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1 Exercise 1

1.1 Problem

Let A and B be two sets, and let f : A → B be a map. A left inverse of f shall mean a
map g : B → A such that g ◦ f = idA. We say that f is left-invertible if and only if a left
inverse of f exists. (It is usually not unique.)

Assume that the sets A and B are finite.

(a) If the set A is nonempty, then prove that f is left-invertible if and only if f is injective.1

(b) Assume that f is injective. Prove that the number of left inverses of f is |A||B|−|A|.

1.2 Solution

We first prove a few claims (that hold even without requiring A and B to be finite):

Claim 1: If f is left-invertible, then f is injective.

1This holds even when A and B are infinite. Feel free to prove this if you wish.
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[Proof of Claim 1: Assume that f is left-invertible. In other words, f has a left inverse.
In other words, there exists a left inverse g of f . Consider this g.

We know that g is a left inverse of f . In other words, g is a map from B to A such that
g ◦ f = idA (by the definition of a “left inverse”).

If a and b are two elements of A satisfying f (a) = f (b), then a = b (since

a = idA︸︷︷︸
=g◦f

(a) = (g ◦ f) (a) = g

f (a)︸︷︷︸
=f(b)

 = g (f (b)) = (g ◦ f)︸ ︷︷ ︸
=idA

(b) = idA (b) = b

). In other words, the map f is injective. This proves Claim 1.]

Claim 2: Assume that f is injective.

(a) For each b ∈ f (A), there exists exactly one a ∈ A satisfying f (a) = b. Let
us denote this a by ab.

(b) Let g : B → A be a map. Then, g is a left inverse of f if and only if we have

(g (b) = ab for each b ∈ f (A)) .

[Proof of Claim 2: (a) Let b ∈ f (A). Thus, there exists at least one a ∈ A satisfying
f (a) = b. Moreover, there exists at most one such a ∈ A (since f is injective). Hence,
there exists exactly one a ∈ A satisfying f (a) = b. This proves Claim 2 (a).

(b) Claim 2 (b) is an “if and only if” statement. We shall prove it by first proving the
“=⇒” part (i.e., the “only if” part), and then proving the “⇐=” part (i.e., the “if” part).

=⇒:Assume that g is a left inverse of f . We must prove that (g (b) = ab for each b ∈ f (A)).
We know that g is a left inverse of f . In other words, g ◦ f = idA.
Now, let b ∈ f (A). Recall that ab is the unique a ∈ A satisfying f (a) = b (by the

definition of ab). Thus, ab is an element of A and satisfies f (ab) = b. Now, applying the
map g to both sides of the equality b = f (ab), we obtain

g (b) = g (f (ab)) = (g ◦ f)︸ ︷︷ ︸
=idA

(ab) = idA (ab) = ab.

Now, forget that we fixed b. We thus have proven that (g (b) = ab for each b ∈ f (A)).
This proves the “=⇒” part of Claim 2 (b).
⇐=: Assume that (g (b) = ab for each b ∈ f (A)). We must prove that g is a left inverse

of f .
Let x ∈ A. Then, f (x) ∈ f (A). Thus, the definition of af(x) yields that af(x) is the

unique a ∈ A satisfying f (a) = f (x). But this unique a ∈ A is obviously x (because x is
an a ∈ A satisfying f (a) = f (x)). Hence, we conclude that af(x) = x.

But we have assumed that (g (b) = ab for each b ∈ f (A)). Applying this to b = f (x),
we obtain g (f (x)) = af(x) = x. Hence, (g ◦ f) (x) = g (f (x)) = x = idA (x).

Forget that we fixed x. We thus have shown that (g ◦ f) (x) = idA (x) for each x ∈ A.
In other words, g ◦ f = idA. In other words, g is a left inverse of f . This proves the “⇐=”
part of Claim 2 (b).

Thus, Claim 2 (b) is proven.]

Claim 3: Assume that the set A is nonempty. If f is injective, then f is left-
invertible.
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[Proof of Claim 3: Assume that f is injective. Thus, for each b ∈ f (A), there exists
exactly one a ∈ A satisfying f (a) = b (by Claim 2 (a)). Let us denote this a by ab.

Also, we have assumed that the set A is nonempty. In other words, there exists some
w ∈ A. Fix such a w.

Now, let us define a map g : B → A by setting

g (b) =

{
ab, if b ∈ f (A) ;
w, if b /∈ f (A)

for each b ∈ B.

Thus, g (b) = ab for each b ∈ f (A). Hence, Claim 2 (b) shows that g is a left inverse of f .
Hence, the map f has a left inverse. In other words, f is left-invertible. This proves Claim
3.]

(a) Assume that the set A is nonempty. Then, f is left-invertible if and only if f is
injective. (Indeed, the “if” part follows from Claim 3, whereas the “only if” part follows from
Claim 1.) This solves part (a) of the exercise.

[Note that we have not used the assumption that the sets A and B are finite.]

(b) We have assumed that f is injective. Thus, |f (A)| = |A|. But f (A) ⊆ B; hence,
|B \ f (A)| = |B| − |f (A)|︸ ︷︷ ︸

=|A|

= |B| − |A|.

Claim 2 (a) shows that for each b ∈ f (A), there exists exactly one a ∈ A satisfying
f (a) = b. Let us denote this a by ab.

Claim 2 (b) shows that a map g : B → A is a left inverse of f if and only if we have
(g (b) = ab for each b ∈ f (A)). Thus, a left inverse of f is the same as a map g : B → A
with the property that

(g (b) = ab for each b ∈ f (A)) . (1)

Hence, in order to construct a left inverse g of f , we can proceed as follows:

• For each b ∈ f (A), set g (b) = ab. (This is the only possible choice for g (b), because
our g should satisfy (1).) Note that we are not making any choices at this step.

• For each b ∈ B \ f (A), choose the value g (b) arbitrarily (among all |A| elements of
A). Note that we have |A| many choices for each b ∈ B \ f (A).

Thus, there are |A||B\f(A)| many ways to perform this construction. Hence, the number
of left inverses of f is |A||B\f(A)|. In other words, this number is |A||B|−|A| (since |B \ f (A)| =
|B| − |A|). This solves part (b) of the exercise.

2 Exercise 2

2.1 Problem

Let A and B be two sets, and let f : A → B be a map. A right inverse of f shall mean a
map h : B → A such that f ◦h = idB. We say that f is right-invertible if and only if a right
inverse of f exists. (It is usually not unique.)

Assume that the sets A and B are finite.
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(a) Prove that f is right-invertible if and only if f is surjective.2

(b) Prove that the number of right inverses of f is
∏
b∈B
|f−1 (b)|. Here, f−1 (b) denotes the

set of all a ∈ A satisfying f (a) = b.

2.2 Solution

If b ∈ B is arbitrary, then f−1 (b) shall denote the set of all a ∈ A satisfying f (a) = b.
We first prove a few claims (that hold even without requiring A and B to be finite):

Claim 1: If f is right-invertible, then f is surjective.

[Proof of Claim 1: Assume that f is right-invertible. In other words, f has a right
inverse. In other words, there exists a right inverse h of f . Consider this h.

We know that h is a right inverse of f . In other words, h is a map from B to A such
that f ◦ h = idB (by the definition of a “right inverse”).

Let b ∈ B. Then, f (h (b)) = (f ◦ h)︸ ︷︷ ︸
=idB

(b) = idB (b) = b. Thus, there exists some a ∈ A

such that f (a) = b (namely, a = h (b)).
Now, forget that we fixed b. We thus have shown that if b ∈ B, then there exists some

a ∈ A such that f (a) = b. In other words, the map f is surjective. This proves Claim 1.]

Claim 2: Let h : B → A be any map. Then, h is a right inverse of f if and only
if we have (

h (b) ∈ f−1 (b) for each b ∈ B
)
.

[Proof of Claim 2: Claim 2 is an “if and only if” statement. We shall prove it by first
proving the “=⇒” part (i.e., the “only if” part), and then proving the “⇐=” part (i.e., the
“if” part).

=⇒: Assume that h is a right inverse of f . We must prove that
(h (b) ∈ f−1 (b) for each b ∈ B).

We know that h is a right inverse of f . In other words, f ◦ h = idB.
Now, let b ∈ B. Then, f (h (b)) = (f ◦ h)︸ ︷︷ ︸

=idB

(b) = idB (b) = b. Thus, h (b) belongs to the

set of all a ∈ A satisfying f (a) = b. In other words, h (b) belongs to f−1 (b) (since f−1 (b) is
the set of all a ∈ A satisfying f (a) = b). In other words, h (b) ∈ f−1 (b).

Now, forget that we fixed b. We thus have proven that (h (b) ∈ f−1 (b) for each b ∈ B).
This proves the “=⇒” part of Claim 2.
⇐=: Assume that (h (b) ∈ f−1 (b) for each b ∈ B). We must prove that h is a right

inverse of f .
Let y ∈ B. Recall that (h (b) ∈ f−1 (b) for each b ∈ B). Applying this to b = y, we

conclude that h (y) ∈ f−1 (y). In other words, h (y) is an a ∈ A satisfying f (a) = y (since
f−1 (y) is the set of all a ∈ A satisfying f (a) = y). In other words, f (h (y)) = y. Hence,
(f ◦ h) (y) = f (h (y)) = y = idB (y).

Forget that we fixed y. We thus have shown that (f ◦ h) (y) = idB (y) for each y ∈ B.
In other words, f ◦ h = idB. In other words, h is a right inverse of f . This proves the “⇐=”
part of Claim 2.

Thus, Claim 2 is proven.]
2This holds even when A and B are infinite, if you assume the axiom of choice. But this is not the subject
of our class.
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Claim 3: Assume that the set B is finite. If f is surjective, then f is right-
invertible.

[Proof of Claim 3: Assume that f is surjective. We define a map h : B → A as follows:
Let b ∈ B. Then, there exists some a ∈ A satisfying f (a) = b (since f is surjective).

Choose any such a, and set h (b) = a.
Note that we are making only finitely many choices in this definition of h (since B is

finite); thus, this argument does not rely on the Axiom of Choice (indeed, finitely many
choices can be made by induction).

So we have defined a map h : B → A. This map h has the property that

f (h (b)) = b for each b ∈ B

(since h (b) was defined to be some a ∈ A satisfying f (a) = b). Thus, for each b ∈ B, we
have (f ◦ h) (b) = f (h (b)) = b = idB (b). In other words, f ◦ h = idB. In other words, h
is a right inverse of f (by the definition of a “right inverse”). Hence, the map f has a right
inverse. In other words, f is right-invertible. This proves Claim 3.]

(a) The map f is right-invertible if and only if f is surjective. (Indeed, the “if” part
follows from Claim 3, whereas the “only if” part follows from Claim 1.) This solves part (a)
of the exercise.

(b) Claim 2 shows that a map h : B → A is a right inverse of f if and only if we have
(h (b) ∈ f−1 (b) for each b ∈ B). Thus, a right inverse of f is the same as a map h : B → A
with the property that (

h (b) ∈ f−1 (b) for each b ∈ B
)
.

Hence, in order to construct a right inverse h of f , we can proceed as follows:

• For each b ∈ B, choose the value h (b) to be one of the elements of the set f−1 (b).
Note that we have |f−1 (b)| many choices for each b ∈ B.

Thus, there are
∏
b∈B
|f−1 (b)| many ways to perform this construction. Hence, the number

of right inverses of f is
∏
b∈B
|f−1 (b)|. This solves part (b) of the exercise.

3 Exercise 3

3.1 Problem

(a) Prove that (
−1/2
n

)
=

(
−1
4

)n(
2n

n

)
for each n ∈ N.

(b) Prove that
n∑
k=0

(
2k

k

)(
2 (n− k)
n− k

)
= 4n for each n ∈ N.

[Hint: Part (b) is highly difficult to prove combinatorially. Try using part (a) instead.]
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3.2 Solution

Recall the classical formula which says that(
n

k

)
=

n!

k! (n− k)!
for any n ∈ N and k ∈ N satisfying n ≥ k. (2)

(a) Let n ∈ N. Then, 2n ≥ n and 2n ∈ N. Hence, (2) (applied to 2n and n instead of
n and k) yields(

2n

n

)
=

(2n)!

n! (2n− n)!
=

(2n)!

n!n!
=

1

n!n!
(2n)!︸ ︷︷ ︸

=1·2·····(2n)
=(1·3·5·····(2n−1))·(2·4·6·····(2n))

(here, we have split the product into
the product of its odd factors and
the product of its even factors)

=
1

n!n!
(1 · 3 · 5 · · · · · (2n− 1))︸ ︷︷ ︸

=
n−1∏
i=0

(2i+1)

· (2 · 4 · 6 · · · · · (2n))︸ ︷︷ ︸
=

n∏
i=1

(2i)=2n
n∏

i=1
i

=
1

n!n!

(
n−1∏
i=0

(2i+ 1)

)
· 2n

n∏
i=1

i︸︷︷︸
=n!

=
1

n!n!

(
n−1∏
i=0

(2i+ 1)

)
· 2nn!

=
2n

n!

n−1∏
i=0

(2i+ 1) . (3)

Solving this equality for
n−1∏
i=0

(2i+ 1), we obtain

n−1∏
i=0

(2i+ 1) =

(
2n

n

)
/
2n

n!
=
n!

2n

(
2n

n

)
. (4)

For each a ∈ Q, we have

(
a

n

)
=
a (a− 1) · · · (a− n+ 1)

n!
=

n−1∏
i=0

(a− i)

n!
=

1

n!

n−1∏
i=0

(a− i) .

Applying this to a = −1/2, we obtain

(
−1/2
n

)
=

1

n!

n−1∏
i=0

(−1/2− i)︸ ︷︷ ︸
=
2i+ 1

−2

=
1

n!

n−1∏
i=0

2i+ 1

−2
=

1

n!
·

n−1∏
i=0

(2i+ 1)

(−2)n

=
1

n!
· 1

(−2)n
n−1∏
i=0

(2i+ 1)︸ ︷︷ ︸
=
n!

2n

(
2n

n

)
(by (4))

=
1

n!
· 1

(−2)n
· n!
2n

(
2n

n

)
=

1

(−2)n · 2n︸ ︷︷ ︸
=

−1
4

n

(
2n

n

)

=

(
−1
4

)n(
2n

n

)
.
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This solves part (a) of the exercise.

(b) There are various proofs. Complicated combinatorial proofs can be found in:

• Marta Sved, Counting and Recounting: The Aftermath, The Mathematical Intelli-
gencer 6 (1984), pp. 44–45. (For a freely available scan, see the last 2 pages of https:
//www.math.ucdavis.edu/~deloera/TEACHING/MATH245/combinatproofident.pdf
.)

• https://math.stackexchange.com/questions/72367

• https://math.stackexchange.com/a/360780/

(I have not read them all myself.)
It is much easier to solve the exercise algebraically, using part (a).

Let n ∈ N. First, we observe that
(
−1
n

)
= (−1)n. (This can be derived from the Upper

Negation identity, or easily checked directly using the definition of
(
−1
n

)
.)

Now, recall that the Vandermonde convolution theorem (Theorem 2.18 in class work
(2018-09-24)) says that(

x+ y

n

)
=

n∑
k=0

(
x

k

)(
y

n− k

)
for all x ∈ R and y ∈ R.

Applying this to x = −1/2 and y = −1/2, we obtain(
(−1/2) + (−1/2)

n

)
=

n∑
k=0

(
−1/2
k

)(
−1/2
n− k

)
.

Comparing this with (
(−1/2) + (−1/2)

n

)
=

(
−1
n

)
= (−1)n ,

we obtain

(−1)n =
n∑
k=0

(
−1/2
k

)
︸ ︷︷ ︸

=

−1
4

k(2k
k

)
(by part (a) of the exercise,
applied to k instead of n)

(
−1/2
n− k

)
︸ ︷︷ ︸

=

−1
4

n−k(2 (n− k)
n− k

)
(by part (a) of the exercise,
applied to n−k instead of n)

=
n∑
k=0

(
−1
4

)k (−1
4

)n−k
︸ ︷︷ ︸

=

−1
4

n

(
2k

k

)(
2 (n− k)
n− k

)
=

(
−1
4

)n n∑
k=0

(
2k

k

)(
2 (n− k)
n− k

)
.

Multiplying both sides of this equality by (−4)n, we obtain

(−4)n (−1)n = (−4)n
(
−1
4

)n
︸ ︷︷ ︸

=1

n∑
k=0

(
2k

k

)(
2 (n− k)
n− k

)
=

n∑
k=0

(
2k

k

)(
2 (n− k)
n− k

)
.
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Hence,
n∑
k=0

(
2k

k

)(
2 (n− k)
n− k

)
= (−4)n (−1)n = 4n.

This solves part (b) of the exercise.

3.3 Remark

Here is another identity, similar to part (b) of the exercise:

n∑
k=0

(−1)k
(
2k

k

)(
2 (n− k)
n− k

)
=

2n
(
n

n/2

)
, if n is even;

0, if n is odd
for each n ∈ N.

Can you prove this one?
(You can look up the proof in [Grinbe16, solution to Exercise 3.23 (b)].)

4 Exercise 4

4.1 Problem

Recall once again the Fibonacci sequence (f0, f1, f2, . . .), which is defined recursively by
f0 = 0, f1 = 1, and

fn = fn−1 + fn−2 for all n ≥ 2. (5)

It is easy to see that f1, f2, f3, . . . are positive integers (which will allow us to divide by them
soon).

For any n ∈ N and k ∈ Z, define the rational number
(
n

k

)
F

(a slight variation on the

corresponding binomial coefficient) by

(
n

k

)
F

=


fnfn−1 · · · fn−k+1

fkfk−1 · · · f1
, if n ≥ k ≥ 0;

0, otherwise.

(a) Let n be a positive integer, and let k ∈ N be such that n ≥ k. Prove that(
n

k

)
F

= fk+1

(
n− 1

k

)
F

+ fn−k−1

(
n− 1

k − 1

)
F

,

where we set f−1 = 1.

(b) Prove that
(
n

k

)
F

∈ N for any n ∈ N and k ∈ N.
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4.2 Solution

Set f−1 = 1. Let us first show the following claims:

Claim 1: Letm ∈ N and n ∈ {−1, 0, 1, 2, . . .}. Then, fm+n+1 = fmfn+fm+1fn+1.

[Proof of Claim 1: In the case when n ∈ N, this follows immediately from Theorem
1.37 in the class notes (2018-09-17). Thus, we WLOG assume that n /∈ N. Combining
n ∈ {−1, 0, 1, 2, . . .} with n /∈ N, we obtain n ∈ {−1, 0, 1, 2, . . .} \ N = {−1}. Hence,
n = −1. Thus,

fmfn + fm+1fn+1 = fm f−1︸︷︷︸
=1

+fm+1 f−1+1︸ ︷︷ ︸
=f0=0

= fm.

From n = −1, we also obtain fm+n+1 = fm+(−1)+1 = fm. Comparing the last two equalities,
we obtain fm+n+1 = fmfn + fm+1fn+1. This proves Claim 1.]

Claim 2: We have
(
n

0

)
F

= 1 for each n ∈ N.

[Proof of Claim 2: Let n ∈ N. The definition of
(
n

0

)
F

yields

(
n

0

)
F

=


fnfn−1 · · · fn−0+1

f0f0−1 · · · f1
, if n ≥ 0 ≥ 0;

0, otherwise
=
fnfn−1 · · · fn−0+1

f0f0−1 · · · f1
(since n ≥ 0 ≥ 0)

=
(empty product)
(empty product)

= 1.

This proves Claim 2.]

Claim 3: We have
(
n

n

)
F

= 1 for each n ∈ N.

[Proof of Claim 3: Let n ∈ N. The definition of
(
n

n

)
F

yields

(
n

n

)
F

=


fnfn−1 · · · fn−n+1

fnfn−1 · · · f1
, if n ≥ n ≥ 0;

0, otherwise
=
fnfn−1 · · · fn−n+1

fnfn−1 · · · f1
(since n ≥ n ≥ 0)

=
fnfn−1 · · · f1
fnfn−1 · · · f1

= 1.

This proves Claim 3.]

Claim 4: We have
(
n

−1

)
F

= 0 for each n ∈ N.

[Proof of Claim 4: Let n ∈ N. The definition of
(
n

−1

)
F

yields

(
n

−1

)
F

=


fnfn−1 · · · fn−(−1)+1

f−1f−1−1 · · · f1
, if n ≥ −1 ≥ 0;

0, otherwise
= 0

(since we don’t have n ≥ −1 ≥ 0 (because we don’t have −1 ≥ 0)). This proves Claim 4.]
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Claim 5: We have
(
0

k

)
F

= [k = 0] for each k ∈ N (where we are using the

Iverson bracket notation).

[Proof of Claim 5: Let k ∈ N. We must prove that
(
0

k

)
F

= [k = 0].

Claim 2 yields
(
0

0

)
F

= 1. Comparing this with [0 = 0] = 1, we obtain
(
0

0

)
F

= [0 = 0].

In other words, Claim 5 holds for k = 0. Hence, for the rest of this proof, we WLOG assume
that k 6= 0. Thus, k > 0 (since k ∈ N). Hence, we don’t have 0 ≥ k. Thus, we don’t have
0 ≥ k ≥ 0.

Now, the definition of
(
0

k

)
F

yields

(
0

k

)
F

=


f0f0−1 · · · f0−k+1

fkfk−1 · · · f1
, if 0 ≥ k ≥ 0;

0, otherwise
= 0

(since we don’t have 0 ≥ k ≥ 0). Comparing this with

[k = 0] = 0 (since k 6= 0) ,

we obtain
(
0

k

)
F

= [k = 0]. This proves Claim 5.]

(a) Note that n − 1 ∈ N (since n is a positive integer). We are in one of the following
three cases:

Case 1: We have k = 0.
Case 2: We have k = n.
Case 3: We have neither k = 0 nor k = n.
Let us first consider Case 1. In this case, we have k = 0. Hence,

fk+1

(
n− 1

k

)
F

+ fn−k−1

(
n− 1

k − 1

)
F

= f0+1︸︷︷︸
=f1=1

(
n− 1

0

)
F︸ ︷︷ ︸

=1
(by Claim 2, applied
to n−1 instead of n)

+fn−0−1

(
n− 1

0− 1

)
F︸ ︷︷ ︸

=

(
n− 1

−1

)
F

=0

(by Claim 4, applied
to n−1 instead of n)

= 1 · 1 + fn−0−1 · 0 = 1.

Comparing this with (
n

k

)
F

=

(
n

0

)
F

(since k = 0)

= 1 (by Claim 2) ,

we obtain
(
n

k

)
F

= fk+1

(
n− 1

k

)
F

+ fn−k−1

(
n− 1

k − 1

)
F

. Thus, part (a) of the exercise is

solved in Case 1.
Let us next consider Case 2. In this case, we have k = n. The definition of

(
n− 1

n

)
F

yields (
n− 1

n

)
F

=


fn−1f(n−1)−1 · · · f(n−1)−n+1

fnfn−1 · · · f1
, if n− 1 ≥ n ≥ 0;

0, otherwise
= 0

Darij Grinberg, 00000000 10 dgrinber@umn.edu



Solutions to homework set #3 page 11 of 31

(since we don’t have n− 1 ≥ n ≥ 0 (since we don’t have n− 1 ≥ n)). Now, from k = n, we
obtain

fk+1

(
n− 1

k

)
F

+ fn−k−1

(
n− 1

k − 1

)
F

= fn+1

(
n− 1

n

)
F︸ ︷︷ ︸

=0

+ fn−n−1︸ ︷︷ ︸
=f−1=1

(
n− 1

n− 1

)
F︸ ︷︷ ︸

=1
(by Claim 3, applied
to n−1 instead of n)

= fn+1 · 0 + 1 · 1 = 1.

Comparing this with (
n

k

)
F

=

(
n

n

)
F

(since k = n)

= 1 (by Claim 3) ,

we obtain
(
n

k

)
F

= fk+1

(
n− 1

k

)
F

+ fn−k−1

(
n− 1

k − 1

)
F

. Thus, part (a) of the exercise is

solved in Case 2.
Let us finally consider Case 3. In this case, we have neither k = 0 nor k = n. Hence,

k 6= 0 and k 6= n. Combining k 6= 0 with k ≥ 0, we obtain k > 0. Combining k 6= n with
k ≤ n (which follows from n ≥ k), we obtain k < n. Combining k > 0 with k < n, we obtain
k ∈ {1, 2, . . . , n− 1} (since k and n are integers). Thus, 1 ≤ k ≤ n − 1, so that n − 1 ≥ k

and k ≥ 1. Thus, n − 1 ≥ k ≥ k − 1 ≥ 0 (since k ≥ 1). The definition of
(
n− 1

k

)
F

now

yields

(
n− 1

k

)
F

=


fn−1fn−1−1 · · · fn−1−k+1

fkfk−1 · · · f1
, if n− 1 ≥ k ≥ 0;

0, otherwise

=
fn−1fn−1−1 · · · fn−1−k+1

fkfk−1 · · · f1
(since n− 1 ≥ k ≥ 0)

=
fn−1fn−2 · · · fn−k
fkfk−1 · · · f1

=
(fn−1fn−2 · · · fn−k+1) · fn−k

fkfk−1 · · · f1

(here, we have split off the factor fn−k from the product in the numerator). Also, the

definition of
(
n− 1

k − 1

)
F

yields

(
n− 1

k − 1

)
F

=


fn−1fn−1−1 · · · fn−1−(k−1)+1

fk−1fk−1−1 · · · f1
, if n− 1 ≥ k − 1 ≥ 0;

0, otherwise

=
fn−1fn−1−1 · · · fn−1−(k−1)+1

fk−1fk−1−1 · · · f1
(since n− 1 ≥ k − 1 ≥ 0)

=
fn−1fn−2 · · · fn−k+1

fk−1fk−2 · · · f1
= fk ·

fn−1fn−2 · · · fn−k+1

fk · (fk−1fk−2 · · · f1)

= fk ·
fn−1fn−2 · · · fn−k+1

fkfk−1 · · · f1
(since fk · (fk−1fk−2 · · · f1) = fkfk−1 · · · f1) .
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Hence,

fk+1

(
n− 1

k

)
F︸ ︷︷ ︸

=
(fn−1fn−2 · · · fn−k+1) · fn−k

fkfk−1 · · · f1

+fn−k−1

(
n− 1

k − 1

)
F︸ ︷︷ ︸

=fk·
fn−1fn−2 · · · fn−k+1

fkfk−1 · · · f1

= fk+1 ·
(fn−1fn−2 · · · fn−k+1) · fn−k

fkfk−1 · · · f1
+ fn−k−1fk ·

fn−1fn−2 · · · fn−k+1

fkfk−1 · · · f1

= fk+1fn−k ·
fn−1fn−2 · · · fn−k+1

fkfk−1 · · · f1
+ fn−k−1fk ·

fn−1fn−2 · · · fn−k+1

fkfk−1 · · · f1

= (fk+1fn−k + fn−k−1fk) ·
fn−1fn−2 · · · fn−k+1

fkfk−1 · · · f1
. (6)

We have k ∈ N and n− k − 1 ∈ {−1, 0, 1, 2, . . .} (since n− k︸︷︷︸
≤n

−1 ≥ n− n− 1 = −1).

Hence, Claim 1 (applied to k and n− k − 1 instead of m and n) yields

fk+(n−k−1)+1 = fkfn−k−1︸ ︷︷ ︸
=fn−k−1fk

+fk+1 f(n−k−1)+1︸ ︷︷ ︸
=fn−k

= fn−k−1fk + fk+1fn−k = fk+1fn−k + fn−k−1fk.

Thus,
fk+1fn−k + fn−k−1fk = fk+(n−k−1)+1 = fn

(since k + (n− k − 1) + 1 = n). Hence, (6) becomes

fk+1

(
n− 1

k

)
F

+ fn−k−1

(
n− 1

k − 1

)
F

= (fk+1fn−k + fn−k−1fk)︸ ︷︷ ︸
=fn

·fn−1fn−2 · · · fn−k+1

fkfk−1 · · · f1
= fn ·

fn−1fn−2 · · · fn−k+1

fkfk−1 · · · f1

=
fn · (fn−1fn−2 · · · fn−k+1)

fkfk−1 · · · f1
=
fnfn−1 · · · fn−k+1

fkfk−1 · · · f1

(since fn · (fn−1fn−2 · · · fn−k+1) = fnfn−1 · · · fn−k+1). Comparing this with

(
n

k

)
F

=


fnfn−1 · · · fn−k+1

fkfk−1 · · · f1
, if n ≥ k ≥ 0;

0, otherwise

(
by the definition of

(
n

k

)
F

)

=
fnfn−1 · · · fn−k+1

fkfk−1 · · · f1
(since n ≥ k ≥ 0) ,

we obtain (
n

k

)
F

= fk+1

(
n− 1

k

)
F

+ fn−k−1

(
n− 1

k − 1

)
F

.

Thus, part (a) of the exercise is solved in Case 3.
We have now proven part (a) of the exercise in all three Cases 1, 2 and 3. Thus, part

(a) of the exercise always holds.

(b) We shall prove part (b) of the exercise by induction on n:
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Induction base: For each k ∈ N, we have(
0

k

)
F

= [k = 0] (by Claim 5)

∈ N.

In other words, part (b) of the exercise holds for n = 0. This completes the induction base.
Induction step: Let m be a positive integer. Assume (as the induction hypothesis) that

part (b) of the exercise holds for n = m − 1. We must prove that part (b) of the exercise
holds for n = m.

We have assumed that part (b) of the exercise holds for n = m− 1. In other words, we
have (

m− 1

k

)
F

∈ N for any k ∈ N. (7)

Now, let k ∈ N be arbitrary. We shall show that
(
m

k

)
F

∈ N.

We are in one of the following three cases:
Case 1: We have k = 0.
Case 2: We have k > m.
Case 3: We have neither k = 0 nor k > m.
Let us first consider Case 1. In this case, we have k = 0. Hence,

(
m

k

)
F

=

(
m

0

)
F

= 1

(by Claim 2). Thus,
(
m

k

)
F

= 1 ∈ N. Hence,
(
m

k

)
F

∈ N is proven in Case 1.

Let us next consider Case 2. In this case, we have k > m. Hence, we don’t have m ≥ k.

Thus, we don’t have m ≥ k ≥ 0. Now, the definition of
(
m

k

)
F

yields

(
m

k

)
F

=


fmfm−1 · · · fm−k+1

fkfk−1 · · · f1
, if m ≥ k ≥ 0;

0, otherwise

= 0 (since we don’t have m ≥ k ≥ 0)

∈ N.

Hence,
(
m

k

)
F

∈ N is proven in Case 2.

Let us finally consider Case 3. In this case, we have neither k = 0 nor k > m. Hence, we
have k 6= 0 and k ≤ m. From k 6= 0, we obtain k ≥ 1 (since k ∈ N), so that k−1 ∈ N. Hence,

(7) (applied to k − 1 instead of k) yields
(
m− 1

k − 1

)
F

∈ N. Also, (7) yields
(
m− 1

k

)
F

∈ N.

Furthermore, the Fibonacci sequence (f0, f1, f2, . . .) is a sequence of nonnegative integers;
thus, fi ∈ N for each i ∈ N. Since this holds for i = −1 as well (because f−1 = 1 ∈ N), we
can thus conclude that

fi ∈ N for each i ∈ {−1, 0, 1, 2, . . .} . (8)

Now, m− k︸︷︷︸
≤m

−1 ≥ m−m− 1 = −1, so that m− k− 1 ∈ {−1, 0, 1, 2, . . .}. Hence, (8)

(applied to i = m − k − 1) yields fm−k−1 ∈ N. Also, k + 1 ∈ N ⊆ {−1, 0, 1, 2, . . .}. Hence,
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(8) (applied to i = k+1) yields fk+1 ∈ N. Now, part (a) of the exercise (applied to n = m)
yields (

m

k

)
F

= fk+1︸︷︷︸
∈N

(
m− 1

k

)
F︸ ︷︷ ︸

∈N

+ fm−k−1︸ ︷︷ ︸
∈N

(
m− 1

k − 1

)
F︸ ︷︷ ︸

∈N

∈ N.

Hence,
(
m

k

)
F

∈ N is proven in Case 3.

We have now proven
(
m

k

)
F

∈ N in each of the three Cases 1, 2 and 3. Hence,
(
m

k

)
F

∈ N

always holds.

Now, forget that we fixed k. We thus have shown that
(
m

k

)
F

∈ N for any k ∈ N. In

other words, part (b) of the exercise holds for n = m. This completes the induction step.
Hence, part (b) of the exercise is solved by induction.

4.3 Remark

The numbers
(
n

k

)
F

defined in this exercise are the so-called Fibonomial coefficients. As the

name (and this exercise) suggests, they have lots of properties in common with the binomial
coefficients; there are numerous papers devoted to proving some of these properties. See,
for example:

• Arthur T. Benjamin and Sean S. Plott, A combinatorial approach to Fibonomial coef-
ficients, Fibonacci Quart. 46/47 (2008/2009), no. 1, pp. 7–9.

• Tewodros Amdeberhan, Xi Chen, Victor H. Moll, Bruce E. Sagan, Generalized Fi-
bonacci polynomials and Fibonomial coefficients, Annals of Combinatorics 18 (2014),
pp. 541–562. (Preprint: arXiv:1306.6511.)

• M. Dziemianczuk, Generalization of Fibonomial Coefficients, arXiv:0908.3248.

You can find more by searching for “Fibonomial coefficients” on Google Scholar.

5 Exercise 5

5.1 Problem

Let j ∈ N, r ∈ R and s ∈ R. Prove that

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
= sj.

[Hint: First, argue that it suffices to prove this only for s ∈ N and r ∈ Z satisfying
r ≥ sj. Next, consider r distinct stones, sj of which are arranged in j piles containing s
stones each, while the remaining r−sj stones are forming a separate heap. How many ways
are there to pick j of these r stones such that each of the j piles loses at least one stone?]
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5.2 Solution

5.2.1 First solution (sketched)

Here is a solution following the hint. (I have learnt it from Peter Scholze in the 2000s; it is the
proof of Lemma 1 in http://artofproblemsolving.com/community/c6h41800p287507 .)

We forget that we fixed r and s.
Let us first recall the principle of inclusion and exclusion:

Theorem 5.1. Let n ∈ N. Let A1, A2, . . . , An be finite sets.
(a) We have ∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n];
I 6=∅

(−1)|I|−1
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
(b) Let S be a finite set. Assume that each of A1, A2, . . . , An is a subset of S. Then,∣∣∣∣∣S \

n⋃
i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
Here, the “empty” intersection

⋂
i∈∅

Ai is understood to mean the set S.

Next, we recall the “polynomial identity trick” in the following form:

Lemma 5.2. If a polynomial P with real coefficients has infinitely many roots, then P is
the zero polynomial.

Let us now solve the exercise under some restrictive requirements on r and s:

Claim 1: Let r ∈ N and s ∈ N be such that r ≥ sj. Then,

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
= sj.

[Proof of Claim 1: Consider r (distinguishable) stones s1, s2, . . . , sr. Assume that sj
of these stones are arranged in j disjoint piles P1, P2, . . . , Pj, with each pile Pk containing
exactly s stones. The remaining r − sj stones are not contained in any pile; let’s say they
form the rest-heap.

(Formally speaking, this means that P1, P2, . . . , Pj are j disjoint s-element subsets of
{s1, s2, . . . , sr}; the rest-heap is then defined to be {s1, s2, . . . , sr} \ (P1 ∪ P2 ∪ · · · ∪ Pj). Of
course, such an arrangement of stones and piles is only possible because we have r ∈ N and
s ∈ N and r ≥ sj.)

A j-pick will mean a way to choose j of the r stones (i.e., a j-element subset of
{s1, s2, . . . , sr}).

If P is one of the j piles (that is, P ∈ {P1, P2, . . . , Pj}), and J is a j-pick, then we say
that J avoids P if and only if J contains no stone from P (that is, J ∩ P = ∅).

A j-pick is said to be legal if it avoids none of the j piles. Let N be the number of all
legal j-picks. We shall compute N in two different ways:

• If J is a legal j-pick, then J must contain at least 1 stone from P1, at least 1 stone
from P2, and so on (because it must avoid none of the j piles). But since it only
contains j stones altogether (because it is a j-pick), we thus conclude that it must
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contain exactly 1 stone from P1, exactly 1 stone from P2, and so on (and no stones
from the rest-heap)3. Hence, in order to choose a legal j-pick, it suffices to decide
which of the s stones from P1 it should contain, which of the s stones from P2 it
should contain, and so on. This is a total of j decisions (one for each pile Pk), and
each decision allows for s choices. Therefore, the total number of choices is sj. Hence,
the number N of all legal j-picks is sj. In other words,

N = sj. (9)

• Our second computation of N relies on Theorem 5.1 (b).

Indeed, let S be the set of all j-picks. For each i ∈ [j], we let Ai be the set of all j-picks
that avoid the pile Pi. Clearly, each of A1, A2, . . . , Aj is a subset of S. Moreover, if I
is any subset of [j], then ∣∣∣∣∣⋂

i∈I

Ai

∣∣∣∣∣ =
(
r − s |I|

j

)
. (10)

[Proof of (10): Let I be any subset of [j]. The piles Pi for i ∈ I are |I| many
disjoint s-element sets; thus, their union

⋃
i∈I
Pi is an s |I|-element set. In other words,∣∣∣∣⋃

i∈I
Pi

∣∣∣∣ = s |I|. But
⋃
i∈I
Pi is a subset of {s1, s2, . . . , sr}; thus,∣∣∣∣∣{s1, s2, . . . , sr} \⋃

i∈I

Pi

∣∣∣∣∣ = |{s1, s2, . . . , sr}|︸ ︷︷ ︸
=r

−

∣∣∣∣∣⋃
i∈I

Pi

∣∣∣∣∣︸ ︷︷ ︸
=s|I|

= r − s |I| .

For each i ∈ I, we have

Ai = (the set of all j-picks that avoid the pile Pi)
(by the definition of Ai)

= {J ∈ S | J avoids the pile Pi} (11)

(since the set of all j-picks is S). Thus,⋂
i∈I

Ai =
⋂
i∈I

{J ∈ S | J avoids the pile Pi}

= {J ∈ S | J avoids the pile Pi for each i ∈ I}
= {J ∈ S | J ∩ Pi = ∅ for each i ∈ I}

=

{
J ∈ S | J ∩

(⋃
i∈I

Pi

)
= ∅

}

=

{
J ∈ S | J ⊆ {s1, s2, . . . , sr} \

⋃
i∈I

Pi

}

=

{
j-element subsets of {s1, s2, . . . , sr} \

⋃
i∈I

Pi

}
3Indeed, if the legal j-pick J contained more than 1 stone from any single pile Pk, or any stone from the
rest-heap, then it would contain more than j stones altogether, which would contradict the fact that it
only contains j stones.
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(since “J ∈ S” simply means that J is a j-pick, i.e., a j-element subset of {s1, s2, . . . , sr}).
Hence, ∣∣∣∣∣⋂

i∈I

Ai

∣∣∣∣∣ =
∣∣∣∣∣
{
j-element subsets of {s1, s2, . . . , sr} \

⋃
i∈I

Pi

}∣∣∣∣∣
=

(∣∣∣∣{s1, s2, . . . , sr} \ ⋃
i∈I
Pi

∣∣∣∣
j

)
=

(
r − s |I|

j

)

(since
∣∣∣∣{s1, s2, . . . , sr} \ ⋃

i∈I
Pi

∣∣∣∣ = r − s |I|). This proves (10).]

Now, Theorem 5.1 (b) (applied to n = j) yields∣∣∣∣∣S \
j⋃
i=1

Ai

∣∣∣∣∣ = ∑
I⊆[j]︸︷︷︸

=
j∑

k=0

∑
I⊆[j];
|I|=k

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣︸ ︷︷ ︸
=

(
r − s |I|

j

)
(by (10))

=

j∑
k=0

∑
I⊆[j];
|I|=k

(−1)|I|
(
r − s |I|

j

)
︸ ︷︷ ︸
=(−1)k

(
r − sk
j

)
(since |I|=k)

=

j∑
k=0

∑
I⊆[j];
|I|=k

(−1)k
(
r − sk
j

)
︸ ︷︷ ︸

=(the number of all I⊆[j] such that |I|=k)(−1)k
(
r − sk
j

)
=

j∑
k=0

(the number of all I ⊆ [j] such that |I| = k)︸ ︷︷ ︸
=(the number of all k-element subsets of [j])

=

(
j

k

) (−1)k
(
r − sk
j

)

=

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
. (12)

But for each i ∈ [j], we have defined Ai to be the set of all j-picks that avoid the pile
Pi. Thus,

S \
j⋃
i=1

Ai = (the set of all j-picks that avoid none of the j piles P1, P2, . . . , Pj)

= (the set of all legal j-picks)

(because of how we defined “legal”). Hence,∣∣∣∣∣S \
j⋃
i=1

Ai

∣∣∣∣∣ = (the number of all legal j-picks) = N
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(by the definition of N). Comparing this with (12), we obtain

N =

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
. (13)

Comparing (9) with (13), we find

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
= sj.

This proves Claim 1.]
Next, we shall use the polynomial identity trick to extend Claim 1 to somewhat greater

generality (allowing r to roam freely across R, while s still has to belong to N):

Claim 2: Let r ∈ R and s ∈ N. Then,

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
= sj.

[Proof of Claim 2: Forget that we fixed r. Let P be the polynomial in the indeterminate
x (with real coefficients) defined by

P =

j∑
k=0

(−1)k
(
j

k

)(
x− sk
j

)
− sj. (14)

Then, for each r ∈ N satisfying r ≥ sj, we have

P (r) =

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
︸ ︷︷ ︸

=sj
(by Claim 1)

−sj = sj − sj = 0.

In other words, each r ∈ N satisfying r ≥ sj is a root of the polynomial P . Hence, the
polynomial P has infinitely many roots (since there are infinitely many such r). Thus,
Lemma 5.2 shows that P is the zero polynomial. In other words, P = 0.

Now, let r ∈ R. From P = 0, we obtain P (r) = 0. Thus,

0 = P (r) =

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
− sj

(by (14)). In other words,

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
= sj.

This proves Claim 2.]
Applying the polynomial identity trick one more time, we can achieve the full generality

required in the exercise:
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Claim 3: Let r ∈ R and s ∈ R. Then,

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
= sj.

[Proof of Claim 3: Forget that we fixed s. Let P be the polynomial in the indeterminate
x (with real coefficients) defined by

P =

j∑
k=0

(−1)k
(
j

k

)(
r − xk
j

)
− xj. (15)

Then, for each s ∈ N, we have

P (s) =

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
︸ ︷︷ ︸

=sj
(by Claim 2)

−sj = sj − sj = 0.

In other words, each s ∈ N is a root of the polynomial P . Hence, the polynomial P has
infinitely many roots. Thus, Lemma 5.2 shows that P is the zero polynomial. In other
words, P = 0.

Now, let s ∈ R. From P = 0, we obtain P (s) = 0. Thus,

0 = P (s) =

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
− sj

(by (15)). In other words,

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
= sj.

This proves Claim 3.]
But Claim 3 is precisely the claim of the exercise. Thus, the exercise is solved.

5.2.2 Second solution

We can also solve the exercise in a purely algebraic way, without having to rely on the
polynomial identity trick and coming up with counting problems.

Let us forget that we fixed j, r and s.
We shall use the Iverson bracket notation. We first recall two fundamental facts about

binomial coefficients:

• Every n ∈ N satisfies
n∑
k=0

(−1)k
(
n

k

)
= [n = 0] . (16)

(This was proven in class (Corollary 2.3 on 2018-09-19).)
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• Every n ∈ R and k ∈ {1, 2, 3, . . .} satisfy

k

(
n

k

)
= n

(
n− 1

k − 1

)
. (17)

(This is the so-called absorption identity, and can easily be checked by hand4. Note
that it also holds for all k ∈ R, but we will only need it for k ∈ {1, 2, 3, . . .}.)

We now make a definition:

Definition 5.3. Let j ∈ Z, i ∈ N, r ∈ R and s ∈ R. Then, we define a number Lr,s,j,i ∈ R
by

Lr,s,j,i =

j∑
k=0

(−1)k
(
j

k

)(
r − sk
i

)
. (19)

(Note that the sum on the right hand side of this equality is an empty sum when j < 0.)

Notice that this definition is more general than the sum appearing in the exercise; indeed,
the latter sum is Lr,s,j,j. It turns out that this extra generality allows a recursive approach
that wouldn’t be possible if we would only be considering the Lr,s,j,j’s in isolation.

The main thrust of our recursive approach runs through the following lemma:

Lemma 5.4. Let j ∈ N, r ∈ R and s ∈ R.
(a) We have Lr,s,j,0 = [j = 0].
(b) Let i be a positive integer. Then,

iLr,s,j,i = rLr−1,s,j,i−1 + sjLr−1−s,s,j−1,i−1.

4Proof of (17). Let n ∈ R and k ∈ {1, 2, 3, . . .}. Thus, k − 1 ∈ N (since k ∈ {1, 2, 3, . . .}); hence, the

definition of
(
n− 1

k − 1

)
yields

(
n− 1

k − 1

)
=

(n− 1) ((n− 1)− 1) · · · ((n− 1)− (k − 1) + 1)

(k − 1)!
=

(n− 1) (n− 2) · · · (n− k + 1)

(k − 1)!
.

Multiplying both sides of this equality by n, we obtain

n

(
n− 1

k − 1

)
= n · (n− 1) (n− 2) · · · (n− k + 1)

(k − 1)!
=
n · ((n− 1) (n− 2) · · · (n− k + 1))

(k − 1)!

=
n (n− 1) · · · (n− k + 1)

(k − 1)!
(18)

(since n · ((n− 1) (n− 2) · · · (n− k + 1)) = n (n− 1) · · · (n− k + 1)). On the other hand, k! = k · (k − 1)!

(since k ∈ {1, 2, 3, . . .}). Also, k ∈ {1, 2, 3, . . .} ⊆ N. Hence, the definition of
(
n

k

)
yields

(
n

k

)
=
n (n− 1) · · · (n− k + 1)

k!
=
n (n− 1) · · · (n− k + 1)

k · (k − 1)!

(since k! = k · (k − 1)!). Multiplying both sides of this equality by k, we obtain

k

(
n

k

)
= k · n (n− 1) · · · (n− k + 1)

k · (k − 1)!
=
n (n− 1) · · · (n− k + 1)

(k − 1)!
= n

(
n− 1

k − 1

)
(by (18)). This proves (17).
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Proof of Lemma 5.4. (a) The definition of Lr,s,j,0 yields

Lr,s,j,0 =

j∑
k=0

(−1)k
(
j

k

)(
r − sk

0

)
︸ ︷︷ ︸

=1

=

j∑
k=0

(−1)k
(
j

k

)
= [j = 0]

(by (16), applied to n = j). This proves Lemma 5.4 (a).
(b) We have i− 1 ∈ N (since i is a positive integer). Thus, the definition of Lr−1,s,j,i−1

yields

Lr−1,s,j,i−1 =

j∑
k=0

(−1)k
(
j

k

)(
(r − 1)− sk

i− 1

)
︸ ︷︷ ︸
=

(
r − sk − 1

i− 1

)
=

j∑
k=0

(−1)k
(
j

k

)(
r − sk − 1

i− 1

)
. (20)

Also, the definition of Lr−1−s,s,j−1,i−1 yields

Lr−1−s,s,j−1,i−1 =

j−1∑
k=0

(−1)k
(
j − 1

k

)(
(r − 1− s)− sk

i− 1

)

=

j∑
k=1

(−1)k−1
(
j − 1

k − 1

)(
(r − 1− s)− s (k − 1)

i− 1

)
︸ ︷︷ ︸

=

(
r − sk − 1

i− 1

)
(since (r−1−s)−s(k−1)=r−sk−1)

(here, we have substituted k − 1 for k in the sum)

=

j∑
k=1

(−1)k−1
(
j − 1

k − 1

)(
r − sk − 1

i− 1

)
. (21)

Now,
j∑

k=0

(−1)k k
(
j

k

)(
r − sk − 1

i− 1

)

= (−1)0 0
(
j

0

)(
r − s0− 1

i− 1

)
︸ ︷︷ ︸

=0

+

j∑
k=1

(−1)k︸ ︷︷ ︸
=−(−1)k−1

k

(
j

k

)
︸ ︷︷ ︸

=j

(
j − 1

k − 1

)
(by (17), applied to j

instead of n)

(
r − sk − 1

i− 1

)

(here, we have split off the addend for k = 0 from the sum)

=

j∑
k=1

(
− (−1)k−1

)
j

(
j − 1

k − 1

)(
r − sk − 1

i− 1

)
= −j

j∑
k=1

(−1)k−1
(
j − 1

k − 1

)(
r − sk − 1

i− 1

)
︸ ︷︷ ︸

=Lr−1−s,s,j−1,i−1

(by (21))

= −jLr−1−s,s,j−1,i−1. (22)
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Also, i ∈ {1, 2, 3, . . .} (since i is a positive integer). Multiplying both sides of the equality
(19) with i, we obtain

iLr,s,j,i = i

j∑
k=0

(−1)k
(
j

k

)(
r − sk
i

)
=

j∑
k=0

(−1)k
(
j

k

)
i

(
r − sk
i

)
︸ ︷︷ ︸

=(r−sk)

(
r − sk − 1

i− 1

)
(by (17), applied to r−sk
and i instead of n and k)

=

j∑
k=0

(−1)k
(
j

k

)
(r − sk)

(
r − sk − 1

i− 1

)
︸ ︷︷ ︸

=r(−1)k
(
j

k

)(
r − sk − 1

i− 1

)
−s(−1)kk

(
j

k

)(
r − sk − 1

i− 1

)
=

j∑
k=0

(
r (−1)k

(
j

k

)(
r − sk − 1

i− 1

)
− s (−1)k k

(
j

k

)(
r − sk − 1

i− 1

))

= r

j∑
k=0

(−1)k
(
j

k

)(
r − sk − 1

i− 1

)
︸ ︷︷ ︸

=Lr−1,s,j,i−1

(by (20))

−s
j∑

k=0

(−1)k k
(
j

k

)(
r − sk − 1

i− 1

)
︸ ︷︷ ︸

=−jLr−1−s,s,j−1,i−1

(by (22))

= rLr−1,s,j,i−1 − s (−jLr−1−s,s,j−1,i−1) = rLr−1,s,j,i−1 + sjLr−1−s,s,j−1,i−1.

This proves Lemma 5.4 (b).

Using the above lemma and a straightforward induction, we can now prove more than
the exercise demands:

Theorem 5.5. Let j ∈ N, r ∈ R and s ∈ R.
(a) We have Lr,s,j,i = 0 for each i ∈ N satisfying i < j.
(b) We have Lr,s,j,j = sj.

Proof of Theorem 5.5. Forget that we fixed j, r and s.
(a) We can rewrite the claim of Theorem 5.5 (a) as follows:

Lr,s,j,i = 0 for each r ∈ R, s ∈ R, j ∈ N and i ∈ N satisfying i < j. (23)

Let us prove (23) by induction on i:
Induction base: We have Lr,s,j,0 = 0 for each r ∈ R, s ∈ R and j ∈ N satisfying 0 < j

5. In other words, (23) holds for i = 0. This completes the induction base.
Induction step: Let h ∈ N. Assume that (23) holds for i = h. We must prove that (23)

holds for i = h+ 1.
We have assumed that (23) holds for i = h. In other words, we have

Lr,s,j,h = 0 for each r ∈ R, s ∈ R and j ∈ N satisfying h < j. (24)

Now, let r ∈ R, s ∈ R and j ∈ N be such that h + 1 < j. We shall prove that
Lr,s,j,h+1 = 0.

5Proof. Let r ∈ R, s ∈ R and j ∈ N be such that 0 < j. From 0 < j, we obtain j > 0, so that j 6= 0.
Hence, [j = 0] = 0. Now, Lemma 5.4 (a) yields Lr,s,j,0 = [h+ 1 = 0] = 0. Qed.
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We have h < h+ 1 < j. Hence, (24) (applied to r − 1 instead of r) yields Lr−1,s,j,h = 0.
Also, from h < j, we obtain j > h ≥ 0; thus, j is a positive integer. Hence, j− 1 ∈ N. Also,
h < j − 1 (since h+ 1 < j). Thus, (24) (applied to r − 1− s and j − 1 instead of r and j)
yields Lr−1−s,s,j−1,h = 0.

But h+1 is a positive integer (since h ∈ N). Hence, Lemma 5.4 (b) (applied to i = h+1)
yields

(h+ 1)Lr,s,j,h+1 = rLr−1,s,j,(h+1)−1 + sjLr−1−s,s,j−1,(h+1)−1

= r Lr−1,s,j,h︸ ︷︷ ︸
=0

+sj Lr−1−s,s,j−1,h︸ ︷︷ ︸
=0

(since (h+ 1)− 1 = h)

= r0 + sj0 = 0.

We can divide both sides of this equality by h + 1 (since h + 1 ≥ 1 > 0), and thus obtain
Lr,s,j,h+1 = 0.

Now, forget that we fixed r, s and j. We thus have shown that

Lr,s,j,h+1 = 0 for each r ∈ R, s ∈ R and j ∈ N satisfying h+ 1 < j.

In other words, (23) holds for i = h+ 1. This completes the induction step. Hence, (23) is
proven by induction.

In other words, Theorem 5.5 (a) is proven.
(b) Let us prove Theorem 5.5 (b) by induction on j:
Induction base: We have Lr,s,0,0 = s0 for each r ∈ R and s ∈ R 6. In other words,

Theorem 5.5 (b) holds for j = 0. This completes the induction base.
Induction step: Let h ∈ N. Assume that Theorem 5.5 (b) holds for j = h. We must

prove that Theorem 5.5 (b) holds for j = h+ 1.
We have assumed that Theorem 5.5 (b) holds for j = h. In other words, we have

Lr,s,h,h = sh for each r ∈ R and s ∈ R. (25)

Now, let r ∈ R and s ∈ R. We shall prove that Lr,s,h+1,h+1 = sh+1.
We have h < h + 1. Hence, Theorem 5.5 (a) (applied to r − 1, h + 1 and h instead

of r, j and i) yields Lr−1,s,h+1,h = 0. Also, (25) (applied to r − 1 − s instead of r) yields
Lr−1−s,s,h,h = sh.

But h+1 is a positive integer (since h ∈ N). Hence, Lemma 5.4 (b) (applied to j = h+1
and i = h+ 1) yields

(h+ 1)Lr,s,h+1,h+1 = rLr−1,s,h+1,(h+1)−1 + s (h+ 1)Lr−1−s,s,(h+1)−1,(h+1)−1

= r Lr−1,s,h+1,h︸ ︷︷ ︸
=0

+s (h+ 1)Lr−1−s,s,h,h︸ ︷︷ ︸
=sh

(since (h+ 1)− 1 = h)

= r0 + s (h+ 1) sh = s (h+ 1) sh = (h+ 1) ssh.

We can divide both sides of this equality by h + 1 (since h + 1 ≥ 1 > 0), and thus obtain
Lr,s,h+1,h+1 = ssh = sh+1.

Now, forget that we fixed r and s. We thus have shown that

Lr,s,h+1,h+1 = sh+1 for each r ∈ R and s ∈ R.

In other words, Theorem 5.5 (b) holds for j = h + 1. This completes the induction step.
Hence, Theorem 5.5 (b) is proven by induction.

6Proof. Let r ∈ R and s ∈ R. Lemma 5.4 (a) (applied to j = 0) yields Lr,s,0,0 = [0 = 0] = 1 = s0. Qed.
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Now, let j ∈ N, r ∈ R and s ∈ R. Then, Lr,s,j,j =
j∑

k=0

(−1)k
(
j

k

)(
r − sk
j

)
(by the

definition of Lr,s,j,j). Hence,

j∑
k=0

(−1)k
(
j

k

)(
r − sk
j

)
= Lr,s,j,j = sj

(by Theorem 5.5 (b)).

5.2.3 Remark

Theorem 5.5 (a) can also be proven in a similar way to the First solution; this time, however,
we need to consider i-picks (i.e., ways to choose i of the r stones), and argue that no i-pick
is legal when i < j.

Yet another algebraic solution of the above exercise (using finite differences) can be
found in:

• Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd
edition 1994, proof of (5.43).

6 Exercise 6

6.1 Problem

Let n ∈ N. The summation sign
∑
I⊆[n]

shall always stand for a sum over all subsets I of [n].

(This sum has 2n addends.)
Let A1, A2, . . . , An be n numbers or polynomials or square matrices of the same size.

(Allowing matrices means that AiAj is not necessarily equal to AjAi, so beware of using the
binomial formula or similar identities!)

(a) Show that

∑
I⊆[n]

(−1)n−|I|
(∑

i∈I

Ai

)m

=
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}=[n]

Ai1Ai2 · · ·Aim for all m ∈ N.

(Example: If n = 2 and m = 3, then this is saying

(A+B)3 − A3 −B3 + 03 = AAB + ABA+ ABB +BAA+BAB +BBA,

where we have renamed A1 and A2 as A and B.)

(b) Show that

∑
I⊆[n]

(−1)n−|I|
(∑

i∈I

Ai

)m

= 0 for all m ∈ N satisfying m < n.
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(Example: If n = 3 and m = 2, then this is saying

(A+B + C)2 − (A+B)2 − (A+ C)2 − (B + C)2 + A2 +B2 + C2 − 02 = 0,

where we have renamed A1, A2, A3 as A,B,C.)

(c) Show that ∑
I⊆[n]

(−1)n−|I|
(∑

i∈I

Ai

)n

=
∑
σ∈Sn

Aσ(1)Aσ(2) · · ·Aσ(n),

where Sn stands for the set of all (n!) permutations of [n].

(Example: If n = 3, then this is saying

(A+B + C)3 − (A+B)3 − (A+ C)3 − (B + C)3 + A3 +B3 + C3 − 03

= ABC + ACB +BAC +BCA+ CAB + CBA,

where we have renamed A1, A2, A3 as A,B,C.)

[Hint: You can use the product rule, which says the following:

Proposition 6.1 (Product rule). Let m and n be two nonnegative integers. Let Pu,v, for
all u ∈ [m] and v ∈ [n], be numbers or polynomials or square matrices of the same size.
Then,

(P1,1 + P1,2 + · · ·+ P1,n) (P2,1 + P2,2 + · · ·+ P2,n) · · · (Pm,1 + Pm,2 + · · ·+ Pm,n)

=
∑

(i1,i2,...,im)∈[n]m
P1,i1P2,i2 · · ·Pm,im .

(This frightening formula merely says that a product of sums can be expanded, and the result
will be a sum of products, with each of the latter products being obtained by multiplying
together one addend from each sum. You have probably used this sometime already.)

]

6.2 Remark

This exercise is [Grinbe16, Exercise 6.50] with a minor difference in its wording (namely,∑
(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}=[n]

Ai1Ai2 · · ·Aim is rewritten as
∑

f :[m]→[n];
f is surjective

Af(1)Af(2) · · ·Af(m),

by substituting (f (1) , f (2) , . . . , f (m)) for (i1, i2, . . . , im) in the sum). The solution given
below is more or less identical to the solution given in [Grinbe16].

Identities like those in the above exercise are known as “polarization identities”.

6.3 Solution (sketched)

Before we come to actually solving the problem, let us restate Proposition 6.1 in a more
convenient form:
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Proposition 6.2 (Product rule). Let m ∈ N. Let I be a finite set. Let Pu,v, for all u ∈ [m]
and v ∈ I, be numbers or polynomials or square matrices of the same size. Then,(∑

i∈I

P1,i

)(∑
i∈I

P2,i

)
· · ·

(∑
i∈I

Pm,i

)
=

∑
(i1,i2,...,im)∈Im

P1,i1P2,i2 · · ·Pm,im .

Proof of Proposition 6.2. Let n = |I|. Then, there is a bijection φ : I → [n]. Consider such
a φ.

The set I is only used for labeling the elements Pu,v; thus, we can WLOG assume that
I = [n] (since otherwise, we can just rename Pu,v as Pu,φ(v)). Assume this; then, Proposition
6.2 follows immediately from Proposition 6.1.

We shall use the Iverson bracket notation.
Next, we recall the principle of “destructive interference” that we have seen in class

(Theorem 2.24 in class work (2018-10-01)):

Proposition 6.3. Let G be a finite set. Then,∑
I⊆G

(−1)|I| = [G = ∅] .

We shall use a slightly more general version of this principle:

Proposition 6.4. Let G be a finite set. Let S be a subset of G. Then,∑
I⊆G;
S⊆I

(−1)|I| = (−1)|S| [G = S] .

Example 6.5. Applying Proposition 6.4 to G = {1, 2, 3, 4} and S = {1, 2}, we find

(−1)|{1,2}| + (−1)|{1,2,3}| + (−1)|{1,2,4}| + (−1)|{1,2,3,4}|

= (−1)|{1,2}| [{1, 2, 3, 4} = {1, 2}] .

Indeed, both sides of this equality are 0 (the left hand side because the addends cancel; the
right hand side because {1, 2, 3, 4} 6= {1, 2}).

Clearly, Proposition 6.3 is the particular case of Proposition 6.4 when S = ∅ (since
every subset I of G satisfies ∅ ⊆ I).

There are two ways to prove Proposition 6.4: One is to derive it from Proposition
6.3 (by applying the latter proposition to G \ S instead of G, using a bijection between
{I ⊆ G \ S} and {I ⊆ G | S ⊆ I}). Another is by generalizing the 2nd proof that we gave
for Proposition 6.3 in class. We shall follow the second way:

Proof of Proposition 6.4. If G = S, then Proposition 6.4 holds7. Hence, for the rest of this
proof, we WLOG assume that we don’t have G = S. Thus, [G = S] = 0. If we had G ⊆ S,

7Proof. Assume that G = S. Thus,
∑

I⊆G;
S⊆I

(−1)|I| =
∑

I⊆G;
G⊆I

(−1)|I|.

But there exists only one subset I of G satisfying G ⊆ I: namely, G itself. Thus, the sum
∑

I⊆G;
G⊆I

(−1)|I|

has only one addend: namely, the addend for I = G. Hence, this sum simplifies as follows:
∑

I⊆G;
G⊆I

(−1)|I| =
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then we would have G = S (since S ⊆ G), which would contradict the fact that we don’t
have G = S. Hence, we cannot have G ⊆ S. In other words, we have G 6⊆ S. Hence, there
exists some g ∈ G such that g /∈ S. Consider such a g.

The map8

{I ⊆ G | S ⊆ I and g /∈ I} → {I ⊆ G | S ⊆ I and g ∈ I} ,
J 7→ J ∪ {g}

is well-defined (since g ∈ G). The map

{I ⊆ G | S ⊆ I and g ∈ I} → {I ⊆ G | S ⊆ I and g /∈ I} ,
K 7→ K \ {g}

is also well-defined (since g /∈ S, and therefore every set K satisfying S ⊆ K must also
satisfy S ⊆ K \{g}). These two maps are mutually inverse9, and thus are bijections. Hence,
in particular, the map

{I ⊆ G | S ⊆ I and g /∈ I} → {I ⊆ G | S ⊆ I and g ∈ I} ,
J 7→ J ∪ {g}

is a bijection. Thus, we can substitute J ∪{g} for I in the sum
∑
I⊆G;
S⊆I;
g∈I

(−1)|I|. We thus obtain

∑
I⊆G;
S⊆I;
g∈I

(−1)|I| =
∑
J⊆G;
S⊆J ;
g/∈J

(−1)|J∪{g}|︸ ︷︷ ︸
=(−1)|J|+1

(since |J∪{g}|=|J |+1
(because g/∈J))

=
∑
J⊆G;
S⊆J ;
g/∈J

(−1)|J |+1︸ ︷︷ ︸
=−(−1)|J|

= −
∑
J⊆G;
S⊆J ;
g/∈J

(−1)|J |

= −
∑
I⊆G;
S⊆I;
g/∈I

(−1)|I| (26)

(here, we have renamed the summation index J as I).
But each subset I of G satisfying S ⊆ I must satisfy either g ∈ I or g /∈ I. Hence, we

(−1)|G|. Hence,∑
I⊆G;
S⊆I

(−1)|I| =
∑
I⊆G;
G⊆I

(−1)|I| = (−1)|G| = (−1)|S| (since G = S) .

Comparing this with (−1)|S| [G = S]︸ ︷︷ ︸
=1

(since G=S)

= (−1)|S|, we obtain
∑

I⊆G;
S⊆I

(−1)|I| = (−1)|S| [G = S]. Hence,

Proposition 6.4 is proven under the assumption that G = S.
8The notation “{I ⊆ G | S ⊆ I and g /∈ I}” means “the set of all subsets I of G satisfying S ⊆ I and
g /∈ I”. Similarly, the notation “{I ⊆ G | S ⊆ I and g ∈ I}” should be understood.

9because:

• every subset J of G satisfying g /∈ J must satisfy (J ∪ {g}) \ {g} = J ;

• every subset K of G satisfying g ∈ K must satisfy (K \ {g}) ∪ {g} = K
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can split the sum
∑
I⊆G;
S⊆I

(−1)|I| as follows:

∑
I⊆G;
S⊆I

(−1)|I| =
∑
I⊆G;
S⊆I;
g∈I

(−1)|I|

︸ ︷︷ ︸
=−

∑
I⊆G;
S⊆I;
g/∈I

(−1)|I|

(by (26))

+
∑
I⊆G;
S⊆I;
g/∈I

(−1)|I| = −
∑
I⊆G;
S⊆I;
g/∈I

(−1)|I| +
∑
I⊆G;
S⊆I;
g/∈I

(−1)|I| = 0.

Comparing this with
(−1)|S| [G = S]︸ ︷︷ ︸

=0

= 0,

we obtain
∑
I⊆G;
S⊆I

(−1)|I| = (−1)|S| [G = S]. This proves Proposition 6.4.

Corollary 6.6. Let G be a finite set. Let S be a subset of G. Then,∑
I⊆G;
S⊆I

(−1)|G|−|I| = [G = S] .

Proof of Corollary 6.6. We have∑
I⊆G;
S⊆I

(−1)|G|−|I|︸ ︷︷ ︸
=(−1)|G|+|I|

(since |G|−|I|≡|G|+|I|mod 2)

=
∑
I⊆G;
S⊆I

(−1)|G|+|I|︸ ︷︷ ︸
=(−1)|G|(−1)|I|

=
∑
I⊆G;
S⊆I

(−1)|G| (−1)|I|

= (−1)|G|
∑
I⊆G;
S⊆I

(−1)|I|

︸ ︷︷ ︸
=(−1)|S|[G=S]

(by Proposition 6.4)

= (−1)|G| (−1)|S| [G = S]︸ ︷︷ ︸
=

1, if G = S;

0, otherwise

= (−1)|G| (−1)|S|
{
1, if G = S;

0, otherwise

=

{
(−1)|G| (−1)|S| · 1, if G = S;

0, otherwise
=

{
1, if G = S;

0, otherwise(
because if G = S,

then (−1)|G| (−1)|S| · 1 = (−1)|S| (−1)|S| · 1 =
(
(−1)|S|

)2
= (−1)2|S| = 1

)
= [G = S] .

This proves Corollary 6.6.

Let us now proceed to the solution of the problem.
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(a) Fix m ∈ N. For each subset I of [n], we have(∑
i∈I

Ai

)m

=

(∑
i∈I

Ai

)(∑
i∈I

Ai

)
· · ·

(∑
i∈I

Ai

)
︸ ︷︷ ︸

m times

=
∑

(i1,i2,...,im)∈Im
Ai1Ai2 · · ·Aim

(by Proposition 6.2, applied to Pu,v = Av). Hence,

∑
I⊆[n]

(−1)n−|I|
(∑

i∈I

Ai

)m

︸ ︷︷ ︸
=

∑
(i1,i2,...,im)∈Im

Ai1
Ai2
···Aim

=
∑
I⊆[n]

(−1)n−|I|︸ ︷︷ ︸
=(−1)|[n]|−|I|

(since n=|[n]|)

∑
(i1,i2,...,im)∈Im︸ ︷︷ ︸

=
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}⊆I

(because an m-tuple (i1,i2,...,im)∈Im
is the same thing as

an m-tuple (i1,i2,...,im)∈[n]m
satisfying {i1,i2,...,im}⊆I)

Ai1Ai2 · · ·Aim

=
∑
I⊆[n]

(−1)|[n]|−|I|
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}⊆I

Ai1Ai2 · · ·Aim

=
∑
I⊆[n]

∑
(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}⊆I︸ ︷︷ ︸

=
∑

(i1,i2,...,im)∈[n]m

∑
I⊆[n];

{i1,i2,...,im}⊆I

(−1)|[n]|−|I|Ai1Ai2 · · ·Aim

=
∑

(i1,i2,...,im)∈[n]m

∑
I⊆[n];

{i1,i2,...,im}⊆I

(−1)|[n]|−|I|

︸ ︷︷ ︸
=[[n]={i1,i2,...,im}]
(by Corollary 6.6,

applied to G=[n] and S={i1,i2,...,im})

Ai1Ai2 · · ·Aim

=
∑

(i1,i2,...,im)∈[n]m
[[n] = {i1, i2, . . . , im}]︸ ︷︷ ︸

=[{i1,i2,...,im}=[n]]

Ai1Ai2 · · ·Aim

=
∑

(i1,i2,...,im)∈[n]m
[{i1, i2, . . . , im} = [n]]Ai1Ai2 · · ·Aim

=
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}=[n]

[{i1, i2, . . . , im} = [n]]︸ ︷︷ ︸
=1

(since {i1,i2,...,im}=[n])

Ai1Ai2 · · ·Aim

+
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}6=[n]

[{i1, i2, . . . , im} = [n]]︸ ︷︷ ︸
=0

(since {i1,i2,...,im}6=[n])

Ai1Ai2 · · ·Aim

(
since each (i1, i2, . . . , im) ∈ [n]m satisfies either {i1, i2, . . . , im} = [n]

or {i1, i2, . . . , im} 6= [n] (but not both)

)
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=
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}=[n]

Ai1Ai2 · · ·Aim +
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}6=[n]

0Ai1Ai2 · · ·Aim

︸ ︷︷ ︸
=0

=
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}=[n]

Ai1Ai2 · · ·Aim .

This solves part (a) of the exercise.

(b) Let m ∈ N be such that m < n.
Then, each (i1, i2, . . . , im) ∈ [n]m satisfies |{i1, i2, . . . , im}| ≤ m < n = |[n]| and there-

fore |{i1, i2, . . . , im}| 6= |[n]|, so that {i1, i2, . . . , im} 6= [n]. In other words, there exists no
(i1, i2, . . . , im) ∈ [n]m satisfying {i1, i2, . . . , im} = [n].

Hence, the sum
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}=[n]

Ai1Ai2 · · ·Aim is an empty sum, and thus equals 0. In

other words, ∑
(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}=[n]

Ai1Ai2 · · ·Aim = 0.

Hence, part (a) of the exercise yields

∑
I⊆[n]

(−1)n−|I|
(∑

i∈I

Ai

)m

=
∑

(i1,i2,...,im)∈[n]m;
{i1,i2,...,im}=[n]

Ai1Ai2 · · ·Aim = 0.

This solves part (b) of the exercise.

(c) Consider the set Sn of all permutations of the set [n]. If σ ∈ Sn, then the n-tuple
(σ (1) , σ (2) , . . . , σ (n)) is an (i1, i2, . . . , in) ∈ [n]n satisfying {i1, i2, . . . , in} = [n] (because
{σ (1) , σ (2) , . . . , σ (n)} = σ ([n]) = [n] (since σ is surjective))10. Thus, the map

Sn → {(i1, i2, . . . , in) ∈ [n]n | {i1, i2, . . . , in} = [n]} ,
σ 7→ (σ (1) , σ (2) , . . . , σ (n))

is well-defined. Moreover, this map is injective (since a permutation σ ∈ Sn is uniquely
determined by (σ (1) , σ (2) , . . . , σ (n))) and surjective11. Hence, this map is bijective, i.e.,
is a bijection.

10Note that this n-tuple (σ (1) , σ (2) , . . . , σ (n)) is the one-line notation of the permutation σ.
11Proof. Let (j1, j2, . . . , jn) ∈ {(i1, i2, . . . , in) ∈ [n]

n | {i1, i2, . . . , in} = [n]}. We must prove that there
exists some σ ∈ Sn such that (j1, j2, . . . , jn) = (σ (1) , σ (2) , . . . , σ (n)).
Indeed, we have (j1, j2, . . . , jn) ∈ {(i1, i2, . . . , in) ∈ [n]

n | {i1, i2, . . . , in} = [n]}. In other words,
(j1, j2, . . . , jn) is an n-tuple in [n]

n and satisfies {j1, j2, . . . , jn} = [n]. Now, let f : [n] → [n]
be the map that sends 1, 2, . . . , n to j1, j2, . . . , jn, respectively. Then, the image of this map f is
f ([n]) = {j1, j2, . . . , jn} = [n]; hence, this map f is surjective. But a surjective map between two
finite sets of the same size must always be bijective (by the Pigeonhole Principle for surjections). Hence,
f is bijective (since f is a surjective map between two finite sets of the same size). Thus, f is a bijection
from [n] to [n]. In other words, f is a permutation of [n]. In other words, f ∈ Sn. Also, the definition
of f yields (f (1) , f (2) , . . . , f (n)) = (j1, j2, . . . , jn), so that (j1, j2, . . . , jn) = (f (1) , f (2) , . . . , f (n)).
Hence, there exists some σ ∈ Sn such that (j1, j2, . . . , jn) = (σ (1) , σ (2) , . . . , σ (n)) (namely, σ = f).

Qed.
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Now, part (a) of the exercise (applied to m = n) yields

∑
I⊆[n]

(−1)n−|I|
(∑

i∈I

Ai

)n

=
∑

(i1,i2,...,in)∈[n]n;
{i1,i2,...,in}=[n]

Ai1Ai2 · · ·Ain =
∑
σ∈Sn

Aσ(1)Aσ(2) · · ·Aσ(n)

(here, we have substituted (σ (1) , σ (2) , . . . , σ (n)) for (i1, i2, . . . , in) in the sum, because the
map

Sn → {(i1, i2, . . . , in) ∈ [n]n | {i1, i2, . . . , in} = [n]} ,
σ 7→ (σ (1) , σ (2) , . . . , σ (n))

is a bijection). This solves part (c) of the exercise.
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