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1 EXERCISE 1

1.1 PROBLEM

For each n € N, we define the n-th harmonic number H, by

1 1 1 "1
H, =+ - i N
+ot Zk
k=1
Prove that
H+Hy+ - +H,=(n+1)(Hy1—1) (1)

for each n € N.

1.2 FIRST SOLUTION
We shall prove by induction on n:

1
Induction base: We have Hq,; = Hy = i (by the definition of H;). Thus, Hypy 1 — 1 =

1

-—1=0.

1 :
Comparing

Hy+ Hy+ -+ + Hy = (empty sum) =0
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with

(0-'-1) H0+1—1 :O7
N—_——
=0
we find
H1+H2++H0:(0+1)(H0+1—1)

In other words, holds for n = 0. This completes the induction base.

Induction step: Let m be a positive integer. Assume that holds for n =m — 1. We
must prove that holds for n = m.

We have assumed that holds for n = m — 1. In other words,

Hi+Hy+ -+ Hpy=((m—1)+1) (H(m—1)+1 - 1) .
In view of (m — 1) + 1 = m, this rewrites as
Hi+Hy+---+Hpy=m(H, —1). (2)

But the definition of H,, yields

1 1
H, = = +—. 3
ot — (3)
Also, the definition of H,,; yields
1 1 1 1 1 1 1 1
Hyj=-4 -4t = (ot )+ =H +
LT R | (1+2+ +m)+m+1 A
:}-?
(by @)
Hence,
(m+1) H 1 (m+1) | Hyn+ ! 1
m m — =(m m [
\/tl’ m+1
1
=Hmt
1
=(m+ 1) Hn+(m+1) == —(m+1)=(m+1) Hy+(-m)

N

Comparing this with

Hy+Hy+ o+ Hy = (Hy + Hy + -+ Hy o) +Hy,

(.

:m(;{rmfl)

(by @)
=m(H, -1)+H, =mH,, —m+ H, =(m+1)H, —m,

we obtain
Hi+Ho+ -+ Hp=m+1)(Hp1—1).

In other words, holds for n = m. This completes the induction step. Hence, is proven
by induction.
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1.3 SECOND SOLUTION
Each n € N satisfies

"1
H, = -
m Z k
k=1
(by the definition of H,,).
Now, let n € N. Then,

n

m=1 1 m=1 k=1 k k=1 m:kk
ey

(by (4)), applied to m instead of n)

Here, the last equality sign is a consequence of one of Fubini’s principles for the interchange

of summations (namely, [Math222, Corollary 1.6.9]). Thus

H1+H2+"'+anz Z% :Z(n_k—i_l)'%'
k=1

= k=1
——

i 1
=(n—k+1)-—
( )k;

(since this is a sum of n — k + 1
many equal addends)

Comparing this with

(n+1) (Hpor = 1) = (n+ 1)

Hn+1 - (n + 1)
——
w1
== %
(by (4), applied to n + 1 instead of n)
n+1 1 n+1 1 n+1
= (n+1) (n+1) (n+1)Y ==Y 1
k= 1k e k:lk k=1
=31
k=1

n+1

(since >, 1=(n+1)-1=n+1)
k=1

n+1 1 n+1 1
§j(m+¢>g 1):§:m_k+u.E
k=1 —~ _ k=1
i 1
=(n—k+1)-—
(n—k+1) i

1
— 1 —k+1) —
=(Mn—(n+1)+ — Z n—k+1) o
=0
(here, we have split off the addend for £k = n + 1 from the sum)
& 1
k=1

we obtain Hy + Hy + -+ H, = (n+ 1) (H,11 — 1). This solves the exercise.

Darij Grinberg
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2 EXERCISE 2

2.1 PROBLEM
Let n € N. Compute the number of 4-tuples (A, B, C, D) of subsets of [n] satisfying

ANB=CnND.

[Hint: This is similar to [17f-hw3s, Exercise 1]. It is not necessary to be as detailed as
in the solution of part (a) of the latter exercise.|

2.2 SOLUTION SKETCH

We shall say that a 4-tuple (A, B,C, D) of subsets of [n] is good if and only if it satisfies
ANB=CnD.
We claim the following:

Claim 1: The # of good 4-tuples is 10".

Let us first give an informal (but perfectly clear to the experienced reader) proof of this
claim, and then formalize it.

Informal proof of Claim 1. A 4-tuple (A, B,C, D) of subsets of [n] is good if and only if it
satisfies the following property: Each ¢ € [n] belongs to

e either all four sets A, B, C' and D,

e or the sets A and C' but not B and D,

e or the sets A and D but not B and C,

e or the sets B and C but not A and D,

e or the sets B and D but not A and C,

e or the set A but none of the other three sets,
e or the set B but none of the other three sets,
e or the set C but none of the other three sets,
e or the set D but none of the other three sets,

e or none of the four sets A, B, C' and D.

[] We shall refer to these 10 possibilities as “Option 17, “Option 2” and so on.
Thus, the following simple algorithm constructs every good 4-tuple (A, B,C, D): For
each ¢ € [n], we decide which of the 10 options listed above the element ¢ should satisfy (i.e.,

ndeed, there is (a priori) a total of 16 options for which of the four sets A, B, C' and D the element i
belongs to (because i either belongs to A or does not; either belongs to B or does not; either belongs to
C or does not; either belongs to D or does not). But out of these 16 options, only the 10 we just listed
can occur if (A, B, C, D) is good, since the other 6 would violate the equation ANB = C'N D (since they
would either make i belong to AN B but not to C'N D, or make ¢ belong to C N D but not to AN B). It
is easy to see that, conversely, as long as each i satisfies one of the 10 options listed above, the 4-tuple
(A, B,C, D) is good.

Darij Grinberg 4 darij.grinberg@drexel.edu
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whether it satisfies Option 1 or Option 2 etc.). There are 10 choices for it, since these 10
options are mutually exclusive. Thus, in total, there are 10™ good 4-tuples (because we are
making this decision once for each of the n elements i of [n]). This completes our informal
proof of Claim 1. n

Next comes a formalized version of this argument:

Formal proof of Claim 1. Consider a 4-tuple (A, B,C, D) of subsets of [n], and an element
i € [n]. This element i either lies in A or does not; it either lies in B or does not; it either
lies in C or does not; it either lies in D or does not. Thus, we have a total of 16 possible
answers to the question “which of the 4 subsets A, B, C' and D does i lie in?”. Let us encode
these answers as 4-tuples of bits (i.e., of elements of {0, 1}): Namely, we define

wapcop(i)=([i € Al,[i € B],[i € C],[i € D]) € {0,1}"

(where we are using the Iverson bracket notation). Thus, for example, if i lies in A and D
but not in B and not in C, then wu 5 cp (1) = (1,0,0,1).

Now, assume that the 4-tuple (A, B,C,D) is good. Then, wy g p (i) cannot take
certain values. For example, W g o p (i) cannot be (1,1,0,1), because in this case, ¢ would
be contained in ANB (since [i € A] = 1 and [i € B] = 1) but not in CND (since [i € C] = 0),
which would contradict the “goodness” condition AN B = C'N D. Likewise, there are other
values that wa g o p (i) cannot take. By systematically checking all 16 possible 4-tuples of
bits, we can easily see that the set of impossible values of wa g ¢ p (7) is

J = {(17 ]" O’ 0) ) (1’ ]"07 1) ’ (]‘7 17 170) ? (07 07 ]‘7 1) Y (07 17 ]" ]‘) ’ (170’ ]‘) 1)} .

Thus, wa p,c,p (1) belongs not only to {0, 1} but to the smaller set {0,1}*\ .J. It is easy
to see that this smaller set has size {0, 13\ J| = 10.

Now, forget that we fixed i. Thus, we have defined a 4-tuple w4 5o p (i) € {0, 1}4 \ J
for each i € [n] (assuming that (A, B, C, D) is good). In other words, we have defined a map

WA BCD : [n] — {0, 1}4 \ J,
i—wapcp (i) =([i€A],[ieB],liel],[ieD).

Note that we can easily reconstruct the 4-tuple (A, B, C, D) from the map w4 g ¢ p; indeed,

A={i€n] | the 1-st entry of wapcp (i) is 1};
B ={ie€[n] | the 2-nd entry of wa pcp (i) is 1};
C ={ie[n] | the 3-rd entry of wa gcp (i) is 1};
D ={i € [n] | the 4-th entry of wy pcp (7) is 1}.

Now, forget that we fixed (A, B,C, D). We thus have defined a map wapgcp : [n| =
{0, 1}4 \ J for each good 4-tuple (A, B,C, D). Hence, we can define a map

W : {good 4-tuples} — ({0, 1\ J) . :
(A, B, C, D) — WA,B,C,D-

(Keep in mind that the notation Y, where X and Y are two sets, stands for the set of all
maps from X to Y. Thus, the values of this map W are themselves maps.)

We have previously shown that a good 4-tuple (A, B, C, D) can be reconstructed from
the map wy g ¢ p. In other words, the map W is injective.

Darij Grinberg ) darij.grinberg@drexel.edu
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Moreover, the map W is surjective. Indeed, if f € ({0, 1}4 \J ) Pl i any map, then we
can define a 4-tuple (A, B, C, D) of subsets of [n] by setting

A={i€n] | the 1-st entry of f (i) is 1};
B ={i€[n] | the 2-nd entry of f (i) is 1};
C ={i€n] | the 3-rd entry of f (i) is 1};
D ={i € [n] | the 4-th entry of f (i) is 1};

and it is easy to see that this 4-tuple (A, B, C, D) will be good (since f (i) € {0,1}*\ J for
each i € [n], which rules out precisely the constellationsﬂ that would violate ANB = C'ND),
and furthermore the image of this good 4-tuple (A, B, C, D) under the map W will be our
f.

Thus, we now know that the map W is injective and surjective. Hence, W is bijective.
Thus, the bijection principle yields

|{good 4-tuples}| = ‘({O, 1}4 \ J) I _ |{0’ 1}4 \ J‘I[n]l

(since YX| = 1Y|*! for any two finite sets X and Y)
= 10" (since |{0, 1\ J| =10 and [[n]| =n).

In other words, the # of good 4-tuples is 10™. This proves Claim 1. n

3 EXERCISE 3

3.1 PROBLEM

Let n € N. A subset S of [n] is said to be odd-sum if the sum of the elements of S is odd.
How many subsets of [n] are odd-sum?

3.2 FIRST SOLUTION SKETCH
The following solution imitates [Math222, Third proof of Proposition 1.3.28].

Claim 1: We have

0 if n = 0;
(# of odd-sum subsets of [n]) =< 1 e
2n=Lifn £ 0
[Proof of Claim 1: If n = 0, then the # of odd-sum subsets of [n] is 0 (since the only
subset of [n] is @ in this case, but @ is not odd-sum). Thus, Claim 1 holds when n = 0. For
the rest of this proof, we shall therefore WLOG assume that n # 0. Hence, n > 1, so that
1 € [n].

2Exercise to the reader: Make this precise. (Formally speaking, you shouldn’t talk about “constellations”
but just prove that AN B = C N D by considering any ¢ € [n] and showing that i € AN B is equivalent
toie CND.)

Darij Grinberg 6 darij.grinberg@drexel.edu
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Let us say that a subset S of [n] is even-sum if the sum of the elements of S is even.
Then, each subset of [n] is either even-sum or odd-sum (but not both at the same time).
Hence, by the sum rule, we have

(# of all subsets of [n])
= (# of even-sum subsets of [n]) + (# of odd-sum subsets of [n]).

Comparing this with
(# of all subsets of [n]) =2" (by [Math222 Theorem 1.4.1], applied to S = [n]),
we obtain
2" = (# of even-sum subsets of [n]) + (# of odd-sum subsets of [n]). (5)

On the other hand, if we add 1 to an even integer, then we obtain an odd integer. Hence,
if S is an even-sum subset of [n] such that 1 ¢ S, then S U {1} is an odd-sum subset of [n].
Similarly, if S is an even-sum subset of [n] such that 1 € S, then S\ {1} is an odd-sum
subset of [n]. Thus, the map

{even-sum subsets of [n]} — {odd-sum subsets of [n]},

SU{l}, if1¢5;
SH{S\{l}, if1es

is well-defined. Similarly, the map

{odd-sum subsets of [n]} — {even-sum subsets of [n]},

S}_){Su{l}, if 1¢S;
S\ {1}, if1esS

is well-defined. It is straightforward to see that these two maps are mutually inverse, and
thus are bijections. Hence, the bijection principle shows that

(# of even-sum subsets of [n]) = (# of odd-sum subsets of [n]).
Thus, (5)) becomes

2" = (# of even-sum subsets of [n]) + (# of odd-sum subsets of [n])

"

-~

=(# of odd-sum subsets of [n])
= (# of odd-sum subsets of [n]) 4+ (# of odd-sum subsets of [n])
= 2 - (# of odd-sum subsets of [n]).

Dividing both sides of this equality by 2, we find 2" /2 = (# of odd-sum subsets of [n]), so
that
(# of odd-sum subsets of [n]) =2"/2 =2""",

This proves Claim 1.]

Darij Grinberg 7 darij.grinberg@drexel.edu
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3.3 SECOND SOLUTION SKETCH

Here is a very rough outline of a different solution.

Again, we WLOG assume that n # 0, so that n > 1.

Let E be the set of all even elements of [n], and let O be the set of all odd elements
of [n]. Then, F and O are disjoint subsets of [n] whose union is £ U O = [n]. Hence, the
sum rule yields |E| + |O| = |[n]| = n. Moreover, 1 € [n] (since n > 1), thus 1 € O, and
therefore |O| > 1. A subset S of [n] is odd-sum if and only if it contains an odd number of
odd elements?] i.e., if the intersection S N O is a set of odd size. Thus, the map

{odd-sum subsets of [n]} — {subsets of E'} x {subsets of O having odd size},
S— (SNE,SNO)

is a bijection. Hence, by the bijection principle,

(# of odd-sum subsets of [n])
= |{subsets of E} x {subsets of O having odd size}|
= (# of subsets of E) - (# of subsets of O having odd size) .

Now, [Math222, Theorem 1.4.1] yields (# of subsets of ) = 2/Fl. What is
(# of subsets of O having odd size)? Well, the sum rule yields

(# of subsets of O having odd size)

= Z (# of subsets of O having size k)

S

k]fsecliid =(# of k-element subsets of O)
(0]
k

(by [Math222, Theorem 1.3.12])

(this is one of those infinite sums with only finitely many nonzero addends)

_ ’%\; (Iil) _ (I(I)I>+<I(;I)Jr (|(5)I)+,__

k is odd
— 2l0I-1 (by [Math222) Proposition 1.3.34], applied to |O] instead of n).

Hence,

(# of odd-sum subsets of [n])
= (# of subsets of E) - (# of subsets of O having odd size)

(.  \a /

~~ ~~
—=2|E| —=2/0]-1

= 2Bl 9011 — glEI+|0]-1 _ gn-1 (since |E|+|0| =n).

This solves the exercise again.

3because a sum of integers is odd if and only if it has an odd number of odd addends

Darij Grinberg 8 darij.grinberg@drexel.edu
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4 BEXERCISE 4

4.1 PROBLEM
Let n € N. Prove that

in(nz—z):%W (6)

[Hint: Remember counting the pseudomino tilings on the previous problem set? Time
to count them again! (This is not the only possible solution.)]

4.2 FIRST SOLUTION SKETCH

We WLOG assume that n > 0 (since the case n = 0 is easily checked by hand).

We shall use the terminology introduced in [Math222, §1.1] for dominos and domino
tilings, and we shall use the notion of lacunar sets defined in [Math222, Definition 1.4.2].
We shall furthermore use [hwls, Exercise 1], and in particular we shall use the notions of
“pseudomino” and “pseudomino tiling” defined therein. We let p,, denote the number of all
pseudomino tilings of the rectangle R, 2. Then, [hwls, Exercise 1 (b)] yields

(_1)” + 2n+1

- (7

Pn =
A bijection
h : {domino tilings of R, 12} — {lacunar subsets of [n]}

has been constructed in [Math222 Second proof of Proposition 1.4.9]; it is defined as follows:
If T is any domino tiling of R, 1, then i (T) shall be the set of all i € [n + 1] such that at
least one horizontal domino of 7" starts in column 4.

Substituting n — 1 for n in this construction, we obtain a bijection

h': {domino tilings of R} — {lacunar subsets of [n — 1]}

defined as follows: If T is any domino tiling of R,, 5, then A’ (T") shall be the set of all ¢ € [n]
such that at least one horizontal domino of 7" starts in column <.

We want to define a bijection similar to A’, but with pseudomino tilings instead of domino
tilings. The target of this bijection will not be {lacunar subsets of [n — 1]} anymore, but
rather will be {lacunar pairs}, where a lacunar pair shall mean a pair (S,T') of two disjoint
subsets of [n — 1] such that S UT is lacunar.

If T' is a pseudomino tiling of R, 2, then

e we let h(T') be the set of all i € [n] such that at least one horizontal domino of T’
starts in column ;

e we let d(T') be the set of all i € [n] such that at least one 2 x 2-rectangle of T" starts]]
in column 7.

4The meaning of “starts” here is defined as follows: If D = {(i,5), (5,5 +1),(i +1,7),(i + 1,5+ 1)} is a
2 x 2-rectangle, then we say that D starts in column 3.

Darij Grinberg 9 darij.grinberg@drexel.edu
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For example, if n = 11 and

T =

then
h(T)=1{2,8} and d(T) = {4,10}.

We now define a map
h" : {pseudomino tilings of R, >} — {lacunar pairs},
T (h(T),d(T)).

This map is well-defined, because if 1" is a pseudomino tiling of R,, o, then the pair (h (1) ,d (1))
is a lacunar pailﬂ Moreover, it is not hard to check that this map A" is a bijectionﬁ. Thus,
the bijection principle shows that

(# of pseudomino tilings of R, 5) = (# of lacunar pairs) .
But the definition of p, yields
Pn = (# of pseudomino tilings of R, ) = (# of lacunar pairs) . (8)

Now, let us count the lacunar pairs. If (S, 7)) is a lacunar pair, then S UT is a lacunar
subset of [n — 1]. Thus, by the sum rule, we have

(# of lacunar pairs)

= Z (# of lacunar pairs (S,7") with SUT = L). 9)

L is a lacunar
subset of [n—1]

Now, fix a lacunar subset L of [n — 1]. How many lacunar pairs (S,7T) are there that
satisfy SUT =L 7
Clearly, if (S,T) is a lacunar pair with SUT = L, then S C SUT = L. Thus, the map
{lacunar pairs (S,7") with SUT = L} — {subsets of L},
(S, T)— S
is well-defined. On the other hand, if S is any subset of L, then (S, L\ S) is a lacunar pair
with SU (L \ S) = L. Thus, the map

{subsets of L} — {lacunar pairs (S,7) with SUT = L},
S (S,L\S)

is well-defined. It is easy to see that these two maps are mutually inversd’] and thus are
bijections. Hence, the bijection principle yields

(# of lacunar pairs (S,7") with SUT = L) = (# of subsets of L)
= olkl (10)

>Check this!

5The inverse map sends a lacunar pair (S,T) to the pseudomino tiling of R, » whose horizontal dominos
start in the columns ¢ € S and whose 2 x 2-rectangles start in the columns ¢ € T and whose remaining
columns are filled with vertical dominos.

"The “hard part” of this is to prove that if (9, 7T) is a lacunar pair with SUT = L, then (S, L\ S) = (5, T).
But even this is trivial: If (S, T) is a lacunar pair with SUT = L, then SNT = & (since the definition
of “lacunar pair” implies that S and T are disjoint), and thus T is the complement of S in L (since
SUT = L), which shows that T'= L\ S, so that (S,T) = (S,L\ 5).

Darij Grinberg 10 darij.grinberg@drexel.edu
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(by [Math222, Theorem 1.4.1|, applied to |L| and L instead of n and S).
Now, forget that we fixed L. We thus have proved for each lacunar subset L of
[n —1]. Thus, (9) becomes

(# of lacunar pairs)

= Z (# of lacunar pairs (S,7) with SUT = L)

7/

L is a lacunar VL
—2|L|

subset of [n—1] (by (T0))

_ Z 9lL|

L is a lacunar
subset of [n—1]

S YRR Y

ke{0,1,...,n} L is alacunar —9
subset of [n—1J; (since |L|=k)
|L|=k

here, we have split the sum > 215 according to the value of |L]|

L is a lacunar
subset of [n—1]

(because each subset L of [n — 1] satisfies |L| <|[n—1]|=n—-1<mn
and therefore |L| € {0,1,...,n})

= > > ¥
ke{0,1,...,n} L is a lacunar
subset of [n—1J;

|L|=k

=(# of lacunar subsets L of [n—1] such that |L|=k)-2k

= Z (# of lacunar subsets L of [n — 1] such that |L| = k) -2

J

k€{0,1,...,n} =(# of k-element lagl:nar subsets of [n—1])
n—1)+1-k
B k

(by [Math222| Proposition 1.4.10|, applied to n—1 instead of n)

_ 3 | ((n—l)k—i-l—k)g,c:zn:(n;k)_2,9:]{2;2,6(71;]{;)‘

k:E{O,l,...,n - J/ k)ZO
7, n—k
= B k

(an equality
of summation signs)

Now, becomes

= n—=k " (n—i
n = (# of 1 irs) = » 2" =) 2
pn = (# of lacunar pairs) Z ( k ) Z < . )
k=0 =0
(here, we have renamed the summation index k as 7). Comparing this with (7)), we obtain
(1)
: i) 3 '
=0
This solves the exercise.

4.3 SECOND SOLUTION

Here is a purely algebraic solution (similar to [Grinbel5l solution to Exercise 4.4]):

Darij Grinberg 11 darij.grinberg@drexel.edu
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Forget that we fixed n. Set

gn:ZT(n__Z) for each n € {—1,0,1,...}.

=0
Thus,
0, /0—i 0-0
_ i - _ 90 - _
90—;2< ; )—%( 0 >—1 and
=1
(1
g-1 ; < ; ) (empty sum)

On the other hand,

(—1)°+201 142

= 1 and
3 3
()" 27 141 0
3 37
Comparing with , we obtain
B (_1)0 4 90+1
9o 3
Comparing with , we obtain
_ ()Tt
g-1= 3 .

Recall the recurrence of the binomial coefficients:

Theorem 4.1 (Recurrence of the binomial coefficients). Let n € R and k € R. Then,

n\y (n—1 n n—1
k) \k-1 k)
We also recall the following lemma:

Lemma 4.2. Let k € R. Then, <2) =[k=0].

Here, we are using the Iverson bracket notation.
Also, recall that if n, k € R satisfy k ¢ N, then

()

(This is part of the definition of binomial coefficients.)
Now, we claim the following:

(=1)" +2n*

Claim 1: We have g, = 3

for each n € {—1,0,1,...}.

(11)

(12)

(13)

(14)

(15)

(16)

(18)

Darij Grinberg 12 darij.grinberg@drexel.edu
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[Proof of Claim 1: We shall prove Claim 1 by strong induction on n.
Induction step: Let m € {—1,0,1,...}. Assume (as the induction hypothesis) that

Claim 1 holds for all n < m. We must now prove that Claim 1 holds for n = m. In other
—1)" + 2mtt
words, we must prove that g,, = ()—+ If m = —1, then this follows immediately
from ((17). Hence, for the rest of this proof, we WLOG assume that m # —1. Combining
this with m € {-1,0,1,...}, we find m € {-1,0,1,.. .} \ {-1} ={0,1,2,...}.
—1)™ 4 2mH

We must prove that g, = L If m = 0, then this follows immediately from
(16)). Hence, for the rest of this proof, we WLOG assume that m # 0. Combining this with
m€{0,1,2,...},wefindm € {0,1,2,.. }\{0} = {1,2,3,...}. Hence, n—2 € {-1,0,1,...}
and m —1 € {0,1,2,...} € {-1,0,1,...} and m > 1. Also, from m # 0, we obtain
[m =0] =0.

We have m — 2 € {—1,0,1,...} and m — 2 < m. Thus, Claim 1 holds for n = m — 2
(since we assumed that Claim 1 holds for all n < m). In other words, we have

-1 m—2 + 2(m—2)+1

We have m — 1 € {—1,0,1,...} and m — 1 < m. Thus, Claim 1 holds for n = m — 1
(since we assumed that Claim 1 holds for all n < m). In other words, we have

-1 m—1 _|_2(m—1)+1
g = T . (20)

But the definition of ¢,,_» yields

Gz = mz_:QQ ((m _2,2) N Z) (21)

Likewise, the definition of g, yields

1 = mzl 2 ((m _Z_l) B Z) (22)

1=0
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Now, the definition of g, yields

s () 5 ()

1=0 \ y 1=0

()
= =[m=0]
m

(by Lemma

applied to k=m)

(here, we have split off the addend for i = m from the sum)
m—1 . m—1 .
fm — . m —1
=2"Im =0+ 2 . = 2 )
e (") ()

m—1—1 m—1—1
= . + .
1—1 1
(by Theorem applied
to n=m—i and k=t)

SR ()

_(m—i—l) _(m—i—l)
=2 +2i .
1—1 1

(S () 23

=0 =0

We shall now massage the two sums on the right hand side of this equality, with the
ultimate goal of revealing that the first of them is 2g,,_» while the second is ¢,,_1.
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Let us start with the first sum. We have m — 1 € {0,1,2,...} = N and

mzl y (m —i- 1)
— 1 —1
m—1 .
m—0—1 (m—1—1
—_ 20 9t
") ()
1=
m—1
= =0
-1
(by (L8), applied to n=m—1 and k=—1)
here, we have split off the addend for ¢ = 0 from the sum
(since 0 < m — 1 (because m > 1))

(R (L)

=1 1=0 —2.9i

(m—2)—i

1
(since m—(i+1)—1=(m—2)—1
and (i4+1)—1=t)

(here, we have substituted ¢ + 1 for ¢ in the sum)

=

J/

TV
=9m—2

(by 1))
= 29m_2. (24)

Now, let us take a look at the second sum. We have

mZ_IT' (m_,i_ 1) :mz_lzi((m_,l) _i) —gn by @).  (25)

- (4 - (A
=0 1=0

(since m—i—1=(m—1)—i)
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Now, becomes

gm:;?(m;_il_l) +;21(m—;—1>

J/

—~ —~

=2gm—2 =9gm—1

(by @4)) (by @3))
=2 Im—2 + Gm—1
S~ ~—~

(_1>m—2 + 2(m72)+1 (_1)m—1 + 2(m71)+1

(by ) (by )

(=1)™72 4 2m=2+1 ()T g(m-D)+

=2 +
3 3
1 —2 — —1 —
_ 9. -1 m +2(m 2)+1 + -1 m +2(m 1)+1
o e
—=(=1)™ = ——(=1)™ =
1 m m—1 m m 1 m m—1 m m
=3 g-((—l) +2 Z—(—l) +2 25(2-(—1) +2.2m = (=)™ +2™)
:2,(_1)?@2,2,”,1
_1f (=)™ — (=)™ 4-2-2m L yom 1 (=)™ 4+ 2™ 2™
3 (< ~ v 3 ——
=(-1)™ =2m =2.2m=gm+1
1 m —1)™ 4 2mHl
R

In other words, Claim 1 holds for n = m. This completes the induction step. Thus, the
induction proof of Claim 1 is finished.|

Now, let n € N. Then, n € N C {—1,0,1,...}, so that Claim 1 yields

—1)" 4 2n+
Comparing this with ((11]), we obtain

Zn:Qi n—1i\ (=1)" 42!
g i) 3 '

Thus, the exercise is solved.

5 EXERCISE 5

5.1 PROBLEM
Let n,k € R. Prove that

(L) G -0 G 6n) e
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[Hint: Tempting as it may be to use the ' formula, keep in mind that it only

El'(n —k)!
holds for n, k € N with £ < n. When in doubt, go back to the definition of (Z) ]

5.2 SOLUTION

Forget that we fixed n and k. We shall use the following identity:
Proposition 5.1. Let n € {1,2,3,...} and m € R. Then,

m\ m(m-—1
n) n\n-—1)
Proposition is the absorption formula. A proof of Proposition can be found in

[Grinbel5l, Proposition 3.22fF| or in [Math222, Proposition 1.3.36].
Also, recall that if n, k € R satisfy k£ ¢ N, then

(Z):Q (27)

(This is part of the definition of binomial coefficients.)

Now, let n, k € R. We must prove the identity . We are in one of the following two
cases:

Case 1: We have k —1 € N.

Case 2: We have k —1 ¢ N.

Let us first consider Case 1. In this case, we have k — 1 € N. Hence, k € {1,2,3,...}.
Thus, Proposition (applied to n + 1 and k instead of m and n) yields

n+1\ n+1/(n+1)—-1\ n+1/ n
k )k k—1 ok \k-1
(since (n+ 1) —1 = n). Also, Proposition [5.1] (applied to n and & instead of m and n) yields
n\ n(n-—1
k) k\k—1)
Furthermore, from &k € {1,2,3,...}, we obtain k+1 € {2,3,4,...} C {1,2,3,...}. Hence,
Proposition (applied to n + 1 and k + 1 instead of m and n) yields

(i) =ii(Gin )

n—+1 n .
=T (k) (since (n+1)—1=nand (k+1)—1=k)
~—~—
n(n-l
Ck\k-—1

_n+1 n n—1
Ck+1 kE\k—1)

Also, Proposition (applied to n and k + 1 instead of m and n) yields

() =i () =)

8where it is stated only for m € Q, but this makes no difference to the proof
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(since (k+1) —1=k).
Now, comparing

n n—1 n 4+
k+1 k—1 k
N—— ——
n n—1 _n—i—l
k+1 k -k

(T G ) e ) () ()

with

() ) ()= () G) ()
we obtain
(2 G2 ()= 00) G) ()

Thus, (26]) is proven in Case 1.
Let us now consider Case 2. In this case, we have k — 1 ¢ N. Hence, (applied to

k — 1 instead of k) yields (k i 1) = 0. Also, (applied to n — 1 and k£ — 1 instead of n

n—1

d k) yield
and k) yie S(kz—l

) = 0. Now, comparing

W) o) ()
(n;)'@i)'(kﬁl):o’

—_—
=0

n n—1 n+1l\ [(n-—1 n—+1 n
k+1 k—1 k) \k k+1 k—1)
Thus, is proven in Case 2.

We have now proven in both Cases 1 and 2. Hence, always holds. This solves

the exercise.

with

we obtain
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5.3 REMARK

You don’t need to know Proposition [5.1] in order to solve the exercise; it merely helps make
the solution slicker. Without Proposition [5.1] you can just apply the definition of binomial
coefficients, obtaining (in Case 1) the identities

( n )In(n—n(n—z)--.(n—ky

k+1 (k+1)! ’
(n—l)_(n—1)(n—2)(n—3)---(n—k‘+1)‘
k—-1) (k—1)! ’
n+1\ m+)nn-1)---(n—k+2)
("1)- : |
(n—l):(n—l)(n—Q)(n—S)---(n—k).

k k! ’
n+1\ m+nn—-1)---(n—k+1)
<k+1)_ (k+1)! ’

( n )Zn(n—l)(n—2)~~(n—k+2)
k—1 (k—1)! '

Using these identities, rewrites as

nn—1)n-2)---(n—k) (n—-1)(n—-2)(n—=3)---(n—k+1)

(k+1)! ' (k—1)!
(n+Dnn—-1)---(n—k+2)
k!
_ m=1)(n-2)(n=3)---(n—k) (n+)nmn-1)---(n—k+1)
k! (k+1)!
nn-1)(n—-2)---(n-k+2)
(k—1)! ‘

But you can convince yourself that the factors on the two sides of this equality are the same
(up to order). Thus, the exercise follows.

6 EXERCISE 6

6.1 PROBLEM

Fix an n € N and an n-element set X.

A filter basis (of X) means a nonempty set F' of nonempty subsets of X such that for
every A € F and B € I, there exists some C' € F' such that C C AN B.

For example, if X = [4], then {{1,3},{1,3,4},{1,2,3,4}} is a filter basis, and so is
{{2},{1,2,3},{1,2,4},{2,3,4}}. But {{2,3},{1,3},{1,2,3}} is not a filter basis (because
it contains no C' C {2,3} N{1,3}).

Prove the following:

(a) If F is a filter basis, then the intersection of all A € F' does itself belong to F.
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(b) The number of all filter bases is

n—1 n
92 -1,
(i)
k=0

6.2 SOLUTION SKETCH

We shall use the following notation: If Y is any set, then P (Y") will denote the powerset of
Y (that is, the set of all subsets of Y'). If the set Y is finite, then we thus have

P (Y)| = (# of subsets of V) = 2/¥ (28)

(by [Math222, Theorem 1.4.1|, applied to Y and |Y| instead of S and n). In particular,
P (Y) is a finite set in this case.
Thus, in particular, P (X) is a finite set (since X is a finite set).

(a) Let F be a filter basis. Then, F is a set of nonempty subsets of X. Thus, F* C P (X)),
so that F' is a finite set (since P (X) is a finite set). Hence, we can write F' in the form
F = {A, Ay, ..., Ay} for some nonempty subsets Ay, Ay, ..., Ay of X (since F' is a set of
nonempty subsets of X). Consider these A;, Ao, ..., Ax. Note that the set {41, Ay, ..., Ay}
is nonempty (since {Ay, As, ..., Ax} = F is a filter basis). Thus, k # 0, so that k£ > 1. Note
also that Ay, As, ..., Ay € F (since F' = {Ay, Ay, ..., Ar}).

We have assumed that F'is a filter basis. Hence, F' is nonempty and has the property
that for every A € F and B € F,

there exists some C' € F such that C C AN B. (29)
Now, we claim the following:
Claim 1: For each i € [k], there exists some C; € F' such that

CiCANAN---NA,.

[Proof of Claim 1: We shall prove Claim 1 by induction on i:

Induction base: We have A; € F (since Aj, As, ..., Ay € F). Thus, there exists some
Cy € F such that C; C A; (namely, C; = A; does the trick). In other words, Claim 1 holds
for 2 = 1. This completes the induction base.

Induction step: Let j € [k] be such that j > 1. Assume that Claim 1 holds for i = j — 1.
We must prove that Claim 1 holds for ¢ = j.

We have assumed that Claim 1 holds for ¢ = 5 — 1. In other words, there exists
some C;_; € F such that C;_; € Ay N AyN---NA;_4. Consider this C;_;. Recall that
Ay, Ay, ..., Ay € F. Hence, A; € F. Thus, (applied to A = C;_; and B = A;) shows
that there exists some C' € F' such that C' C C;_; N A;. Consider this C'. Thus,

7

QA10A20-"OA]'_1

Hence, there exists some C; € F such that C; C Ay N Ay N---NA; (namely, C; = C). In
other words, Claim 1 holds for ¢ = j. This completes the induction step. Thus, Claim 1 is
proven by induction.|

Now, recall that £ > 1, so that k € [k]. Hence, Claim 1 (applied to ¢ = k) shows that
there exists some C), € F such that C,, € AN Ay N ---N Ag. Consider this C,. Now,
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Cp € FF = {A,As,...,A;}. In other words, C;, = A, for some j € [k]. Consider this
j. Combining Ay N AsN---NA, C A; = Cy with Cp, € Ay N Ay N --- N A, we obtain
AiNAN---NA,=C,eF.

But F = {A;, Ay, ..., Ay}. Hence, the intersection of all A € F'is Ay N AyN---N Ay,
and thus does itself belong to F' (since A1 N AyN---N A € F). This solves part (a) of the
exercise.

(b) A bit of terminology will come useful: If F' is any filter basis, then the core of F' is
defined to be the intersection of all A € F. This core does itself belong to F' (by part (a)
of the exercise). In other words,

if K is the core of a filter basis F, then K € F. (30)

Now, instead of counting all filter bases right away, let us count only all filter bases with
a given core:

Claim 2: Let K be a nonempty subset of X. Then,

1Kl _q

(# of filter bases with core K) = 2%

We won'’t prove this right away, since we can make our job a little bit easier with some
more terminology (and with two more auxiliary claims that we will prove before returning
to prove Claim 2).

Previously, we have defined

P (Y) = {all subsets of Y} for any set Y.
Now, let us introduce a subtler notation: If Y and Z are any two sets, then we define
P (Y,Z) = {all sets S such that Z C S CY}.

This is the set of all sets “lying between” Z and Y (that is, the set of all sets S satisfying
Z C S CY). For example,

P({1,2,3,4},{1,3}) = {{1,3},{1,2,3} ,{1,3,4},{1,2,3,4}};
P({1,2,3,4},{1,2,3}) = {{1,2,3}.{1,2,3,4}};
P ({1,2,3,4},{1,2,3,4}) = {{1,2,3,4}}.

We will only use the notation P (Y, Z) in the case when Z C Y, since otherwise
P (Y,Z) = @. In this case, it is easy to compute the size of P (Y, Z):

Claim 3: Let Y be a finite set. Let Z be a subset of Y. Then,

P (Y. 2)| =2

[Proof of Claim 3: Here is the idea: The elements of P (Y, Z) are the subsets S of YV
that contain Z as a subset. To choose such an S, we only need to decide which elements of
Y \ Z go into S (since the elements of Z are already forced to go into S); and this can be
done in 2"\?l many ways (since we have 2 choices for each of the |Y \ Z| many elements of

Y\ Z). Hence, |P (Y, Z)| = 2"\,
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A formal version of this argument looks as follows: The maps

PY,Z)—->PY\Z),
S—S\Z

and

PY\Z)=P(Y,2),
T—TUZ

are easily seen to be well-defined and mutually inverse; hence, they are bijections. Thus,
the bijection principle yields [P (Y, Z)| = |P (Y \ Z)| = 2"\Z (by (28)), applied to Y \ Z
instead of V). This proves Claim 3.]

Claim 4: Let K be a nonempty subset of X. Then,

{filter bases with core K} =P (P (X, K),{K}).

Before we prove Claim 4, let us spell out what it says without the symbols: “Let K be
a nonempty subset of X. Then, the filter bases with core K are precisely the sets lying
between { K'} and the set of all sets lying between K and X.”. Or, to make it more intuitive:
“Let K be a nonempty subset of X. Then, a filter basis with core K will consist of sets lying
between K and X, and will always contain K. Conversely, any set consisting of sets lying
between K and X is a filter basis with core K as long as it contains K.”.

[Proof of Claim 4: We shall first prove that

{filter bases with core K} C P (P (X,K),{K}). (31)

Indeed, let F' € {filter bases with core K'}. We shall show that F' € P (P (X, K),{K}).

Indeed, F is a filter basis with core K (since F' € {filter bases with core K }). Thus,
K € F (by (30). Hence, { K} C F. Moreover, F is a set of subsets of X (since F is a filter
basis); thus, each A € F'is a subset of X. But K is the core of F', that is, the intersection
of all A € F (by the definition of a core). Therefore, each A € F satisfies K C A and
thus K € A C X (since A is a subset of X). In other words, each A € F belongs to
P(X,K) (since K C A C X means precisely that A € P (X, K) (by the definition of
P (X, K))). In other words, FF C P (X, K). Hence, {K} C FF C P (X, K). In other words,
FeP(P(X,K),{K}) (by the definition of P (P (X, K),{K})).

Forget that we fixed F. We thus have shown that F e P(P(X,K),{K}) for each
F' e {filter bases with core K'}. This proves (31).

On the other hand, let us prove that

P(P(X,K),{K}) C {filter bases with core K} . (32)

Indeed, let G € P (P (X, K),{K}). We shall prove that G € {filter bases with core K}.

From G € P (P (X, ) {K}), we obtain {K} C G C P(X,K) (by the definition
of P(P(X,K),{K})). Thus, K € {K} C G. Moreover, each element A of G belongs
to P (X, K) (since G C P(X, K)), and thus satisfies K C A C X (by the definition of
P(X,K)). Thus, each A € G is a nonempty subset of X (indeed, it is a subset of X
because A C X, and it is nonempty because K C A for the nonempty set K). Thus, G is a
set of nonempty subsets of X. Furthermore, G itself is nonempty, since K € G. Finally, for
every A € G and B € G, we have K C A (since A € G C P (X, K) entails that K C A C X))
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and K C B (similarly) and therefore K C AN B. Hence, for every A € G and B € G, there
exists some C' € G such that C C AN B (namely, C' = K).

Thus, GG is a nonempty set of nonempty subsets of X such that for every A € G and
B € G, there exists some C' € GG such that C C AN B. In other words, G is a filter basis
(by the definition of a filter basis).

Now, let L be the core of G. Thus, L is the intersection of all A € G (by the definition
of a core). Hence, L C A for each A € GG. Applying this to A = K, we obtain L. C K
(since K € G). Conversely, we can easily see that K C L as follows: Since L is the core
of the filter basis G, we have L € G (by (80), applied to G and L instead of F and K).
Hence, L € G C P (X, K), so that K C L C X (by the definition of P (X, K)), and thus in
particular K C L. Combining L. C K with K C L, we obtain L = K. In other words, the
core of G is K (since L is the core of GG). Hence, G is a filter basis with core K. In other
words, G € {filter bases with core K}.

Forget that we fixed G. We thus have shown that G € {filter bases with core K} for
cach G € P (P (X,K),{K}). This proves (32).

We have now proved the two relations and . Combining them, we obtain

{filter bases with core K} =P (P (X, K),{K}).

Thus, Claim 4 is proven.|
Claim 2 is now easy:
[Proof of Claim 2: We know that K is a subset of X. Thus,

X\ K| = RY — K| =n—[K|
=n
(since X is an n-element set)
and
P (X, K)| = 2X\Kl (by Claim 3, applied to Y = X and Z = K))
= (since | X\ K|=n—|K|).

But K C K C X and thus K € P (X, K) (by the definition of P (X, K)). Hence, {K} is a
subset of P (X, K). Thus,

[P XK\ Y = [P (X )| = [{ Y = 21— 1
—=2on—I|K]| =1

Now,

(# of filter bases with core K)

= |{filter bases with core K}| = |P (P (X, K),{K})|

—P(P(X.K).{K})
(by Claim 4)

= QIP(XEONEKY (by Claim 3, applied to Y = P (X, K) and Z = {K})
=221 (since [P (X, K)\ {K}| = 2" 1),

This proves Claim 2.]
At last, we can solve the actual problem:
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If F is any filter basis, then the core of F' does itself belong to F' (as we have already
seen), and thus is a nonempty subset of X (since F' is a set of nonempty subsets of X).
Hence, the sum rule shows that

(# of filter bases)

. n—|K|_
= E (# of filter bases with core K) = E 22 !
\ -
K is a nonempty n:" K| K is a nonempty
subset of X =22 -1 subset of X
(by Claim 2)

= 2 >
——

ke{l1,2,...n} K is a nonempty _22n7k71
subset of X; = -
|K|=k (since |K|=k)

NgE

k=1

here, we have split the sum according to the value of |K],
because if K is a nonempty subset of X, then |K| € {1,2,...,n}
(since X is an n-element set)

_ Z 92" -1

k=1 K is a nonempty
subset of X;
|K|=k

s

P
=(# of nonempty subsets K of X satisfying \K\:k)~22n7k—1

n

(# of nonempty subsets K of X satisfying |K| = k) 92"kl

k=1 =(# of nonempty k-element subsets of X)

=(# of k-element subsets of X)
(since every k-element subset of X is nonempty
(because k>1>0))

3

= (# of k-element subsets of X) 92" k-1

(. i
v~

n

k

(by [Math222] Theorem 1.3.12], since X is an n-element set)

n n—k
= 92 -1
~—~—

n
n—=k

(by [Math222] Theorem 1.3.11])

" n n—k_ - n k_
£ L0

k=0

b
Il
—

3

b
Il

(here, we have substituted k for n — k in the sum). This solves part (b) of the exercise.
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