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1 EXERCISE 1

1.1 PROBLEM

Let A and B be two sets, and let f : A — B be a map. A left inverse of f shall mean a
map ¢g : B — A such that go f = ids. We say that f is left-invertible if and only if a left
inverse of f exists. (It is usually not unique.)

Assume that the sets A and B are finite.

(a) If the set A is nonempty, then prove that f is left-invertible if and only if f is injectivef_-]

(b) Assume that f is injective. Prove that the number of left inverses of f is [A]ZI714.

1.2 SOLUTION

We first prove a few claims (that hold even without requiring A and B to be finite):

Claim 1: If f is left-invertible, then f is injective.

!This holds even when A and B are infinite. Feel free to prove this if you wish.
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[Proof of Claim 1: Assume that f is left-invertible. In other words, f has a left inverse.
In other words, there exists a left inverse g of f. Consider this g.

We know that g is a left inverse of f. In other words, g is a map from B to A such that
go f =1idy (by the definition of a “left inverse”).

If a and b are two elements of A satisfying f (a) = f (b), then a = b (since

a=%(a>:<gof)(a>=g g% =g(f(b)):(gzzf)(b):idA(b):b

). In other words, the map f is injective. This proves Claim 1.]

Claim 2: Assume that f is injective.

(a) For each b € f (A), there exists exactly one a € A satisfying f (a) = b. Let
us denote this a by ay.

(b) Let g : B — A be a map. Then, ¢ is a left inverse of f if and only if we have

(g (b) = ay for each b € f(A)).

[Proof of Claim 2: (a) Let b € f(A). Thus, there exists at least one a € A satisfying
f(a) = b. Moreover, there exists at most one such a € A (since f is injective). Hence,
there exists exactly one a € A satisfying f (a) = b. This proves Claim 2 (a).

(b) Claim 2 (b) is an “if and only if” statement. We shall prove it by first proving the
“—" part (i.e., the “only if” part), and then proving the “<=" part (i.e., the “if” part).

—: Assume that g is a left inverse of f. We must prove that (g (b) = a, for each b € f (A)).

We know that ¢ is a left inverse of f. In other words, go f =id4.

Now, let b € f(A). Recall that a; is the unique a € A satisfying f(a) = b (by the
definition of a;). Thus, a; is an element of A and satisfies f (a;) = b. Now, applying the
map ¢ to both sides of the equality b = f (a;), we obtain

g () =g (f(a)) = (go f)(a) =ida (ap) = ap.

—idy

Now, forget that we fixed b. We thus have proven that (g (b) = a; for each b € f (A)).
This proves the “==" part of Claim 2 (b).

<=: Assume that (g (b) = a, for each b € f(A)). We must prove that g is a left inverse
of f.
Let « € A. Then, f(x) € f(A). Thus, the definition of ay(,) yields that ays.) is the
unique a € A satisfying f (a) = f (x). But this unique a € A is obviously = (because z is
an a € A satisfying f (a) = f (x)). Hence, we conclude that as,) = .

But we have assumed that (g (b) = a; for each b € f (A)). Applying this to b = f (z),
we obtain g (f (z)) = ay) = x. Hence, (go f) () = g (f (z)) =z =ida ().

Forget that we fixed z. We thus have shown that (go f) () = id4 (z) for each z € A.
In other words, g o f = id4. In other words, ¢ is a left inverse of f. This proves the “<="
part of Claim 2 (b).

Thus, Claim 2 (b) is proven.|

Claim 3: Assume that the set A is nonempty. If f is injective, then f is left-
invertible.
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[Proof of Claim 3: Assume that f is injective. Thus, for each b € f(A), there exists
exactly one a € A satisfying f (a) = b (by Claim 2 (a)). Let us denote this a by ay.

Also, we have assumed that the set A is nonempty. In other words, there exists some
w € A. Fix such a w.

Now, let us define a map g : B — A by setting

g(b):{zjb’ 1?2;;22;’ for each b € B.

Thus, g (b) = a, for each b € f (A). Hence, Claim 2 (b) shows that g is a left inverse of f.
Hence, the map f has a left inverse. In other words, f is left-invertible. This proves Claim
3.]

(a) Assume that the set A is nonempty. Then, f is left-invertible if and only if f is
injective. (Indeed, the “if” part follows from Claim 3, whereas the “only if” part follows from
Claim 1.) This solves part (a) of the exercise.

[Note that we have not used the assumption that the sets A and B are finite.|

(b) We have assumed that f is injective. Thus, |f (A)| = |A|. But f (A) C B; hence,

B\ f(A)=|B|=|f(A)| =[B] - |A]
=/A|

Claim 2 (a) shows that for each b € f(A), there exists exactly one a € A satisfying
f (a) = b. Let us denote this a by a.
Claim 2 (b) shows that a map g : B — A is a left inverse of f if and only if we have
(g (b) = ayp for each b € f(A)). Thus, a left inverse of f is the same as a map g : B — A
with the property that
(g (b) = ap for each b € f (A)). (1)

Hence, in order to construct a left inverse g of f, we can proceed as follows:

e For each b € f(A), set g(b) = ap. (This is the only possible choice for g (b), because
our g should satisfy ) Note that we are not making any choices at this step.

e For each b € B\ f (A), choose the value g (b) arbitrarily (among all |A| elements of
A). Note that we have |A| many choices for each b € B\ f (A).

Thus, there are |A\|B\f I many ways to perform this construction. Hence, the number
of left inverses of f is |A]""M™!_ In other words, this number is |A| P74 (since | B\ f (4)] =
|B| — |A|). This solves part (b) of the exercise.

2 EXERCISE 2

2.1 PROBLEM

Let A and B be two sets, and let f : A — B be a map. A right inverse of f shall mean a
map h : B — A such that foh =idg. We say that f is right-invertible if and only if a right
inverse of f exists. (It is usually not unique.)

Assume that the sets A and B are finite.

Darij Grinberg, 00000000 3 dgrinber@umn.edu



Solutions to homework set #3 page 4 of

(a) Prove that f is right-invertible if and only if f is surjective.E]
(b) Prove that the number of right inverses of fis [] [f~! (b)|. Here, f~! (b) denotes the

beB
set of all a € A satisfying f (a) = b.

2.2 SOLUTION

If b € B is arbitrary, then f~! (b) shall denote the set of all a € A satisfying f (a) = b.
We first prove a few claims (that hold even without requiring A and B to be finite):

Claim 1: If f is right-invertible, then f is surjective.

[Proof of Claim 1: Assume that f is right-invertible. In other words, f has a right
inverse. In other words, there exists a right inverse h of f. Consider this h.

We know that h is a right inverse of f. In other words, h is a map from B to A such
that f o h =idp (by the definition of a “right inverse”).

Let b € B. Then, f(h(b)) = (foh)(b) =idp (b) = b. Thus, there exists some a € A

=idp

such that f(a) = b (namely, a = h (b)).

Now, forget that we fixed b. We thus have shown that if b € B, then there exists some
a € A such that f (a) = b. In other words, the map f is surjective. This proves Claim 1.|

Claim 2: Let h: B — A be any map. Then, h is a right inverse of f if and only
if we have

(h(b) € f7'(b) for each b € B) .

[Proof of Claim 2: Claim 2 is an “if and only if” statement. We shall prove it by first
proving the “=" part (i.e., the “only if” part), and then proving the “<=" part (i.e., the
“if” part).

—: Assume that h is a right inverse of f. We must prove that
(h(b) € f~1(b) for each b € B).

We know that h is a right inverse of f. In other words, f o h = idp.

Now, let b € B. Then, f (h(b)) = (foh)(b) =idp (b) = b. Thus, h (b) belongs to the

=idp
set of all a € A satisfying f (a) = b. In other words, h (b) belongs to f~! (b) (since f~* (b) is
the set of all a € A satisfying f (a) = ). In other words, h (b) € f~' (D).

Now, forget that we fixed b. We thus have proven that (h (b) € f=!(b) for each b € B).
This proves the “=" part of Claim 2.

<=: Assume that (h(b) € f~'(b) for each b € B). We must prove that h is a right
inverse of f.

Let y € B. Recall that (h(b) € f~'(b) for each b € B). Applying this to b = y, we
conclude that h (y) € f~! (y). In other words, h (y) is an a € A satisfying f (a) = y (since
7! (y) is the set of all a € A satisfying f (a) = y). In other words, f (h(y)) = y. Hence,
(feh)(y) =f(h(y) =y =ids(y).

Forget that we fixed y. We thus have shown that (f o h) (y) = idp (y) for each y € B.
In other words, foh = idg. In other words, h is a right inverse of f. This proves the “<="
part of Claim 2.

Thus, Claim 2 is proven.|

2This holds even when A and B are infinite, if you assume the axiom of choice. But this is not the subject
of our class.
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Claim 3: Assume that the set B is finite. If f is surjective, then f is right-
invertible.

[Proof of Claim 3: Assume that f is surjective. We define a map h : B — A as follows:

Let b € B. Then, there exists some a € A satisfying f (a) = b (since f is surjective).
Choose any such a, and set h (b) = a.

Note that we are making only finitely many choices in this definition of A (since B is
finite); thus, this argument does not rely on the Axiom of Choice (indeed, finitely many
choices can be made by induction).

So we have defined a map h : B — A. This map h has the property that

f(h(b)=0b  foreachbe B

(since h (b) was defined to be some a € A satisfying f (a) = b). Thus, for each b € B, we
have (foh)(b) = f(h(b)) = b =1idg (b). In other words, f o h = idp. In other words, h
is a right inverse of f (by the definition of a “right inverse”). Hence, the map f has a right
inverse. In other words, f is right-invertible. This proves Claim 3.]

(a) The map f is right-invertible if and only if f is surjective. (Indeed, the “if” part
follows from Claim 3, whereas the “only if” part follows from Claim 1.) This solves part (a)
of the exercise.

(b) Claim 2 shows that a map h: B — A is a right inverse of f if and only if we have
(h (b) € f~1(b) for each b € B). Thus, a right inverse of f is the same as a map h: B — A

with the property that
(h(b) € f~(b) for each b € B).

Hence, in order to construct a right inverse h of f, we can proceed as follows:

e For each b € B, choose the value h (b) to be one of the elements of the set f~! (b).
Note that we have |f~! (b)| many choices for each b € B.

Thus, there are [ |f~! (b)] many ways to perform this construction. Hence, the number
beB
of right inverses of f is [] |f~!(b)|. This solves part (b) of the exercise.
beB

3 EXERCISE 3

3.1 PROBLEM

<—711/2) _ (—Tl)" <2:> for each n € N.

(Qk) <2 (n— k)) =4" for each n € N.
—~ k n—=k

[Hint: Part (b) is highly difficult to prove combinatorially. Try using part (a) instead.|

(a) Prove that

(b) Prove that

Darij Grinberg, 00000000 ) dgrinber@umn.edu



Solutions to homework set #3 page 6 of

3.2 SOLUTION

Recall the classical formula which says that

|
(Z) = m for any n € N and k € N satisfying n > k. (2)

(a) Let n € N. Then, 2n > n and 2n € N. Hence, (applied to 2n and n instead of
n and k) yields

(gn): (2n)!  _(2n) _ 1 (2n)!

n n!(2n —n)!  nln!  nln! NI
=1.2:(2n)
=(1-3-5----(2n—1))-(2-4-6-----(2n))
(here, we have split the product into
the product of its odd factors and
the product of its even factors)

:ﬁ\(l.g.g’,..;. (Qn_l))l.\(Q.zl.G;...(Qn))l
:nﬁl(ziﬂ) = f[l(%)=2” 'LEII i
1 n—1 - - n—1
= (H (20 +1 ) Q”HZ = (H (20 + 1)) - 2"n!
=0 _n' 1=0
on n—1
:HH(%H). (3)
i=0
n—1
Solving this equality for 21;[() (2¢ + 1), we obtain

ﬁ i+ = (2)/25 -2 (%), (@)

For each a € QQ, we have

— = =—1|(a—1i).

(a) ala—1)-(a—n+1) L

n n! n! n!
=0
Applying this to a = —1/2, we obtain
n—1
_ el . 21+ 1
1/2 H 11—[121+1_1 JIRCEY
0%,_/ T nl i -2  pl (—2)”
22 +1 =
—2
n—1
1 1 1 n! (2n 1 2n
= — 2 1 = — — . — frnd
bl =4 o 50 = s ()
=0 h,—/n
n! (2n (__1>
(by ()

-(7) ()
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This solves part (a) of the exercise.
(b) There are various proofs. Complicated combinatorial proofs can be found in:

e Marta Sved, Counting and Recounting: The Aftermath, The Mathematical Intelli-
gencer 6 (1984), pp. 44-45. (For a freely available scan, see the last 2 pages of https:
//www.math.ucdavis.edu/ deloera/TEACHING/MATH245/combinatproofident . pdf

)
e https://math.stackexchange.com/questions/72367

e https://math.stackexchange.com/a/360780/

(I have not read them all myself.)
It is much easier to solve the exercise algebraically, using part (a).

-1
Let n € N. First, we observe that ( ) = (—1)". (This can be derived from the Upper
n

-1
Negation identity, or easily checked directly using the definition of ( >)
n

Now, recall that the Vandermonde convolution theorem (Theorem 2.18 in class work
(2018-09-24)) says that

r+y e Y
= for all R R.
( n ) Z(k)(n—k) orall r e R and y €

k=0

Applying this to 2 = —1/2 and y = —1/2, we obtain

C—wm;{—wm)zﬁi(—gﬁ(;y?>

k=0

C4ﬂwf4ﬂ5:(j)zkwa
we obtain

=y (57) (")

—_— =

—1\" [ 2k —1\""/2(n—k)
4 k 4 n—k
(by part (a) of the exercise, (by part (a) of the exercise,
applied to k instead of n)  applied to n—k instead of n)

SN I 2k (20— B) -1\ = (2K (2(n — )
> &) GO -) 2005
TR
(%)
Multiplying both sides of this equality by (—4)", we obtain

(—4)" (-1)" = Sﬂ\@i zn: (2:) (2 g_—:)) _ :0 (2,5) (2 51”__,6%)).

k=0

Comparing this with
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Hence,

ki:o (2:) (2 gzn—_k;k)> = (=" (-)" =an.

This solves part (b) of the exercise.

3.3 REMARK

Here is another identity, similar to part (b) of the exercise:
d 2k\ (2 (n — k) on( "), ifni
- if n is even;
Z(—l)k(k)( " ) ) = n/2)’ ’ for each n € N.
k=0 e 0, if n is odd

Can you prove this one?
(You can look up the proof in [Grinbel6l solution to Exercise 3.23 (b)].)

4 EXERCISE 4

4.1 PROBLEM

Recall once again the |Fibonacci sequence (fo, f1, f2,...), which is defined recursively by
f() = O, f1 = 1, and
Jon = Jfo—1+ fa—2 for all n > 2. (5)

It is easy to see that fi, fo, f3,... are positive integers (which will allow us to divide by them
soon).

For any n € N and k € Z, define the rational number <Z) (a slight variation on the
F
corresponding binomial coefficient) by

fnfn_l"‘fn_k"rl . .
(”) TR =k
F

k 0, otherwise.

(a) Let n be a positive integer, and let k£ € N be such that n > k. Prove that

n n—1 n—1
(), =5 ("), e (G 0)

(b) Prove that (Z) € Nfor any n € Nand k£ € N.
F

where we set f_; =
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4.2 SOLUTION

Set f_1 = 1. Let us first show the following claims:
Claim 1: Let m € Nandn € {—1,0,1,2,...}. Then, frini1 = fnfo+ frnt1fas1-

[Proof of Claim 1: In the case when n € N, this follows immediately from Theorem
1.37 in the class notes (2018-09-17). Thus, we WLOG assume that n ¢ N. Combining
n € {-1,0,1,2,...} with n ¢ N, we obtain n € {-1,0,1,2,...} \ N = {—1}. Hence,
n = —1. Thus,

fmfn + fm+1fn+1 - fm f—l +fm+1 f—1+1 - fm
~— ——
=1 =fo=0
From n = —1, we also obtain fyyny1 = fmt(—1)+1 = fm. Comparing the last two equalities,
we obtain frini1 = fiufn + fme1 1. This proves Claim 1.]

Claim 2: We have (g) =1 for each n € N.
F

[Proof of Claim 2: Let n € N. The definition of (Z) yields
F

n f”f”_l'“fn_o—"_l’ ifn>02>0; fnfn—l"'fn—0+1
0) = fofoc1--- h -

P 0, otherwise Jofo-r--- i

_ (empty product)

(since n >0 > 0)

~ (empty product)
This proves Claim 2.]

Claim 3: We have (n) =1 for each n € N.
n/ g

[Proof of Claim 3: Let n € N. The definition of (n) yields
n) g

fnfn—l e fn—n+1

ifn>n>0:
(n) _ Pl i ifn>n=>0; JaJn—1"" foeni (since n > n > 0)
") F 0, otherwise futn—1---h
_ fnfn—l"'fl -1
Jonfo1 fi

This proves Claim 3.]
Claim 4: We have ( nl) = 0 for each n € N.
-/ F

n

yields
“),
fnfn—l to fn—(—1)+1

n , ifn>-12>0;
( ) = foifaii fu =0
F

-1 0, otherwise

[Proof of Claim 4: Let n € N. The definition of (

(since we don’t have n > —1 > 0 (because we don’t have —1 > 0)). This proves Claim 4.]
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0
Claim 5: We have <k) = [k =0] for each k € N (where we are using the
F
Iverson bracket notation).

[Proof of Claim 5: Let k € N. We must prove that (2) = [k =0].
F
Claim 2 yields 8 = 1. Comparing this with [0 = 0] = 1, we obtain <8> =[0=0].

F F
In other words, Claim 5 holds for £ = 0. Hence, for the rest of this proof, we WLOG assume

that & # 0. Thus, £ > 0 (since k € N). Hence, we don’t have 0 > k. Thus, we don’t have
0>k>0.

Now, the definition of (2) yields
F

fofoo1 - fooksr . ‘
(0) = Jefe—r--f1 7 1f02k20,20
F

k 0, otherwise

(since we don’t have 0 > k > 0). Comparing this with
k=0]=0 (since k #0),

we obtain (2) = [k = 0]. This proves Claim 5.|
F

(a) Note that n — 1 € N (since n is a positive integer). We are in one of the following
three cases:

Case 1: We have k = 0.

Case 2: We have k = n.

Case 3: We have neither £k = 0 nor k£ = n.

Let us first consider Case 1. In this case, we have k = 0. Hence,

n—1 n—1 n—1 n—1
fk+1< I )F —i‘fn—lc—1(]C B 1)F = for1 < 0 >F +fn—0-1 (O _ l)p
1 S N———

=f1=

=1
(by Claim 2, applied n—1

to n—1 instead of n) = -1 =0
F

(by Claim 4, applied
to n—1 instead of n)

=11+ f,0-1-0=1.
Comparing this with

(&),

-1 -1
we obtain (n) = fri1 <n ) + fo—k—1 <n ) . Thus, part (a) of the exercise is
k) p ko Jp F

(n> (since k = 0)
0/ F
1 (by Claim 2),

k—1
solved in Case 1. .
Let us next consider Case 2. In this case, we have k = n. The definition of (n B )
nJF
yields
n—1 fnflf(n—l)—l to f(n—l)—n—l-l’ fn—1>n> 0:
= fafn-1- f1 =0
F

n .
0, otherwise
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(since we don’t have n — 1 > n > 0 (since we don’t have n — 1 > n)). Now, from k = n, we
obtain

n—1 n—1 n—1 n—1
fk+1< I ) +fnk1(k 1) :fn+1< ) + fr-n-1 ( )
F —4i/Fr noJrp S~~~ n—1/p
—— L e

=0 =1
(by Claim 3, applied
to n—1 instead of n)

= fop1-04+1-1=1.

(Z) (since k = n)

F
=1 (by Claim 3),

Comparing this with

(),

—1 -1
we obtain (n) = fri1 <n ) + fo—k—1 <n ) . Thus, part (a) of the exercise is
k), ko), k—1),

solved in Case 2.

Let us finally consider Case 3. In this case, we have neither £ = 0 nor £ = n. Hence,
k # 0 and k # n. Combining k # 0 with £ > 0, we obtain k£ > 0. Combining k # n with
k < n (which follows from n > k), we obtain & < n. Combining k& > 0 with k£ < n, we obtain
ke {1,2,...,n— 1} (since k and n are integers). Thus, 1 <k <n—1,so that n — 1>k

1
and k> 1. Thus, n — 1>k >k —1 > 0 (since k > 1). The definition of (" ) now
F

k
yields
n—1 fnflfnflfl"'fnflkarl fn—1>k>0:
( 2 ) = fufe—1--- fi ’ - T
F 0, otherwise
fnflfnflfl T fnflkarl .
— sincen—1>k>0
o ( = k20
_ fnflfnf2 Tt fnfk _ (fnflfn72 e fn7k+1) : fnfk
frfr—1--- fi fefrv—1--- fi

(here, we have split off the factor f,_; from the product in the numerator). Also, the

-1
definition of " yields
k—1)p

. Soifo-1o1- - fnflfwfl)“, ifn—1>k—12>0;
P — fo—1fo—1-1--+ f
» 0, otherwise

_ Jaifac11 - faime-n (sincen —1>k—12>0)

fk‘—lfk—l—l"‘fl
_ fn—lfn—Q"'fn—k-i—l _ f . fn—lfn—Q"'fn—k—i—l
fk—lfk:—?"'fl g fk' (fk:—lfk—?"'fl)
= i UV M (since fi - (fo—1fo—2 - f1) = fufoo1--- f1)-
Jefe—1-- f
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Hence,
Jes1 (n ; 1) +frk-1 (Z a 1)
F o F
—_——— ———
7(fn—1fn—2 o fn—k—H) : fn—k _f .fn—lfn—2 T fn—k—i—l
- frefo—1--- h Y fifeer fi
o . (fn—lfn—2"'fn—k+1) 'fn—k . fn—lfn—2"'fn—k+1
= frn1 Fefrr - fo + fo—k—1fk Fefra- fr
o . fn—lfn—Q"'fn—k+1 . fn—lfn—Z"'fn—k+1
= fer1fo—k et fo + fo—k—1fk Fefra- fr
— Gestfoot fanafy) - Pt Do, )
We have k € Nandn—k—1¢€ {-1,0,1,2,...} (sincen—\k;_/—l >n—n—1=-1).

Hence, Claim 1 (applied to k and n — k — 1 instead of m and n) yields
Jerm—t-111 = Jefor—1 + i1 fnv—1)41 = fov1Se + forrfoe = ferrfon + foow—1fr
f f
=fn—k-1fk =fn—k

Thus,
JrerrSfok + Jock—1Se = Jrrtn—k—141 = Jfn

(since k + (n — k — 1) + 1 = n). Hence, (6) becomes

n—1 n—1
+ fo—k—
fk+1( k )F f : 1<l€_1>F

= \(fk+1fn7k + fn,k,lka-f"_lf”_2 Sk ' foo1fo—2 " fa—kt1

= Jn

> Jifo—1---h fefe1-- f
_ fn : (fnflfnf2 t 'fnkarl) _ fnfnfl o 'fn7k+1
Jefe—1-- fa Jefe—1-- fa

(Since fn : (fn—lfn—Q U fn—k—l—l) = fnfn—l o fn—k+1>‘ Comparing this with

n f"f”‘l”'f""““, ifn>k>0; N n
= fefe—1--- f by the definition of
k) g k),

0, otherwise

_ fnfn—l e fn—k+1
Sefo-1-- S

n n—1 n—1
(), =5 ("), 75 (i00),

Thus, part (a) of the exercise is solved in Case 3.
We have now proven part (a) of the exercise in all three Cases 1, 2 and 3. Thus, part
(a) of the exercise always holds.

(since n >k >0),

we obtain

(b) We shall prove part (b) of the exercise by induction on n:
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Induction base: For each k € N, we have

</2)F =[k=0]  (by Claim 5)
e N.

In other words, part (b) of the exercise holds for n = 0. This completes the induction base.
Induction step: Let m be a positive integer. Assume (as the induction hypothesis) that
part (b) of the exercise holds for n = m — 1. We must prove that part (b) of the exercise
holds for n = m.
We have assumed that part (b) of the exercise holds for n = m — 1. In other words, we
have

-1
<m ) e N  forany k € N, (7)
ko Jp

Now, let £ € N be arbitrary. We shall show that (7]?) e N.
F

We are in one of the following three cases:
Case 1: We have k = 0.
Case 2: We have k > m.
Case 3: We have neither k = 0 nor k > m.

Let us first consider Case 1. In this case, we have £k = 0. Hence, (ZL) = (7(7)1) =1
F F

(by Claim 2). Thus, (7;;) =1 € N. Hence, (TZ) € N is proven in Case 1.
F F

Let us next consider Case 2. In this case, we have k > m. Hence, we don’t have m > k.

Thus, we don’t have m > k > 0. Now, the definition of <TZ) yields
F

m fmfmfl"'fmfk’Jrl7 1fm2k20,
p) = Sefr—1-
F 0, otherwise

=0 (since we don’t have m > k > 0)
eN.

Hence, <7Z> € N is proven in Case 2.

F
Let us finally consider Case 3. In this case, we have neither £ = 0 nor k > m. Hence, we
have k # 0 and k < m. From k # 0, we obtain k > 1 (since k € N), so that k—1 € N. Hence,

1 )
(7) (applied to k — 1 instead of k) yields (7: 1) € N. Also, vields (mk ) cN
-1/, i

Furthermore, the Fibonacci sequence (fo, f1, fo,...) is a sequence of nonnegative integers;
thus, f; € N for each i € N. Since this holds for i = —1 as well (because f_; =1 € N), we
can thus conclude that

fieN for each i € {—1,0,1,2,...}. (8)
Now,m—_k —1>m—-m—1=—1,sothat m—k—1¢€ {-1,0,1,2,...}. Hence,

<m

(applied to t = m — k — 1) yields f,,_r—1 € N. Also, k+1€ N C {-1,0,1,2,...}. Hence,
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(8) (applied to i = k+1) yields fr+1 € N. Now, part (a) of the exercise (applied to n = m)

yields
m m—1 m—1
(k) = frn1 ( > + frn—k—1 ( ) e N.
=~ k S~ k—1 P
eEN N——— N N—_———
eN eN

m
Hence, <l€> € N is proven in Case 3.
F

We have now proven (7:) € Nin each of the three Cases 1, 2 and 3. Hence, (TZ) eN

F F

always holds.
Now, forget that we fixed k. We thus have shown that (7]7;) € N for any £ € N. In
F

other words, part (b) of the exercise holds for n = m. This completes the induction step.
Hence, part (b) of the exercise is solved by induction.

4.3 REMARK

The numbers (Z) defined in this exercise are the so-called |Fibonomial coefficients. As the

name (and this exercise) suggests, they have lots of properties in common with the binomial
coefficients; there are numerous papers devoted to proving some of these properties. See,
for example:

e Arthur T. Benjamin and Sean S. Plott, A combinatorial approach to Fibonomial coef-
ficients, Fibonacci Quart. 46 /47 (2008/2009), no. 1, pp. 7-9.

e Tewodros Amdeberhan, Xi Chen, Victor H. Moll, Bruce E. Sagan, Generalized Fi-
bonacci polynomials and Fibonomial coefficients, Annals of Combinatorics 18 (2014),
pp. 541-562. (Preprint: arXiv:1306.6511.)

e M. Dziemianczuk, Generalization of Fibonomial Coefficients, arXiv:0908.3248|

You can find more by searching for “Fibonomial coefficients” on Google Scholar.

5 EXERCISE 5

5.1 PROBLEM
Let € N, r € R and s € R. Prove that

S0

[Hint: First, argue that it suffices to prove this only for s € N and r € Z satisfying
r > sj. Next, consider r distinct stones, sj of which are arranged in j piles containing s
stones each, while the remaining r — sj stones are forming a separate heap. How many ways
are there to pick j of these r stones such that each of the j piles loses at least one stone?|
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5.2 SOLUTION
5.2.1 FIRST SOLUTION (SKETCHED)

Here is a solution following the hint. (I have learnt it from Peter Scholze in the 2000s; it is the
proof of Lemma 1 in http://artofproblemsolving.com/community/c6h41800p287507 .)
We forget that we fixed r and s.
Let us first recall the principle of inclusion and exclusion:

Theorem 5.1. Let n € N. Let Ay, As, ..., A, be finite sets.

(a) We have
U4 => "N Al
i=1 IC[n]; el
1#£2

(b) Let S be a finite set. Assume that each of Ay, As, ..., A, is a subset of S. Then,

s\Ual- ¥ cna

IC[n] icl

Here, the “empty” intersection (| A; is understood to mean the set S.
i€

Next, we recall the “polynomial identity trick” in the following form:

Lemma 5.2. If a polynomial P with real coefficients has infinitely many roots, then P is
the zero polynomial.

Let us now solve the exercise under some restrictive requirements on r and s:

Claim 1: Let r € N and s € N be such that » > sj. Then,

()5

[Proof of Claim 1: Consider r (distinguishable) stones s1,Ss,...,s,. Assume that sj
of these stones are arranged in j disjoint piles Py, P, ..., P;, with each pile P containing
exactly s stones. The remaining r — sj stones are not contained in any pile; let’s say they
form the rest-heap.

(Formally speaking, this means that P, P, ..., P; are j disjoint s-element subsets of
{s1,82,...,8,}; the rest-heap is then defined to be {s1,ss,...,s,} \ (AU P U---UP;). Of
course, such an arrangement of stones and piles is only possible because we have r € N and
s € Nand r > sj.)

A j-pick will mean a way to choose j of the r stones (i.e., a j-element subset of
{s1,82,...,8:}).

If P is one of the j piles (that is, P € {P}, ,..., P;}), and J is a j-pick, then we say
that J avoids P if and only if J contains no stone from P (that is, J NP = @).

A j-pick is said to be legal if it avoids none of the j piles. Let N be the number of all
legal j-picks. We shall compute N in two different ways:

e If J is a legal j-pick, then J must contain at least 1 stone from P, at least 1 stone
from P,, and so on (because it must avoid none of the j piles). But since it only
contains j stones altogether (because it is a j-pick), we thus conclude that it must
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contain exactly 1 stone from P;, exactly 1 stone from P,, and so on (and no stones
from the rest—heap)ﬂ Hence, in order to choose a legal j-pick, it suffices to decide
which of the s stones from P; it should contain, which of the s stones from P, it
should contain, and so on. This is a total of j decisions (one for each pile Py), and
each decision allows for s choices. Therefore, the total number of choices is s/. Hence,
the number N of all legal j-picks is s7. In other words,

N =5l 9)

e Our second computation of N relies on Theorem [5.1] (b).

Indeed, let S be the set of all j-picks. For each i € [j], we let A; be the set of all j-picks
that avoid the pile P;. Clearly, each of Ay, Ay, ..., A; is a subset of S. Moreover, if I

is any subset of [j], then
—s|I
NA| = (r ;;‘l). (10)

el

|Proof of (10): Let I be any subset of [j]. The piles P, for ¢ € I are |I| many

disjoint s-element sets; thus, their union | J P; is an s |I|-element set. In other words,
iel

= s|I|. But |J P; is a subset of {sy,ss,...,s,}; thus,

U P

1€l el
{s1.80,. s I\ JPB| = [{s1,8,. ..} — P =r—sl].
icl - icl
=r
=s|I|

For each i € I, we have

A; = (the set of all j-picks that avoid the pile P;)
(by the definition of A;)
={J €S | J avoids the pile P;} (1)

(since the set of all j-picks is S). Thus,

ﬂAi:ﬂ{JES | J avoids the pile P;}

icl icl
={J €S | J avoids the pile P, for each i € I}
={JeS | JNP,=g foreachi € I}

:{JeS|Jn<gR>:@}

:{JES | JQ{81752,~--7ST}\UR}

icl

= {j—element subsets of {s1,s9,...,8,:}\ U B}

i€l

3Indeed, if the legal j-pick J contained more than 1 stone from any single pile Py, or any stone from the
rest-heap, then it would contain more than j stones altogether, which would contradict the fact that it
only contains j stones.
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(since“J € S” simply means that J is a j-pick, i.e., a j-element subset of {s1, s2,...,s,}).
Hence,

N4 -

el

{j—element subsets of {s1,82,...,8:}\ U PZH

i€l

{51>S2a ST}\ UP

el

(A=)

{s1,80,...,8,} \ U Pi| = r — s|I]). This proves (10).]
iel

Now, Theorem [5.1] (b) (applied to n = j) yields

s\Ual- ¥ o |Na

(since

IC[y] i€l
N ——
_{ s (sl
k=0 IC[j]; 7
[T|=k (by (10))
_ j (_1)|I| (r—§|f|>
k=0 1C[7): 7
=k (7“ — sk)
—Cor(
J
(since |I|=k)
J
g (T — sk
-3 > (1)
k=0 ICjl; J
Tk

r — sk
=(the number of all IC[j] such that |I|=k)(—1)* ( .
J

Mb.

— sk
(the number of all I C [j] such that |I| = k) (—1)" (r - >
g J

-~

iy
[e=)

=(the number of all k-element subsets of [j])

{6
£er ()

But for each i € [j], we have defined A; to be the set of all j-picks that avoid the pile
P;. Thus,

J
S\ U A; = (the set of all j-picks that avoid none of the j piles Py, P, ..., P;)

= (the set of all legal j-picks)

(because of how we defined “legal”). Hence,

s\

i=1

= (the number of all legal j-picks) = N
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(by the definition of N). Comparing this with (12)), we obtain
/ s (7 [T — sk
N = _1 .
> (1)) =
k=0
Comparing (9) with (13), we find

j :
Z (—1) (i) (T‘ .sk> _ g
k=0 J
This proves Claim 1.]

Next, we shall use the polynomial identity trick to extend Claim 1 to somewhat greater
generality (allowing r to roam freely across R, while s still has to belong to N):

Claim 2: Let r € R and s € N. Then,

o)+

[Proof of Claim 2: Forget that we fixed r. Let P be the polynomial in the indeterminate
x (with real coefficients) defined by

. ;O (—1)* (}1) (m _js’“) o (14)

Then, for each r € N satisfying r > sj, we have

P(r)= ;i:(—l)k (2) (r _jSk) —s' = -5 =0.

0

(. J/
-~

i
(by Claim 1)

In other words, each r € N satisfying » > sj is a root of the polynomial P. Hence, the
polynomial P has infinitely many roots (since there are infinitely many such r). Thus,
Lemma [5.2| shows that P is the zero polynomial. In other words, P = 0.

Now, let 7 € R. From P = 0, we obtain P (r) = 0. Thus,

0="P(r)= zj:(_l)k (2) <T—jsk) L

k=0

(by (14)). In other words,
j ,
g\ [(r— sk :
_1)F — 4
L (@057
This proves Claim 2.]

Applying the polynomial identity trick one more time, we can achieve the full generality
required in the exercise:
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Claim 3: Let r € R and s € R. Then,

S ()(") =

[Proof of Claim 3: Forget that we fixed s. Let P be the polynomial in the indeterminate
x (with real coefficients) defined by

P ()7 o

Then, for each s € N, we have

- ()5 4o

0

(e J/

TV
=7
(by Claim 2)

In other words, each s € N is a root of the polynomial P. Hence, the polynomial P has
infinitely many roots. Thus, Lemma [5.2| shows that P is the zero polynomial. In other
words, P = 0.

Now, let s € R. From P = 0, we obtain P (s) = 0. Thus,

S

(by (15))). In other words,
j :
k(J\ (T —sk\
R ()57
k=0
This proves Claim 3.]

But Claim 3 is precisely the claim of the exercise. Thus, the exercise is solved.

5.2.2 SECOND SOLUTION

We can also solve the exercise in a purely algebraic way, without having to rely on the
polynomial identity trick and coming up with counting problems.

Let us forget that we fixed j, r and s.

We shall use the Iverson bracket notation. We first recall two fundamental facts about

binomial coeflicients:

e Every n € N satisfies

k=0
(This was proven in class (Corollary 2.3 on 2018-09-19).)
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e Every n € Rand k € {1,2,3,...} satisfy

n n—1
k = : 1
() -G0) &
(This is the so-called absorption identity, and can easily be checked by handE]. Note
that it also holds for all k£ € R, but we will only need it for k € {1,2,3,...}.)

We now make a definition:

Definition 5.3. Let j € Z, i € N, r € R and s € R. Then, we define a number L, ,;; € R

by |
Lygji= Xj: (—1)* (i) (T _ZSk) (19)

k=0

(Note that the sum on the right hand side of this equality is an empty sum when j < 0.)

Notice that this definition is more general than the sum appearing in the exercise; indeed,
the latter sum is L, ;;. It turns out that this extra generality allows a recursive approach
that wouldn’t be possible if we would only be considering the L, ; ; ;’s in isolation.

The main thrust of our recursive approach runs through the following lemma:

Lemma 5.4. Let j € N, r € R and s € R.
(a) We have L, s ;0= [j =0].
(b) Let i be a positive integer. Then,

ZLr,s,j,i - TLr—l,s,j,i—l + SJLr—l—s,s,j—l,i—l-

4 Proof of . Let n € R and k € {1,2,3,...}. Thus, k —1 € N (since k € {1,2,3,...}); hence, the

-1
definition of Z ] yields

k-1

(n—l) n=-1)((n-1)-1)---(n=-1)—(k-1)+1) (nm-1)(n—2)---(n—k+1)
(k—1)! (k—1)!

Multiplying both sides of this equality by n, we obtain
n(n—l) . mn-1)(n-2)-(n—k+1) n-(n—-1)(n-2)---(n—k+1))

E—1 (k—1)! N (k—1)!
o nn—-1)---(n—k+1)
B (k—1)! (18)

(sincen-((n—1)(n—2)---(n—k+1))=n(n—1)---(n—k+1)). On the other hand, k! = k- (k — 1)!

(since k € {1,2,3,...}). Also, k € {1,2,3,...} C N. Hence, the definition of (Z) yields

(n)_n(n—l)---(n—k+l) nn—1)--(n—k+1)
- ! k- (k— 1)

. _
(since k! = k - (k — 1)!). Multiplying both sides of this equality by &, we obtain

k(Z) . n(n—lj)'.(}{.(_nlikJrl) _ n(n—lgk-:._.(r)!—kJrl) :”(Z:D

(by (18)). This proves (7).
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Proof of Lemmal[5.4. (a) The definition of L, ;¢ yields

Lnnio = Z%H)k (") - Z () =li=

(by (6], applied to n = j). This proves Lemma [5.4] (a).
(b) We have i — 1 € N (since i is a positive integer). Thus, the definition of L, 1 ;1

yields
g ' —1)— sk
Lo _1)k (! (r
r—1,s,j,0—1 kz:%( ) (k’)( i—1
T—?k‘—l
a 1—1
J e (J\ [T —sk—1
> D) 20)
Also, the definition of L, _1_,;_1,-1 yields
=1\ [(r—1—3s)—sk
_q) J
cr ()
(=1 [((r—=1—=s5)—s(k—1)
_1)k1 J
() (T

r—sk—1

1—1
(since (r—1—s)—s(k—1)=r—sk—1)

-1

<.

(]

erlfs,s,jfl,ifl

o

<l
o

o

(here, we have substituted k& — 1 for k in the sum)

- i (—1)Ft (}1 B D (T _Z,S_kl_ 1). (21)

k=1

(by (I7), applied to j

instead of n)

(here, we have split off the addend for & = 0 from the sum)

J ; ’ '
N\ (i—=1\[r—sk—1 . (J- L\ (r—sk—1
N (L 1) J = - —1)F!
k:1< (—1) ]<k—1 i1 ];( ) E—1 1—1
:LT,17:;,]'—1,1'71
(by (1))
—= —er_]_—s,s,j—]_,i—l' (22)
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Also, i € {1,2,3,...} (since i is a positive integer). Multiplying both sides of the equality
(19) with i, we obtain
, <7" — sk)
1 .
i

. . g\ [T — sk j
iLysga =i (=1)" (k) ( i ) — Y (kz)
k=0 k=0
. r—sk—1
A

(by , applied to r—sk

and ¢ instead of n and k)

r e ew (Y
(e () ()
(et () e () ()

[ ]

s (J\ [T —sk—1 7 e (N [(r—sk—1
- 1 L
= = )
=Ly_1,s4,i-1 =—JLr_1_ssj-1,i-1
(b ) ey @)

= rerl,s,j,ifl — S (_erflfs,s,jfl,ifl) = rerl,s,j,ifl + S,erflfs,s,jfl,ifl-
This proves Lemma [5.4] (b). O

Using the above lemma and a straightforward induction, we can now prove more than
the exercise demands:

Theorem 5.5. Let j € N, r € R and s € R.
(a) We have L, ;; = 0 for each i € N satisfying i < j.
(b) We have L, ;; = .

Proof of Theorem[5.5 Forget that we fixed j, r and s.
(a) We can rewrite the claim of Theorem [5.5] (a) as follows:

L;i=0 for each r € R, s € R, j € N and ¢ € N satisfying i < j. (23)

Let us prove by induction on i:

Induction base: We have L, ;o = 0 for each r € R, s € R and j € N satisfying 0 < j
E]. In other words, holds for + = 0. This completes the induction base.

Induction step: Let h € N. Assume that holds for : = h. We must prove that
holds for ¢ = h + 1.

We have assumed that holds for 2 = h. In other words, we have

Lysjin=0 for each r € R, s € R and j € N satisfying h < j. (24)

Now, let » € R, s € R and j € N be such that h + 1 < j. We shall prove that
Lr,s,j,h—l—l = 0.

®Proof. Let r € R, s € R and j € N be such that 0 < j. From 0 < j, we obtain j > 0, so that j # 0.
Hence, [j = 0] = 0. Now, Lemma (a) yields Ly s j0 = [h+1=0] = 0. Qed.
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We have h < h +1 < j. Hence, (applied to r — 1 instead of r) yields L,_1 4, = 0.
Also, from h < j, we obtain j > h > 0; thus, j is a positive integer. Hence, j —1 € N. Also,
h < j—1 (since h+1 < j). Thus, (applied to r — 1 — s and j — 1 instead of r and j)
yields Lr—l—s,s,j—l,h =0.

But h+1 is a positive integer (since h € N). Hence, Lemma[5.4] (b) (applied to i = h+1)
yields

(h4+1) Lysjhi1 = rLy_1 s j(ht1)—1 + ST Lr—1—s,5j—1,(h+1)—1

=1Ly 15;n+S] Lici—ssj—1h (since (h+1)—1=h)
—— —
=0 =0
=7r0+sj0=0.

We can divide both sides of this equality by A + 1 (since h+ 1 > 1 > 0), and thus obtain
Lr,s,j,thl =0.
Now, forget that we fixed r, s and j. We thus have shown that

Lysjnr =0 for each r € R, s € R and j € N satisfying h + 1 < j.

In other words, holds for ¢« = h + 1. This completes the induction step. Hence, is
proven by induction.

In other words, Theorem (a) is proven.

(b) Let us prove Theorem (b) by induction on j:

Induction base: We have L, 90 = s° for each r € R and s € R H In other words,
Theorem (b) holds for j = 0. This completes the induction base.

Induction step: Let h € N. Assume that Theorem (b) holds for j = h. We must
prove that Theorem (b) holds for j = h + 1.

We have assumed that Theorem (b) holds for j = h. In other words, we have

h

Lyshn=:s for each r € R and s € R. (25)

Now, let 7 € R and s € R. We shall prove that L, 11041 = "

We have h < h + 1. Hence, Theorem (a) (applied to r — 1, h + 1 and h instead
of r, j and i) yields L,_1sp11, = 0. Also, (25)) (applied to r — 1 — s instead of r) yields
erlfs,s,h,h = sh.

But h+1 is a positive integer (since h € N). Hence, Lemmal5.4] (b) (applied to j = h+1
and ¢ = h + 1) yields

(h+1) Ly s hi1,h41 = L1 st (ht1)—1 + S (B + 1) Lioi_g s (h41)—1,(h+1)-1

=rLyspr1nts(h+1)Liq_gonn (since (h+1)—1=nh)
T/ %/h_/

=r0+s(h+1)s"=s(h+1)s" = (h+1)ss".

We can divide both sides of this equality by h + 1 (since h +1 > 1 > 0), and thus obtain
Ly i1 ps1 = ss = "L

Now, forget that we fixed r and s. We thus have shown that
Lyspiine1 =8 for each r € R and s € R.

In other words, Theorem (b) holds for j = h + 1. This completes the induction step.
Hence, Theorem (b) is proven by induction. O

6 Proof. Let r € R and s € R. Lemma (a) (applied to j = 0) yields L, 500 = [0 =0] =1 = s°. Qed.
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j ; — sk
Now, let j € N, 7 € R and s € R. Then, L,,;; = 3. (—1)* (2) (T - ) (by the
k=0 J

definition of L, ; ;). Hence,

(by Theorem (b)).

5.2.3 REMARK

Theorem (a) can also be proven in a similar way to the First solution; this time, however,
we need to consider i-picks (i.e., ways to choose i of the r stones), and argue that no i-pick
is legal when 7 < j.

Yet another algebraic solution of the above exercise (using finite differences) can be
found in:

e Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd
edition 1994, proof of (5.43).

6 EXERCISE 6

6.1 PROBLEM
Let n € N. The summation sign »_ shall always stand for a sum over all subsets I of [n].
ICn]
(This sum has 2™ addends.)
Let Ay, As, ..., A, be n numbers or polynomials or square matrices of the same size.
(Allowing matrices means that A;A; is not necessarily equal to A;A;, so beware of using the
binomial formula or similar identities!)

(a) Show that

Z (_1)n_|l| (Z Ai) = Z Ay A, - A for all m € N.

I1CIn] el (i1,12,..,3m ) €[]
{i1si2,.-im }=[n]

(Example: If n =2 and m = 3, then this is saying
(A+B)* —A® - B*+0°= AAB+ ABA + ABB + BAA + BAB + BBA,

where we have renamed A; and A as A and B.)

(b) Show that

Z (—1)"7|I‘ (Z Al) =0 for all m € N satisfying m < n.

IC[n] i€l
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(Example: If n = 3 and m = 2, then this is saying
(A+B+C)Y —(A+B?—(A+C) = (B+C)P+ A2+ B>+ (C?—0* =0,
where we have renamed A;, Ay, A3 as A, B, C.)
(c) Show that

Z (—1)" M (Z Ai) = Z As1)As2) ** As(n)s
IC[n] il 7€Sn
where S, stands for the set of all (n!) permutations of [n].

(Example: If n = 3, then this is saying

(A+B+C) —(A+B? —(A+C)? - (B+C) + A*+ B>+ % - 0°
— ABC + ACB + BAC + BCA + CAB + CBA,

where we have renamed A;, As, A3 as A, B,C.)

[Hint: You can use the product rule, which says the following:

Proposition 6.1 (Product rule). Let m and n be two nonnegative integers. Let P,,, for
all u € [m| and v € [n], be numbers or polynomials or square matrices of the same size.
Then,

(Pit+Piat o+ Pp)(Poa+ Poat oo+ Poy)oo (Pug + Prg+ -+ Pop)
= > PPy, P,

(41,52,5-.,%m ) €[]

(This frightening formula merely says that a product of sums can be expanded, and the result
will be a sum of products, with each of the latter products being obtained by multiplying
together one addend from each sum. You have probably used this sometime already.)

|

6.2 REMARK

This exercise is [Grinbel6l, Exercise 6.50] with a minor difference in its wording (namely,

Z A A, - A is rewritten as Z AryAre) - Afm),
(i1,21verin ) Eln] ™ Jml—[n);
{1,i2,+-yim }=[n] f is surjective

by substituting (f (1), f(2),...,f(m)) for (i1,4s,...,4,) in the sum). The solution given
below is more or less identical to the solution given in |Grinbel6].
Identities like those in the above exercise are known as “polarization identities”.

6.3 SOLUTION (SKETCHED)

Before we come to actually solving the problem, let us restate Proposition in a more
convenient form:
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Proposition 6.2 (Product rule). Let m € N. Let I be a finite set. Let P,,, for all u € [m]
and v € I, be numbers or polynomials or square matrices of the same size. Then,

iel icl icl 01,825eyim ) EI™

Proof of Proposition 6.3 Let n = |I|. Then, there is a bijection ¢ : I — [n]. Consider such
a ¢.

The set I is only used for labeling the elements P, ,; thus, we can WLOG assume that
I = [n] (since otherwise, we can just rename P, as P, 4(,)). Assume this; then, Proposition

6.2| follows immediately from Proposition [6.1 OJ
y D

We shall use the Iverson bracket notation.
Next, we recall the principle of “destructive interference” that we have seen in class
(Theorem 2.24 in class work (2018-10-01)):

Proposition 6.3. Let G be a finite set. Then,

() =[G =ga].

ICG
We shall use a slightly more general version of this principle:

Proposition 6.4. Let G be a finite set. Let S be a subset of G. Then,

> (D)= (=1E =]
ICG;
SCI

Example 6.5. Applying Proposition [6.4]to G = {1,2,3,4} and S = {1,2}, we find

(_1)'{1’2” + (_1)'{1)273” + (_1)'{17274}‘ + (_1)‘{172’374}‘
= (_1)‘{1’2}‘ [{1,2,3,4} = {1,2}].

Indeed, both sides of this equality are 0 (the left hand side because the addends cancel; the
right hand side because {1,2,3,4} # {1,2}).

Clearly, Proposition is the particular case of Proposition when S = @ (since
every subset [ of G satisfies @ C ).

There are two ways to prove Proposition [6.4f One is to derive it from Proposition
6.3 (by applying the latter proposition to G \ S instead of G, using a bijection between
{ICG\S}and {I CG | SCI}). Another is by generalizing the 2nd proof that we gave
for Proposition in class. We shall follow the second way:

Proof of Proposition[6.4). If G = S, then Proposition hold{’] Hence, for the rest of this
proof, we WLOG assume that we don’t have G = S. Thus, [G = S] =0. If we had G C S,

"Proof. Assume that G = S. Thus, Y (—1)'1‘ = > (—1)'”.
ICG; ICG;
SCI Gcr
But there exists only one subset I of G satisfying G C I: namely, G itself. Thus, the sum > (—1)‘1‘
ICG,
GCI
has only one addend: namely, the addend for I = G. Hence, this sum simplifies as follows: Y (—1)‘1‘ =
ICG;
GCI
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then we would have G = S (since S C @), which would contradict the fact that we don’t
have G = S. Hence, we cannot have G C S. In other words, we have G € S. Hence, there
exists some g € G such that g ¢ S. Consider such a g.

The mapf]

{ICG | SClandg¢I}—-{ICG | SClandgel},
J— JU{g}

is well-defined (since g € G). The map

{ICG | SClandgel}—{ICG | SClandg¢l},
K — K\{g}
is also well-defined (since g ¢ S, and therefore every set K satisfying S C K must also

satisfy S € K\ {g}). These two maps are mutually inversd’, and thus are bijections. Hence,
in particular, the map

{ICG | SClandg¢ I} —-{ICG | SClandgel},

J— JU{g}
is a bijection. Thus, we can substitute .J U {g} for I in the sum 3 (—1)"!. We thus obtain
sci
gel
Z (_1>|1\ _ Z (_1)|JU{9}| _ Z (_1)|J|+1 _ Z (_1)|J\
ICG; JCG; 171+1 JCG; 1] JCG;
SCI; SCJ; =(-1) scJ; =—(-1) SCJ;
gel g¢J (since |[JU{g}|=|J|+1 gdJ gdJ

(because g¢J))

. (20)

ICG,
SCI;
g¢l

(here, we have renamed the summation index J as I).
But each subset I of G satisfying S C I must satisfy either g € I or g ¢ I. Hence, we

(—1)‘G|. Hence,

(_1)‘” = Z (‘Ulll = (—1)‘G| = (—1)|S‘ (since G = 9).

Comparing this with (_1)IS\ G=85] = (—1)'5‘, we obtain Y (—1)|I| = (—1)‘8| [G = S]. Hence,
N—— I1CG;
-1 scr
(since G=S)
Proposition is proven under the assumption that G = S.
8The notation “{I CG | S C 1 and g ¢ I}” means “the set of all subsets I of G satisfying S C I and
g ¢ I". Similarly, the notation “{I CG | S CI and g € I}” should be understood.
9because:

e every subset J of G satisfying g ¢ J must satisfy (JU{g}) \ {g} = J;
e every subset K of G satisfying g € K must satisfy (K \ {g})U{g} = K
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can split the sum > (—1)! as follows:

ICG,
SCr
I I I I
SRILED SRILED SEIEES SILES I8
ICG; ICG; ICG; ICG; ICG;
SCI SCI; SCr; SCI; Scr;
gel g¢l g¢1 g¢1
= > (-l
ICG;
SCI;
g¢!
(by (26))
Comparing this with
(-G = 5] =0,
=0
we obtain 3 (=)' = (=1)!*1 |G = 5]. This proves Proposition
ICG;
SCrI

Corollary 6.6. Let G be a finite set. Let S be a subset of G. Then,
Z (_1)|G\—|1\ =[G=29].

ICG,;
SCI

Proof of Corollary[6.6. We have

Z (_1)\G|*|1\
~———
IeG; _(—p)a

cI
(since |G|—|I|=|G|+]|I| mod 2)

_ Z (_1)\G\+|1\ _ Z (_1)\G| (_1)|1\

1CG; IcG;
scr ==l g7

_ ()@ Ml _plel s _
== Y =" =)= (G =53]

ICG;

Scl 1, ifG=S:
N————’ =

=(-1"[G=5] 0, otherwise
(by Proposition

= ()l sy T
0, otherwise

_{@WG@Umi,ﬁG:St_F,ﬁG:&
=%

otherwise 0, otherwise

because if G = 9,

N =o.

( then (=) (=) -1 = (=1 (1)1 = ((=)F) " = (1 =1 )

—[G=249].

This proves Corollary [6.6]

Let us now proceed to the solution of the problem.
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(a) Fix m € N. For each subset I of [n], we have

N

-
m times

(by Proposition [6.2] applied to P, , = A,). Hence,

Sy ($a)

IC[n) iel

= Z A
(§1 48 5+ yigm ) EIT

=3y ) Ay Ay A,

IC[n] D=1 (41,82, eyim )ET™
=(— ——_———

iy Aig - Aiy

(since n=|[n]|)

(il,iQ,...,im)E[n]m;
{1182, yim }CI
(because an m-tuple (i1,i2,...,9m )€™
is the same thing as
an m-tuple (¢1,i2,...,5m ) E[n]™
satisfying {i1,i2,...,im } CI)

_ Z (_1)|[n]|—|1| Z A Ay Ay

Ig[n] (i17i27---7im)6[n]m;
{i1,82,.im }CI
= Z (D)= g A A,

Ig[n} (21,824eems ’im)E[n}m;
{il7i27~"’im}gl

-

(11,92, im) €[n]™ IC[n];
{i1,92,...im }CI

- ¥ SN A,

(i1,12,..,im)€[N] ™ IC[n];
{i17i27---7i7rL}gI

=[[n]={i1,i2, . i }]
(by Corollary

applied to G=[n] and S={%1,i2,....im })

— Z l[n] = {i1,09, ..., im}| Aiy Aiy -+ As,

J

(41,32,--im ) E[n :[{il,imrim}:[n]]
= [{i1, 00, im} = [n]] Ag Ay - -+ A
(i1,i2,-.0rim ) €[] ™
= Y [{iine i} =] A Ay Ay,

(7;171-2,---,7;7n)e[n}m; =1
{i1,i2,....im }=[n] (since {i1,i2,...,im }=[n])

+ Z [{ilai%"'vim} = [n]]AllAzzAlm

}m

m

(- >

(il,ig,...,im)e[n}m; =0

{i1,82,..,im }#[N] (since {i1,i2,...,im }#[n])

since each (iy,4,...,%y) € [n]™
or {i1,%9,...,im} # [n] (but not both)

A

satisfies either {iy,is,..

i1Ai2 o A’L

m

im} = [n] )
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— E A11A12A1m+ E OAzlAngzm
(i1‘7i2‘,...,im)€[n]m; (7;1‘7'52‘7-”71'7?1)6[71}7”;
{31,325 0sim }=[n] \{117127---7%}#[”]

=0

- Z AilAiQ ce Aim'
(%1,52,-..,tm ) E[N]™;
{i1,82,...im }=[n]

This solves part (a) of the exercise.

(b) Let m € N be such that m < n.

Then, each (i1,1s,...,4,) € [n]™ satisfies [{i1,d2,...,in}| < m < n = |[n]| and there-
fore [{i1,i,...,im}| # |[n]|, so that {i1,is,... i} # [n]. In other words, there exists no
(i1,42, ... ,1m) € [n|™ satisfying {i1,i2,...,im} = [n].

Hence, the sum > Ay Aiy -+ Ay, is an empty sum, and thus equals 0. In

(i1i2,.yim ) E[n]™;
{i1,02,..,im }=[n]

im

other words,

> A Ay - A; =0,
(ilviQ"“»im)e[n]m§
{i1,i25sim }=[n)

Hence, part (a) of the exercise yields

Z <_1)n_|]‘ <Z Az) = Z AilAig ce Aim =0.

ICn] iel (i1,82,.0s0m ) €[]
{t1si2,..im }=[n]

This solves part (b) of the exercise.

(c) Consider the set S, of all permutations of the set [n]. If o € S, then the n-tuple
(0(1),0(2),...,0(n)) is an (i1,i2,...,1,) € [n]" satistying {i1,i2,...,9,} = [n] (because
{c(1),0(2),...,0(n)} =0c([n]) = [n] (since o is surjective) |1} Thus, the map

Sn = {(i1, 09, .., 1n) € [0]" | {ir,d2,. .., 00} = [n]},
o (0(1),0(2),...,0(n))

is well-defined. Moreover, this map is injective (since a permutation o € S, is uniquely
determined by (o (1),0(2),...,0(n))) and surjectivd] Hence, this map is bijective, i.e.,
is a bijection.

19Note that this n-tuple (o (1),0(2),...,0(n)) is the one-line notation of the permutation o.
Y Proof. Let (j1,72,---,7n) € {(i1,42,-..,in) € [n]" | {i1,i2,...,in} = [n]}. We must prove that there
exists some o € S, such that (ji,j2,...,Jn) = (0 (1),0(2),...,0(n)).

Indeed, we have (j1,J2,...,Jn) € {(i1,i2,...,in) € [n]" | {i1,42,...,in} = [n]}. In other words,
(j1,J2,--+,Jn) is an n-tuple in [n]" and satisfies {j1,ja2,...,7n} = [n]. Now, let f : [n] — [n]
be the map that sends 1,2,...,n to ji,j2,-..,jn, respectively. Then, the image of this map f is
f(n) = {j1,J2,---,Jn} = [n]; hence, this map f is surjective. But a surjective map between two
finite sets of the same size must always be bijective (by the Pigeonhole Principle for surjections). Hence,
f is bijective (since f is a surjective map between two finite sets of the same size). Thus, f is a bijection
from [n] to [n]. In other words, f is a permutation of [n]. In other words, f € S,,. Also, the definition
of f yields (f (1) ’f (2) [ ’f (n)) = (j17j27 s >jn)7 so that (j17j27 s a]n) = (f (1) ’ f (2) LA f (TL))

Hence, there exists some o € S, such that (ji1,j2,...,4n) = (6 (1),0(2),...,0(n)) (namely, o = f).
Qed.
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Now, part (a) of the exercise (applied to m = n) yields

ICin) il (i1,2,rin) €[]

{ilviQ 7777 Z’ﬂ}:[n]

(here, we have substituted (o (1),0(2),...,0 (n)) for (i1, s, ..

map

Z (_1)n—|1| <Z Ai) - Z Ay Ay - Ay, =

> AeyAsz) -+ Asin)

O'GSn

,in) in the sum, because the

Sn = {(i1,42, ... in) € [n]" | {i1,t9,... 00} = [n]},

o (0(1),0(2),...,0(n))

is a bijection). This solves part (c) of the exercise.
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