the column sums are equal to 1 as required. �

Now suppose we know that at time t, the probability that X is in state i is qi. It is clear that the vector

q =
[
q1 · · · qn

]T
is then a probability vector. Let q′j be the probability that X is in state j at time t+ 1.

By elementary probability theory, we have

q′j = pj←−1q1 + pj←−2q2 + · · ·+ pj←−nqn =
∑
i

pj←−iqi.

This means that if we regard q and q′ as vectors, we just have q′ = Pq. For example, for a 3-state system,
we have

q′ =

q′1q′2
q′3

 =

p1←−1q1 + p1←−2q2 + p1←−3q3
p2←−1q1 + p2←−2q2 + p2←−3q3
p3←−1q1 + p3←−2q2 + p3←−3q3

 =

p1←−1 p1←−2 p1←−3

p2←−1 p2←−2 p2←−3

p3←−1 p3←−2 p3←−3

q1q2
q3

 = Pq.
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Definition 17.6. Let X be a Markov chain with n states. We write rt for the vector in Rn whose i’th entry
(rt)i is the probability that X is in state i at time t. We call this vector the distribution for X at time t.

The argument outlined above proves the following result:

Proposition 17.7. If P is the transition matrix for X, then rt+1 = Prt, and so rt = P tr0 for all t. �

Because of this, many questions about Markov chains reduce to understanding the powers of the matrix
P , which we can do by diagonalising P .

Example 17.8. In Example 17.3 we considered a Markov chain with transition matrix P =

[
0.8 0.2
0.2 0.8

]
.

The characteristic polynomial is χP (t) = t2 − 1.6t + 0.6 so the eigenvalues are (1.6 ±
√

2.56− 4× 0.6)/2,

which works out as 0.6 and 1. The vector u1 =

[
1
−1

]
is an eigenvector of eigenvalue 0.6, and u2 =

[
1
1

]
is an

eigenvector of eigenvalue 1. This gives a diagonalisation P = UDU−1 with

U = [u1|u2] =

[
1 1
−1 1

]
D =

[
0.6 0
0 1

]
U−1 =

[
0.5 −0.5
0.5 0.5

]
,

so

Pn = UDnU−1 =

[
1 1
−1 1

] [
(0.6)n 0

0 1

] [
0.5 −0.5
0.5 0.5

]
=

[
0.5(1 + 0.6n) 0.5(1− 0.6n)
0.5(1− 0.6n) 0.5(1 + 0.6n)

]
Suppose we are given that the system starts at t = 0 in state 1, so r0 =

[
1
0

]
. It follows that

rn = Pnr0 =

[
0.5(1 + 0.6n) 0.5(1− 0.6n)
0.5(1− 0.6n) 0.5(1 + 0.6n)

] [
1
0

]
=

[
0.5(1 + 0.6n)
0.5(1− 0.6n)

]
.

Thus, at time n the probability of being in state 1 is 0.5(1 + 0.6n), and the probability of being in state 2 is
0.5(1− 0.6n).

When n is large, we observe that (0.6)n will be very small, so rn '
[
0.5
0.5

]
, so it is almost equally probable

that X will be in either of the two states. This should be intuitively plausible, given the symmetry of the
situation.

Example 17.9. Consider the Markov chain X as in Example 17.2. Suppose that it starts in state 1 at time
t = 0. What is the probability that it is in state 3 at time t = 5?

To calculate this, we need to know the eigenvalues and eigenvectors of the transtion matrix P . The
characteristic polynomial is

χP (t) = det

0.3− t 0.0 0.0
0.7 0.4− t 0.0
0.0 0.6 1.0− t

 = (0.3− t)(0.4− t)(1− t),

so the eigenvalues are 0.3, 0.4 and 1. To find an eigenvector of eigenvalue 0.3, we row-reduce the matrix
P − 0.3I:  0 0 0

7/10 1/10 0
0 6/10 7/10

→
0 0 0

1 1/7 0
0 1 7/6

→
1 1/7 0

0 1 7/6
0 0 0

→
1 0 −1/6

0 1 7/6
0 0 0

 .
From this we see that the eigenvectors of eigenvalue 0.3 are the vectors

[
x y z

]T
satisfying x − z/6 = 0

and y + 7z/6 = 0, which means that x = z/6 and y = −7z/6 with z arbitrary. It will be convenient to take

z = 6, giving x = 1 and y = −7, so we have an eigenvector u1 =
[
1 −7 6

]T
of eigenvalue 0.3. By the same

method we obtain an eigenvector u2 =
[
0 1 −1

]T
of eigenvalue 0.4, and an eigenvector u3 =

[
0 0 1

]T
of eigenvalue 1. This gives a diagonalisation P = UDU−1, where

U = [u1|u2|u3] =

 1 0 0
−7 1 0
6 −1 1

 D =

0.3 0 0
0 0.4 0
0 0 1.0

 .
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We can find U−1 by Method 11.11: from the row-reduction 1 0 0 1 0 0
−7 1 0 0 1 0
6 −1 1 0 0 1

→
 1 0 0 1 0 0

0 1 0 7 1 0
0 −1 1 −6 0 1

→
 1 0 0 1 0 0

0 1 0 7 1 0
0 0 1 1 1 1


we see that U−1 =

1 0 0
7 1 0
1 1 1

. This gives

P k = UDkU−1

=

 1 0 0
−7 1 0
6 −1 1

(0.3)k 0 0
0 (0.4)k 0
0 0 1

1 0 0
7 1 0
1 1 1


=

 (0.3)k 0 0
7(0.4)k − 7(0.3)k (0.4)k 0

1 + 6(0.3)k − 7(0.4)k 1− (0.4)k 1

 .
Next, we are assuming that the system is definitely in state 1 at time t = 0, so the initial distribution is

r0 =
[
1 0 0

]T
. It follows that

rk = P kr0 =

 (0.3)k 0 0
7(0.4)k − 7(0.3)k (0.4)k 0

1 + 6(0.3)k − 7(0.4)k 1− (0.4)k 1

1
0
0

 =

 (0.3)k

7(0.4)k − 7(0.3)k

1 + 6(0.3)k − 7(0.4)k

 .
For the probability p that X is in state 3 at time t = 5, we need to take k = 5 and look at the third
component, giving

p = 6(0.3)5 − 7(0.4)5 + 1 ' 0.94290.

In both of the last examples, one of the eigenvalues is equal to 1. This is not a coincidence, as we now
explain.

Proposition 17.10. If P is an n× n stochastic matrix, then 1 is an eigenvalue of P .

Proof. Let P be an n×n stochastic matrix, with columns v1, . . . , vn say. Put d =
[
1 1 · · · 1 1

]T ∈ Rn.
Because P is stochastic we know that the sum of the entries in vi is 1, or in other words that vi.d = 1. This
means that

PT d =


vT1
...

vTn




1
...

1

 =


v1.d

...

vn.d

 =


1
...

1

 = d.

Thus, d is an eigenvector of PT with eigenvalue 1. It follows by Corollary 13.12 that 1 is also an eigenvalue
of P , as required. �

Definition 17.11. A stationary distribution for a Markov chain X is a probability vector q that satisfies
Pq = q (so q is an eigenvector of eigenvalue 1).

Remark 17.12. It often happens that the distribution vectors rn converge (as n → ∞) to a distribution
r∞, whose i’th component is the long term average probability of the system being in state i. Because
Prn = rn+1 we then have

Pr∞ = P lim
n→∞

rn = lim
n→∞

Prn = lim
n→∞

rn+1 = r∞,

so r∞ is a stationary distribution. Moreover, it often happens that there is only one stationary distribution.
There are many theorems about this sort of thing, but we will not explore them in this course.

Example 17.13. Consider the following Markov chain:
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1 2 3

45

0.01 0.2

0.2

0.2

0.2

0.99

0.8 0.8

0.80.8

We will use a heuristic argument to guess what the stationary distribution should be, and then give a rigorous
proof that it is correct.

At each time there is a (small but) nonzero probability of leaving state 1 and entering the square, so if we
wait long enough we can expect this to happen. After we have entered the square there is no way we can ever
return to state 1, so the long-run average probability of being in state 1 is zero. Once we have entered the
square there is nothing to distinguish between the states 2, 3, 4 and 5, so by symmetry we expect to spend a

quarter of the time in each of these states. This suggests that the vector q =
[
0 0.25 0.25 0.25 0.25

]T
should be a stationary distribution. Indeed, it is clear that q is a probability vector, so we just need to show
that Pq = q, where

P =


0.99 0 0 0 0
0.01 0.8 0 0 0.2

0 0.2 0.8 0 0
0 0 0.2 0.8 0
0 0 0 0.2 0.8


is the transition matrix. We have

Pq =


0.99 0 0 0 0
0.01 0.8 0 0 0.2

0 0.2 0.8 0 0
0 0 0.2 0.8 0
0 0 0 0.2 0.8




0
0.25
0.25
0.25
0.25

 =


0

0.25
0.25
0.25
0.25

 = q

as required.

18. PageRank

We next discuss the Google PageRank algorithm, which is an application of the theory of Markov chains
to the problem of web search. Suppose we have a collection of n web pages with various links between them,
and we let Si denote the i’th page. The problem is to calculate a system of rankings for the web pages,
which can be used to decide which should be returned first in response to a search query. The method that
we will describe was a major advance when it was first introduced in 1996. Although much more complex
methods are used now, the key insight behind PageRank is still important. The original paper describing
PageRank and many other features of the original Google search system are described in this paper:
http://infolab.stanford.edu/pub/papers/google.pdf.

The basic idea is that a link from Sj to Si suggests that the author of Sj thought that Si was important
and reliable, so it should increase the rank of Si. However, we should only take this seriously if we think
that Sj itself is important and reliable, which we can assess by looking for links from other pages Sk to Sj ,
and so on. Moreover, if Sj contains a large number of links then that suggests that the author did not think
that each link was individually very important, so that should also decrease the ranking effect of each link.

For a different perspective, we could imagine surfing the web randomly. Once per second, we choose one
of the links on the current page at random, and click it. Let ri denote the long run average proportion of
the time that we spend on page Si. It turns out that this is a reasonable measure of the quality of Si, in
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terms of the principles mentioned above. Indeed, if there are lots of links from other pages Sj to Si, then the
probability of visiting Si will clearly increase. However, this effect will only come into play if we are visiting
Sj , so the strength of the effect is moderated by the probability of being at Sj , or in other words the rank
rj . Moreover, the effect will be weakened if there are many other links on Sj , because that will decrease the
probability that we click the one that leads to Si.

We next construct some equations to encode the informal discussion above. For simplicity we will assume
that

(a) Each page Sj contains at least one link to another page in the collection.
(b) No page contains more than one link to the same target.

(These restrictions could be removed with minor modifications to the algorithm.) We let Nj be the total
number of links from Sj . Assumption (a) says that Nj > 0, so it is meaningful to consider 1/Nj . Assump-
tion (b) means that Nj is also the number of pages to which Sj has a link. We define an n× n matrix P by
the rule

Pij =

{
1/Nj if there is a link from Sj to Si

0 otherwise.

Our random surfer model can be considered as an n-state Markov chain, with the state corresponding to
the page that we are currently visiting. The probability of moving from state j to state i is then the number
Pij as above. In other words, P is the transition matrix for this Markov chain. Note that P is indeed a
stochastic matrix, as it should be: in column j we have Nj nonzero entries all equal to 1/Nj , so the sum is
1.

Now let ri denote the ranking for the page Si. It is natural to normalise these rankings by requiring that
ri ≥ 0 for all i and

∑
i ri = 1. This means that the vector r ∈ Rn is a probability vector. Next, we construct

an equation that represents our ranking principle as discussed previously. Whenever there is a link from Sj
to Si, this should give a contribution to ri. The strength of this should be an increasing function of the
ranking rj of the page that carries the link, and a decreasing function of the number Nj of links on the page.
It is therefore natural to take the contribution to be rj/Nj . On the other hand, for pages Sj that do not
link to Si, we get a contribution of zero. This means that we should have

ri =
∑
j

Pijrj ,

or equivalently r = Pr, so r is an eigenvector of P with eigenvalue 1. As it is also a probability vector, we
see that it is a stationary distribution for our Markov chain. As we have mentioned previously, most but not
all Markov chains have a unique stationary distribution, so it is reasonable to hope that there is a unique
system of rankings satisfying the above equations.

One way to calculate r would be to solve the equations
∑
i ri = 1 and ri =

∑
j Pijrj by row-reduction.

This is no problem when the number n of web pages is small and so we have small matrices to row-reduce.
However, it is not feasible when indexing millions or billions of documents. However, we can use another
method based on Remark 17.12 instead. Let q ∈ Rn be the probability vector with qi = 1/n for all i, which
represents a situation in which we have chosen one of our n pages completely at random. In typical cases,
the vectors P kq will converge quite quickly to the unique stationary distribution r. Thus, we can find an
approximation to r by calculating P kq for some fairly small value of k. If the calculation is organised in an
intelligent way, this is feasible even when n is very large.

We next discuss a slight modification to the above scheme, which was found by Google to improve the
rankings. Fix a number d with 0 < d < 1, called the damping factor (a value of 0.85 was found to work well).
We now imagine surfing the web randomly as before, except that with probability d we click a randomly
chosen link on the current page, and with probability 1 − d we just choose a page completely at random,
whether or not there is a link. The new transition probabilities are

Qij =

{
d
Nj

+ 1−d
n if there is a link from Sj to Si

1−d
n otherwise.
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Another way to write this is to let R be the stochastic matrix with Rij = 1/n for all i and j; then Q =
dP + (1− d)R. There is then a unique probability vector r′ with Qr′ = r′, and the entries in r′ can be used
to rank the pages Si.

As an example, consider the following web of pages and links:

1 2

3

4

5

The corresponding matrix P is as follows:

P =


0 0 0 0 0

1/3 0 0 1/2 1/2
1/3 0 0 1/2 0
1/3 1/2 1/2 0 1/2
0 1/2 1/2 0 0

 .
We can use Maple to calculate the corresponding ranking vector (for now, with no damping factor):

with(LinearAlgebra):

n := 5;

P := << 0 | 0 | 0 | 0 | 0 >,

<1/3 | 0 | 0 | 1/2 | 1/2 >,

<1/3 | 0 | 0 | 1/2 | 0 >,

<1/3 | 1/2 | 1/2 | 0 | 1/2 >,

< 0 | 1/2 | 1/2 | 0 | 0 >>;

NS := NullSpace(P - IdentityMatrix(n));

r := NS[1];

r := r / add(r[i],i=1..n);

r := evalf(r);

The first two commands define n and P . Next, we want to find r, which must satisfy Pr = r or in
other words (P − In)r = 0. The command NS := NullSpace(P - IdentityMatrix(n)) defines NS to be
a set of vectors that satisfy this equation. In this case (as in most cases) this is a set with only one
element. The command r := NS[1] defines r to be the first (and only) element in the set NS. We now have
Pr = r, but the normalisation condition

∑
i ri = 1 need not be satisfied, or equivalently, r need not be

a probability vector. This will be fixed if we just divide r by
∑
i ri, which is the effect of the command

r := r / add(r[i],i=1..n);. Finally, it is convenient to rewrite all fractions as (approximate) decimals,
which we do using the evalf() function. At the end, Maple gives the result

r =


0.0

0.2777777778
0.1666666667
0.3333333333
0.2222222222

 .
This means that page 1 has rank 0.0 (because there are no links to it), page 2 has rank 0.277 and so on. We
can also use Maple to verify that r is the limit of the vectors P kq:
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q := Vector(n,[1/n $ n]);

evalf(P^10 . q);

The first line means: we define q to be a vector of length n, whose entries are 1/n repeated n times. Thus,
it is just a Maple translation of our previous definition of q. The next line tells us that

P 10q =


0.0

0.2783203125
0.1667317708
0.3332682292
0.2216796875

 ,
which is fairly close to r.

We next modify the calculation to include damping:

d := 0.85;

R := Matrix(n,n,[1/n $ n^2]);

Q := d * P + (1-d) * R;

NS := NullSpace(Q - IdentityMatrix(n));

r := NS[1];

r := r / add(r[i],i=1..n);

r := evalf(r);

The first line sets the damping factor d. The second line means: we define R to be a matrix of size n × n
whose entries are 1/n repeated n2 times. Thus, it is just a Maple translation of our previous definition of
R. We then put Q = dP + (1− d)R, and the remaining lines are as for the undamped case. The conclusion
is that

r =


0.030000000000000
0.264738919667590
0.172934210526316
0.316315789473684
0.216011080332410

 .
The rankings are different from those produced by the undamped method, but not by much. In particular,
the page S1 has a small positive rank, even though there are no links to it.

19. Subspaces of Rn

When considering the geometry of two or three-dimensional space, we often consider lines and planes,
and the ones that pass through the origin form an important special case. In this section we will start to
discuss the analogous structures in Rn, where n may be bigger than 3.

Definition 19.1. A subset V ⊆ Rn is a subspace if

(a) The zero vector is an element of V .
(b) Whenever v and w are two elements of V , the sum v + w is also an element of V . (In other words,

V is closed under addition.)
(c) Whenever v is an element of V and t is a real number, the vector tv is again an element of V . (In

other words, V is closed under scalar multiplication.)

Remark 19.2. The same word “subspace” is sometimes used for various different concepts. If we need to
emphasise that we are using the above definition, we may say “vector subspace” or “linear subspace” rather
than just “subspace”.

Example 19.3. Let L be the line in R2 with equation y = x/π. We claim that this is a subspace. Indeed:

• The point

[
0
0

]
lies on L, so condition (a) is satisfied.

• Suppose we have two points v, w ∈ L, so v =

[
a
a/π

]
and w =

[
b
b/π

]
for some numbers a and b. Then

v + w =

[
a+ b

(a+ b)/π

]
, which again lies on L. Thus, condition (b) is satisfied.
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L

v
w

v + w

• Suppose again that v ∈ L, so v =

[
a
a/π

]
for some a. Suppose also that t ∈ R. Then tv =

[
ta
ta/π

]
,

which again lies on L, so condition (c) is satisfied.

Example 19.4. Consider the following subsets of R2:

V1 = Z2 =

{[
x
y

]
∈ R2 | x and y are integers

}
V2 =

{[
x
y

]
∈ R2 | x ≤ 0 ≤ y

}
V3 =

{[
x
y

]
∈ R2 | x2 = y2

}
=

{[
x
y

]
∈ R2 | x = ±y

}
.

V1 V2 V3

We claim that none of these are subspaces. We first consider V1. It is clear that the zero vector has integer
coordinates and so lies in V1, so condition (a) is satisfied. Next, if v and w both have integer coordinates
then so does v + w. In other words, if v, w ∈ V1 then also v + w ∈ V1. This shows that condition (b) is also

satisfied. However, condition (c) is not satisfied. Indeed, if we take v =

[
1
0

]
and t = 0.5 then v ∈ V1 and

t ∈ R but the vector tv =

[
0.5
0

]
does not lie in V1. (This is generally the best way to prove that a set is not

a subspace: provide a completely specific and explicit example where one of the conditions is not satisfied.)

We now consider V2. As 0 ≤ 0 ≤ 0 we see that

[
0
0

]
∈ V2, so condition (a) is satisfied. Now suppose we

have two vectors v, v′ ∈ V2, so v =

[
x
y

]
and v′ =

[
x′

y′

]
with x ≤ 0 ≤ y and x′ ≤ 0 ≤ y′. As x, x′ ≤ 0 it follows

that x+ x′ ≤ 0. As y, y′ ≥ 0 it follows that y + y′ ≥ 0. This means that the sum v + v′ =

[
x+ x′

y + y′

]
is again

in V2, so condition (b) is satisfied. However, condition (c) is again not satisfied. Indeed, if we take v =

[
−1
1

]
and t = −1 then v ∈ V2 and t ∈ R but the vector tv =

[
1
−1

]
does not lie in V2.
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Finally, we consider V3. It is again clear that condition (a) is satisfied. Now suppose we have v =

[
x
y

]
∈ V3

(so x2 = y2) and t ∈ R. It follows that (tx)2 = t2x2 = t2y2 = (ty)2, so the vector tv =

[
tx
ty

]
again lies in

V3. This means that condition (c) is satisfied. However, condition (b) is not satisfied, because the vectors

v =

[
1
1

]
and w =

[
1
−1

]
lie in V3, but v + w does not.

v∈V1

tv 6∈V1

V1

v∈V2

tv 6∈V2

V2

v∈V3

w∈V3

v+w 6∈V3

V3

Example 19.5. For any n there are two extreme examples of subspaces of Rn. Firstly, we have the set {0}
consisting of just the zero vector. As 0 + 0 = 0 and t0 = 0 for all t ∈ R, we see that {0} is closed under
addition and scalar multiplication, so it is a subspace. Similarly, the full set Rn is also closed under addition
and scalar multiplication, so it is a subspace of itself.

Proposition 19.6. Let V be a subspace of Rn. Then any linear combination of elements of V is again in
V .

Proof. Suppose we have elements v1, . . . , vk ∈ V , and suppose that w is a linear combination of the vi, say
w =

∑
i λivi for some λ1, . . . , λk ∈ R. As vi ∈ V and λi ∈ R, condition (c) tells us that λivi ∈ V . Now

λ1v1 and λ2v2 are elements of V , so condition (b) tells us that λ1v1 + λ2v2 ∈ V . Next, as λ1v1 + λ2v2 ∈ V
and λ3v3 ∈ V condition (b) tells us that λ1v1 + λ2v2 + λ3v3 ∈ V . By extending this in the obvious way, we
eventually conclude that the vector w = λ1v1 + · · ·+ λkvk lies in V as claimed.

Condition (a) can also be thought of as saying that the sum of no terms lies in V ; this is a kind of
degenerate linear combination. �

Proposition 19.7. Let V be a subspace of R2. Then V is either {0} or all of R2 or a straight line through
the origin.

Proof. (a) If V = {0} then there is nothing more to say.
(b) Suppose that V contains two vectors v and w such that the list (v, w) is linearly independent. As

this is a linearly independent list of two vectors in R2, Proposition 10.12 tells us that it must be
a basis. Thus, every vector x ∈ R2 is a linear combination of v and w, and therefore lies in V by
Proposition 19.6. Thus, we have V = R2.

(c) Suppose instead that neither (a) nor (b) holds. As (a) does not hold, we can choose a nonzero vector
v ∈ V . Let L be the set of all scalar multiples of v, which is a straight line through the origin.
As V is a subspace and v ∈ V we know that every multiple of v lies in V , or in other words that
L ⊆ V . Now let w be any vector in V . As (b) does not hold, the list (v, w) is linearly dependent, so
Lemma 8.5 tells us that w is a multiple of v and so lies in L. This shows that V ⊆ L, so V = L.

�

Definition 19.8. Let W = (w1, . . . , wr) be a list of vectors in Rn.

(a) span(W) is the set of all vectors v ∈ Rn that can be expressed as a linear combination of the list W.
(b) ann(W) is the set of all vectors u ∈ Rn such that u.w1 = · · · = u.wr = 0.

We will show in Propositions 19.23 and 19.24 that span(W) and ann(W) are both subspaces of Rn. First,
however, we give some examples to illustrate the definitions.
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Remark 19.9. The terminology in (a) is related in an obvious way to the terminology in Definition 9.1:
the list W spans Rn if and only if every vector in Rn is a linear combination of W, or in other words
span(W) = Rn.

If a subspace is given by a system of homogeneous equations, then it can easily be described as an
annihilator, as in the following examples.

Example 19.10. Let V be the set of vectors a =
[
w x y z

]T
in R4 that satisfy w + 2x = 2y + 3z and

w−z = x−y. These equations can be rewritten as w+2x−2y−3z = 0 and w−x+y−z = 0, or equivalently
as

a.
[
1 2 −2 −3

]T
= a.

[
1 −1 1 −1

]T
= 0.

Thus, we have

V = ann(
[
1 2 −2 −3

]T
,
[
1 −1 1 −1

]T
).

Example 19.11. Similarly, put

W =

v =


p
q
r
s
t

 ∈ R5 |
p+ q + r = 0,
q + r + s = 0 and
r + s+ t = 0


If we put

a1 =


1
1
1
0
0

 a2 =


0
1
1
1
0

 a3 =


0
0
1
1
1


then the defining equations p+ q+ r = q+ r+ s = r+ s+ t = 0 can be rewritten as a1.v = a2.v = a3.v = 0.
This means that W = ann(a1, a2, a3).

Remark 19.12. It is important here that the equations are homogeneous. Suppose instead we consider the
set of solutions of a system of inhomogeneous equations, involving some pure constants as well as constants
multiplied by variables. For example, we could consider

V = {
[
x y z

]T ∈ R3 | x+ 2y = 4, 3y + 4z = 5}.

The vector
[
0 0 0

]T
does not satisfy these equations and so is not an element of V . Thus, V is not a

subspace of R3, and cannot be described as an annihilator.

We next discuss another situation in which annihilators appear in slightly disguised form.

Definition 19.13. Let A be an m× n matrix (so for each vector v ∈ Rn we have a vector Av ∈ Rm). We
put

ker(A) = {v ∈ Rn | Av = 0},
and call this the kernel of A.

Proposition 19.14. The kernel of A is the annihilator of the transposed rows of A. In more detail, if

A =


uT1
...

uTm

 .
then ker(A) = ann(u1, . . . , um).

Proof. We observed in Section 3 that

Av =
[
u1.v · · · um.v

]T
.

Thus, v lies in ker(A) iff Av = 0 iff u1.v = · · · = um.v = 0 iff v lies in ann(u1, . . . , um). �
67



Example 19.15. Consider the matrix

A =

 1 2 3
30 20 10
100 100 100

 ,
so if v =

[
x y z

]T
we have

Av =

 x+ 2y + 3z
30x+ 20y + 10z

100x+ 100y + 100z

 .
We thus have

ker(A) = {v | Av = 0} =


xy
z

 |
 x+ 2y + 3z

30x+ 20y + 10z
100x+ 100y + 100z

 =

0
0
0


=

v =

xy
z

 | v.
1

2
3

 = v.

30
20
10

 = v.

100
100
100

 = 0


= ann

1
2
3

 ,
30

20
10

 ,
100

100
100


Spans also commonly appear in slight disguise. The following examples are typical:

Example 19.16. Let V be the set of all vectors of the form

v =


2p+ 5q + 3r
9p− 4q + 2r
3p+ 3q + 3r
8p− 4q − 5r


for some p, q, r ∈ R (so V is a subset of R4). We can rewrite this as

v = p


2
9
3
8

+ q


5
−4
3
−4

+ r


3
2
3
−5

 .
Thus, if we put

a =


2
9
3
8

 b =


5
−4
3
−4

 c =


3
2
3
−5

 ,
then the general form for elements of V is v = pa+ qb+ rc. In other words, the elements of V are precisely
the vectors that can be expressed as a linear combination of a, b and c. This means that V = span(a, b, c).

Example 19.17. Let W be the set of all vectors in R5 of the form

w =


w1

w2

w3

w4

w5

 =


t3 − t2
t1 + t3
t2 − t1
t1 + t2
t3 + t2


for some t1, t2, t3 ∈ R. This general form can be rewritten as

w = t1


0
1
−1
1
0

+ t2


−1
0
1
1
1

+ t3


1
1
0
0
1

 = t1a1 + t2a2 + t3a3,
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where

a1 =


0
1
−1
1
0

 a2 =


−1
0
1
1
1

 a3 =


1
1
0
0
1

 .
Thus, we see that a vector w ∈ R5 lies in W iff it can be expressed as a linear combination of the vectors
a1, a2 and a3. This means that W = span(a1, a2, a3).

Definition 19.18. Let A be an m × n matrix (so for each vector t ∈ Rn we have a vector At ∈ Rm). We
write img(A) for the set of vectors w ∈ Rm that can be expressed in the form w = At for some t ∈ Rn. We
call this the image of the matrix A.

Proposition 19.19. The image of A is just the span of the columns of A. In other words, if

A =

 v1 · · · vn


then img(A) = span(v1, . . . , vn).

Proof. Recall from Section 3 that

At =

 v1 · · · vn


t1...
tn

 = t1v1 + · · ·+ tnvn

for any vector t =
[
t1 · · · tn

]T
. Note here that each ti is a scalar (the i’th entry in the vector t) whereas

vi is a vector (the i’th column in the matrix A). Thus At is the sum of the arbitrary scalars ti multiplied
by the given vectors vi; in other words, it is an arbitrary linear combination of v1, . . . , vn. The claim is clear
from this. �

Example 19.20. Put

A =


2 3 5
9 −4 2
3 3 3
8 −4 −5

 B =


0 −1 0
1 0 1
−1 1 0
1 1 0
0 1 1

 .
Then the space V in Example 19.16 is the image of A, and the space W in Example 19.17 is the image of B.

It turns out that the span of any list of vectors can also be described as the annihilator of some other list
of vectors. Conversely, the annihilator of any list of vectors can also be described as the span of a different
list. In this section we will just give some examples; later we will discuss a general method to perform this
kind of conversion.

Example 19.21. Consider the plane P in R3 with equation x+ y + z = 0. More formally, we have

P =


xy
z

 ∈ R3 | x+ y + z = 0

 .

If we put v =
[
x y z

]T
and t =

[
1 1 1

]T
, then we have v.t = x+ y + z. It follows that

P = {v ∈ R3 | v.t = 0} = ann(t).

On the other hand, if x+ y + z = 0 then z = −x− y soxy
z

 =

 x
y

−x− y

 = x

 1
0
−1

+ y

 0
1
−1

 .
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Thus, if we put u1 =
[
1 0 −1

]T
and u2 =

[
0 1 −1

]T
then

P = {xu1 + y u2 | x, y ∈ R} = { linear combinations of u1 and u2} = span(u1, u2).

Example 19.22. Put

V = {
[
w x y z

]T ∈ R4 | w + 2x+ 3y + 4z = 4w + 3x+ 2y + z = 0}.

If we put a =
[
1 2 3 4

]T
and b =

[
4 3 2 1

]T
then

w + 2x+ 3y + 4z = a.
[
w x y z

]T
4w + 3x+ 2y + z = b.

[
w x y z

]T
so we can describe V as ann(a, b). On the other hand, suppose we have a vector v =

[
w x y z

]T
in V ,

so that

w + 2x+ 3y + 4z = 0 (A)

4w + 3x+ 2y + z = 0 (B)

If we subtract 4 times (A) from (B) and then divide by −15 we get equation (C) below. Similarly, if we
subtract 4 times (B) from (A) and divide by −15 we get (D).

1
3x+ 2

3y + z = 0 (C)

w + 2
3x+ 1

3y = 0 (D)

It follows that

v =


w
x
y
z

 =


− 2

3x−
1
3y

x
y

− 1
3x−

2
3y

 = x


−2/3

1
0
−1/3

+ y


−1/3

0
1
−2/3

 .
Using this we see that V can also be described as span(c, d), where

c =
[
− 2

3 1 0 − 1
3

]T
d =

[
− 1

3 0 1 − 2
3

]T
.

Proposition 19.23. For any list W = (w1, . . . , wr) of vectors in Rn, the set ann(W) is a subspace of Rn.

Proof. (a) The zero vector clearly has 0.wi = 0 for all i, so 0 ∈ ann(W).
(b) Suppose that u, v ∈ ann(W). This means that u.wi = 0 for all i, and that v.wi = 0 for all i. It

follows that (u + v).wi = u.wi + v.wi = 0 + 0 = 0 for all i, so u + v ∈ ann(W). Thus, ann(W) is
closed under addition.

(c) Suppose instead that u ∈ ann(W) and t ∈ R. As before, we have u.wi = 0 for all i. It follows that
(tu).wi = t(u.wi) = 0 for all i, so tu ∈ ann(W). Thus, ann(W) is closed under scalar multiplication.

�

Proposition 19.24. For any list W = (w1, . . . , wr) of vectors in Rn, the set span(W) is a subspace of Rn.

Proof. (a) The zero vector can be written as a linear combination 0 = 0w1 + · · ·+ 0wr, so 0 ∈ span(W).
(b) Suppose that u, v ∈ span(W). This means that for some sequence of coefficients λi ∈ R we have

u =
∑
i λiwi, and for some sequence of coefficients µi we have v =

∑
i µiwi. If we put νi = λi+µi we

then have u+ v =
∑
i νiwi. This expresses u+ v as a linear combination of W, so u+ v ∈ span(W).

Thus, span(W) is closed under addition.
(c) Suppose instead that u ∈ span(W) and t ∈ R. As before, we have u =

∑
i λiwi for some sequence

of coefficients λi. If we put κi = tλi we find that tu =
∑
i κiwi, which expresses tu as a linear

combination of W, so tu ∈ span(W). Thus, span(W) is closed under scalar multiplication.
�
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20. Bases for subspaces

We can now generalise the notion of a basis, as follows.

Definition 20.1. Let V be a subspace of Rn. A basis for V is a linearly independent list V = (v1, . . . , vr)
of vectors in Rn such that span(V) = V .

This definition leads us to think about the possibilities for linearly independent lists in V . The empty list
always counts as being linearly independent, and if V = {0} that will be the only possibility. If V 6= {0}
then we can choose a nonzero vector v1 ∈ V , and the list (v1) will be linearly independent. There might or
might not exist a linearly independent list of length two or more. However, any linearly independent list in
V is in particular a linearly independent list in Rn, so it has length at most n by Remark 8.9.

Definition 20.2. Let V be a subspace of Rn. The dimension of V (written dim(V )) is the maximum
possible length of any linearly independent list in V (so 0 ≤ dim(V ) ≤ n).

Proposition 20.3. Let V be a subspace of Rn, and put d = dim(V ). Then any linearly independent list of
length d in V is automatically a basis. In particular, V has a basis.

Proof. Let V = (v1, . . . , vd) be a linearly independent list of length d in V . Let u be an arbitrary vector in
V . Consider the list V ′ = (v1, . . . , vd, u). This is a list in V of length d+ 1, but d is the maximum possible
length for any linearly independent list in V , so the list V ′ must be dependent. This means that there is a
nontrivial relation

λ1v1 + · · ·+ λdvd + µu = 0.

We claim that µ cannot be zero. Indeed, if µ = 0 then the relation would become λ1v1 + · · · + λdvd = 0,
but V is linearly independent so this would give λ1 = · · · = λd = 0 as well as µ = 0, so the original relation
would be trivial, contrary to our assumption. Thus µ 6= 0, so the relation can be rearranged as

u = −λ1
µ
v1 − · · · −

λd
µ
vd,

which expresses u as a linear combination of V. This shows that an arbitrary vector u ∈ V can be expressed
as a linear combination of V, or in other words V = span(V). As V is also linearly independent, it is a basis
for V . �

Once we have chosen a basis for a subspace V ⊆ Rn we can use it to identify V with Rr for some r. In
more detail:

Proposition 20.4. Let V be a subspace of Rn, and let V = (v1, . . . , vr) be a basis for V . Define a function
φ : Rr → V by

φ(λ) = λ1v1 + · · ·+ λrvr.

(If we need to emphasise the dependence on V, we will write φV rather than just φ.) Then there is an inverse
function ψ : V → Rr with φ(ψ(v)) = v for all v ∈ V , and ψ(φ(λ)) = λ for all λ ∈ Rr. Moreover, both φ and
ψ respect addition and scalar multiplication:

φ(λ+ µ) = φ(λ) + φ(µ) φ(tλ) = tφ(λ)

ψ(v + w) = ψ(v) + ψ(w) ψ(tv) = tψ(v).

Proof. By assumption the list V is linearly independent and span(V) = V . Consider an arbitrary vector
u ∈ V . As u ∈ span(V) we can write u as a linear combination u =

∑
i λivi say, which means that u = φ(λ)

for some λ. We claim that this λ is unique. Indeed, if we also have u = φ(µ) =
∑
i µivi then we can subtract

to get
∑
i(λi − µi)vi = 0. This is a linear relation on the list V, but V is assumed to be independent, so it

must be the trivial relation. This means that all the coefficients λi − µi are zero, so λ = µ as required. It is
now meaningful to define ψ(u) to be the unique vector λ with ψ(λ) = u. We leave it as an exercise to check
that this has all the stated properties. �

Corollary 20.5. Let V be a d-dimensional subspace of Rn.

(a) Any linearly independent list in V has at most d elements.
(b) Any list that spans V has at least d elements.
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(c) Any basis of V has exactly d elements.
(d) Any linearly independent list of length d in V is a basis.
(e) Any list of length d that spans V is a basis.

Proof. Choose a linearly independent list V of length d in V . By Propositions 20.3 and 20.4, we see that V
is a basis and gives rise to mutually inverse functions Rd φ−→ V

ψ−→ Rd. We can use these functions to transfer
results that we have already proved for Rd and get corresponding results for V . Details are as follows.

(a) This is just the definition of dim(V ).
(b) Let W = (w1, . . . , wr) be a list that spans V . We claim that the list (ψ(w1), . . . , ψ(wr)) spans Rd.

Indeed, for any x ∈ Rd we have φ(x) ∈ V , and W spans V so φ(x) =
∑
j µjwj say. We can apply ψ

to this to get

x = ψ(φ(x)) = ψ(
∑
j

µjwj) =
∑
j

µjψ(wj),

which expresses x as a linear combination of the vectors ψ(wj), as required. We know from Re-
mark 9.9 that any list that spans Rd must have length at least d, so r ≥ d as claimed.

(c) This holds by combining (a) and (b).
(d) This is a restatement of Proposition 20.3.
(e) LetW = (w1, . . . , wd) be a list of length d that spans V . As in (b) we see that the list (ψ(w1), . . . , ψ(wd))

spans Rd. By Proposition 10.12, this list is in fact a basis for Rd, so in particular it is linearly inde-
pendent. We claim that the original listW is also linearly independent. To see this, consider a linear
relation

∑
j λjwj = 0. By applying ψ to both sides, we get

∑
i λjψ(wj) = 0. As the vectors ψ(wj)

are independent we see that λj = 0 for all j. This means that the original relation is the trivial one,
as required. As W is linearly independent and spans V , it is a basis for V .

�

Proposition 20.6. Let V be a subspace of Rn. Then there is a unique RREF matrix B such that the
columns of BT form a basis for V . (We call this basis the canonical basis for V .)

Remark 20.7. Except for the trivial case where V = {0}, any subspace V of Rn will have infinitely many
different bases, but only one of them is the canonical basis. For example, take

V = {
[
x y z

]T | x+ y + z = 0}
and

a1 =

 1
1
−2

 a2 =

−1
−2
3

 b1 =

 1
−1
0

 b2 =

 0
2
−2

 c1 =

 1
0
−1

 c2 =

 0
1
−1

 .
These vectors all lie in V , because in each case the sum of the three components is zero. In fact one can
check that the list a1, a2 is a basis for V , but it is not the canonical basis, because the corresponding matrix

A =

[
aT1
aT2

]
=

[
1 1 −2
−1 −2 3

]
is not in RREF. Similarly, b1, b2 is another non-canonical basis for V . However, the list c1, c2 is the canonical
basis for V .

Remark 20.8. As the canonical basis is uniquely defined, it gives an easy way to test whether two subspaces
are the same, and it makes it simpler to define algorithms without any kind of ambiguity. However, one
should not overemphasise the importance of the canonical basis. For many applications it may be more
convenient to use a different basis.

We will first give the easy proof that B exists, then (after some preparation) the more complicated proof
that it is unique.

Proof of existence. Let U = (u1, . . . , ud) be any basis for V , and let A be the matrix with rows uT1 , . . . , u
T
d .

Let B be the row-reduction of A, let vT1 , . . . , v
T
d be the rows of B, and put V = (v1, . . . , vd). Corollary 9.16

says that a row vector can be expressed as a linear combination of the rows of A if and only if it can be
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expressed as a linear combination of the rows of B. This implies that span(V) = span(U) = V . As V is a
list of length d that spans the d-dimensional space V , we see that V is actually a basis for V . �

Definition 20.9. Let x =
[
x1 · · · xn

]T
be a nonzero vector in Rn. We say that x starts in slot k if

x1, . . . , xk−1 are zero, but xk is not. Given a subspace V ⊆ Rn, we say that k is a jump for V if there is a
nonzero vector x ∈ V that starts in slot k. We write J(V ) for the set of all jumps for V .

Example 20.10.

• The vector
[
0 0 1 11 111

]T
starts in slot 3;

• The vector
[
1 2 3 4 5

]T
starts in slot 1;

• The vector
[
0 0 0 0 0.1234

]T
starts in slot 5.

Example 20.11. Consider the subspace

V = {
[
s −s t+ s t− s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t+ s t− s

]T
starts in slot 1. If s = 0 but t 6= 0 then x =[

0 0 t t
]T

and this starts in slot 3. If s = t = 0 then x = 0 and x does not start anywhere. Thus, the
possible starting slots for x are 1 and 3, which means that J(V ) = {1, 3}.

Example 20.12. Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b+ c = d+ e+ f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as w =

[
0 b −b d e −d− e

]T
, where b, d

and e are arbitrary. If b 6= 0 then w starts in slot 2. If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d− e

]T
starts in slot 4. If b = d = 0 but e 6= 0 then w =

[
0 0 0 0 e −e

]T
starts in slot 5. If b = d = e = 0

then w = 0 and w does not start anywhere. Thus, the possible starting slots for w are 2, 4 and 5, so
J(W ) = {2, 4, 5}.

Lemma 20.13. Let B be an RREF matrix, and suppose that the columns of BT form a basis for a subspace
V ⊆ Rn. Then J(V ) is the same as the set of columns of B that contain pivots.

Example proof. Rather than giving a formal proof, we will discuss an example that shows how the proof
works. Consider the RREF matrix

B =


vT1

vT2

vT3

 =

0 1 α 0 β 0 γ
0 0 0 1 δ 0 ε
0 0 0 0 0 1 ζ

 .
Note that no row of B is zero (since the columns of BT form a basis and thus are nonzero); hence, each row
of B has a pivot. Put V = span(v1, v2, v3) ⊆ R7, so the vectors vi (which are the columns of BT ) form a
basis for V . There are pivots in columns 2, 4 and 6, so we need to show that J(V ) = {2, 4, 6}. Any element
x ∈ V has the form

x = λ1v1 + λ2v2 + λ3v3

=
[
0 λ1 λ1α λ2 λ1β + λ2δ λ3 λ1γ + λ2ε+ λ3ζ

]T
for some numbers λ1, λ2, λ3. Note that λk occurs on its own in the k’th pivot column of x, and all entries to
the left of that involve only λ1, . . . , λk−1. Thus, if λ1, . . . , λk−1 are all zero but λk 6= 0, then x starts in the
k’th pivot column. In more detail:

• If λ1 6= 0 then x has the form x =
[
0 λ1 ∗ ∗ ∗ ∗ ∗

]T
and so x starts in slot 2 (the first pivot

column).

• If λ1 = 0 but λ2 6= 0 then x has the form x =
[
0 0 0 λ2 ∗ ∗ ∗

]T
and so x starts in slot 4

(the second pivot column).
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• If λ1 = λ2 = 0 but λ3 6= 0 then x has the form x =
[
0 0 0 0 0 λ3 ∗

]T
and so x starts in slot

6 (the third pivot column).
• If λ1 = λ2 = λ3 = 0 then x = 0 and so x does not start anywhere.

Thus, the possible starting slots for nonzero vectors in V are just the same as the pivot columns. �

We now return to the proof of Proposition 20.6.

Proof of uniqueness. Suppose we have a subspace V ⊆ Rn and two RREF matrices B and C such that the
columns of BT form a basis for V , and the columns of CT also form a basis for V . We must show that
B = C.

Lemma 20.13 shows that the pivot columns for B are the same as the jumps for V , which, in turn, are
the same as the pivot columns for C. Thus, in particular, the number of pivots of B equals the number of
pivots of C.

As the columns of BT form a basis, they must be nonzero. Thus, each of the rows of B is nonzero and
therefore contains a single pivot. Hence,

(number of pivots of B) = (number of rows of B) .

Likewise,

(number of pivots of C) = (number of rows of C) .

The left hand sides of these two equalities are equal (since the number of pivots of B equals the number of
pivots of C). Thus, so are the right hand sides. In other words, the matrices B and C have the same number
of rows. Let d be this number. Thus, both B and C are d × n-matrices. In other words, both BT and CT

are n × d-matrices. Let v1, . . . , vd be the columns of BT and let w1, . . . , wd be the columns of CT . Thus,
vT1 , . . . , v

T
d are the rows of B, and wT1 , . . . , w

T
d are the columns of C.

Recall that each of the d rows of B contains a single pivot. Hence, B has precisely d pivots, say in
columns p1, . . . , pd. We list these in order so that p1 < · · · < pd. Because B is in RREF, we see that the
pi’th component of vj is 1 when i = j, and 0 when i 6= j (since this component is the j’th entry of the pi-th
column of B).

Similarly, the matrix C has precisely d pivots, say in columns q1, . . . , qd with q1 < · · · < qd. Because C is
in RREF, we see that the qi’th component of wj is 1 when i = j, and 0 when i 6= j.

Recall that the pivot columns for B are the same as the pivot columns for C. This means that pi = qi
for all i.

Now consider one of the vectors vi. As vi ∈ V and V = span(w1, . . . , wd), we can write vi as a linear
combination of the vectors wj , say

vi = λ1w1 + · · ·+ λdwd =
∑
j

λjwj . (2)

Let us now compare the pi’th components (or equivalently, the qi’th components) on both sides of this
equality. On the left hand side we have 1 (since the pi’th component of vi is 1), and on the right hand side
the λiwi term of the sum

∑
j λjwj contributes λi, and the other terms contribute nothing (since the qi’th

component of wj is 1 when i = j, and 0 when i 6= j). We conclude that λi = 1. Now, instead, let us compare
the pk’th components on both sides of (2), where k 6= i. On the left hand side we get 0, and on the right
hand side the λkwk term of the sum

∑
j λjwj contributes λk, and the other terms contribute nothing. We

conclude that λk = 0 for k 6= i. The equation (2) now simplifies to vi = wi. This holds for all i, so we have
B = C as claimed. �

We next discuss how to find the canonical basis for a subspace V ⊆ Rn. The method depends on how the
subspace V is described in the first place. If V is given as the span of some list of vectors, then we proceed
as follows.

74



Method 20.14. To find the canonical basis for a subspace V = span(v1, . . . , vr), we form the matrix

A =


vT1
...

vTr


We then row-reduce to get an RREF matrix B, and discard any rows of zeros to get another RREF matrix
C. The columns of CT are then the canonical basis for V .

Proof of correctness. Note that CT is obtained from BT by discarding some columns of zeros, which does
not affect the span. Thus, the span of the columns of CT is the same as the span of the columns of BT ,
and Corollary 9.16 tells us that this is the same as the span of the columns of AT , which is V . Moreover,
as each pivot column of C contains a single 1, it is easy to see that the rows of C are linearly independent
or equivalently the columns of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis. �

Example 20.15. Consider the plane

P =


xy
z

 ∈ R3 | x+ y + z = 0


as in Example 19.21. We showed there that P = span(u1, u2), where u1 =

[
1 0 −1

]T
and u2 =[

0 1 −1
]T

. As the matrix

A =

[
uT1

uT2

]
=

[
1 0 −1
0 1 −1

]
is already in RREF, we see that the list U = (u1, u2) is the canonical basis for P .

Example 20.16. Consider the subspace

V = {
[
w x y z

]T ∈ R4 | w + 2x+ 3y + 4z = 4w + 3x+ 2y + z = 0}
as in Example 19.22. We showed there that the vectors

c =
[
− 2

3 1 0 − 1
3

]T
and d =

[
− 1

3 0 1 − 2
3

]T
give a (non-canonical) basis for V . To find the canonical basis, we perform the following row-reduction:[

cT

dT

]
=

[
− 2

3 1 0 − 1
3

− 1
3 0 1 − 2

3

]
→
[

1 − 3
2 0 1

2
− 1

3 0 1 − 2
3

]
→

[
1 − 3

2 0 1
2

0 − 1
2 1 − 1

2

]
→
[
1 − 3

2 0 1
2

0 1 −2 1

]
→
[
1 0 −3 2
0 1 −2 1

]
We conclude that the vectors u1 =

[
1 0 −3 2

]T
and u2 =

[
0 1 −2 1

]T
form the canonical basis for

V .

We next need a method for finding the canonical basis for subspace when that subspace is originally given
as an annihilator.

Method 20.17. Suppose that

V = ann(u1, . . . , ur) = {x ∈ Rn | x.u1 = · · · = x.ur = 0}.
To find the canonical basis for V :

(a) Write out the equations x.ur = 0, . . . , x.u1 = 0, listing the variables in backwards order (xr down to
x1).

(b) Solve by row-reduction in the usual way (remembering to list the variables in backwards order
throughout).
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(c) Write the general solution as a sum of terms, each of which is an independent variable times a
constant vector.

(d) These constant vectors form the canonical basis for V .

Remark 20.18. If we did not write the variables in reverse order, we would still get a basis for V , but it
would not be the canonical basis. The corresponding matrix would not be row-reduced in the usual sense,
but in a kind of mirror-image sense: the last nonzero entry in each row would be equal to 1 (rather than the
first nonzero entry), and these 1s would move to the left (rather than to the right).

Example 20.19. Put V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

The equations x.u3 = x.u2 = x.u1 = 0 can be written as follows:

x4 + 3x3 + 11x2 + 7x1 = 0

x4 + x3 + x2 + x1 = 0

3x4 + 5x3 + 13x2 + 9x1 = 0.

Note that we have written the variables in decreasing order, as specified in step (a) of the method. We can
row-reduce the matrix of coefficients as follows:1 3 11 7

1 1 1 1
3 5 13 9

→
0 2 10 6

1 1 1 1
0 2 10 6

→
0 1 5 3

1 1 1 1
0 0 0 0

→
1 0 −4 −2

0 1 5 3
0 0 0 0

 .
The columns of this last matrix contain coefficients of x4, x3, x2 and x1 respectively. We conclude that our
original system of equations is equivalent to the equations x4− 4x2− 2x1 = 0 and x3 + 5x2 + 3x1 = 0, which
give x4 = 4x2 + 2x1 and x3 = −5x2 − 3x1. The independent variables are x1 and x2, and we have

x =


x1
x2
x3
x4

 =


x1
x2

−5x2 − 3x1
4x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−5
4

 .
This can be written as x1v1 + x2v2, where v1 =

[
1 0 −3 2

]T
and v2 =

[
0 1 −5 4

]T
. We conclude

that (v1, v2) is the canonical basis for V .

Example 20.20. Let V be the set of all vectors x ∈ R5 that satisfy the equations

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 0

x1 + 2x2 + 3x3 + 3x4 + 3x5 = 0

x1 + x2 + x3 + x4 + x5 = 0.

Equivalently, we can put

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

The three equations defining V are then equivalent to u1.x = 0 and u2.x = 0 and u3.x = 0, so we can
describe V as ann(u1, u2, u3). To find the canonical basis, we rewrite the defining equations as follows:

x5 + x4 + x3 + x2 + x1 = 0

3x5 + 3x4 + 3x3 + 2x2 + x1 = 0

5x5 + 4x4 + 3x3 + 2x2 + x1 = 0.

Here we have reversed the individual equations from left to right, and we have also moved the top equation
to the bottom and the bottom equation to the top. This vertical reversal does not make any real difference,
but later on it will make it easier to explain what we are doing in terms of matrices.
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We now row-reduce the matrix of coefficients:1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 1 1 1 1

0 0 0 −1 −2
0 −1 −2 −3 −4

→
1 1 1 1 1

0 1 2 3 4
0 0 0 1 2



→

1 1 1 0 −1
0 1 2 0 −2
0 0 0 1 2

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2


The columns of this last matrix contain coefficients of x5, x4, x3, x2 and x1 respectively. We conclude that
our original system of equations is equivalent to the following system:

x5 − x3 + x1 = 0

x4 + 2x3 − 2x1 = 0

x2 + 2x1 = 0.

This gives x5 = x3 − x1 and x4 = −2x3 + 2x1 and x2 = −2x1, with x1 and x3 independent, so

x =


x1
x2
x3
x4
x5

 =


x1
−2x1
x3

−2x3 + 2x1
x3 − x1

 = x1


1
−2
0
2
−1

+ x3


0
0
1
−2
1

 = x1v1 + x3v2 say.

It follows that the vectors

v1 =
[
1 −2 0 2 1

]T
and v2 =

[
0 0 1 −2 1

]T
form the canonical basis for V .

It is a slight defect of Method 20.17 that we translate backwards and forwards between equations and
matrices more times than necessary. However, it is not too hard to formulate an equivalent method that
works wholly with matrices.

The first ingredient is a process that is essentially the same as the standard method for writing down the
solution to a system of equations that is already in RREF.

Method 20.21. Let B be an m×n matrix in RREF with no rows of zeros, and let V ⊆ Rn be the annihilator
of the columns of BT . We can find a basis for V as follows:

(a) The matrix B will have m pivots (one in each row). Let columns p1, . . . , pm be the ones with pivots,
and let columns q1, . . . , qn−m be the ones without pivots.

(b) Delete the pivot columns from B to leave an m× (n−m) matrix, which we call C. Let the i’th row
of C be cTi (so ci ∈ Rn−m for 1 ≤ i ≤ m).

(c) Now construct a new matrix D of shape (n −m) × n as follows: the pi’th column is −ci, and the
qj ’th column is the standard basis vector ej .

(d) The columns of DT then form a basis for V .

Rather than proving formally that this method is valid, we will just show how it works out in an example
that has all the features of the general case.

Example 20.22. Consider the case

B =


0 1 a3 0 a5 a6 0 a8 0 a10
0 0 0 1 b5 b6 0 b8 0 b10
0 0 0 0 0 0 1 c8 0 c10
0 0 0 0 0 0 0 0 1 d10


Here m = 4 and n = 10. The pivot columns (shown in blue) are p1 = 2, p2 = 4, p3 = 7 and p4 = 9. The
non-pivot columns (shown in red) are q1 = 1, q2 = 3, q3 = 5, q4 = 6, q5 = 8 and q6 = 10. Deleting the pivot
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columns leaves the following matrix:

C =


cT1

cT2

cT3

cT4

 =


0 a3 a5 a6 a8 a10
0 0 b5 b6 b8 b10
0 0 0 0 c8 c10
0 0 0 0 0 d10

 .

We now form the matrix D. This is divided into red and blue columns in the same pattern as the original
matrix B. In the red columns we have a spread-out copy of the identity matrix. In the blue columns we
have the negatives of the transposes of the rows of C.

D =


1 0 0 0 0 0 0 0 0 0
0 −a3 1 0 0 0 0 0 0 0
0 −a5 0 −b5 1 0 0 0 0 0
0 −a6 0 −b6 0 1 0 0 0 0
0 −a8 0 −b8 0 0 −c8 1 0 0
0 −a10 0 −b10 0 0 −c10 0 −d10 1


The claim is thus that the following vectors (which are the columns of DT ) form a basis for V :

d1 =



1
0
0
0
0
0
0
0
0
0


d2 =



0
−a3

1
0
0
0
0
0
0
0


d3 =



0
−a5

0
−b5

1
0
0
0
0
0


d4 =



0
−a6

0
−b6

0
1
0
0
0
0


d5 =



0
−a8

0
−b8

0
0
−c8

1
0
0


d6 =



0
−a10

0
−b10

0
0
−c10

0
−d10

1



To see why this is true, we study V more directly. By definition, V is the set of all vectors x =
[
x1 · · · x10

]T ∈
R10 whose dot product with each of the columns of BT is zero, which means that

x2 +a3x3 +a5x5 +a6x6 +a8x8 +a10x10 = 0
x4 +b5x5 +b6x6 +b8x8 +b10x10 = 0

x7 +c8x8 +c10x10 = 0
x9 +d10x10 = 0.

The variables x2, x4, x7 and x9 (corresponding to the pivot columns) are dependent, and the remaining
variables x1, x3, x5, x6, x8 and x10 (corresponding to the non-pivot columns) are independent. We can
express the dependent variables in terms of the independent ones:

x2 = −a3x3 −a5x5 −a6x6 −a8x8 −a10x10
x4 = −b5x5 −b6x6 −b8x8 −b10x10

x7 = −c8x8 −c10x10
x9 = −d10x10
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This gives

x =



x1
−a3x3 − a5x5 − a6x6 − a8x8 − a10x10

x3
−b5x5 − b6x6 − b8x8 − b10x10

x5
x6

−c8x8 − c10x10
x8

−d10x10
x10


= x1



1
0
0
0
0
0
0
0
0
0


+x3



0
−a3

1
0
0
0
0
0
0
0


+x5



0
−a5

0
−b5

1
0
0
0
0
0


+x6



0
−a6

0
−b6

0
1
0
0
0
0


+x8



0
−a8

0
−b8

0
0
−c8

1
0
0


+x10



0
−a10

0
−b10

0
0
−c10

0
−d10

1


,

or in other words

x = x1d1 + x3d2 + x5d3 + x6d4 + x8d5 + x10d10.

This proves that an arbitrary element x ∈ V can be written (in a unique way) as a linear combination of the
vectors di, so these vectors give a basis for V as required.

We can now describe a pure matrix algorithm to find the canonical basis of an annihilator.

Method 20.23. Let A be a k×n matrix, and let V ⊆ Rn be the annihilator of the columns of AT . We can
find the canonical basis for V as follows:

(a) Rotate A through 180◦ to get a matrix A∗.
(b) Row-reduce A∗ and discard any rows of zeros to obtain a matrix B∗ in RREF. This will have shape

m× n for some m with m ≤ min(k, n).
(c) The matrix B∗ will have m pivots (one in each row). Let columns p1, . . . , pm be the ones with pivots,

and let columns q1, . . . , qn−m be the ones without pivots.
(d) Delete the pivot columns from B∗ to leave an m × (n −m) matrix, which we call C∗. Let the i’th

row of C∗ be cTi (so ci ∈ Rn−m for 1 ≤ i ≤ m).
(e) Now construct a new matrix D∗ of shape (n −m) × n as follows: the pi’th column is −ci, and the

qj ’th column is the standard basis vector ej .
(f) Rotate D∗ through 180◦ to get a matrix D.
(g) The columns of DT then form the canonical basis for V .

Rather than giving a detailed proof that this is equivalent to Method 20.17, we will just explain some
examples that should make the pattern clear.

Example 20.24. Put

u1 =


9
13
5
3

 u2 =


1
1
1
1

 u3 =


7
11
3
1


and V = ann(u1, u2, u3) as in Example 20.19. The relevant matrix A for Method 20.17 is shown below,
together with the matrix A∗ obtained by rotating A.

A =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the same as the matrix of coefficients appearing in Example 20.19, and as we saw there we
can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

→
1 0 −4 −2

0 1 5 3
0 0 0 0

→ [
1 0 −4 −2
0 1 5 3

]
= B∗.
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The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are q1 = 3 and q2 = 4. We now
delete the pivot columns to get

C∗ =

[
cT1

cT2

]
=

[
−4 −2
5 3

]
.

Next, we construct the matrix D∗:

D∗ =

 −c1 −c2 e1 e2

 =

[
4 −5 1 0
2 −3 0 1

]
.

Finally, we rotate this through 180◦ to get

D =

[
1 0 −3 2
0 1 −5 4

]
.

The canonical basis for V consists of the columns of DT , namely v1 =


1
0
−3
2

 and v2 =


0
1
−5
4

. This is the

same answer as we got in Example 20.19.

Example 20.25. Consider again the vectors

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
and the subspace V = ann(u1, u2, u3) as in Example 20.20. The relevant matrix A for Method 20.23 is shown
below, together with the matrix A∗ obtained by rotating A.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


Note that the rows of A∗ are u3 backwards, followed by u2 backwards, followed by u1 backwards. We could
have used this rule to avoid having to write out A. Note also that A∗ is the same as the matrix of coefficients
appearing in Example 20.20. As we saw there, it row-reduces as follows:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

The matrix B∗ has pivots in columns p1 = 1 and p2 = 2 and p3 = 4; the remaining columns are q1 = 3 and
q2 = 5. After deleting the pivot columns we are left with

C∗ =


cT1

cT2

cT3

 =

−1 −1
2 −2
0 2


Next, we construct the matrix D∗:

D∗ =

 −c1 −c2 e1 −c3 e2

 =

[
1 −2 1 0 0
1 2 0 −2 1

]
.

Finally, we rotate this through 180◦ to get

D =

[
1 −2 0 2 1
0 0 1 −2 1

]
.
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The canonical basis for V consists of the columns of DT , namely v1 =


1
−2
0
2
1

 and v2 =


0
0
1
−2
1

. This is the

same as the answer we obtained in Example 20.20.

If a subspace V is originally described as the annihilator of a list of vectors, then Method 20.17 gives us
an alternative description of V as the span of a different list of vectors. We could also ask about the opposite
problem: if V is originally described as a span, can we give an alternative description of V as an annihilator?
It turns out that essentially the same method does the job (which is another manifestation of duality). The
counterpart of Method 20.17 is as follows:

Method 20.26. Suppose that V = span(v1, . . . , vr).

(a) Write out the equations x.vr = 0, . . . , x.v1 = 0, listing the variables in backwards order (xr down to
x1).

(b) Solve by row-reduction in the usual way.
(c) Write the general solution as a sum of terms, each of which is an independent variable times a

constant vector.
(d) Call these constant vectors u1, . . . , us. Then V = ann(u1, . . . , us).

There is also a purely matrix-based version:

Method 20.27. Let A be a k × n matrix, and let V ⊆ Rn be the span of the columns of AT . Construct a
matrix D by the same steps as in Method 20.23. Then V is also the annihilator of the columns of DT .

The proof of correctness is not especially hard, but we will omit it to save time.

21. Sums and intersections of subspaces

Definition 21.1. Let V and W be subspaces of Rn. We define

V +W = {x ∈ Rn | x can be expressed as v + w for some v ∈ V and w ∈W}
V ∩W = {x ∈ Rn | x ∈ V and also x ∈W}.

Example 21.2. Put

V =

{[
x
y

]
∈ R2 | y = 2x

}
W =

{[
x
y

]
∈ R2 | 2y = x

}

V
W

a
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Then V ∩W is the set of points lying on both lines V and W , but the lines only meet at the origin, so
V ∩W = {0}. On the other hand, it is clear that every point a ∈ R2 can be expressed as the sum of a point

on V with a point on W , so V +W = R2. For an algebraic argument, consider an arbitrary point a =

[
x
y

]
.

If we put

v =
2y − x

3

[
1
2

]
w =

2x− y
3

[
2
1

]
.

we find that v ∈ V and w ∈W and a = v + w, which shows that a ∈ V +W as claimed.

Example 21.3. Put

V = {
[
w x y z

]T ∈ R4 | w = y and x = z}

W = {
[
w x y z

]T ∈ R4 | w + z = x+ y = 0}.

For a vector u =
[
w x y z

]T
to lie in V ∩ W we must have w = y and x = z and w = −z and

x = −y. From this it follows easily that u =
[
w −w w −w

]T
, so V ∩W is just the set of multiples of[

1 −1 1 −1
]T

.
Now put

U = {
[
w x y z

]T | w − x− y + z = 0} = ann(
[
1 −1 −1 1

]T
).

We claim that V + W = U . To see this, consider a vector u =
[
w x y z

]T
. In one direction, suppose

that u ∈ V +W . This means that u can be written as u = v+w for some v ∈ V and w ∈W . By inspecting

the definition of V we see that v =
[
p q p q

]T
for some p, q ∈ R. Similarly, by inspecting the definition

of W we see that w =
[
−r −s s r

]T
for some r, s ∈ R. This gives u =

[
p− r q − s p+ s q + r

]T
,

so

w − x− y + z = (p− r)− (q − s)− (p+ s) + (q + r) = p− r − q + s− p− s+ q + r = 0,

proving that u ∈ U as required.

In the opposite direction, suppose we have u ∈ U , so z = x + y − w. Put v =
[
y x y x

]T
and

w =
[
w − y 0 0 y − w

]T
. We find that v ∈ V and w ∈W and v+w = u, which proves that u ∈ V +W

as required.

If we take the methods of the previous section as given, then it is straightforward to calculate sums and
intersections. The key point is as follows.

Proposition 21.4. For any two lists v1, . . . , vr and w1, . . . , ws of vectors in Rn, we have

(a) span(v1, . . . , vr) + span(w1, . . . , ws) = span(v1, . . . , vr, w1, . . . , ws).
(b) ann(v1, . . . , vr) ∩ ann(w1, . . . , ws) = ann(v1, . . . , vr, w1, . . . , ws).

Proof. (a) An arbitrary element x ∈ span(v1, . . . , vr) + span(w1, . . . , ws) has the form x = v +w, where
v is an arbitrary element of span(v1, . . . , vr) and w is an arbitrary element of span(w1, . . . , ws). This
means that v =

∑r
i=1 λivi and w =

∑s
j=1 µjwj for some coefficients λ1, . . . , λr and µ1, . . . , µs, so

x = λ1v1 + · · ·+ λrvr + µ1w1 + · · ·+ µsws.

This is precisely the same as the general form for an element of span(v1, . . . , vr, w1, . . . , ws).
(b) A vector x ∈ Rn lies in ann(v1, . . . , vr) if and only if x.v1 = · · · = x.vr = 0. Similarly, x lies in

ann(w1, . . . , ws) iff x.w1 = · · · = x.ws = 0. Thus, x lies in ann(v1, . . . , vr) ∩ ann(w1, . . . , ws) iff both
sets of equations are satisfied, or in other words

x.v1 = · · · = x.vr = x.w1 = · · · = x.ws = 0.

This is precisely the condition for x to lie in ann(v1, . . . , vr, w1, . . . , ws).
�

This justifies the following methods:

Method 21.5. To find the sum of two subspaces V,W ⊆ Rn:
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(a) Find a list V such that V = span(V). It may be that V is given to us as the span of some list
(possibly slightly disguised, as in Examples 19.16 and 19.17, or Proposition 19.19), in which case
there is nothing to do. Alternatively, if V is given to us as the annihilator of some list, then we can
use Method 20.17 to find a basis V for V , which in particular will have span(V) = V .

(b) Find a list W such that W = span(W) (in the same way).
(c) Now V + W is the span of the combined list V,W. We can thus use Method 20.14 to find the

canonical basis for V +W if desired.

Method 21.6. To find the intersection of two subspaces V,W ⊆ Rn:

(a) Find a list V ′ such that V = ann(V ′). It may be that V is given to us as the annihilator of some
list (possibly slightly disguised as in Examples 19.10 and 19.11, or Proposition 19.14), in which case
there is nothing to do. Alternatively, if V is given to us as the span of some list, then we can use
Method 20.26 to find a list V ′ such that ann(V ′) = V .

(b) Find a list W ′ such that W = ann(W ′) (in the same way).
(c) Now V ∩W is the annihilator of the combined list V ′,W ′. This list can again be made canonical by

row-reduction if required.

Remark 21.7. The dimensions of V , W , V ∩W and V +W are linked by the following important formula:

dim(V ∩W ) + dim(V +W ) = dim(V ) + dim(W ).

Thus, if we know three of these four dimensions, we can rearrange the formula to find the fourth one.
Alternatively, if you believe that you have found bases for V , W , V ∩W and V +W , you can use the formula
as a check that your bases are correct.

It is not too hard to prove the formula, but it requires some ideas that are a little different from those
that we are emphasising in this course, so we will omit it.

Example 21.8. Put

v1 =


1
0
0
0

 v2 =


1
1
1
0

 v3 =


1
1
1
1

 a =


0
1
−1
0



w1 =


1
1
0
0

 w2 =


0
1
1
0

 w3 =


0
0
1
1

 b =


1
−1
1
−1


and V = span(v1, v2, v3) and W = span(w1, w2, w3). We first claim that V +W = R4. The systematic proof
is by Method 21.5 (which uses V +W = span(v1, v2, v3, w1, w2, w3)):

vT1

vT2

vT3

wT1

wT2

wT3


=


1 0 0 0
1 1 1 0
1 1 1 1
1 1 0 0
0 1 1 0
0 0 1 1

→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 =



eT1

eT2

eT3

eT4

0

0


The conclusion is that (e1, e2, e3, e4) is the canonical basis for V + W , or in other words V + W = R4 as
claimed. For a less systematic but more efficient argument, we can note that

e1 = v1 e2 = w1 − v1 e3 = v2 − w1 e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all elements of V +W , and thus that V +W = R4.
We now want to determine V ∩W . The first step is to describe V and W as annihilators rather than

spans, which we can do using Method 20.26. For the case of V , we write down the equations x.v3 = 0,
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x.v2 = 0 and x.v1 = 0, with the variables xi in descending order:

x4 + x3 + x2 + x1 = 0

x3 + x2 + x1 = 0

x1 = 0.

Clearly we have x1 = x4 = 0 and x3 = −x2, with x2 arbitrary. In other words, we have

x =


x1
x2
x3
x4

 =


0
x2
−x2

0

 = x2


0
1
−1
0

 = x2a.

We conclude that V = ann(a).
For the case of W , we write down the equations x.w3 = 0, x.w2 = 0 and x.w1 = 0, with the variables xi

in descending order:

x4 + x3 = 0

x3 + x2 = 0

x2 + x1 = 0.

This easily gives x4 = −x3 = x2 = −x1, so

x =


x1
x2
x3
x4

 =


x1
−x1
x1
−x1

 = x1


1
−1
1
−1

 = x1b.

We conclude that W = ann(b).
We now have V ∩W = ann(a, b). To find the canonical basis for this, we write the equations x.b = 0 and

x.a = 0, again with the variables in decreasing order:

−x4 + x3 − x2 + x1 = 0

−x3 + x2 = 0

After row-reduction we get x4 = x1 and x3 = x2 with x1 and x2 arbitrary. This gives

x =


x1
x2
x3
x4

 =


x1
x2
x2
x1

 = x1


1
0
0
1

+ x2


0
1
1
0

 .
We conclude that the vectors u1 =

[
1 0 0 1

]T
and u2 =

[
0 1 1 0

]T
form the canonical basis for

V ∩W . As a sanity check we can note that

u1 = v1 − v2 + v3 ∈ V u2 = v2 − v1 ∈ V
u1 = w1 − w2 + w3 ∈W u2 = w2 ∈W.

These equations show directly that u1 and u2 lie in V ∩W .

Remark 21.9. We can use Remark 21.7 to check our work in Example 21.2. The list (v1, v2, v3) is easily
seen to be linearly independent, and by definition it spans V , so we have dim(V ) = 3. Similarly dim(W ) = 3.
We showed that V +W = R4, so dim(V +W ) = 4. We also a produced vectors u1 and u2 that form a basis
for V ∩W , so dim(V ∩W ) = 2. As expected, we have

dim(V +W ) + dim(V ∩W ) = 4 + 2 = 6 = 3 + 3 = dim(V ) + dim(W ).

Example 21.10. Consider the vectors

v1 =


1
1
1
1

 v2 =


1
2
3
4

 w1 =


−3
−1
1
3

 w2 =


0
1
−1
0


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and the subspaces V = span(v1, v2) and W = span(w1, w2). We will find the canonical bases for V , W ,
V +W and V ∩W . The first three are straightforward row-reductions. For V we have[

vT1

vT2

]
=

[
1 1 1 1
1 2 3 4

]
→
[
1 1 1 1
0 1 2 3

]
→
[
1 0 −1 −2
0 1 2 3

]
We conclude that the vectors v′1 =

[
1 0 −1 −2

]T
and v′2 =

[
0 1 2 3

]T
form the canonical basis for

V . Similarly, the row-reduction[
wT1

wT2

]
=

[
−3 −1 1 3
0 1 −1 0

]
→
[
−3 0 0 3
0 1 −1 0

]
→
[
1 0 0 −1
0 1 −1 0

]
shows that the vectors w′1 =

[
1 0 0 −1

]T
and w′2 =

[
0 1 −1 0

]T
form the canonical basis for W .

We next want to find the canonical basis for V + W . As V = span(v1, v2) = span(v′1, v
′
2) and W =

span(w1, w2) = span(w′1, w
′
2) we have

V +W = span(v1, v2, w1, w2) = span(v′1, v
′
2, w

′
1, w

′
2).

We could find the canonical basis by row-reducing either the matrix [v1|v2|w1|w2]T or the matrix [v′1|v′2|w′1|w′2]T .
The latter will involve less work, as it is closer to RREF in the first place:

1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0

→


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3

→


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
We conclude that the following vectors form the canonical basis for V +W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .
In particular, we have dim(V +W ) = 3.

Next, to understand V ∩W , we need to write V and W as annihilators rather than as spans. For W

this is easy: we just put b1 =
[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
, and after considering the form of the

vectors w′1 and w′2 we see that

W =



x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =



x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V , we note that the equations x.v′1 = 0 and x.v′2 = 0 are

−2x4 − x3 + x1 = 0

3x4 + 2x3 + x2 = 0.

We can solve these in the usual way to get

x3 = −2x2 − 3x1

x4 = x2 + 2x1

(with x2 and x1 arbitrary), so

x =


x1
x2
x3
x4

 =


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 .
85



From this we can deduce that V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
and a2 =

[
0 1 −2 1

]T
. We

now have
V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis for this, we solve the equations x.b2 = x.b1 = x.a2 = x.a1 = 0:

x3 + x2 = 0

x4 + x1 = 0

x4 − 2x3 + x2 = 0

2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute into the remaining equations

to get x2 = x1/3. This leads to x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have dim(V ∩W ) = 1.
As a check, we note that

dim(V +W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.

22. Rank and normal form

Let A be an m× n matrix.

• In Definition 19.18 we defined img(A) to be the set of vectors v ∈ Rm that can be written as v = Au
for some u ∈ Rn.

• In Definition 19.13 we defined ker(A) to be the set of vectors u ∈ Rn such that Au = 0.
• In Proposition 19.19 we showed that img(A) is the span of the columns of A. In particular, this

means that img(A) is a subspace of Rm.
• In Proposition 19.14 we showed that ker(A) is the annihilator of the transposed rows of A. In

particular, this means that ker(A) is a subspace of Rn.

Definition 22.1. For any matrix A, the rank of A is the dimension of img(A), and the nullity of A is the
dimension of ker(A). We write rank(A) for the rank and null(A) for the nullity.

As the columns of A are essentially the same as the rows of AT , we see that rank(A) is also the dimension
of the span of the rows of AT . In this section we will repeatedly need to go back and forth between rows
and columns, so we need to introduce some new terminology.

Definition 22.2. A matrix A is in reduced column echelon form (RCEF) if AT is in RREF, or equivalently:

RCEF0: Any column of zeros come at the right hand end of the matrix, after all the nonzero columns.
RCEF1: In any nonzero column, the first nonzero entry is equal to 1. These entries are called copivots.
RCEF2: In any nonzero column, the copivot is further down than the copivots in all previous columns.
RCEF3: If a row contains a copivot, then all other entries in that row are zero.

Definition 22.3. Let A be a matrix. The following operations on A are called elementary column operations:

ECO1: Exchange two columns.
ECO2: Multiply a column by a nonzero constant.
ECO3: Add a multiple of one column to another column.

Proposition 22.4. If a matrix A is in RCEF, then the rank of A is just the number of nonzero columns.

Proof. Let the nonzero columns be u1, . . . , ur, and put U = span(u1, . . . , ur). This is the same as the span of
all the columns, because columns of zeros do not contribute anything to the span. We claim that the vectors
ui are linearly independent. To see this, note that each ui contains a copivot, say in the qi’th row. As the
matrix is in RCEF we have q1 < · · · < qr, and the qi’th row is all zero apart from the copivot in ui. In other
words, for j 6= i the qi’th entry in uj is zero. Now suppose we have a linear relation λ1u1 + · · ·+ λrur = 0.
By looking at the qi’th entry, we see that λi is zero. This holds for all i, so we have the trivial linear relation.
This proves that the list u1, . . . , ur is linearly independent, so it forms a basis for U , so dim(U) = r. We
thus have rank(A) = r as claimed. �
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The following two results can be proved in the same way as their counterparts for row operations; we will
not spell out the details.

Proposition 22.5. Any matrix A can be converted to RCEF by a sequence of elementary column operations.

Proof. Analogous to Method 6.3. �

Proposition 22.6. Suppose that an m × n matrix A can be converted to B by a sequence of elementary
column operations. Then B = AV for some invertible n× n matrix V .

Proof. It is clear that AT can be converted to BT by a series of elementary row operations corresponding
to the column operations that were used to convert A to B. Thus, Corollary 11.10 tells us that BT = UAT

for some invertible n × n matrix U . We thus have B = BTT = (UAT )T = ATTUT = AUT . Here UT is
invertible by Remark 11.7, so we can take V = UT . �

Proposition 22.7. Suppose that A can be converted to B by a sequence of elementary column operations.
Then the span of the columns of A is the same as the span of the columns of B (and so rank(A) = rank(B)).

Proof. Analogous to Corollary 9.16. �

The next result is a little more subtle:

Proposition 22.8. Suppose that A can be converted to B by a sequence of elementary row operations. Then
rank(A) = rank(B).

Proof. Let the columns of A be v1, . . . , vn and put V = span(v1, . . . , vn) so rank(A) = dim(V ). Corol-
lary 11.10 tells us that there is an invertible matrix P such that

B = PA = P

 v1 · · · vn

 =

 Pv1 · · · Pvn

 ,
so the vectors Pvi are the columns of B. Thus, if we put W = span(Pv1, . . . , Pvn), then rank(B) = dim(W ).

We next claim that if x ∈ V then Px ∈ W . Indeed, if x ∈ V then x must be a linear combination of the
vectors vi, say x =

∑n
i=1 λivi for some sequence of coefficients λ1, . . . , λn. This means that Px =

∑n
i=1 λiPvi,

which is a linear combination of Pv1, . . . , Pvn, so Px ∈W .
Similarly, we claim that if y ∈W then P−1y ∈ V . Indeed, if y ∈W then y must be a linear combination

of the vectors Pvi, say y =
∑n
i=1 λiPvi for some sequence of coefficients λ1, . . . , λn. This means that

P−1y =
∑n
i=1 λiP

−1Pvi =
∑n
i=1 λivi, which is a linear combination of v1, . . . , vn, so P−1y ∈ V .

Now choose a basis a1, . . . , ar for V (so rank(A) = dim(V ) = r). We claim that the vectors Pa1, . . . , Par
form a basis for W . Indeed, we just showed that Px ∈ W whenever x ∈ V , so the vectors Pai are at
least elements of W . Consider an arbitrary element y ∈ W . We then have P−1y ∈ V , but the vectors ai
form a basis for V , so we have P−1y =

∑r
i=1 µiai for some sequence of coefficients µi. This means that

y = PP−1y =
∑
i µiPai, which expresses y as a linear combination of the vectors Pai. It follows that the

list Pa1, . . . , Par spans W . We need to check that it is also linearly independent. Suppose we have a linear
relation

∑
i λiPai = 0. After multiplying by P−1, we get a linear relation

∑
i λiai = 0. The list a1, . . . , ar

is assumed to be a basis for V , so this must be the trivial relation, so λ1 = · · · = λr = 0, or in other words
the original relation

∑
i λiPai = 0 was the trivial one. We have now shown that Pa1, . . . , Par is a basis for

W , so dim(W ) = r. In conclusion, we have rank(A) = r = rank(B) as required. �

Definition 22.9. An n×m matrix A is in normal form if it has the form

A =

[
Ir 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
for some r. (The case r = 0 is allowed, in which case A is just the zero matrix.)

Note that if A is in normal form as above, then the rank of A is r, which is the number of 1s in A.
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Example 22.10. There are precisely four different 3× 5 matrices that are in normal form, one of each rank
from 0 to 3 inclusive.

A0 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 A1 =

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0


A2 =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 A3 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


Proposition 22.11. Any n×m matrix A can be converted to a matrix C in normal form by a sequence of
row and column operations. Moreover:

(a) There is an invertible n× n matrix U and an invertible m×m matrix V such that C = UAV .
(b) The rank of A is the same as the rank of C, which is the number of 1s in C.

Proof. We first perform row operations on A to get a matrix B in RREF. By Corollary 11.10 there is an
invertible n × n matrix U such that B = UA. Now use column operations to set every entry to the right
of a pivot equal to zero. (Namely, subtract an appropriate multiple of the pivot column from the column
containing this entry. As each pivot column contains nothing other than the pivot, this column operation
has no side effects other than rendering this particular entry zero. Do this for each entry to the right of
a pivot.) Every nonzero entry in B is either a pivot or to the right of a pivot, so after these operations
we just have the pivots from B and everything else is zero. We now just move all columns of zeros to the
right hand end (again, by a sequence of column operations), which leaves a matrix C in normal form. As C
was obtained from B by a sequence of elementary column operations, we have C = BV for some invertible
m ×m matrix V (by Corollary 22.6). As B = UA, it follows that C = UAV . Propositions 22.7 and 22.8
tell us that neither row nor column operations affect the rank, so rank(A) = rank(C), and because C is in
normal form, rank(C) is just the number of 1s in C. �

Example 22.12. Consider the matrix

A =


1 3 0 1
2 6 0 2
0 0 1 4
1 3 2 9

 .
This can be row-reduced as follows:

1 3 0 1
2 6 0 2
0 0 1 4
1 3 2 9

→


1 3 0 1
0 0 0 0
0 0 1 4
0 0 2 8

→


1 3 0 1
0 0 0 0
0 0 1 4
0 0 0 0

→


1 3 0 1
0 0 1 4
0 0 0 0
0 0 0 0

 .
We now perform column operations:

1 3 0 1
0 0 1 4
0 0 0 0
0 0 0 0

→


1 0 0 0
0 0 1 4
0 0 0 0
0 0 0 0

→


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

→


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


(Subtract column 1 from column 4, and 3 times column 1 from column 2; subtract 4 times column 3 from
column 4; exchange columns 2 and 3.) We are left with a matrix of rank 2 in normal form, so rank(A) = 2.

Example 22.13. Consider the matrix

A =


1 2 3
2 3 4
3 4 5
4 5 6


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This can be reduced to normal form as follows:

A→


1 2 3
0 −1 −2
0 −2 −4
0 −3 −6

→


1 2 3
0 1 2
0 −2 −4
0 −3 −6

→


1 0 −1
0 1 2
0 0 0
0 0 0

→


1 0 0
0 1 2
0 0 0
0 0 0

→


1 0 0
0 1 0
0 0 0
0 0 0


(Subtract multiples of row 1 from the other rows; multiply row 2 by −1; subtract multiples of row 2 from
the other rows; add column 1 to column 3; subtract 2 times column 2 from column 3.) The final matrix has
rank 2, so we must also have rank(A) = 2.

Proposition 22.14. For any matrix A we have rank(A) = rank(AT ).

Proof. As in Proposition 22.11, we can convert A by row and column operations to a matrix C in normal
form, and rank(A) is the number of 1s in C. If we transpose everything then the row operations become
column operations and vice-versa, so AT can be converted to CT by row and column operations, and CT is
also in normal form, so rank(AT ) is the number of 1s in CT . This is clearly the same as the number of 1s in
C, so rank(A) = rank(AT ). �

Remark 22.15. Some authors define the row rank of A to be the dimension of the span of the rows, and
the column rank to be the dimension of the span of the columns. In our terminology, the column rank is
just rank(A) and the row rank is rank(AT ). Thus, the above proposition says that the row rank is the same
as the column rank.

Corollary 22.16. Let A be an n×m matrix. Then rank(A) ≤ min(n,m).

Proof. Let V be the span of the columns of A, and let W be the span of the columns of AT . Now V
is a subspace of Rn, so dim(V ) ≤ n, but W is a subspace of Rm, so dim(W ) ≤ m. On the other hand,
Proposition 22.14 tells us that dim(V ) = dim(W ) = rank(A), so we have rank(A) ≤ n and also rank(A) ≤ m,
so rank(A) ≤ min(n,m). �

23. Orthogonal and symmetric matrices

Definition 23.1. Let A be an n × n matrix. We say that A is an orthogonal matrix it is invertible and
A−1 = AT .

Definition 23.2. Let v1, . . . , vr be a list of r vectors in Rn. We say that this list is orthonormal if vi.vi = 1
for all i, and vi.vj = 0 whenever i and j are different.

Remark 23.3. Suppose we have vectors v1, v2 and v3 in R3, where everything has a familiar geometric
interpretation. The equation vi.vi = 1 then means that v1, v2 and v3 are unit vectors, and the equation
vi.vj = 0 means that v1, v2 and v3 are orthogonal to each other.

Proposition 23.4. Any orthonormal list of length n in Rn is a basis.

Proof. Let v1, . . . , vn be an orthonormal list of length n. Suppose we have a linear relation
∑n
i=1 λivi = 0.

We can take the dot product of both sides with vp to get
∑n
i=1 λi(vi.vp) = 0. Now most of the terms vi.vp

are zero, because of the assumption that vi.vj = 0 whenever i 6= j. After dropping the terms where i 6= p,
we are left with λp(vp.vp) = 0. Here vp.vp = 1 (by the definition of orthonormality) so we just have λp = 0.
This works for all p, so our linear relation is the trivial one. This proves that the list v1, . . . , vn is linearly
independent. A linearly independent list of n vectors in Rn is automatically a basis by Proposition 10.12. �

Definitions 23.1 and 23.2 are really two different ways of looking at the same thing:

Proposition 23.5. Let A be an n × n matrix. Then A is an orthogonal matrix if and only if the columns
of A form an orthonormal list.

Proof. By definition, A is orthogonal if and only if AT is an inverse for A, or in other words ATA = In. Let
the columns of A be v1, . . . , vn. Then

ATA =


vT1
...

vTn


 v1 · · · vn

 =

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn


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In other words, the entry in the (i, j) position in ATA is just the dot product vi.vj . For ATA to be the
identity we need the diagonal entries vi.vi to be 1, and the off-diagonal entries vi.vj (with i 6= j) to be 0.
This means precisely that the list v1, . . . , vn is orthonormal. �

Definition 23.6. Let A be an n × n matrix, with entries aij . We say that A is symmetric if AT = A, or
equivalently aij = aji for all i and j.

Example 23.7. A 4× 4 matrix is symmetric if and only if it has the form
a b c d
b e f g
c f h i
d g i j

 .
Example 23.8. The matrices A and B are symmetric, but C and D are not.

A =

1 2 3
2 2 3
3 3 3

 B =

111 11 1
11 111 11
1 11 111


C =

1 2 3
4 5 6
7 8 9

 D =

1 10 1000
1 10 1000
1 10 1000


Lemma 23.9. Let A be an n× n matrix, and let u and v be vectors in Rn.

(a) Then u.(Av) = (ATu).v.
(b) In particular, if A is symmetric then u.(Av) = (Au).v.

Proof. We only need to prove (a), since it is obvious that (b) is a consequence. Put p = ATu and q = Av,
so the claim is that u.q = p.v. By the definition of matrix multiplication, we have qi =

∑
j Aijvj , so

u.q =
∑
i uiqi =

∑
i,j uiAijvj . Similarly, we have pj =

∑
i(A

T )jiui, but (AT )ji = Aij so pj =
∑
i uiAij . It

follows that p.v =
∑
j pjvj =

∑
i,j uiAijvj , which is the same as u.q, as claimed.

Alternatively, we can recall that for x, y ∈ Rn the dot product x.y can be interpreted as the matrix product
xT y. Thus (Au).v = (Au)T v, but (Au)T = uTAT (by Proposition 3.4) so (Au).v = uT (AT v) = u.(AT v).
Applying this to AT instead of A, we get (ATu).v = u.(ATT v) = u.(Av), since ATT = A. �

Proposition 23.10. Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.
(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u and v are orthogonal.

Proof. (a) Let λ be a complex eigenvalue of A, say λ = α+ iβ with α, β ∈ R. We must show that β = 0,
so that λ is actually a real number. As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
We must allow for the possibility that u does not have real entries; we let v and w be the real and
imaginary parts, so v, w ∈ Rn and u = v + iw. We now have

Av + iAw = A(v + iw) = Au = λu = (α+ iβ)(v + iw) = (αv − βw) + i(βv + αw).

As the entries in A are real, we see that the vectors Av and Aw are real. We can thus compare real
and imaginary parts in the above equation to get

Av = αv − βw
Aw = βv + αw.

From this we get

(Av).w = αv.w − βw.w
v.(Aw) = βv.v + αv.w.

However, A is symmetric, so (Av).w = v.(Aw) by Lemma 23.9 (b). After a little rearrangement this
gives β(v.v + w.w) = 0. Now v.v is the sum of the squares of the entries in v, and similarly for w.
By assumption u 6= 0, so at least one of v and w must be nonzero, so v.v + w.w > 0. We can thus
divide by v.v + w.w to get β = 0 and λ = α ∈ R as claimed.
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(b) Now suppose instead that u and v are eigenvectors of A with distinct eigenvalues, say λ and µ. By
assumption we have Au = λu and Av = µv and λ 6= µ. As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v, so (λ − µ)u.v = 0. As λ 6= µ we can divide
by λ− µ to get u.v = 0, which means that u and v are orthogonal.

�

Remark 23.11. In the case n = 2 we can argue more directly. A 2 × 2 symmetric matrix has the form

A =

[
a b
b d

]
, so χA(t) = t2 − (a+ d)t+ (ad− b2). The eigenvalues are

λ = (a+ d±
√

(a+ d)2 − 4(ad− b2))/2.

The expression under the square root is

(a+ d)2 − 4(ad− b2) = a2 + 2ad+ d2 − 4ad+ 4b2 = a2 − 2ad+ d2 + 4b2 = (a− d)2 + (2b)2.

This is the sum of two squares, so it is nonnegative, so the square root is real, so the two eigenvalues are
both real.

The following proposition is known as the spectral theorem:

Proposition 23.12. Let A be an n × n symmetric matrix. Then there is an orthonormal basis for Rn
consisting of eigenvectors for A.

Partial proof. We will show that the Proposition holds whenever A has n distinct eigenvalues. In fact it is
true even without that assumption, but the proof is harder.

Let the eigenvalues of A be λ1, . . . , λn. For each i we choose an eigenvector ui of eigenvalue λi. As ui is
an eigenvector we have ui 6= 0 and so ui.ui > 0, so we can define vi = ui/

√
ui.ui. This is just a real number

times ui, so it is again an eigenvector of eigenvalue λi. It satisfies

vi.vi =
ui.ui√

ui.ui
√
ui.ui

= 1

(so it is a unit vector). For i 6= j we have vi.vj = 0 by Proposition 23.10(b). This shows that the
sequence v1, . . . , vn is orthonormal, and it is automatically a basis by Proposition 23.4 (or alternatively, by
Proposition 13.22). �

Remark 23.13. Let A be an n×n symmetric matrix again. The characteristic polynomial χA(t) has degree
n, so by well-known properties of polynomials it can be factored as χA(t) =

∏n
i=1(λi − t) for some complex

numbers λ1, . . . , λn. By Proposition 23.10(a) these are in fact all real. Some of them might be the same, but
that would be a concidence which could only happen if the matrix A was very simple or had some kind of
hidden symmetry. Thus, our proof of Proposition 23.12 covers almost all cases (but some of the cases that
are not covered are the most interesting ones).

Example 23.14. Consider the symmetric matrix

A =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


(which appeared on one of the problem sheets) and the vectors

u1 =


1
−1
0
0
0

 u2 =


1
0
−1
0
0

 u3 =


1
0
0
−1
0

 u4 =


1
0
0
0
−1

 u5 =


1
1
1
1
1

 .
These satisfy Au1 = Au2 = Au3 = Au4 = 0 and Au5 = 5u5, so they are eigenvectors of eigenvalues
λ1 = λ2 = λ3 = λ4 = 0 and λ5 = 5. Because λ5 is different from λ1, . . . , λ4, Proposition 23.10(b) tells us
that u5 must be orthogonal to u1, . . . , u4, and indeed it is easy to see directly that u1.u5 = · · · = u4.u5 = 0.
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However, the eigenvectors u1, . . . , u4 all share the same eigenvalue so there is no reason for them to be
orthogonal and in fact they are not: we have

u1.u2 = u1.u3 = u1.u4 = u2.u3 = u2.u4 = u3.u4 = 1.

However, it is possible to choose a different basis of eigenvectors where all the eigenvectors are orthogonal
to each other. One such choice is as follows:

v1 =


1
−1
0
0
0

 v2 =


1
1
−2
0
0

 v3 =


1
1
1
−3
0

 v4 =


1
1
1
1
−4

 v5 =


1
1
1
1
1


It is easy to check directly that

Av1 = Av2 = Av3 = Av4 = 0 Av5 = 5v5

v1.v2 = v1.v3 = v1.v4 = v1.v5 = v2.v3 = v2.v4 = v2.v5 = v3.v4 = v3.v5 = v4.v5 = 0,

so the vi are eigenvectors and are orthogonal to each other. However, they are not orthonormal, because

v1.v1 = 2 v2.v2 = 6 v3.v3 = 12 v4.v4 = 20 v5.v5 = 5.

This is easily fixed: if we put

w1 =
v1√

2
w2 =

v2√
6

w3 =
v3√
12

w4 =
v4√
20

w5 =
v5√

5

then w1, . . . , w5 is an orthonormal basis for R5 consisting of eigenvectors for A.

Corollary 23.15. Let A be an n×n symmetric matrix. Then there is an orthogonal matrix U and a diagonal
matrix D such that A = UDUT = UDU−1.

Proof. Choose an orthonormal basis of eigenvectors u1, . . . , un, and let λi be the eigenvalue of ui. Put
U = [u1| · · · |un] and D = diag(λ1, . . . , λn). Proposition 14.4 tells us that U−1AU = D and so A = UDU−1.
Proposition 23.5 tells us that U is an orthogonal matrix, so U−1 = UT . �

Example 23.16. Let A be the 5× 5 matrix in which every entry is 1, as in Example 23.14. Following the
prescription in the above proof, we put

U =


1/
√

2 1/
√

6 1/
√

12 1/
√

20 1/
√

5

−1/
√

2 1/
√

6 1/
√

12 1/
√

20 1/
√

5

0 −2/
√

6 1/
√

12 1/
√

20 1/
√

5

0 0 −3/
√

12 1/
√

20 1/
√

5

0 0 0 −4/
√

20 1/
√

5

 D =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 5


The general theory tells us that A = UDUT . We can check this directly:

UD =


∗ ∗ ∗ ∗ 1/

√
5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 5

 =


0 0 0 0

√
5

0 0 0 0
√

5

0 0 0 0
√

5

0 0 0 0
√

5

0 0 0 0
√

5



UDUT =


0 0 0 0

√
5

0 0 0 0
√

5

0 0 0 0
√

5

0 0 0 0
√

5

0 0 0 0
√

5



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

1/
√

5 1/
√

5 1/
√

5 1/
√

5 1/
√

5

 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 = A.

(To save space we have written stars for values that are irrelevant because they get multiplied by zero.)
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Example 23.17. Write ρ =
√

3 for brevity (so ρ2 = 3), and consider the symmetric matrix

A =

0 1 ρ
1 0 −ρ
ρ −ρ 0

 .
The characteristic polynomial is

χA(t) = det

−t 1 ρ
1 −t −ρ
ρ −ρ −t


= −tdet

[
−t −ρ
−ρ −t

]
− det

[
1 −ρ
ρ −t

]
+ ρdet

[
1 −t
ρ −ρ

]
= −t(t2 − ρ2)− (−t+ ρ2) + ρ(−ρ+ tρ) = −t3 + 3t+ t− 3− 3 + 3t

= −t3 + 7t− 6 = −(t− 1)(t− 2)(t+ 3).

It follows that the eigenvalues are λ1 = 1, λ2 = 2 and λ3 = −3. Eigenvectors can be found by row-reduction:

A− I =

−1 1 ρ
1 −1 −ρ
ρ −ρ −1

→
1 −1 −ρ

0 0 2
0 0 0

→
1 −1 0

0 0 1
0 0 0


A− 2I =

−2 1 ρ
1 −2 −ρ
ρ −ρ −2

→
1 −2 −ρ

0 −3 −ρ
0 ρ 1

→
1 0 −ρ/3

0 1 ρ/3
0 0 0


A+ 3I =

3 1 ρ
1 3 −ρ
ρ −ρ 3

→
1 3 −ρ

0 −8 4ρ
0 −4ρ 6

→
1 0 ρ/2

0 1 −ρ/2
0 0 0


From this we can read off the following eigenvectors:

u1 =

1
1
0

 u2 =

 ρ/3
−ρ/3

1

 u3 =

−ρ/2ρ/2
1

 .
Because the matrix A is symmetric and the eigenvalues are distinct, it is automatic that the eigenvectors ui
are orthogonal to each other. However, they are not normalised: instead we have

u1.u1 = 12 + 12 = 2

u2.u2 = (ρ/3)2 + (−ρ/3)2 + 12 = 1/3 + 1/3 + 1 = 5/3

u3.u3 = (−ρ/2)2 + (ρ/2)2 + 12 = 3/4 + 3/4 + 1 = 5/2.

The vectors vi = ui/
√
ui.ui form an orthonormal basis of eigenvectors. Explicitly, this works out as follows:

v1 =

1/
√

2

1/
√

2
0

 v2 =

 1/
√

5

−1/
√

5√
3/5

 v3 =

−
√

3/10√
3/10√
2/5

 .
It follows that if we put

U =

1/
√

2 1/
√

5 −
√

3/10

1/
√

2 −1/
√

5
√

3/10

0
√

3/5
√

2/5

 D =

1 0 0
0 2 0
0 0 −3


then U is an orthogonal matrix and A = UDUT .

Corollary 23.18. Let A be an n × n symmetric matrix, and suppose that all the eigenvalues of A are
nonnegative. Then there is a symmetric matrix B such that A = B2.
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Proof. Let U and D be as in the previous corollary. In particular, D = diag(λ1, . . . , λn), where the λi are
the eigenvalues and so λi ≥ 0. We can thus put E = diag(

√
λ1, . . . ,

√
λn) and B = UEUT . It is clear that

ET = E, and it follows that

BT = (UEUT )T = UTTETUT = UEUT = B.

Moreover, as UT = U−1 we have UTU = In and thus EUTUE = EInE = E2 = D (since the square of a
diagonal matrix is obtained by squaring its diagonal entries); hence

B2 = UEUTUEUT = UDUT = A.

�

Definition 23.19. (a) A linear form on Rn is a function of the form L(x) =
∑n
i=1 aixi for some

constants a1, . . . , an.
(b) A quadratic form on Rn is a function of the form Q(x) =

∑n
i=1

∑n
j=1 bijxixj for some constants bij .

Example 23.20. (a) We can define a linear form on R3 by L(x) = 7x1 − 8x2 + 9x3.
(b) We can define a quadratic form on R4 by Q(x) = 10x1x2 + 12x3x4 − 14x1x4 − 16x2x3.
(c) We can define a quadratic form on R3 by Q(x) = x21 − x22.

Remark 23.21. Given a linear form L(x) =
∑
i aixi, we can form the vector a =

[
a1 · · · an

]T
, and

clearly L(x) = a.x = aTx.

Remark 23.22. Now suppose instead that we have a quadratic form Q(x) =
∑
i,j bijxixj . We can then

form the matrix B with entries bij , and we find that Q(x) = xTBx. For example, if n = 2 and Q(x) =

x21 + 4x1x2 + 7x22 then B =

[
1 4
0 7

]
and

xTBx =
[
x1 x2

] [1 4
0 7

] [
x1
x2

]
=
[
x1 x2

] [x1 + 4x2
7x2

]
= x21 + 4x1x2 + 7x22 = Q(x).

However, there is a slight ambiguity in this construction. As x1x2 = x2x1, we could equally well describe

Q(x) as Q(x) = x21 + x1x2 + 3x2x1 + 7x22. This would give a different matrix B, namely B =

[
1 1
3 7

]
, but

it would still be true that Q(x) = xTBx. A third possibility would be to describe Q(x) as x21 + 2x1x2 +

2x2x1 + 7x22, which gives B =

[
1 2
2 7

]
, and yet again Q(x) = xTBx. In this last case we have “shared the

coefficient equally” between x1x2 and x2x1, so the matrix B is symmetric. It is clear that we can do this for
any quadratic form, and that this eliminates any ambiguity.

For example, we considered above the quadratic form

Q(x) = 10x1x2 + 12x3x4 − 14x1x4 − 16x2x3.

This can be rewritten symmetrically as

Q(x) = 5x1x2 + 5x2x1 + 6x3x4 + 6x4x3 − 7x1x4 − 7x4x1 − 8x2x3 − 8x3x2,

which corresponds to the symmetric matrix

B =


0 5 0 −7
5 0 −8 0
0 −8 0 6
−7 0 6 0


Proposition 23.23. Let Q(x) be a quadratic form on Rn. Then there are integers r, s ≥ 0 and nonzero
vectors v1, . . . , vr, w1, . . . , ws such that all the v’s and w’s are orthogonal to each other, and

Q(x) = (x.v1)2 + · · ·+ (x.vr)
2 − (x.w1)2 − · · · − (x.ws)

2.

In other words, if we define linear forms Li and Mj by Li(x) = x.vi and Mj(x) = x.wj then

Q = L2
1 + · · ·+ L2

r −M2
1 − · · · −M2

s .
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Proof. As explained in Remark 23.22, there is a unique symmetric matrix B such that Q(x) = xTBx. By
Proposition 23.12, we can find an orthonormal basis u1, . . . , un for Rn such that each ui is an eigenvector
for B, with eigenvalue λi say. Let r be the number of indices i for which λi > 0, and let s be the number of
indices i for which λi < 0. We can assume that the eigenvalues and eigenvectors have been ordered such that
λ1, . . . , λr > 0 and λr+1, . . . , λr+s < 0 and any eigenvalues after λr+s are zero. Now put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). We have seen that B = UDUT , so

Q(x) = xTBx = xTUDUTx = (UTx)T (DUTx) = (UTx).(DUTx).

Now

UTx =


uT1
...

uTn

x =

u1.x...
un.x



DUTx = diag(λ1, . . . , λn)

u1.x...
un.x

 =

λ1u1.x...
λnun.x


Q(x) = (UTx).(DUTx) =

u1.x...
un.x

 .
λ1u1.x...
λnun.x

 = λ1(u1.x)2 + · · ·+ λn(un.x)2.

We now group these terms according to whether λi is positive, negative or zero. For 1 ≤ i ≤ r we have
λi > 0 and we put vi =

√
λiui so λi(ui.x)2 = (vi.x)2. For r + 1 ≤ i ≤ r + s we have λi < 0 and we put

wi−r =
√
|λi|ui so λi(ui.x)2 = −(wi−r.x)2. For i > r + s we have λi = 0 and λi(ui.x)2 = 0. We thus have

Q(x) = (x.v1)2 + · · ·+ (x.vr)
2 − (x.w1)2 − · · · − (x.ws)

2

as required. �

Example 23.24. Consider the quadratic form Q(x) = x1x2 − x3x4 on R4. It is elementary that for all
a, b ∈ R we have

ab =

(
a+ b

2

)2

−
(
a− b

2

)2

.

Using this, we can rewrite Q(x) as

Q(x) =

(
x1 + x2

2

)2

−
(
x1 − x2

2

)2

−
(
x3 + x4

2

)2

+

(
x3 − x4

2

)2

.

Now put

v1 =


1/2
1/2
0
0

 v2 =


0
0

1/2
−1/2

 w1 =


1/2
−1/2

0
0

 w2 =


0
0

1/2
1/2

 .
It is straightforward to check that these are all orthogonal to each other, and we have Q(x) = (x.v1)2 +
(x.v2)2 − (x.w1)2 − (x.w2)2.

Example 23.25. Consider the quadratic form Q(x) = 4x1x2 + 6x2x3 + 4x3x4 on R4. This can be rewritten
symmetrically as

Q(x) = 2x1x2 + 2x2x1 + 3x2x3 + 3x3x2 + 2x3x4 + 2x4x3,

so the corresponding matrix is

B =


0 2 0 0
2 0 3 0
0 3 0 2
0 0 2 0

 .
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We can find the characteristic polynomial as follows:

χB(t) = det


−t 2 0 0
2 −t 3 0
0 3 −t 2
0 0 2 −t

 = −tdet

−t 3 0
3 −t 2
0 2 −t

− 2 det

2 3 0
0 −t 2
0 2 −t



det

−t 3 0
3 −t 2
0 2 −t

 = −t(t2 − 4)− 3(−3t) = 13t− t3

det

2 3 0
0 −t 2
0 t −2

 = 2(t2 − 4)− 3(0− 0) = 2t2 − 8

χB(t) = −t(13t− t3)− 2(2t2 − 8) = t4 − 17t2 + 16

= (t2 − 1)(t2 − 16) = (t− 1)(t+ 1)(t− 4)(t+ 4).

This shows that the eigenvalues are λ1 = 1 and λ2 = 4 and λ3 = −1 and λ4 = −4. By row-reducing the
matrices B − λiI, we find the corresponding eigenvectors as follows:

t1 =


2
1
−1
−2

 t2 =


1
2
2
1

 t3 =


2
−1
−1
2

 t4 =


1
−2
2
−1


In each case we see that ti.ti = 10 so the corresponding orthonormal basis consists of the vectors ui = ti/

√
10.

Following the prescription in Proposition 23.23, we now put

v1 =
√
λ1u1 = t1/

√
10 =

√
1/10

[
2 1 −1 −2

]T
v2 =

√
λ2u2 =

√
4t2/
√

10 =
√

2/5
[
1 2 2 1

]T
w1 =

√
|λ3|u3 = t3/

√
10 =

√
1/10

[
2 −1 −1 2

]T
w2 =

√
|λ4|u4 =

√
4t4/
√

10 =
√

2/5
[
1 −2 2 −1

]T
We conclude that

Q(x) = (x.v1)2 + (x.v2)2 − (x.w1)2 − (x.w2)2.

Definition 23.26. Let Q(x) be a quadratic form on Rn. Let r and s be as in Proposition 23.23. It can be
shown that these r and s are uniquely determined (i.e., independent on the choice of v1, . . . , vr, w1, . . . , ws).
The rank of Q is defined to be r + s, and the signature of Q is defined to be r − s.

Appendix A. List of all methods

This list contains all the methods of calculation that are explicitly laid out as ’Methods’ in the main text.
Some other methods are implicit in the examples.

• Method 5.4: Solve a system of linear equations that is already in RREF.
• Method 6.3: Reduce a matrix to RREF by row operations.
• Method 6.9: Solve a general system of linear equations.
• Method 13.14: Find the eigenvalues and eigenvectors of a square matrix.
• Method 7.6: Express a vector v as a linear combination of a given list of vectors v1, . . . , vk (or show

that this is impossible).
• Method 8.8: Check whether a given list of vectors is linearly dependent or linearly independent.
• Method 9.7: Check whether a given list of vectors in Rn spans all of Rn.
• Method 10.5: Check whether a given list of vectors in Rn forms a basis of Rn.
• Method 10.8: Express a vector in terms of a given basis for Rn.
• Method 20.14: Find the canonical basis for span(v1, . . . , vr).
• Method 20.17: Find the canonical basis for ann(u1, . . . , us)
• Method 20.23: version of Method 20.17 formulated purely in terms of matrices.
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• Method 20.26: Given vectors v1, . . . , vr, find vectors u1, . . . , us such that span(v1, . . . , vr) = ann(u1, . . . , us).
• Method 20.27: version of Method 20.26 formulated purely in terms of matrices.
• Method 21.5: Given subspaces V,W ⊆ Rn, find the canonical basis for V +W .
• Method 21.6: Given subspaces V,W ⊆ Rn, find the canonical basis for V ∩W .
• Method 11.11: Find the inverse of a square matrix (if it exists).
• Method 12.9: Find the determinant of a square matrix by row reduction.

Appendix B. Determinants

Note: the material in this appendix is not examinable.

Definition B.1. A permutation of the set N = {1, . . . , n} is a function σ : N → N that has an inverse.
Equivalently, a function σ : N → N is a permutation if for every j ∈ N there is a unique i ∈ N such that
σ(i) = j.

Example B.2. In the case n = 6, we have a permutation σ given by

σ(1) = 1 σ(2) = 3 σ(3) = 5 σ(4) = 2 σ(5) = 4 σ(6) = 6

More compactly, we can describe σ by just listing the values:

σ = 〈1, 3, 5, 2, 4, 6〉.
This can be displayed as a picture:

1 2 3 4 5 6

1 2 3 4 5 6

Example B.3. In the case n = 6, we can define a function θ : N → N by

θ(1) = 2 θ(2) = 2 θ(3) = 2 θ(4) = 5 θ(5) = 5 θ(6) = 5

More compactly, we can describe θ by just listing the values:

θ = 〈2, 2, 2, 5, 5, 5〉.
It can be displayed as a picture:

1 2 3 4 5 6

1 2 3 4 5 6

The function θ is not a permutation, because it has no inverse. For a permutation there would have to be
a unique number i with θ(i) = 5. In fact there are three different possibilities for i, namely i = 4, i = 5 or
i = 6. There would also have to be a unique number j with θ(j) = 6. In fact, there are no possibilities for j.

Definition B.4. Let σ : N → N be a permutation. A reversal3 for σ is a pair (i, j) of numbers in N such
that i < j but σ(i) > σ(j). We put

L(σ) = the set of reversals for σ

l(σ) = |L(σ)| = the number of reversals for σ

sgn(σ) = (−1)l(σ).

3Also known as an inversion.
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We call sgn(σ) the signature of σ. We say that σ is an even permutation if the number l(σ) is even, or
equivalently sgn(σ) = +1. We say that σ is an odd permutation if the number l(σ) is odd, or equivalently
sgn(σ) = −1.

Example B.5. Consider the permutation given by

σ(1) = 1 σ(2) = 3 σ(3) = 5 σ(4) = 2 σ(5) = 4 σ(6) = 6

as in Example B.2.

1 2 3 4 5 6

1 2 3 4 5 6

We have 2 < 4 but σ(2) = 5 > σ(4) = 2, so the pair (2, 4) is a reversal for σ. In terms of the picture, this
corresponds to the fact that the line starting at 2 crosses over the line starting at 4. Similarly:

• The line starting at 3 crosses the line starting at 4, showing that the pair (3, 4) is a reversal. More
explicitly, we have 3 < 4 and σ(3) = 5 > σ(4) = 2.

• The line starting at 3 crosses the line starting at 5, showing that the pair (3, 5) is a reversal. More
explicitly, we have 3 < 5 and σ(3) = 5 > σ(5) = 4.

This is a complete list of all the reversals, so L(σ) = {(2, 4), (3, 4), (3, 5)}, so l(σ) = 3 and sgn(σ) = (−1)3 =
−1, showing that σ is an odd permutation.

Example B.6. Suppose we have 1 ≤ p < q ≤ n, and we let τ : N → N be the permutation given by τ(p) = q
and τ(q) = p and τ(i) = i for all i 6= p, q. The case where n = 7 and p = 2 and q = 5 can be displayed as
follows:

1 2 3 4 5 6 7

1 2 3 4 5 6 7

This permutation τ is called a transposition. It has three types of reversals:

(a) For each i with p < i < q, the pair (p, i) is a reversal. (These correspond to the places where the
sloping red line crosses the vertical green lines.)

(b) For each i with p < i < q, the pair (i, q) is a reversal. (These correspond to the places where the
sloping blue line crosses the vertical green lines.)

(c) The pair (p, q) is a reversal, corresponding to the place where the red and blue lines cross.

Clearly the number of reversals of type (a) is the same as the number of reversals of type (b), so with
the single reversal of type (c) we get an odd number of reversals altogether. This shows that τ is an odd
permutation, or in other words sgn(τ) = −1.

Definition B.7. Let A be an n× n matrix, and let aij denote the entry in the i’th row of the j’th column.
We define

det(A) =
∑

permutations σ

sgn(σ)

n∏
i=1

ai,σ(i).

We first check that this is the same as the traditional definition for 2× 2 and 3× 3 matrices.

Example B.8. Consider a 2 × 2 matrix A =

[
a11 a12
a21 a22

]
. In this case N = {1, 2}, so there are only two

possible permutations: the identity permutation ι given by ι(1) = 1 and ι(2) = 2, and the transposition τ
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given by τ(1) = 2 and τ(2) = 1. The identity has no reversals, so l(ι) = 0 and sgn(ι) = 1. The pair (1, 2) is
a reversal for τ , and it is the only one, so l(τ) = 1 and sgn(τ) = −1. Definition B.7 therefore gives

det(A) = sgn(ι)a1,ι(1)a2,ι(2) + sgn(τ)a1,τ(1)a2,τ(2)

= a11a22 − a12a21,

which is the same as the traditional definition.

Example B.9. Consider a 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


The determinant is a sum over all the possible permutations of the set N = {1, 2, 3}. These can be tabulated
as follows:

name permutation picture number of reversals signature term

σ1 〈1, 2, 3〉 0 +1 +a11a22a33

σ2 〈1, 3, 2〉 1 −1 −a11a23a32

σ3 〈2, 1, 3〉 1 −1 −a12a21a33

σ4 〈2, 3, 1〉 2 +1 +a12a23a31

σ5 〈3, 1, 2〉 2 +1 +a13a21a32

σ6 〈3, 2, 1〉 3 −1 −a13a22a31

By adding up the terms in the last column, we get

det(A) = a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

This is easily seen to be the same as the traditional formula:

det(A) = a11 det

[
a22 a23
a32 a33

]
− a12 det

[
a21 a23
a31 a33

]
+ a13 det

[
a21 a22
a31 a32

]
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

We can also calculate the determinant of a diagonal matrix using the Leibniz identity (1).
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Proposition B.10. Let A be a diagonal matrix, so the entries aij are zero for i 6= j. Then the determinant
is just the product of the entries on the diagonal:

det(A) = a11a22 · · · ann =

n∏
i=1

aii.

In particular, for the identity matrix In we have det(In) = 1.

Proof. The formula (1) for det(A) has a term sgn(σ)
∏n
i=1 ai,σ(i) for each permutation σ. If σ is not the

identity permutation then for some i we will have i 6= σ(i), so the factor ai,σ(i) will be zero, so the whole
product will be zero. Thus, we only have a (potentially) nonzero term when σ is the identity, in which case
sgn(σ) = 1 and the term is just

∏n
i=1 aii. In the case of the identity matrix the diagonal elements aii are all

equal to 1, so we just get det(In) = 1. �

In fact, this can be strengthened as follows:

Proposition B.11. Let A be a lower-triangular matrix, so the entries aij are zero for i < j. Then the
determinant is just the product of the entries on the diagonal:

det(A) = a11a22 · · · ann =
n∏
i=1

aii.

The same also holds if A is upper-triangular.

Proof. We will prove the lower-triangular case, and leave the upper-triangular case to the reader.
The formula for det(A) has a term sgn(σ)

∏n
i=1 ai,σ(i) for each permutation σ. This can only be nonzero

if all the factors ai,σ(i) are on or below the diagonal, which means that σ(i) ≤ i for all i. In particular we
must have σ(1) ≤ 1, but σ(1) is certainly in the set N = {1, . . . , n}, so we must have σ(1) = 1. Next, we
must have σ(2) ≤ 2 so σ(2) ∈ {1, 2}. However, we already have σ(1) = 1 and σ is a permutation so no value
can be repeated and we must have σ(2) = 2. Similarly, σ(3) must be less than or equal to 3 and different
from the values 1 and 2 that have been used already, so σ(3) = 3. Continuing in this way we get σ(i) = i
for all i, so σ is the identity permutation.

We conclude that the only potentially nonzero term in the determinant is the one corresponding to the
identity permutation, which is just the product of the diagonal entries. �

We now consider the elementary matrices introduced in Definition 11.1.

Proposition B.12. The determinants of elementary matrices are det(Dp(λ)) = λ and det(Epq(µ)) = 1 and
det(Fpq) = −1.

Proof. The matrix Dp(λ) is diagonal, with one of the diagonal entries being λ, and all the others being
1. Proposition B.10 therefore gives det(Dp(λ)) = λ. Next, the matrix Epq(µ) is either upper-triangular
(if p < q) or lower-triangular (if p > q) and all the diagonal entries are equal to 1, so det(Epq(µ)) = 1 by
Proposition B.11. Finally, consider the matrix Fpq, where 1 ≤ p < q ≤ n. Let τ be the transposition that
exchanges p and q as in Example B.6. From the definitions we see that (Fpq)ij is 0 when j 6= τ(i) and 1
when j = τ(i). It follows that the only nonzero term in det(Fpq) is the one corresponding to τ , and that
term is equal to sgn(τ) = −1. �

Now suppose we have permutations σ : N → N and τ : N → N . We then have a composite function
σ ◦ τ : N → N (given by (σ ◦ τ)(i) = σ(τ(i))), which is easily seen to be another permutation. The following
fact is crucial for understanding the properties of the determinant:

Proposition B.13. For σ and τ as above we have sgn(σ ◦ τ) = sgn(σ) sgn(τ).

Example B.14. Take n = 3 and consider the permutations α, β : N → N given by

α(1) = 2 α(2) = 1 α(3) = 3

β(1) = 1 β(2) = 3 β(3) = 2.
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Now put γ = β ◦ α. We have

γ(1) = β(α(1)) = β(2) = 3

γ(2) = β(α(2)) = β(1) = 1

γ(3) = β(α(3)) = β(3) = 2.

The picture for γ is obtained by connecting the picture for β underneath the picture for α and straightening
it out:

1 2 3

1 2 3

1 2 3

α

β

1 2 3

1 2 3

γ = β ◦ α

By counting crossings we see that sgn(α) = sgn(β) = −1 but sgn(γ) = +1, so sgn(γ) = sgn(α) sgn(β) as
expected.

Proof of Proposition B.13. Consider a pair (i, j) with 1 ≤ i < j ≤ n. There are four possibilities:

(a) τ(i) < τ(j) and σ(τ(i)) < σ(τ(j))
(b) τ(i) < τ(j) and σ(τ(i)) > σ(τ(j))
(c) τ(i) > τ(j) and σ(τ(i)) < σ(τ(j))
(d) τ(i) > τ(j) and σ(τ(i)) > σ(τ(j))

We let a denote the number of pairs of type (a) and so on. Recall that l(τ) is the number of pairs (i, j) as
above where τ(i) > τ(j); it is thus clear that l(τ) = c+ d. On the other hand, l(σ ◦ τ) is the number of pairs
(i, j) as above where σ(τ(i)) > σ(τ(j)); it is thus clear that l(σ ◦ τ) = b + d. Next, l(σ) is the number of
pairs (p, q) where 1 ≤ p < q ≤ n and σ(p) > σ(q). Consider such a pair.

(b’) Suppose that τ−1(p) < τ−1(q). We then write i = τ−1(p) and j = τ−1(q). This gives a pair with
i < j and τ(i) = p < q = τ(j) and σ(τ(i)) = σ(p) > σ(q) = σ(τ(j)). Thus, the pair (i, j) is an
instance of case (b) above, and it is not hard to see that every instance of case (b) arises in this way,
precisely once.

(c’) Suppose instead that τ−1(p) > τ−1(q). We then write i = τ−1(q) and j = τ−1(p). This gives a pair
with i < j and τ(i) = q > p = τ(j) and σ(τ(i)) = σ(q) < σ(p) = σ(τ(j)). Thus, the pair (i, j) is an
instance of case (c) above, and it is not hard to see that every instance of case (c) arises in this way,
precisely once.

From this analysis, we see that l(σ) = b+ c. This gives

l(σ) + l(τ) = (b+ c) + (c+ d) = (b+ d) + 2c = l(σ ◦ τ) + 2c

and thus

sgn(σ) sgn(τ) = (−1)l(σ)+l(τ) = (−1)l(σ◦τ)+2c = (−1)l(σ◦τ) = sgn(σ ◦ τ).

�

Corollary B.15. For any permutation σ we have sgn(σ−1) = sgn(σ).

Proof. The composite σ ◦ σ−1 is the identity permutation ι, so the Proposition gives sgn(σ) sgn(σ−1) =
sgn(ι) = 1. It follows that sgn(σ−1) = 1/ sgn(σ), but this is the same as sgn(σ) because sgn(σ) = ±1. �

Corollary B.16. For any square matrix A, we have det(AT ) = det(A).

Proof. Let aij be the entry in the i’th row of the j’th column of A, and let bij be the entry in the i’th row
of the j’th column of AT . From the definition of AT we just have bij = aji. This gives

det(AT ) =
∑

permutations σ

sgn(σ)

n∏
i=1

bi,σ(i) =
∑

permutations σ

sgn(σ)

n∏
i=1

aσ(i),i.
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We will rewrite this in terms of the index j = σ(i), so i = σ−1(j). As i runs from 1 to n we see that j also
runs from 1 to n in a different order, but it is harmless to write the terms of a product in a different order,
so we have

det(AT ) =
∑

permutations σ

sgn(σ)

n∏
j=1

aj,σ−1(j).

We now write τ = σ−1. Every permutation is the inverse of precisely one permutation, so taking the sum
over all possible σ’s is the same as taking the sum over all possible τ ’s. Moreover, Corollary B.15 tells us
that sgn(σ) = sgn(τ). We thus have

det(AT ) =
∑

permutations τ

sgn(τ)

n∏
j=1

aj,τ(j).

This is visibly the same as the definition of det(A) (except that two dummy indices have been renamed, but
that makes no difference). �

The single most important fact about determinants is as follows.

Theorem B.17. If A and B are n× n matrices, then det(AB) = det(A) det(B).

Before giving the proof, we will have some preliminary discussion about expanding products of sums. It
is a long but straightforward calculation to see that

(p1 + p2 + p3)(q1 + q2 + q3)(r1 + r2 + r3)

=p1q1r1 + p1q1r2 + p1q1r3 + p1q2r1 + p1q2r2 + p1q2r3 + p1q3r1 + p1q3r2 + p1q3r3+

p2q1r1 + p2q1r2 + p2q1r3 + p2q2r1 + p2q2r2 + p2q2r3 + p2q3r1 + p2q3r2 + p2q3r3+

p3q1r1 + p3q1r2 + p3q1r3 + p3q2r1 + p3q2r2 + p3q2r3 + p3q3r1 + p3q3r2 + p3q3r3.

To write this in a more condensed way, note that each of the 27 terms arises by choosing one of the three
terms pi from the first bracket, one of the three terms qj from the second bracket and one of the three terms
rk from the third bracket, and multiplying them together. This gives

(p1 + p2 + p3)(q1 + q2 + q3)(r1 + r2 + r3) =

3∑
i=1

3∑
j=1

3∑
k=1

piqjrk.

Now suppose we have an array of numbers mij for 1 ≤ i, j ≤ 3. By just changing notation slightly in the
above formula we get

(m11 +m12 +m13)(m21 +m22 +m23)(m31 +m32 +m33) =

3∑
i=1

3∑
j=1

3∑
k=1

m1im2jm3k.

The left hand side can be rewritten as 3∑
j=1

m1j

 3∑
j=1

m2j

 3∑
j=1

m3j


or as

∏3
i=1

∑3
j=1mij . We now consider the right hand side. Write N = {1, 2, 3} as before. For any three

numbers i, j and k as above we can define a function θ : N → N by θ(1) = i and θ(2) = j and θ(3) = k.
Taking the sum over all possible i, j and k is the same as taking the sum over all possible functions θ : N → N .
The product m1im2jm3k can be rewritten as

∏3
u=1mu,θ(u). This proves the following fact:

Lemma B.18. For any system of numbers mij (where 1 ≤ i, j ≤ n) we have

n∏
i=1

n∑
j=1

mij =
∑

functions θ

n∏
i=1

mi,θ(i).

(Here θ runs over all functions from the set N = {1, 2, . . . , n} to itself.)

(We have really only discussed the case n = 3, but it should be clear that it works in general.)
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Proof of Theorem B.17. Put C = AB. It is straightforward to check that the entries in C are given by
cik =

∑n
j=1 aijbjk. For example, the n = 3 case isa11 a12 a13

a21 a22 a23
a31 a32 a33

b11 b12 b13
b21 b22 b23
b31 b32 b33


=

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33


We thus have

det(C) =
∑
σ

sgn(σ)

n∏
i=1

ci,σ(i) =
∑
σ

sgn(σ)

n∏
i=1

n∑
j=1

aijbj,σ(i).

Here we have (for each σ) a product of sums, which can be expanded out as in Lemma B.18 (with mij =
aijbj,σ(i)). This gives

det(C) =
∑
σ

sgn(σ)
∑

functions θ

n∏
i=1

ai,θ(i)bθ(i),σ(i) =
∑

functions θ

∑
σ

sgn(σ)

n∏
i=1

ai,θ(i)bθ(i),σ(i).

In this sum, θ is a function N → N which might or might not be a permutation. We write ∆ for the sum
of all the terms where θ is a permutation, and ∆′ for the sum of the remaining terms where θ is not a
permutation, so det(C) = ∆ + ∆′. We will show that ∆ = det(A) det(B) and ∆′ = 0, which clearly implies
the theorem.

When θ is a permutation we can write φ = σ ◦ θ−1, so σ = φ ◦ θ. As σ determines φ and vice versa,
taking the sum over all σ is the same as taking the sum over all φ. Note also that sgn(σ) = sgn(θ) sgn(φ) by
Proposition B.13. This gives

∆ =
∑
θ,φ

sgn(θ) sgn(φ)

n∏
i=1

ai,θ(i)bθ(i),φ(θ(i)) =
∑
θ,φ

(
sgn(θ)

n∏
i=1

ai,θ(i)

)(
sgn(φ)

n∏
i=1

bθ(i),φ(θ(i))

)
.

Note that as i runs from 1 to n, the index j = θ(i) also runs from 1 to n (probably in a different order). We
can use this to rewrite the last term above as a product over j instead of a product over i. This gives

∆ =

(∑
θ

sgn(θ)

n∏
i=1

ai,θ(i)

)∑
φ

sgn(φ)

n∏
j=1

bj,φ(j)

 = det(A) det(B)

as claimed.
Now consider a function θ : N → N that is not a permutation. As θ is not a permutation, it must send at

least two different indices to the same place. We can thus choose p and q with p < q but θ(p) = θ(q). Let τ
be the transposition that exchanges p and q (as in Example B.6) and recall that τ = τ−1 and sgn(τ) = −1.
Because θ(p) = θ(q) we have θ ◦ τ = θ. Next, for any permutation σ we put

Γ(θ, σ) = sgn(σ)

n∏
i=1

bθ(i),σ(i).

We claim that Γ(θ, σ) = −Γ(θ, σ ◦ τ). Indeed, we have

Γ(θ, σ ◦ τ) = sgn(σ ◦ τ)

n∏
i=1

bθ(i),σ(τ(i)).

We can rewrite the product in terms of the index j = τ(i), recalling that θ(j) = θ(τ(i)) = θ(i) because
θ ◦ τ = θ. We also note that sgn(σ ◦ τ) = sgn(σ) sgn(τ) = − sgn(σ). This gives

Γ(θ, σ ◦ τ) = − sgn(σ)

n∏
j=1

bθ(j),σ(j) = −Γ(θ, σ),

as claimed. Now consider the sum Γ(θ) =
∑
σ Γ(θ, σ). We can divide the permutations into two groups:

those for which σ(p) < σ(q), and those for which σ(p) > σ(q). If σ is in the first group then σ ◦ τ is in the
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second group and vice-versa. It follows that the terms Γ(θ, σ) from the first group cancel the terms Γ(θ, σ)
from the second group, leaving Γ(θ) = 0.

Finally, from our earlier expansion of det(C) we have

∆′ =
∑
θ

(
n∏
i=1

ai,θ(i)

)
Γ(θ),

where the sum runs over all functions θ : N → N that are not permutations. We have seen that Γ(θ) = 0,
so ∆′ = 0 as required. �

From Theorem B.17, we can easily conclude (by induction on k) that

det (A1A2 · · ·Ak) = det (A1) det (A2) · · · det (Ak) (3)

whenever A1, A2, . . . , Ak is a list of n× n matrices. (This applies to k = 0 as well, recalling the convention
that an empty product of n× n matrices is In and an empty product of numbers is 1.)

Corollary B.19. Suppose that A and B are n×n matrices and that A can be reduced to B by a sequence of
row operations. For each step in the reduction where we multiply some row by a factor λ, we take a factor of
λ. For every step where we exchange two rows, we take a factor of −1. Let µ be the product of these factors.
Then det(A) = det(B)/µ. In particular, if B = In then det(A) = 1/µ.

Proof. We have B = UrUr−1 · · ·U1A, where the Ui are elementary matrices corresponding to the steps in
the row reduction. This implies (using (3)) that det(B) = det(A)

∏
i det(Ui). If Ui = Dp(λ) (corresponding

to multiplying a row by λ) then det(Ui) = λ. If Ui = Epq(µ) then det(Ui) = 1, and if Ui = Fpq then
det(Ui) = −1. The claim follows easily from this. �

Definition B.20. Let A be an n× n matrix, and let p and q be integers with 1 ≤ p, q ≤ n.

(a) We let Mpq be the matrix obtained by deleting the p’th row and the q’th column from A. This is a
square matrix of shape (n− 1)× (n− 1).

(b) We put mpq = det(Mpq).
(c) We define another number m∗pq as follows. The determinant det(A) has a term sgn(σ)

∏n
i=1 ai,σ(i)

for each permutation σ : N → N . Consider only those permutations σ for which σ(p) = q. The
terms corresponding to these permutations all have apq as a factor. We write m∗pq for what we get
after removing that factor. In symbols, we have

m∗pq =
∑

σ(p)=q

sgn(σ)
∏
i 6=p

ai,σ(i).

We call the matrices Mpq the minor matrices for A, and the numbers mpq the minor determinants. The
number m∗pq is called the cofactor for apq in A.

Example B.21. Consider the case where n = 2 and A =

[
a b
c d

]
. Here Mpq is a 1× 1 matrix, which is just

a number, and mpq = det(Mpq) = Mpq. This gives

m11 = M11 = d m12 = M12 = c

m21 = M21 = b m22 = M22 = a.

Next, we have det(A) = ad − bc. To find m∗11 we find the term containing a and remove the a leaving
m∗11 = d. Proceeding in the same way we get

m∗11 = d m∗12 = −c
m∗21 = −b m∗22 = a.
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Example B.22. Consider the case where n = 3 and A =

a b c
d e f
g h i

. We have

M11 =

[
e f
h i

]
M12 =

[
d f
g i

]
M13 =

[
d e
g h

]
M21 =

[
b c
h i

]
M22 =

[
a c
g i

]
M23 =

[
a b
g h

]
M31 =

[
b c
e f

]
M32 =

[
a c
d f

]
M33 =

[
a b
d e

]
and so

m11 = ei− fh m12 = di− fg m13 = dh− eg
m21 = bi− ch m22 = ai− cg m23 = ah− bg
m31 = bf − ce m32 = af − cd m33 = ae− bd

On the other hand, we have seen that

det(A) = aei− afh− bdi+ bfg + cdh− ceg
To find m∗11 we take all the terms involving a (giving aei− afh) and remove the a to leave m∗11 = ei− fh.
The other terms m∗ij can be determined in the same way:

m∗11 = ei− fh m∗12 = −di+ fg m∗13 = dh− eg
m∗21 = −bi+ ch m∗22 = ai− cg m∗23 = −ah+ bg

m∗31 = bf − ce m∗32 = −af + cd m∗33 = ae− bd.

It is easy to see that in both the above examples we always have m∗pq = ±mpq. More precisely, a closer

look shows that m∗pq = (−1)p+qmpq for all p and q. We will show that this rule works in general.

Proposition B.23. For any n × n matrix A and any numbers p, q with 1 ≤ p, q ≤ n we have m∗pq =

(−1)p+qmpq.

Proof. Fix p and q, and write B for Mpq. The entries of B are given by

bij =


ai,j if i < p and j < q

ai,j+1 if i < p and j ≥ q
ai+1,j if i ≥ p and j < q

ai+1,j+1 if i ≥ p and j ≥ q.
For a more convenient way to write this, define permutations λ, ρ : N → N by

λ(i) =


i if 1 ≤ i < p

i+ 1 if p ≤ i < n

p if i = n

ρ(i) =


i if 1 ≤ i < q

i+ 1 if q ≤ i < n

q if i = n.

We then have bij = aλ(i),ρ(j) for all i, j with 1 ≤ i, j ≤ n− 1. This gives

mpq = det(B) =
∑
τ

sgn(τ)

n−1∏
i=1

bi,τ(i) =
∑
τ

sgn(τ)

n−1∏
i=1

aλ(i),ρ(τ(i)).

Here τ runs over all permutations of {1, . . . , n−1}. Any such permutation can be extended to a permutation
τ+ of {1, . . . , n} by putting τ+(n) = n. It is clear that this does not introduce any additional reversals, so
sgn(τ+) = sgn(τ). We now rewrite the above expression for mpq using the index j = λ(i) instead of i. As i
runs through the numbers 1, . . . , n excluding n, we see that j runs through the numbers 1, . . . , n excluding
λ(n) = p. We also put σ = ρ◦τ+◦λ−1, so ρ(τ(i)) = σ(j). Note that λ−1(p) = n and τ+(n) = n and ρ(n) = q,
so σ(p) = q. Conversely, if σ is any permutation of {1, . . . , n} with σ(p) = q then the composite ρ−1 ◦ σ ◦ λ
sends n to n, so it has the form τ+ for some permutation τ of {1, . . . , n− 1}. It follows that summing over
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all τ is the same as summing over all σ with σ(p) = q. Note also that sgn(τ) = sgn(λ) sgn(ρ) sgn(σ). We
therefore have

mpq =
∑

σ(p)=q

sgn(λ) sgn(ρ) sgn(σ)
∏
j 6=p

aj,σ(j) = sgn(λ) sgn(ρ)m∗pq.

Next, the reversals for λ are just the pairs (i, n) with p ≤ i < n, so l(λ) = n − p and sgn(λ) = (−1)n−p.
Similarly we have sgn(ρ) = (−1)n−q and so sgn(λ) sgn(ρ) = (−1)2n−p−q = (−1)p+q. We therefore have
mpq = (−1)p+qm∗pq as claimed. �

We can now show that determinants can be “expanded along the p’th row”.

Proposition B.24. Let A be an n× n matrix. Let 1 ≤ p ≤ n. Then

det(A) =

n∑
q=1

(−1)p+qapqmpq = (−1)p+1ap1mp1 + (−1)p+2ap2mp2 + · · ·+ (−1)p+napnmpn.

In the case n = 3 and p = 1, this is just the traditional rule

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11 det

[
a22 a23
a32 a33

]
− a12 det

[
a21 a23
a31 a33

]
+ a13 det

[
a21 a22
a31 a32

]
.

Proof. By definition we have

det(A) =
∑
σ

sgn(σ)

n∏
i=1

ai,σ(i).

If we consider only permutations σ that satisfy σ(p) = q (for a fixed q ∈ {1, 2, . . . , n}), then the sum of the
corresponding terms is ∑

σ(p)=q

sgn(σ)

n∏
i=1

ai,σ(i) = apq
∑

σ(p)=q

sgn(σ)
∏
i 6=p

ai,σ(i) = apqm
∗
pq.

Taking the sum over all q, we get det(A) =
∑n
q=1 apqm

∗
pq. On the other hand, Proposition B.23 tells us that

m∗pq = (−1)p+qmpq, so we get det(A) =
∑n
q=1(−1)p+qapqmpq as claimed. �

Proposition B.24 is called Laplace expansion along the p’th row . Applying it to compute detA is often
called expanding the determinant of A along the p’th row. An analogous fact holds for columns, and is known
as Laplace expansion along the q’th column:

Proposition B.25. Let A be an n× n matrix. Let 1 ≤ q ≤ n. Then

det(A) =
n∑
p=1

(−1)p+qapqmpq = (−1)1+qa1qm1q + (−1)2+qa2qm2q + · · ·+ (−1)n+qanqmnq.

In the case n = 3 and q = 1, this is saying

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11 det

[
a22 a23
a32 a33

]
− a21 det

[
a12 a13
a32 a33

]
+ a31 det

[
a12 a13
a22 a23

]
.

Proof. This is similar to the proof of Proposition B.24. Again,

det(A) =
∑
σ

sgn(σ)

n∏
i=1

ai,σ(i).

For any permutation σ in this sum, there is a unique p ∈ {1, 2, . . . , n} satisfying σ(p) = q. Thus, we can
split this sum up into smaller sums, each containing only permutations σ that satisfy σ(p) = q for a fixed
p ∈ {1, 2, . . . , n}; the sum of the corresponding terms is apqm

∗
pq (for the same reason as in the proof of

Proposition B.24). Thus, taking the sum over all p, we get det(A) =
∑n
p=1 apqm

∗
pq. The rest of the proof

proceeds as the above proof of Proposition B.24. �
106



Definition B.26. Let A be an n× n matrix. The adjugate of A is the n× n matrix adj(A) with entries

adj(A)jk = m∗kj = (−1)k+jmkj .

Proposition B.27. Let A be an n× n matrix. Then, adj(AT ) = (adj(A))T .

Proof. Let Mpq denote the minor matrices for A, and let Npq denote the minor matrices for AT . Then, for
any p and q, we have Nqp = (Mpq)

T and thus det(Nqp) = det((Mpq)
T ) = det(Mpq) (by Corollary B.16).

Hence, the (p, q)’th entry (−1)p+q det(Nqp) of adj(AT ) equals the (q, p)’th entry (−1)q+p det(Mpq) of adj(A).
Thus, adj(AT ) = (adj(A))T . �

Proposition B.28. For any n× n matrix A we have A adj(A) = adj(A)A = det(A) In.

Proof. Put B = A adj(A), which has entries

bik =

n∑
j=1

aij adj(A)jk =

n∑
j=1

aijm
∗
kj .

In particular, the diagonal entries are bii =
∑n
j=1 aijm

∗
ij , which is equal to det(A) by the same argument

that we used for Proposition B.24.
Now consider an off-diagonal entry bik with i 6= k. This can be expanded as

bik =
∑
j

aijm
∗
kj =

∑
j

∑
σ(k)=j

sgn(σ) aij
∏
l 6=k

al,σ(l).

As a first simplification, we can write j as σ(k) and then we do not need to mention j any more, we just
have a single sum over all permutations σ. Thus,

bik =
∑
σ

sgn(σ) ai,σ(k)
∏
l 6=k

al,σ(l)

(where the sum is now over all permutations). Next, one of the terms in the product is ai,σ(i) (corresponding
to l = i) and it will be convenient to write that separately. This leaves bik =

∑
σ Γ(σ), where

Γ(σ) = sgn(σ) ai,σ(k) ai,σ(i)
∏
l 6=i,k

al,σ(l).

Now let τ be the transposition that exchanges i and k. It is not hard to see that Γ(σ ◦ τ) = −Γ(σ) (because
Proposition B.13 yields sgn(σ ◦ τ) = sgn(σ) · sgn(τ) = − sgn(σ), whereas both ai,σ(k) ai,σ(i) and

∏
l 6=i,k al,σ(l)

stay unchanged if σ is replaced by σ ◦ τ). Using this we see that the terms Γ(σ) with σ(i) < σ(k) cancel
against the terms Γ(σ) with σ(i) > σ(k), leaving bik = 0. This completes the proof that A adj(A) = det(A)In.

A similar argument (using Proposition B.25) shows that we also have adj(A)A = det(A)In. (Alternatively,
this equality can be obtained by applying the previously proven equality A adj(A) = det(A)In to AT instead
of A, and then rewriting the result using Proposition B.27, Corollary B.16 and Proposition 3.4.) �

Theorem B.29. Let A be an n×n matrix. Then A is invertible if and only if det(A) 6= 0. If so, the inverse
is given by A−1 = adj(A)/det(A).

Proof. First suppose that A is invertible, so there is an inverse matrix A−1 with AA−1 = In. Using
Theorem B.17 we deduce that det(A) det(A−1) = det(AA−1) = det(In) = 1, and this clearly means that
det(A) cannot be zero.

Conversely, suppose that det(A) 6= 0. We can then divide the matrix adj(A) by the number det(A) to get a
matrix B = adj(A)/ det(A). After rearranging the equations in Proposition B.28 we see that AB = BA = In,
so A is invertible with inverse B. �

Appendix C. Proof of the uniqueness of the RREF

In this short appendix, let us give a proof of Theorem 6.2 (b). This proof will rely on Corollary 9.16 and
Proposition 20.6, as well as on the following lemma:

Lemma C.1. Let B be an RREF matrix with no zero rows. Then, the rows of B are linearly independent.
107



Example proof. Each row of B has a pivot (since B has no zero rows). Consider the example that we
used in the proof of Lemma 20.134. Let λ1, λ2, λ3 be any scalars such that λ1v1 + λ2v2 + λ3v3 = 0. Set
x = λ1v1 + λ2v2 + λ3v3, so that x = 0. If λ1, λ2, λ3 are not all 0, then there exists some k ∈ {1, 2, 3} such
that λ1, . . . , λk−1 are all zero but λk 6= 0; therefore, as we have seen in the proof of Lemma 20.13, this k
has the property that x starts in the k’th pivot column; but this contradicts the fact that x = 0. Hence,
λ1, λ2, λ3 are all 0. So we have shown that if scalars λ1, λ2, λ3 satisfy λ1v1 +λ2v2 +λ3v3 = 0, then λ1, λ2, λ3
are all 0. In other words, v1, v2, v3 are linearly independent. But v1, v2, v3 are the columns of BT , that is,
the transposes of the rows of B. Thus, the rows of B are linearly independent as well. �

Proof of Theorem 6.2 (b). Let C and D be two matrices in RREF that can be obtained from A by sequences
of row operations. We must prove that C = D.

Let m and n be such that A is an m× n matrix. Thus, C and D are m× n matrices, too.
Let C be the matrix C with its zero rows removed. Let D be the matrix D with its zero rows removed.
The matrices C and C differ only in some zero rows, which clearly have no effect on the span of the rows

of these matrices. Thus, span (rows of C) = span
(
rows of C

)
.

Let V be the span of the rows of A. Let V T be the span of the columns of AT . Clearly, the elements of
V T are the transposes of the elements of V .

The matrix C is obtained from A by a sequence of row operations. Hence, Corollary 9.16 shows that a
row vector s of length n can be expressed as a linear combination of the rows of A if and only if it can be
expressed as a linear combination of the rows of C. In other words, span (rows of A) = span (rows of C).
Thus, the definition of V yields

V = span (rows of A) = span (rows of C) = span
(
rows of C

)
.

Moreover, the matrix C is obtained from an RREF matrix by removing its zero rows; hence, C itself is an
RREF matrix with no zero rows. Thus, Lemma C.1 shows that the rows of C are linearly independent.
Combined with V = span

(
rows of C

)
, this shows that the rows of C form a basis of V . Thus, the columns

of C
T

form a basis of V T (since the elements of V T are the transposes of the elements of V ).
But Proposition 20.6 (applied to V T instead of V ) shows that there is a unique RREF matrix B such that

the columns of BT form a basis for V T . We know that C is such a matrix (since C is an RREF matrix, and

since the columns of C
T

form a basis of V T ), and that D is such a matrix (likewise). Hence, the uniqueness
of B shows that C = D.

But C was obtained from the RREF matrix C by removing zero rows; hence, we can reconstruct C
from C by inserting m − m′ zero rows at the bottom, where m′ is the number of rows of C. Similarly,
D can be reconstructed from D in the same way. Thus, from C = D, we obtain C = D. This proves
Theorem 6.2 (b). �

4We are not making the same assumption as in Lemma 20.13 here (viz., that the columns of BT form a basis for some
subspace V ⊆ Rn); but we do know that B is a RREF matrix whose each row has a pivot, and this suffices to make the

reasoning from the proof of Lemma 20.13 work.
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adjugate, 36, 37, 106

annihilator

canonical basis, 77, 78

definition, 66

intersection of, 82

is a subspace, 70

augmented matrix, 7, 8, 12, 33

basis, 26, 27, 30, 31

canonical

definition, 72

for a span, 74

for an annihilator, 77, 78

for intersection, 82

for sum, 82

of a subspace, 71, 72

of eigenvectors, 44–46, 90

orthonormal, 90

canonical basis, 72

characteristic polynomial, 40–42

classical adjoint, 36

cofactor, 104

column operation, 86

column rank, 88

copivots, 86

damping factor, 62

dependent variables, 8

determinant, 34–37, 40

diagonalisable, 46

diagonalisation, 49, 54, 59

of quadratic form, 94

orthogonal, 91

diagonalise, 46

difference equation, 54

differential equation, 51

dimension, 71

definition, 71

of sum and intersection, 82

dimension formula, 82

distribution, 59

dot product, 3

duality, 26, 30, 31

eigenvalue, 39, 40, 42

of a stochastic matrix, 60

of symmetric matrix, 89

eigenvector, 39, 40, 42

basis of, 44–46

linear independence, 43, 44

of symmetric matrix, 89

elementary matrix, 30–32, 35

equation

difference, 54

differential, 51

linear, 67

even permutation, 97

expansion of determinant, 36, 105

Hilbert matrix, 29

homogeneous, 14

image

as a span, 69

definition, 69

independent variables, 8

inverse, 33, 37

inversion, 97

invertible, 31–33

jump

definition, 73

in terms of pivots, 73, 106

kernel

as an annihilator, 67

definition, 67

Laplace expansion along the p’th row, 105

Leibniz formula for determinants, 34

linear combination, 14, 16

in a subspace, 66

linear equation, 6, 12, 67

linear form, 93

linear relation, 18

linearly dependent, 18, 19

linearly independent, 18, 19, 26, 31

eigenvectors, 43, 44

lower-triangular, 34

Maple, 3, 11, 34, 40, 63

Markov chain, 57, 62

matrix, 2

diagonal, 46

orthogonal, 88

powers, 49, 54, 59

stochastic, 58, 60

symmetric, 89

square root, 93

transition, 57, 58, 62

minor, 36

minor determinants, 104

minor matrices, 104

n-vector, 2

nonzero, 7

normal form, 87

nullity

definition, 85

numerical criteria, 20, 23, 30, 71

odd permutation, 97

orthogonal matrix, 88

orthonormal, 88

PageRank, 61

permutation, 96

pivot, 19, 22, 25

pivots, 7

powers of a matrix, 49, 54, 59

probability vector, 58, 60

quadratic form, 93

diagonalisation, 94

rank, 96

signature, 96
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rank, 96
bounded by size of matrix, 88

definition, 85

invariance under column operations, 86
invariance under row operations, 86

of an RCEF matrix, 86

RCEF, 86
reduced column echelon form, 86

reduced row-echelon form, 7
reversal, 97

row operation, 10, 30, 31, 33, 35

row rank, 88
row reduction, 10

RREF, 7

scalar, 2

signature, 96, 97

span, 21, 22, 24–26, 31
canonical basis, 74

definition, 66

describing as annihilator, 80
is a subspace, 70

sum of, 82

spectral theorem, 90
square, 19

standard basis vector, 3

stationary distribution, 60
stochastic matrix, 58, 60

subspace, 64, 66, 70, 71
intersection of, 80, 82

intersection of of

dimension, 82
of the plane, 66

sum of, 80, 82

dimension, 82
symmetric, 89

tall, 19
transition matrix, 58, 62

transpose, 2, 5, 31, 32, 35, 41

transposition, 98
triangular matrix, 34

upper-triangular, 34

wide, 19, 20, 23

zero, 7
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