# Math 5705: Enumerative Combinatorics, Fall 2018: Homework 1

Darij Grinberg

# January 10, 2019

due date: Wednesday, 19 September 2018 at the beginning of class, or before that by email or canvas. Please solve at most 5 of the 7 exercises!

# 1 EXERCISE 1

#### 1.1 PROBLEM

Let n be a positive integer.

An *n*-tuple  $(i_1, i_2, \ldots, i_n) \in \{0, 1, 2, 3\}^n$  is said to be *even* if the sum  $i_1 + i_2 + \cdots + i_n$  is even. (For example, the 4-tuple (2, 3, 1, 2) is even, whereas (1, 2, 3, 1) is not.) Compute the number of all even *n*-tuples  $(i_1, i_2, \ldots, i_n) \in \{0, 1, 2, 3\}^n$ . (Here and in all future exercises, all answers need to be proven.)

[Hint: Compare with Exercise 3 on Homework set #0.]

### 1.2 Solution

# 2 EXERCISE 2

### 2.1 Problem

Let  $n \in \mathbb{N}$ .

An *n*-tuple  $(i_1, i_2, \ldots, i_n) \in \{0, 1, 2\}^n$  is said to be *even* if the sum  $i_1 + i_2 + \cdots + i_n$  is even. (For example, the 4-tuple (2, 1, 1, 2) is even, whereas (1, 2, 2, 2) is not.) Let  $e_n$  be the number of all even *n*-tuples  $(i_1, i_2, \ldots, i_n) \in \{0, 1, 2\}^n$ .

Prove that  $e_n = \frac{3^n + 1}{2}$ .

[Hint: Induction on n.]

#### 2.2 Solution

[...]

### 3 EXERCISE 3

#### 3.1 PROBLEM

For any real number x and any  $k \in \mathbb{N}$ , we define the lower factorial  $x^{\underline{k}}$  as in Exercise 2 of Homework set #0. (Thus,  $x^{\underline{k}} = x (x-1) (x-2) \cdots (x-k+1) = \prod_{i=0}^{k-1} (x-i)$ . This boils down to  $x^{\underline{0}} = 1$  when k = 0, since empty products are defined to be 1.)

Let k, a and b be three positive integers such that  $k \leq a \leq b$ . Prove that

$$(k-1)\sum_{i=a}^{b}\frac{1}{i^{\underline{k}}} = \frac{1}{(a-1)^{\underline{k-1}}} - \frac{1}{b^{\underline{k-1}}}.$$
(1)

#### 3.2 Remark

*Remark* 3.1. This is similar to Exercise 2 of Homework set #0, but here the lower factorials are in the denominators. The analogous fact from calculus is

$$(k-1)\int_{a}^{b} \frac{1}{x^{k}} dx = \frac{1}{a^{k-1}} - \frac{1}{b^{k-1}}.$$
  
3.3 SOLUTION

# 4 EXERCISE 4

### 4.1 PROBLEM

**Definition 4.1.** The *Fibonacci sequence* is the sequence  $(f_0, f_1, f_2, ...)$  of integers which is defined recursively by  $f_0 = 0, f_1 = 1$ , and

$$f_n = f_{n-1} + f_{n-2}$$
 for all  $n \ge 2$ . (2)

Here is a table of some of its first terms:

| n     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9  |
|-------|---|---|---|---|---|---|---|----|----|----|
| $f_n$ | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 |

Let  $n \in \mathbb{N}$ . Recall some definitions from class:

Let  $R_{n,2}$  denote the set  $[n] \times [2]$ , which we regard as a rectangle of width n and height 2 (by identifying the squares with pairs of coordinates).

A vertical domino is a set of the form  $\{(i, j), (i, j + 1)\}$  for some  $i \in \mathbb{Z}$  and  $j \in \mathbb{Z}$ .

A horizontal domino is a set of the form  $\{(i, j), (i + 1, j)\}$  for some  $i \in \mathbb{Z}$  and  $j \in \mathbb{Z}$ .

A domino tiling of  $R_{n,2}$  means a set of disjoint dominos (i.e., vertical dominos and horizontal dominos) whose union is  $R_{n,2}$ .

For example, there are 5 domino tilings of  $R_{4,2}$ , namely



Written as a set of dominos, the second of these tilings is

 $\left\{ \left\{ \left(1,1\right), \left(1,2\right) \right\}, \left\{ \left(2,1\right), \left(2,2\right) \right\}, \left\{ \left(3,1\right), \left(4,1\right) \right\}, \left\{ \left(3,2\right), \left(4,2\right) \right\} \right\}.$ 

We have seen in class (September 5) that

the number of domino tilings of  $R_{n,2}$  is  $f_{n+1}$ . (3)

We have also counted "axisymmetric" domino tilings.

Let us now define a different kind of symmetry: A domino tiling S of  $R_{n,2}$  is said to be *centrosymmetric* if reflecting it across the center of the rectangle  $R_{n,2}$  leaves it unchanged. (Formally, if S is regarded as a set, it means that for every domino  $\{(i, j), (i', j')\} \in S$ , its "opposite domino"  $\{(n + 1 - i, 3 - j), (n + 1 - i', 3 - j')\}$  is also in S.) For example, among the 5 domino tilings of  $R_{4,2}$  listed above, exactly 3 are centrosymmetric (namely, the first, the fourth and the fifth).

Let  $s_n$  be the number of centrosymmetric domino tilings of  $R_{n,2}$ .

- (a) Prove that  $s_n = f_{(n+1)/2}$  if n is odd.
- (b) Prove that  $s_n = f_{n/2+2}$  if n is even.

(Note that these are the same numbers as for axisymmetric domino tilings!) [Hint: This is a bit of a trick problem.]

4.2 Solution

[...]

# 5 EXERCISE 5

### 5.1 Problem

Let  $n \in \mathbb{N}$ . Let  $S_{n,2}$  be the set

 $([n+1] \times [2]) \setminus \{(1,2), (n+1,1)\}.$ 

For example, here is how  $S_{6,2}$  looks like:

| <br> | <br> |  |  |  |
|------|------|--|--|--|

Find the number of domino tilings of  $S_{n,2}$ .



[...]

# 6 EXERCISE 6

### 6.1 PROBLEM

Let  $n \in \mathbb{N}$ . If S is a finite nonempty set of integers, then max S denotes the maximum of S (that is, the largest element of S).

(a) Find the number of nonempty subsets S of [n] satisfying max S = |S|.

(b) Find the number of nonempty subsets S of [n] satisfying max S = |S| + 1.

[Hint: Exercise 7 from Spring 2018 Math 4707 Homework set #1 is similar to part (a), but uses the minimum instead of the maximum. Does this mean the answer should be similar?]

6.2 Solution

# 7 EXERCISE 7

## 7.1 PROBLEM

For any nonnegative integers a and b and any real x, prove that

$$x^{\underline{a}}x^{\underline{b}} = \sum_{r=\max\{a,b\}}^{a+b} \frac{a!b!}{(r-a)! (r-b)! (a+b-r)!} x^{\underline{r}}.$$
(4)

[Hint: Induction. First show the identities  $x^{\underline{k}} = x^{\underline{k-1}}(x-k+1)$  and  $xx^{\underline{k}} = x^{\underline{k+1}} + kx^{\underline{k}}$ .]

7.2 Solution