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0.1. A generalized principle of inclusion/exclusion

Exercise 1. Let n ∈ N. Let S be a finite set. Let A1, A2, . . . , An be finite
subsets of S. Let k ∈ N. Let Sk be the set of all elements of S that be-
long to exactly k of the subsets A1, A2, . . . , An. (In other words, let Sk =
{s ∈ S | the number of i ∈ [n] satisfying s ∈ Ai equals k}.) Prove that

|Sk| = ∑
I⊆[n]

(−1)|I|−k
(
|I|
k

) ∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

Here, the intersection
⋂

i∈∅
Ai is understood to mean the whole set S.

Note that the principle of inclusion and exclusion (see, e.g., [Galvin17, §16]) is the

particular case of Exercise 1 for k = 0 (since S0 = S \
n⋃

i=1
Ai).

Exercise 1 is a result of Charles Jordan (see [Comtet74, §4.8, Theorem A] and
[DanRot78] for fairly complicated proofs). I further generalize it in [Grinbe16,
Theorem 3.44]. Let me here give a self-contained proof.

First, we recall two facts from the solutions to homework set #5:

Proposition 0.1. We have (
m
n

)
= 0

for every m ∈N and n ∈N satisfying m < n.

Corollary 0.2. Let n ∈N. Let i ∈N. Then,

n

∑
j=0

(−1)j
(

n
j

)(
j
i

)
= (−1)i [n = i] .

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw5os.pdf
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Next, we recall the classical formula for the size of a subset using Iverson brack-
ets:

Lemma 0.3. Let S be a finite set. Let T be a subset of S. Then,

|T| = ∑
s∈S

[s ∈ T] .

Lemma 0.3 allows us to reduce a formula for |Sk| to a formula for [s ∈ Sk] (for
any given s ∈ S). Here is the latter formula:

Lemma 0.4. Let n ∈ N. Let S be a finite set. Let A1, A2, . . . , An be finite
subsets of S. Let k ∈ N. Let Sk be the set of all elements of S that be-
long to exactly k of the subsets A1, A2, . . . , An. (In other words, let Sk =
{s ∈ S | the number of i ∈ [n] satisfying s ∈ Ai equals k}.) Let s ∈ S. Then,

[s ∈ Sk] = ∑
I⊆[n]

(−1)|I|−k
(
|I|
k

)[
s ∈

⋂
i∈I

Ai

]
.

Here, the intersection
⋂

i∈∅
Ai is understood to mean the whole set S.

Proof of Lemma 0.4. Define a subset C of [n] by

C = {i ∈ [n] | s ∈ Ai} .

Thus, for each i ∈ [n], we have the following equivalence:

(i ∈ C) ⇐⇒ (s ∈ Ai) . (1)

But recall the definition of Sk. From this definition, we obtain the following
equivalence:

(s ∈ Sk) ⇐⇒

the number of i ∈ [n] satisfying s ∈ Ai︸ ︷︷ ︸
=|{i∈[n] | s∈Ai}|

equals k


⇐⇒

∣∣∣∣∣∣{i ∈ [n] | s ∈ Ai}︸ ︷︷ ︸
=C

∣∣∣∣∣∣ equals k

 ⇐⇒ (|C| equals k)

⇐⇒ (|C| = k) .

Hence, we find the following equality between truth values:

[s ∈ Sk] = [|C| = k] . (2)



Math 4990 Fall 2017 (Darij Grinberg): homework set 7 page 3

On the other hand, let I be any subset of [n]. Then, we have the following
equivalence:

(
s ∈

⋂
i∈I

Ai

)
⇐⇒

 s ∈ Ai︸ ︷︷ ︸
⇐⇒ (i∈C)

(by (1))

for each i ∈ I

 ⇐⇒ (i ∈ C for each i ∈ I)

⇐⇒ (I ⊆ C) .

Thus, [
s ∈

⋂
i∈I

Ai

]
= [I ⊆ C] . (3)

Now, forget that we fixed I. We thus have proven (3) for each subset I of [n].
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Thus,

∑
I⊆[n]

(−1)|I|−k
(
|I|
k

)[
s ∈

⋂
i∈I

Ai

]
︸ ︷︷ ︸

=[I⊆C]
(by (3))

= ∑
I⊆[n]

(−1)|I|−k
(
|I|
k

)
[I ⊆ C]

= ∑
I⊆[n];
I⊆C︸︷︷︸
= ∑

I⊆C
(since C⊆[n])

(−1)|I|−k
(
|I|
k

)
[I ⊆ C]︸ ︷︷ ︸

=1
(since I⊆C)

+ ∑
I⊆[n];

not I⊆C

(−1)|I|−k
(
|I|
k

)
[I ⊆ C]︸ ︷︷ ︸

=0
(since we don’t have I⊆C)

= ∑
I⊆C

(−1)|I|−k
(
|I|
k

)
+ ∑

I⊆[n];
not I⊆C

(−1)|I|−k
(
|I|
k

)
0

︸ ︷︷ ︸
=0

= ∑
I⊆C︸︷︷︸

= ∑
j∈N

∑
I⊆C;
|I|=j

(−1)|I|−k
(
|I|
k

)

= ∑
j∈N

∑
I⊆C;
|I|=j

(−1)|I|−k
(
|I|
k

)
︸ ︷︷ ︸
=(−1)j−k

(
j
k

)
(since |I|=j)

= ∑
j∈N

∑
I⊆C;
|I|=j

(−1)j−k
(

j
k

)
︸ ︷︷ ︸

=(the number of all subsets I of C satisfying |I|=j)(−1)j−k

(
j
k

)
= ∑

j∈N

(the number of all subsets I of C satisfying |I| = j)︸ ︷︷ ︸
=(the number of all j-element subsets of C)=

(
|C|

j

)
(by the combinatorial interpretation of the binomial coefficients)

(−1)j−k
(

j
k

)

= ∑
j∈N

(
|C|

j

)
(−1)j−k

(
j
k

)
= ∑

j∈N

(−1)j−k
(
|C|

j

)(
j
k

)
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=
|C|

∑
j=0

(−1)j−k︸ ︷︷ ︸
=(−1)j+k=(−1)j(−1)k

(
|C|

j

)(
j
k

)
+

∞

∑
j=|C|+1

(−1)j−k
(
|C|

j

)
︸ ︷︷ ︸

=0
(by Proposition 0.1,
applied to |C| and j

instead of m and n (since |C|<j
(because j≥|C|+1>|C|)))

(
j
k

)

(here, we have split the summation at j = |C|)

=
|C|

∑
j=0

(−1)j (−1)k
(
|C|

j

)(
j
k

)
+

∞

∑
j=|C|+1

(−1)j−k 0
(

j
k

)
︸ ︷︷ ︸

=0

=
|C|

∑
j=0

(−1)j (−1)k
(
|C|

j

)(
j
k

)
= (−1)k

|C|

∑
j=0

(−1)j
(
|C|

j

)(
j
k

)
︸ ︷︷ ︸

=(−1)k[|C|=k]
(by Corollary 0.2,

applied to |C| and k instead of n and i)

= (−1)k (−1)k︸ ︷︷ ︸
=(−1)2k=1

[|C| = k] = [|C| = k] = [s ∈ Sk] (by (2)) .

This proves Lemma 0.4.

Solution to Exercise 1. For every subset I of [n], the intersection
⋂
i∈I

Ai is a subset of

S 1. Thus, for every subset I of [n], we have∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = ∑
s∈S

[
s ∈

⋂
i∈I

Ai

]

1In fact, this is obvious when I is nonempty (because all the Ai are subsets of S), but it also holds
when I is empty (because in this case, the intersection

⋂
i∈I

Ai =
⋂

i∈∅
Ai is defined to be S).
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(by Lemma 0.3, applied to T =
⋂
i∈I

Ai). Hence,

∑
I⊆[n]

(−1)|I|−k
(
|I|
k

) ∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣︸ ︷︷ ︸
= ∑

s∈S

[
s∈⋂

i∈I
Ai

]

= ∑
I⊆[n]

(−1)|I|−k
(
|I|
k

)
∑
s∈S

[
s ∈

⋂
i∈I

Ai

]
= ∑

I⊆[n]
∑
s∈S︸ ︷︷ ︸

= ∑
s∈S

∑
I⊆[n]

(−1)|I|−k
(
|I|
k

)[
s ∈

⋂
i∈I

Ai

]

= ∑
s∈S

∑
I⊆[n]

(−1)|I|−k
(
|I|
k

)[
s ∈

⋂
i∈I

Ai

]
︸ ︷︷ ︸

=[s∈Sk]
(by Lemma 0.4)

= ∑
s∈S

[s ∈ Sk] .

Comparing this with |Sk| = ∑
s∈S

[s ∈ Sk] (which follows from Lemma 0.3, applied to

T = Sk), we obtain

|Sk| = ∑
I⊆[n]

(−1)|I|−k
(
|I|
k

) ∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

This solves Exercise 1.

0.2. Summing fixed point numbers of permutations

Recall that for any n ∈N, we let Sn denote the set of all permutations of [n].
If S is a finite set, and if f : S→ S is a map, then we let Fix f denote the set of all

fixed points of f . (That is, Fix f = {s ∈ S | f (s) = s}.)

Exercise 2. Let n be a positive integer. Prove that ∑
w∈Sn

|Fix w| = n!.

[Hint: Rewrite |Fix w| as ∑
i∈[n]

[w (i) = i].]

(In other words, this exercise states that the average number of fixed points of a
permutation of [n] is 1.)

Exercise 2 was Problem 1 at the International Mathematical Olympiad (IMO)
1987.

Our solution to Exercise 2 relies on the following facts:

Lemma 0.5. Let m ∈ N. Let G be an m-element set. Then, the number of all
permutations of G is m!.

http://artofproblemsolving.com/wiki/index.php?title=1987_IMO_Problems/Problem_1
http://artofproblemsolving.com/wiki/index.php?title=1987_IMO_Problems/Problem_1
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Proof of Lemma 0.5 (sketched). There is a bijection α : G → [m] (since G is an m-
element set). Fix such an α. Then, the map

{permutations of G} → {permutations of [m]} ,

σ 7→ α ◦ σ ◦ α−1

is also a bijection2. Hence,

|{permutations of G}| = |{permutations of [m]}|
= (the number of all permutations of [m]) = m!.

In other words, the number of all permutations of G is m!. This proves Lemma
0.5.

Lemma 0.6. Let n be a positive integer. Let i ∈ [n]. Then, the number of all
permutations w ∈ Sn satisfying w (i) = i is (n− 1)!.

Proof of Lemma 0.6 (sketched). Roughly speaking, a permutation w ∈ Sn satisfying
w (i) = i is “nothing but” a permutation of the (n− 1)-element set [n] \ {i} (because
it has to map i to i, and therefore must map the remaining elements of [n] to
elements other than i). This is not rigorous, because strictly speaking a permutation
of [n] cannot be a permutation of [n] \ {i} (after all, the former has domain [n]
while the latter only has domain [n] \ {i}). Here is a rigorous version of the above
statement:

To each permutation w ∈ Sn satisfying w (i) = i, we can assign a permutation w̃
of [n] \ {i} by letting

w̃ (p) = w (p) for each p ∈ [n] \ {i} .

This defines a map

A : {w ∈ Sn | w (i) = i} → {permutations of [n] \ {i}} ,
w 7→ w̃. (4)

Conversely, to each permutation u of [n] \ {i}, we can assign a permutation û ∈ Sn
satisfying û (i) = i by setting

û (p) =

{
u (p) , if p 6= i;
i, if p = i

for each p ∈ [n] .

This defines a map

B : {permutations of [n] \ {i}} → {w ∈ Sn | w (i) = i} ,
u 7→ û.

2This is straightforward to verify.
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The maps A and B are well-defined and mutually inverse3. Thus, there is a bijection
from the set {w ∈ Sn | w (i) = i} to the set {permutations of [n] \ {i}} (namely,
A). Hence,

|{w ∈ Sn | w (i) = i}| = |{permutations of [n] \ {i}}|
= (the number of all permutations of [n] \ {i})
= (n− 1)!

(by Lemma 0.5 (applied to G = [n] \ {i} and m = n − 1), because [n] \ {i} is
an (n− 1)-element set). In other words, the number of all permutations w ∈ Sn
satisfying w (i) = i is (n− 1)!. This proves Lemma 0.6.

Solution to Exercise 2 (sketched). If w ∈ Sn and i ∈ [n], then

[i ∈ Fix w] = [w (i) = i] (5)

4.
If w ∈ Sn, then Fix w is a subset of [n], and therefore Lemma 0.3 (applied to

S = [n] and T = Fix w) yields

|Fix w| = ∑
s∈[n]

[s ∈ Fix w] = ∑
i∈[n]

[i ∈ Fix w]︸ ︷︷ ︸
=[w(i)=i]

(by (5))

(
here, we have renamed the

summation index s as i

)

= ∑
i∈[n]

[w (i) = i] . (6)

But if i ∈ [n], then {w ∈ Sn | w (i) = i} is a subset of Sn, and therefore Lemma
0.3 (applied to S = Sn and T = {w ∈ Sn | w (i) = i}) yields

|{w ∈ Sn | w (i) = i}| = ∑
s∈Sn

s ∈ {w ∈ Sn | w (i) = i}︸ ︷︷ ︸
⇐⇒ (s(i)=i)


= ∑

s∈Sn

[s (i) = i] = ∑
w∈Sn

[w (i) = i] (7)

(here, we have renamed the summation index s as w).

3This is straightforward to check (just remember that permutations are bijective).
4because of the equivalence (i ∈ Fix w) ⇐⇒ (i is a fixed point of w) ⇐⇒ (w (i) = i)
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Now,

∑
w∈Sn

|Fix w|︸ ︷︷ ︸
= ∑

i∈[n]
[w(i)=i]

(by (6))

= ∑
w∈Sn

∑
i∈[n]︸ ︷︷ ︸

= ∑
i∈[n]

∑
w∈Sn

[w (i) = i] = ∑
i∈[n]

∑
w∈Sn

[w (i) = i]︸ ︷︷ ︸
=|{w∈Sn | w(i)=i}|

(by (7))

= ∑
i∈[n]

|{w ∈ Sn | w (i) = i}|︸ ︷︷ ︸
=(the number of all permutations w∈Sn satisfying w(i)=i)

=(n−1)!
(by Lemma 0.6)

= ∑
i∈[n]

(n− 1)! = |[n]|︸︷︷︸
=n

· (n− 1)! = n · (n− 1)! = n!.

This solves Exercise 2.

Remark 0.7. Exercise 2 can be generalized: If n ∈ N and k ∈ N satisfy n ≥ k,
then

∑
w∈Sn

(
|Fix w|

k

)
= (n− k)!

(
n
k

)
=

n!
k!

.

Do you see how the above solution can be extended to cover this generalization?

0.3. Transpositions t1,i generate permutations

Recall a basic notation regarding permutations:

Definition 0.8. Let n ∈ N. Let i and j be two distinct elements of [n]. We let ti,j
be the permutation in Sn which switches i with j while leaving all other elements
of [n] unchanged. Such a permutation is called a transposition.

Exercise 3. Let n ∈ N. Prove that each permutation in Sn can be written as a
composition of some of the transpositions t1,2, t1,3, . . . , t1,n.

(Note that this composition can be empty – in which case it is understood to
be id –, and it can contain any given transposition multiple times.)

To solve this exercise, we recall another definition:

Definition 0.9. Let n ∈ N. Let i ∈ [n− 1]. Then, si denotes the permutation
ti,i+1 ∈ Sn.

We shall use the following well-known fact ([Grinbe16, Exercise 5.1 (b)]):

Lemma 0.10. Let n ∈N. Each permutation in Sn can be written as a composition
of some of the transpositions s1, s2, . . . , sn−1.

The following is easy to check:
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Lemma 0.11. Let n ∈ N. Let i ∈ [n− 1] be such that i > 1. Then, si = t1,i+1 ◦
t1,i ◦ t1,i+1.

Lemma 0.11 can be proven by straightforward verification (just check how si
and t1,i+1 ◦ t1,i ◦ t1,i+1 transform a given element of [n], depending on whether this
element is 1, i or i + 1 or something else). Let us give a slightly more skillful
argument. The following fact is simple and well-known ([Grinbe16, Exercise 5.17
(a)]):

Lemma 0.12. Let n ∈ N. Let k ∈ [n]. For every σ ∈ Sn and every k distinct
elements i1, i2, . . . , ik of [n], we have

σ ◦ cyci1,i2,...,ik
◦σ−1 = cycσ(i1),σ(i2),...,σ(ik)

.

Proof of Lemma 0.11 (sketched). From i ∈ [n− 1], we obtain i ≤ n− 1. But i > 1, so
that i ≥ 2, and thus 2 ≤ i ≤ n− 1. Hence, n ≥ 3. Thus, 2 ∈ [n].

Clearly,
tu,v = cycu,v (8)

for any two distinct elements u and v of [n]. Applying this to u = 1 and v = i, we
obtain t1,i = cyc1,i.

Now, let σ = t1,i+1. Thus, σ (1) = i + 1 and σ (i) = i (since i equals neither 1 nor
i + 1). But Lemma 0.12 (applied to k = 2, i1 = 1 and i2 = i) yields

σ ◦ cyc1,i ◦σ
−1 = cycσ(1),σ(i) = cyci+1,i (9)

(since σ (1) = i + 1 and σ (i) = i).
The permutation σ is a transposition (since σ = t1,i+1), and hence an involution.

In other words, σ−1 = σ.
But the definition of si yields

si = ti,i+1 = cyci,i+1 (by (8))

= cyci+1,i = σ︸︷︷︸
=t1,i+1

◦ cyc1,i︸ ︷︷ ︸
=t1,i

◦ σ−1︸︷︷︸
=σ=t1,i+1

(by (9))

= t1,i+1 ◦ t1,i ◦ t1,i+1.

This proves Lemma 0.11.

Solution to Exercise 3 (sketched). We first show the following fact:

Observation 1: Let i ∈ [n− 1]. Then, si can be written as a composition
of some of the transpositions t1,2, t1,3, . . . , t1,n.
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[Proof of Observation 1: If i > 1, then this follows immediately from Lemma 0.11.
Thus, for the rest of this proof, we WLOG assume that we don’t have i > 1. Hence,
i = 1. Thus, si = s1 = t1,2 (by the definition of s1). Thus, again it is clear that si
can be written as a composition of some of the transpositions t1,2, t1,3, . . . , t1,n. This
proves Observation 1.]

Now, let σ ∈ Sn be a permutation. We want to write σ as a composition of some
of the transpositions t1,2, t1,3, . . . , t1,n.

First write σ as a composition of some of the transpositions s1, s2, . . . , sn−1. (This
is possible according to Lemma 0.10.) Next, write each of these transpositions
s1, s2, . . . , sn−1 as a composition of some of the transpositions t1,2, t1,3, . . . , t1,n. (This
is possible according to Observation 1.) The resulting expression is now a repre-
sentation of σ as a composition of some of the transpositions t1,2, t1,3, . . . , t1,n.

Now, forget that we fixed σ. We thus have shown that each σ ∈ Sn has a rep-
resentation as a composition of some of the transpositions t1,2, t1,3, . . . , t1,n. This
solves Exercise 3.

0.4. V-permutations as products of cycles

Recall the following notation:

Definition 0.13. Let X be a set. Let k be a positive integer. Let i1, i2, . . . , ik be
k distinct elements of X. We define cyci1,i2,...,ik

to be the permutation of X that
sends i1, i2, . . . , ik to i2, i3, . . . , ik, i1, respectively, while leaving all other elements
of X fixed. In other words, we define cyci1,i2,...,ik

to be the permutation of X given
by

cyci1,i2,...,ik
(p) =

{
ij+1, if p = ij for some j ∈ {1, 2, . . . , k} ;

p, otherwise
for every p ∈ X,

where ik+1 means i1.

Exercise 4. Let n ∈ N. For each r ∈ [n], let cr denote the permutation
cycr,r−1,...,2,1 ∈ Sn. (Thus, c1 = cyc1 = id and c2 = cyc2,1 = s1.)

Let G =
{

g1 < g2 < · · · < gp
}

be a subset of [n]. (The notation “G ={
g1 < g2 < · · · < gp

}
” is simultaneously saying that G =

{
g1, g2, . . . , gp

}
and

that g1 < g2 < · · · < gp.)
Let σ ∈ Sn be the permutation cg1 ◦ cg2 ◦ · · · ◦ cgp .
Prove the following:
(a) We have σ (1) > σ (2) > · · · > σ (p).
(b) We have σ ([p]) = G.
(c) We have σ (p + 1) < σ (p + 2) < · · · < σ (n).
(Note that a chain of inequalities that involves less than two numbers is con-

sidered to be vacuously true. For example, Exercise 4 (c) is vacuously true when
p = n− 1 and also when p = n.)
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Solution to Exercise 4 (sketched). For each r ∈ [n] and i ∈ [n], we have

cr (i) =


r, if i = 1;
i− 1, if 1 < i ≤ r;
i, if i > r

(10)

(by the definition of cr). Thus, each r ∈ [n] satisfies

cr (2) < cr (3) < · · · < cr (n) (11)

(because the one-line notation of the permutation cr is (r, 1, 2, . . . , r− 1, r + 1, r + 2, . . . , n),
which shows immediately that cr is strictly increasing on the set {2, 3, . . . , n}).
Moreover, each r ∈ [n] and i ∈ [n] satisfy

cr (i) ≥ i− 1. (12)

(This is easy to check using (10).)
We have g1 < g2 < · · · < gp. Define a further integer g0 by g0 = 0. Then, the

chain of inequalities g1 < g2 < · · · < gp can be extended to g0 < g1 < · · · < gp
(since each of g1, g2, . . . , gp is > 0 = g0).

For each q ∈ {0, 1, . . . , p}, we let σq denote the permutation cg1 ◦ cg2 ◦ · · · ◦ cgq ∈
Sn. Thus,

σ0 = cg1 ◦ cg2 ◦ · · · ◦ cg0 = (empty composition of permutations) = id

and
σp = cg1 ◦ cg2 ◦ · · · ◦ cgp = σ.

Notice that
σq = σq−1 ◦ cgq for each q ∈ [p] (13)

5.
Now, we claim the following:

Observation 1: For each q ∈ {0, 1, . . . , p}, the following holds:

(a) We have σq (i) = gq+1−i for each i ∈ [q].

(b) We have σq (j) = j for each j ∈ [n] satisfying j > gq.

(c) We have σq (q + 1) < σq (q + 2) < · · · < σq (n).

(d) We have gq ≥ q.

5Proof of (13): Let q ∈ [p]. Then, the definition of σq−1 yields σq−1 = cg1 ◦ cg2 ◦ · · · ◦ cgq−1 . But the
definition of σq yields

σq = cg1 ◦ cg2 ◦ · · · ◦ cgq =
(

cg1 ◦ cg2 ◦ · · · ◦ cgq−1

)
︸ ︷︷ ︸

=σq−1

◦cgq = σq−1 ◦ cgq .

This proves (13).
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[Proof of Observation 1: We shall prove Observation 1 by induction:6

Induction base: Let us prove Observation 1 for q = 0. To do so, we must prove the
following four statements:

(a0) We have σ0 (i) = g0+1−i for each i ∈ [0].

(b0) We have σ0 (j) = j for each j ∈ [n] satisfying j > g0.

(c0) We have σ0 (0 + 1) < σ0 (0 + 2) < · · · < σ0 (n).

(d0) We have g0 ≥ 0.

But all of these four statements are obvious. Indeed, (a0) is vacuously true (since
there exist no i ∈ [0]); furthermore, (b0) and (c0) are obvious (since σ0 = id); finally,
(d0) follows from g0 = 0. Thus, Observation 1 has been proven for q = 0. This
completes the induction base.

Induction step: Let h ∈ [p]. Assume that Observation 1 holds for q = h− 1. We
must now prove that Observation 1 holds for q = h.

We have assumed that Observation 1 holds for q = h − 1. In other words, the
following four statements hold:

(a1) We have σh−1 (i) = g(h−1)+1−i for each i ∈ [h− 1].

(b1) We have σh−1 (j) = j for each j ∈ [n] satisfying j > gh−1.

(c1) We have σh−1 (h) < σh−1 (h + 1) < · · · < σh−1 (n).

(d1) We have gh−1 ≥ h− 1.

We must prove that Observation 1 holds for q = h. In other words, we must
prove the following four statements:

(a2) We have σh (i) = gh+1−i for each i ∈ [h].

(b2) We have σh (j) = j for each j ∈ [n] satisfying j > gh.

(c2) We have σh (h + 1) < σh (h + 2) < · · · < σh (n).

(d2) We have gh ≥ h.

6It is rather important to prove the four parts of Observation 1 together, rather than trying to
prove them separately. This way, they can “lend each other a hand” in the induction step (as we
will see below).
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Recall that g0 < g1 < · · · < gp. Thus, gh−1 < gh, so that gh > gh−1. Thus,
gh ≥ gh−1 + 1 (since gh and gh−1 are integers). But (d1) yields gh−1 ≥ h− 1, so that
gh−1 + 1 ≥ h. Hence, gh ≥ gh−1 + 1 ≥ h. This proves statement (d2).

Let r = gh. Thus, r ∈ [n] (since h ∈ [p] and thus gh ∈ [n]). Applying (13) to q = h,
we obtain

σh = σh−1 ◦ cgh = σh−1 ◦ cr (since gh = r) .

Statement (c2) is easy to derive from statement (c1) with the help of (11)7.
Statement (b2) easily follows from statement (b1) with the help of (10)8.
Applying (10) to i = 1, we obtain cr (1) = r = gh > gh−1. Hence, statement (b1)

(applied to j = cr (1)) yields σh−1 (cr (1)) = cr (1) = gh. But from σh = σh−1 ◦ cr, we
obtain

σh (1) = (σh−1 ◦ cr) (1) = σh−1 (cr (1)) = gh = gh+1−1. (14)

Finally, statement (a2) can be derived from statement (a1) using (14)9.

7Proof. We want to prove statement (c2). In other words, we want to prove that σh (h + 1) <
σh (h + 2) < · · · < σh (n). In other words, we want to prove that σh (k) < σh (k + 1) for each
k ∈ {h + 1, h + 2, . . . , n− 1}. So let us fix k ∈ {h + 1, h + 2, . . . , n− 1}. We must prove σh (k) <
σh (k + 1).

We have k ∈ {h + 1, h + 2, . . . , n− 1}. Thus, k ≥ h + 1 ≥ 2 (since h ≥ 1). But (11) yields
cr (2) < cr (3) < · · · < cr (n). Thus, cr (k) < cr (k + 1) (since k ≥ 2).

Also, (12) yields cr (k) ≥ k− 1 ≥ h (since k ≥ h + 1). Thus, cr (k) ∈ {h, h + 1, . . . , n}.
Also, (12) yields cr (k + 1) ≥ (k + 1)− 1 = k ≥ k− 1 ≥ h. Thus, cr (k + 1) ∈ {h, h + 1, . . . , n}.
Statement (c1) says that the map σh−1 is strictly increasing on the set {h, h + 1, . . . , n}. In other

words, if u and v are two elements of {h, h + 1, . . . , n} satisfying u < v, then σh−1 (u) < σh−1 (v).
Applying this to u = cr (k) and v = cr (k + 1), we obtain σh−1 (cr (k)) < σh−1 (cr (k + 1)) (since
cr (k) < cr (k + 1), and since both cr (k) and cr (k + 1) are elements of {h, h + 1, . . . , n}).

But σh = σh−1 ◦ cr, and thus

σh (k) = (σh−1 ◦ cr) (k) = σh−1 (cr (k)) < σh−1 (cr (k + 1)) = (σh−1 ◦ cr)︸ ︷︷ ︸
=σh

(k + 1) = σh (k + 1) .

This completes our proof of statement (c2).
8Proof. Let j ∈ [n] be such that j > gh. We want to show that σh (j) = j.

We have j > gh = r. Thus, (10) (applied to i = j) simplifies to cr (j) = j. But j > gh > gh−1;
therefore, statement (b1) yields σh−1 (j) = j.

Now, recall that σh = σh−1 ◦ cr. Hence,

σh (j) = (σh−1 ◦ cr) (j) = σh−1

cr (j)︸ ︷︷ ︸
=j

 = σh−1 (j) = j.

This proves statement (b2).
9Proof. Let us prove statement (a2). In other words, let us prove that σh (i) = gh+1−i for each i ∈ [h].

Indeed, let i ∈ [h]. We must prove that σh (i) = gh+1−i.
If i = 1, then this follows from (14). Hence, for the rest of this proof, we WLOG assume that

i 6= 1. Thus, i > 1. Combined with i ∈ [h], this yields i ∈ {2, 3, . . . , h}, so that i − 1 ∈ [h− 1].
Therefore, statement (a1) (applied to i − 1 instead of i) yields σh−1 (i− 1) = g(h−1)+1−(i−1) =

gh+1−i (since (h− 1) + 1− (i− 1) = h + 1− i).
But i ∈ {2, 3, . . . , h}, so that 1 < i ≤ h ≤ r (because r = gh ≥ h). The equality (10) simplifies to
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We have now proven all four statements (a2), (b2), (c2) and (d2). Thus, Observa-
tion 1 holds for q = h. This completes the induction step; thus, Observation 1 is
proven.]

Now, we can apply Observation 1 to q = p. As a result, we obtain the following
four statements:

(a3) We have σp (i) = gp+1−i for each i ∈ [p].

(b3) We have σp (j) = j for each j ∈ [n] satisfying j > gp.

(c3) We have σp (p + 1) < σp (p + 2) < · · · < σp (n).

(d3) We have gp ≥ p.

Statement (c3) says that σp (p + 1) < σp (p + 2) < · · · < σp (n). In view of σp = σ,
this rewrites as σ (p + 1) < σ (p + 2) < · · · < σ (n). This solves Exercise 4 (c).

Statement (a3) says that σp (i) = gp+1−i for each i ∈ [p]. In view of σp = σ, this
rewrites as

σ (i) = gp+1−i for each i ∈ [p] . (15)

In other words,

(σ (1) , σ (2) , . . . , σ (p)) =
(

gp, gp−1, . . . , g1
)

. (16)

Hence,

{σ (1) , σ (2) , . . . , σ (p)} =
{

gp, gp−1, . . . , g1
}
=
{

g1, g2, . . . , gp
}
= G

(since G =
{

g1 < g2 < · · · < gp
}
=
{

g1, g2, . . . , gp
}

). Hence

σ

 [p]︸︷︷︸
={1,2,...,p}

 = σ ({1, 2, . . . , p}) = {σ (1) , σ (2) , . . . , σ (p)} = G.

This solves Exercise 4 (b).
Finally, recall that g1 < g2 < · · · < gp. In other words, gp > gp−1 > · · · > g1.

In view of (15), this rewrites as follows: σ (1) > σ (2) > · · · > σ (p). This solves
Exercise 4 (a).

cr (i) = i− 1 (since 1 < i ≤ r). Now, recall that σh = σh−1 ◦ cr. Thus,

σh (i) = (σh−1 ◦ cr) (i) = σh−1

cr (i)︸ ︷︷ ︸
=i−1

 = σh−1 (i− 1) = gh+1−i.

Thus, σh (i) = gh+1−i is proven, as we wanted. This completes the proof of statement (a2).
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Permutations σ ∈ Sn satisfying the inequalities σ (1) > σ (2) > · · · > σ (p) and
σ (p + 1) < σ (p + 2) < · · · < σ (n) for some p ∈ {0, 1, . . . , n} are known as “V-
permutations” (as their plot looks somewhat like the letter “V”: first decreasing
for a while, then increasing). Can you guess how permutations σ ∈ Sn satisfying
σ (1) < σ (2) < · · · < σ (p) and σ (p + 1) > σ (p + 2) > · · · > σ (n) are called?10

Exercise 4 is a lemma in the theory of free Lie algebras (see [BleLau92, (10)]).
TODO: Explain how Exercise 4 can also be obtained as a particular case of the

formula for a permutation in terms of its Rothe diagram. (See https://sumidiot.
blogspot.com/2008/05/rothe-diagram.html for now.)

0.5. Lexicographic comparison of permutations

Definition 0.14. Let n ∈ N. Let σ ∈ Sn be a permutation. For any i ∈ [n], we let
`i (σ) denote the number of j ∈ {i + 1, i + 2, . . . , n} such that σ (i) > σ (j).

For example, if σ is the permutation of [5] written in one-line notation as [4, 1, 5, 2, 3],
then `1 (σ) = 3, `2 (σ) = 0, `3 (σ) = 2, `4 (σ) = 0 and `5 (σ) = 0.

Definition 0.15. Let n ∈ N. Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two n-
tuples of integers. We say that (a1, a2, . . . , an) <lex (b1, b2, . . . , bn) if and only if
there exists some k ∈ [n] such that ak 6= bk, and the smallest such k satisfies
ak < bk.

For example, (4, 1, 2, 5) <lex (4, 1, 3, 0) and (1, 1, 0, 1) <lex (2, 0, 0, 0). The relation
<lex is usually pronounced “is lexicographically smaller than”; the word “lexico-
graphic” comes from the idea that if numbers were letters, then a “word” a1a2 · · · an
would appear earlier in a dictionary than b1b2 · · · bn if and only if (a1, a2, . . . , an) <lex
(b1, b2, . . . , bn).

Exercise 5. Let n ∈N. Let σ ∈ Sn and τ ∈ Sn. Prove the following:
(a) If

(σ (1) , σ (2) , . . . , σ (n)) <lex (τ (1) , τ (2) , . . . , τ (n)) ,

then
(`1 (σ) , `2 (σ) , . . . , `n (σ)) <lex (`1 (τ) , `2 (τ) , . . . , `n (τ)) .

(b) If (`1 (σ) , `2 (σ) , . . . , `n (σ)) = (`1 (τ) , `2 (τ) , . . . , `n (τ)), then σ = τ.

The solution to Exercise 5 given below is one of those cases where a simple
argument becomes insufferably long and dreary as I try to capture it in writing.
Apologies for what you are about to see. The proof relies on the following lemma:

10Answer: They are called “Λ-permutations”. Both names “V-permutations” and “Λ-permutations”
are due to the shape of the plot when the permutation is plotted in 2D.

https://sumidiot.blogspot.com/2008/05/rothe-diagram.html
https://sumidiot.blogspot.com/2008/05/rothe-diagram.html
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Lemma 0.16. Let n ∈N. Let σ ∈ Sn and i ∈ [n]. Then:
(a) We have `i (σ) = |[σ (i)− 1] \ σ ([i])|.
(b) We have `i (σ) = |[σ (i)− 1] \ σ ([i− 1])|.

Proof of Lemma 0.16. (a) We know that `i (σ) is the number of j ∈ {i + 1, i + 2, . . . , n}
such that σ (i) > σ (j) (by the definition of `i (σ)). Hence,

`i (σ) = (the number of j ∈ {i + 1, i + 2, . . . , n} such that σ (i) > σ (j))
= |{j ∈ {i + 1, i + 2, . . . , n} | σ (i) > σ (j)}| . (17)

Define a set A by

A = {j ∈ {i + 1, i + 2, . . . , n} | σ (i) > σ (j)} . (18)

Thus,
|A| = |{j ∈ {i + 1, i + 2, . . . , n} | σ (i) > σ (j)}| = `i (σ) (19)

(by (17)).
Let B be the set [σ (i)− 1] \ σ ([i]).
The map σ is a permutation of [n] (since σ ∈ Sn), and thus is invertible, and

therefore is injective.
For each k ∈ A, we have σ (k) ∈ B 11. Hence, we can define a map α : A → B

by
(α (k) = σ (k) for each k ∈ A) .

Consider this α.
On the other hand, for each k ∈ B, we have σ−1 (k) ∈ A 12. Hence, we can

define a map β : B→ A by(
β (k) = σ−1 (k) for each k ∈ B

)
.

11Proof. Let k ∈ A. Thus, k ∈ A = {j ∈ {i + 1, i + 2, . . . , n} | σ (i) > σ (j)}. In other words, k is an
element of {i + 1, i + 2, . . . , n} and satisfies σ (i) > σ (k).

From k ∈ {i + 1, i + 2, . . . , n} ⊆ [n], we conclude that σ (k) is well-defined. Also, σ (k) < σ (i)
(since σ (i) > σ (k)), so that σ (k) ≤ σ (i)− 1 (since σ (k) and σ (i) are integers). Thus, σ (k) ∈
[σ (i)− 1].

Next, let us prove that σ (k) /∈ σ ([i]).
Indeed, assume the contrary (for the sake of contradiction). Hence, σ (k) ∈ σ ([i]). In other

words, there exists some j ∈ [i] such that σ (k) = σ (j). Consider this j. From σ (k) = σ (j), we
obtain k = j (since the map σ is injective). Hence, k = j ∈ [i]. But k ∈ {i + 1, i + 2, . . . , n} =
[n] \ [i], so that k /∈ [i]. This contradicts k ∈ [i]. This contradiction shows that our assumption
was false. Hence, σ (k) /∈ σ ([i]) is proven.

Combining σ (k) ∈ [σ (i)− 1] with σ (k) /∈ σ ([i]), we obtain σ (k) ∈ [σ (i)− 1] \ σ ([i]) = B.
Qed.

12Proof. Let k ∈ B. Thus, k ∈ B = [σ (i)− 1] \ σ ([i]). In other words, k ∈ [σ (i)− 1] and k /∈ σ ([i]).
From k ∈ [σ (i)− 1], we obtain 1 ≤ k ≤ σ (i)− 1. Also, k ∈ [σ (i)− 1] ⊆ [n], so that σ−1 (k) is

a well-defined element of [n].
We have σ

(
σ−1 (k)

)
= k ≤ σ (i)− 1 < σ (i). In other words, σ (i) > σ

(
σ−1 (k)

)
.

Next, we claim that σ−1 (k) ∈ {i + 1, i + 2, . . . , n}. Indeed, assume the contrary (for the sake
of contradiction). Thus, σ−1 (k) /∈ {i + 1, i + 2, . . . , n}. Combining this with σ−1 (k) ∈ [n], we
obtain

σ−1 (k) ∈ [n] \ {i + 1, i + 2, . . . , n} = [i] .
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Consider this β.
The maps α and β are mutually inverse (since α is a restriction of σ, whereas β is

a restriction of σ−1), and therefore are bijections. Hence, there is a bijection from A
to B (namely, α). Thus, |A| = |B|.

But (19) yields
`i (σ) = |A| = |B| = |[σ (i)− 1] \ σ ([i])|

(since B = [σ (i)− 1] \ σ ([i])). This proves Lemma 0.16 (a).
(b) If we had σ (i) ∈ [σ (i)− 1], then we would have σ (i) ≤ σ (i) − 1 < σ (i),

which would be absurd. Hence, we have σ (i) /∈ [σ (i)− 1].
But [i] = {i} ∪ [i− 1]. Hence,

σ

 [i]︸︷︷︸
={i}∪[i−1]

 = σ ({i} ∪ [i− 1]) = σ ({i})︸ ︷︷ ︸
={σ(i)}

∪σ ([i− 1]) = {σ (i)} ∪ σ ([i− 1]) .

Thus,

[σ (i)− 1] \ σ ([i])︸ ︷︷ ︸
={σ(i)}∪σ([i−1])

= [σ (i)− 1] \ ({σ (i)} ∪ σ ([i− 1]))
= ([σ (i)− 1] \ {σ (i)})︸ ︷︷ ︸

=[σ(i)−1]
(since σ(i)/∈[σ(i)−1])

\σ ([i− 1]) = [σ (i)− 1] \ σ ([i− 1]) .

Now, Lemma 0.16 (a) yields

`i (σ) =

∣∣∣∣∣∣∣[σ (i)− 1] \ σ ([i])︸ ︷︷ ︸
=[σ(i)−1]\σ([i−1])

∣∣∣∣∣∣∣ = |[σ (i)− 1] \ σ ([i− 1])| .

This proves Lemma 0.16 (b).

Solution to Exercise 5 (sketched). (a) Assume that

(σ (1) , σ (2) , . . . , σ (n)) <lex (τ (1) , τ (2) , . . . , τ (n)) .

Hence, k = σ

σ−1 (k)︸ ︷︷ ︸
∈[i]

 ∈ σ ([i]), which contradicts k /∈ σ ([i]). This contradiction shows that

our assumption was false. Thus, σ−1 (k) ∈ {i + 1, i + 2, . . . , n} is proven.
Now, we know that σ−1 (k) ∈ {i + 1, i + 2, . . . , n} and σ (i) > σ

(
σ−1 (k)

)
. In other words,

σ−1 (k) is a j ∈ {i + 1, i + 2, . . . , n} satisfying σ (i) > σ (j). In other words,

σ−1 (k) ∈ {j ∈ {i + 1, i + 2, . . . , n} | σ (i) > σ (j)} .

In view of (18), this rewrites as σ−1 (k) ∈ A. Qed.
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According to Definition 0.15, this means the following: There exists some k ∈ [n]
such that σ (k) 6= τ (k), and the smallest such k satisfies σ (k) < τ (k).

Let i be the smallest such k. Thus, σ (i) < τ (i), but

each k ∈ [i− 1] satisfies σ (k) = τ (k) (20)

(since i is the smallest k ∈ [n] such that σ (k) 6= τ (k)).
Thus,

each k ∈ [i] satisfies σ ([k− 1]) = τ ([k− 1]) (21)
13. Hence,

each k ∈ [i− 1] satisfies `k (σ) = `k (τ) (22)
14. Furthermore,

`i (σ) < `i (τ) (23)
15. Thus, `i (σ) 6= `i (τ). In other words, i is a k ∈ [n] such that `k (σ) 6= `k (τ).
Moreover, (22) shows that i is the smallest such k. Thus, the smallest k ∈ [n] such
that `k (σ) 6= `k (τ) satisfies `k (σ) < `k (τ) (because this k is i, and i satisfies (23)).

13Proof of (21): Let k ∈ [i]. Thus, k ≤ i.
Let j ∈ [k− 1]. Thus, j ≤ k︸︷︷︸

≤i

−1 ≤ i− 1, so that j ∈ [i− 1]. Hence, (20) (applied to j instead

of k) shows that σ (j) = τ (j).
Now, forget that we fixed j. We thus have shown that σ (j) = τ (j) for each j ∈ [k− 1]. In

other words,
(σ (1) , σ (2) , . . . , σ (k− 1)) = (τ (1) , τ (2) , . . . , τ (k− 1)) .

Thus,
{σ (1) , σ (2) , . . . , σ (k− 1)} = {τ (1) , τ (2) , . . . , τ (k− 1)} .

Now,

σ

 [k− 1]︸ ︷︷ ︸
={1,2,...,k−1}

 = σ ({1, 2, . . . , k− 1}) = {σ (1) , σ (2) , . . . , σ (k− 1)}

= {τ (1) , τ (2) , . . . , τ (k− 1)} = τ

{1, 2, . . . , k− 1}︸ ︷︷ ︸
=[k−1]

 = τ ([k− 1]) .

This proves (21).
14Proof of (22): Let k ∈ [i− 1]. Then, Lemma 0.16 (b) (applied to k instead of i) yields

`k (σ) = |[σ (k)− 1] \ σ ([k− 1])|. The same argument (applied to τ instead of σ) yields
`k (τ) = |[τ (k)− 1] \ τ ([k− 1])|.

But k ∈ [i− 1] ⊆ [i]. Hence, (21) yields σ ([k− 1]) = τ ([k− 1]). Also, (20) yields σ (k) = τ (k).
Hence,

`k (σ) =

∣∣∣∣∣∣∣
σ (k)︸︷︷︸
=τ(k)

−1

 \ σ ([k− 1])︸ ︷︷ ︸
=τ([k−1])

∣∣∣∣∣∣∣ = |[τ (k)− 1] \ τ ([k− 1])| = `k (τ) .

This proves (22).
15Proof of (23): We have i ∈ [i]. Hence, (21) (applied to k = i) yields σ ([i− 1]) = τ ([i− 1]).
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Thus, we have shown that there exists some k ∈ [n] such that `k (σ) 6= `k (τ), and
the smallest such k satisfies `k (σ) < `k (τ). But this means precisely that

(`1 (σ) , `2 (σ) , . . . , `n (σ)) <lex (`1 (τ) , `2 (τ) , . . . , `n (τ))

(according to Definition 0.15). Hence, Exercise 5 (a) is solved.
(b) Assume that

(`1 (σ) , `2 (σ) , . . . , `n (σ)) = (`1 (τ) , `2 (τ) , . . . , `n (τ)) . (25)

We must prove that σ = τ.
Indeed, assume the contrary. Thus, σ 6= τ. Hence, there exists some k ∈ [n]

satisfying σ (k) 6= τ (k). Therefore, there exists the smallest such k. This smallest k
must satisfy either σ (k) < τ (k) or σ (k) > τ (k) (because it satisfies σ (k) 6= τ (k)).
We can WLOG assume that it satisfies σ (k) < τ (k) (because otherwise, we can
simply switch the roles of σ and τ). Assume this. Thus, (σ (1) , σ (2) , . . . , σ (n)) <lex
(τ (1) , τ (2) , . . . , τ (n)) (because of Definition 0.15). Hence, Exercise 5 (a) shows
that (`1 (σ) , `2 (σ) , . . . , `n (σ)) <lex (`1 (τ) , `2 (τ) , . . . , `n (τ)). In other words, there

Also, σ (i) < τ (i), so that σ (i)− 1 < τ (i)− 1 and therefore [σ (i)− 1] ⊆ [τ (i)− 1].
From σ (i) < τ (i), we also obtain σ (i) ≤ τ (i)− 1 (since σ (i) and τ (i) are integers), and thus

σ (i) ∈ [τ (i)− 1].
Also, σ (i) /∈ σ ([i− 1]). [Proof: Assume the contrary. Thus, σ (i) ∈ σ ([i− 1]). In other words,

σ (i) = σ (j) for some j ∈ [i− 1]. Consider this j. From σ (i) = σ (j), we obtain i = j (since σ is
injective), so that i = j ∈ [i− 1] and thus i ≤ i− 1 < i. But this is absurd. Hence, we found a
contradiction, so that σ (i) /∈ σ ([i− 1]) is proven.]

If we had σ (i) ∈ [σ (i)− 1], then we would have σ (i) ≤ σ (i)− 1 < σ (i), which is absurd.
Hence, we have σ (i) /∈ [σ (i)− 1]. Thus, also σ (i) /∈ [σ (i)− 1] \ σ ([i− 1]).

Combining σ (i) ∈ [τ (i)− 1] with σ (i) /∈ σ ([i− 1]), we obtain σ (i) ∈ [τ (i)− 1] \ σ ([i− 1]).
Now,

[σ (i)− 1]︸ ︷︷ ︸
⊆[τ(i)−1]

\σ ([i− 1]) ⊆ [τ (i)− 1] \ σ ([i− 1]) . (24)

Moreover, the set [τ (i)− 1] \ σ ([i− 1]) contains σ (i) (since σ (i) ∈ [τ (i)− 1] \ σ ([i− 1])), but
the set [σ (i)− 1] \ σ ([i− 1]) does not (since σ (i) /∈ [σ (i)− 1] \ σ ([i− 1])). Thus, these two sets
are distinct. In other words, [σ (i)− 1] \ σ ([i− 1]) 6= [τ (i)− 1] \ σ ([i− 1]). Combining this with
(24), we conclude that [σ (i)− 1] \ σ ([i− 1]) is a proper subset of [τ (i)− 1] \ σ ([i− 1]). Thus,

|[σ (i)− 1] \ σ ([i− 1])| < |[τ (i)− 1] \ σ ([i− 1])|

(since a proper subset of any finite set must always have smaller size than the latter).
But Lemma 0.16 (b) yields `i (σ) = |[σ (i)− 1] \ σ ([i− 1])|. The same argument (applied to τ

instead of σ) yields `i (τ) = |[τ (i)− 1] \ τ ([i− 1])|. Hence,

`i (σ) = |[σ (i)− 1] \ σ ([i− 1])|

<

∣∣∣∣∣∣∣[τ (i)− 1] \ σ ([i− 1])︸ ︷︷ ︸
=τ([i−1])

∣∣∣∣∣∣∣ = |[τ (i)− 1] \ τ ([i− 1])| = `i (τ) .

This proves (23).
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exists some k ∈ [n] such that `k (σ) 6= `k (τ), and the smallest such k satisfies
`k (σ) < `k (τ) (according to Definition 0.15).

In particular, there exists some k ∈ [n] such that `k (σ) 6= `k (τ). In other words,
(`1 (σ) , `2 (σ) , . . . , `n (σ)) 6= (`1 (τ) , `2 (τ) , . . . , `n (τ)). But this contradicts (25).
This contradiction shows that our assumption was false. Hence, σ = τ is proven.
This solves Exercise 5 (b).

0.6. Comparing subsets of [n]

If I and J are two finite sets of integers, then we write I ≤# J if and only if the
following two properties hold:

• We have |I| ≥ |J|.

• For every r ∈ {1, 2, . . . , |J|}, the r-th smallest element of I is ≤ to the r-th
smallest element of J.

For example, {2, 4} ≤# {2, 5} and {1, 3} ≤# {2, 4} and {1, 3, 5} ≤# {2, 4}. (But
not {1, 3} ≤# {2, 4, 5}.)

The relation ≤# is called the Gale order on the powerset of [n].

Exercise 6. Let n ∈N. Let I and J be two subsets of [n].
(a) For every subset S of [n] and every ` ∈ [n], let αS (`) denote the number of

all elements of S that are ≤ `. Prove that I ≤# J holds if and only if every ` ∈ [n]
satisfies αI (`) ≥ αJ (`).

(b) Prove that I ≤# J if and only if [n] \ J ≤# [n] \ I.

The following solution is mostly copypasted from [GriRei18, Proof of Proposition
12.75.2], where the exercise serves as a lemma for a combinatorial proof of an
identity between Schur polynomials.

Solution to Exercise 6. (a) We must prove the equivalence

(I ≤# J) ⇐⇒ (every ` ∈ [n] satisfies αI (`) ≥ αJ (`)) . (26)

=⇒: Assume that I ≤# J. In other words, the following two properties hold:

Property α: We have |I| ≥ |J|.

Property β: For every r ∈ {1, 2, . . . , |J|}, the r-th smallest element of I is
≤ to the r-th smallest element of J.

Now, let ` ∈ [n]. Then, we need to show that αI (`) ≥ αJ (`). Since this is obvious
if αJ (`) = 0 (because αI (`) ≥ 0), we can WLOG assume that αJ (`) 6= 0. Assume

this. Thus, αJ (`) ≥ 1. Also, αJ (`) =

∣∣∣∣∣∣∣{s ∈ J | s ≤ `}︸ ︷︷ ︸
⊆J

∣∣∣∣∣∣∣ ≤ |J| ≤ |I| (since |I| ≥ |J|).
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Hence, both the αJ (`)-th smallest element of J and the αJ (`)-th smallest element
of I are well-defined.

Since αJ (`) = |{s ∈ J | s ≤ `}|, we know that the elements of J which are ≤ `
are precisely the αJ (`) smallest elements of J. Thus,

(the αJ (`) -th smallest element of J) = (the largest element of J which is ≤ `) .

But by Property β (applied to r = αJ (`)), we have

(the αJ (`) -th smallest element of I) ≤ (the αJ (`) -th smallest element of J)
= (the largest element of J which is ≤ `) ≤ `.

Hence, there are at least αJ (`) elements of I which are ≤ ` (namely, the αJ (`)
smallest ones). In other words, |{s ∈ I | s ≤ `}| ≥ αJ (`). Now, the definition
of αI (`) yields αI (`) = |{s ∈ I | s ≤ `}| ≥ αJ (`). We thus have proven the =⇒
direction of (26).
⇐=: Assume that every ` ∈ [n] satisfies αI (`) ≥ αJ (`). We need to prove that

I ≤# J. In other words, we need to prove that the following two properties hold:

Property α: We have |I| ≥ |J|.

Property β: For every r ∈ {1, 2, . . . , |J|}, the r-th smallest element of I is
≤ to the r-th smallest element of J.

First of all, {s ∈ I | s ≤ n} = I (since every s ∈ I satisfies s ≤ n), and the

definition of αI (n) yields αI (n) =

∣∣∣∣∣∣{s ∈ I | s ≤ n}︸ ︷︷ ︸
=I

∣∣∣∣∣∣ = |I|. Similarly, αJ (n) = |J|.

Applying αI (`) ≥ αJ (`) to ` = n, we obtain αI (n) ≥ αJ (n), so that |I| = αI (n) ≥
αJ (n) = |J|, and thus Property α is proven.

Now, let r ∈ {1, 2, . . . , |J|}. The r-th smallest element of I and the r-th smallest
element of J are then well-defined (because of r ≤ |J| ≤ |I|). Let ` be the r-th
smallest element of J. Then, {s ∈ J | s ≤ `} is the set consisting of the r smallest
elements of J, so that |{s ∈ J | s ≤ `}| = r. Now, the definition of αJ (`) yields
αJ (`) = |{s ∈ J | s ≤ `}| = r.

But the definition of αI (`) yields αI (`) = |{s ∈ I | s ≤ `}|, so that

|{s ∈ I | s ≤ `}| = αI (`) ≥ αJ (`) = r.

In other words, there exist at least r elements of I which are ≤ `. Hence, the r-th
smallest element of I must be ≤ `. Since ` is the r-th smallest element of J, this
rewrites as follows: The r-th smallest element of I is ≤ to the r-th smallest element
of J. Thus, Property β holds. Now we know that both Properties α and β hold.
Hence, I ≤# J holds (which, as we know, is equivalent to the conjunction of said
properties). This proves the ⇐= direction of (26). Thus, (26) is proven. In other
words, Exercise 6 (a) is solved.
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(b) For every ` ∈ [n] and S ⊆ [n], let αS (`) denote the number |{s ∈ S | s ≤ `}|.
Thus, every ` ∈ [n] satisfies

αI (`) + α[n]\I (`) = |{s ∈ I | s ≤ `}|+ |{s ∈ [n] \ I | s ≤ `}|

=

∣∣∣∣∣∣∣
s ∈ I ∪ ([n] \ I)︸ ︷︷ ︸

=[n]

| s ≤ `


∣∣∣∣∣∣∣ (since I and [n] \ I are disjoint)

= |{s ∈ [n] | s ≤ `}| = |{1, 2, . . . , `}| = `,

so that α[n]\I (`) = `− αI (`). Similarly, every ` ∈ [n] satisfies α[n]\J (`) = `− αJ (`).
Applying (26) to [n] \ J and [n] \ I in lieu of I and J, we obtain the equivalence

([n] \ J ≤# [n] \ I) ⇐⇒
(

every ` ∈ [n] satisfies α[n]\J (`) ≥ α[n]\I (`)
)

.

Hence, we have the following chain of equivalences:

([n] \ J ≤# [n] \ I)

⇐⇒

every ` ∈ [n] satisfies α[n]\J (`)︸ ︷︷ ︸
=`−αJ(`)

≥ α[n]\I (`)︸ ︷︷ ︸
=`−αI(`)


⇐⇒ (every ` ∈ [n] satisfies `− αJ (`) ≥ `− αI (`))

⇐⇒ (every ` ∈ [n] satisfies αI (`) ≥ αJ (`))

⇐⇒ (I ≤# J) (by (26)) .

This solves Exercise 6 (b).

Remark 0.17. Recall that we have defined a Dyck word as a list w of 2n numbers,
exactly n of which are 0’s while the other n are 1’s, and having the property that
for each k ∈ [2n], the number of 0’s among the first k entries of w is ≤ to the
number of 1’s among the first k entries of w.

It is not hard to see the connection between the relation ≤# and Dyck words:
Let w = (w1, w2, . . . , w2n) ∈ {0, 1}2n be a list of 2n numbers, exactly n of which
are 0’s while the other n are 1’s. Then, w is a Dyck word if and only if

{i ∈ [2n] | wi = 1} ≤# {i ∈ [2n] | wi = 0}

(in other words, for every r ∈ [n], the r-th appearance of 1 in w precedes the r-th
appearance of 0 in w).

0.7. A rigorous approach to the existence of a cycle
decomposition

The purpose of the following exercise is to give a rigorous proof of the fact that
any permutation can be decomposed into disjoint cycles.
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Exercise 7. Let X be a finite set. Let σ be a permutation of X.
Define a binary relation ∼ on the set X as follows: For two elements x ∈ X and

y ∈ X, we set x ∼ y if and only if there exists some k ∈N such that y = σk (x).
(a) Prove that ∼ is an equivalence relation.
For any x ∈ X, we let [x]∼ denote the ∼-equivalence class of x.
(b) For any x ∈ X, prove that [x]∼ =

{
σ0 (x) , σ1 (x) , . . . , σk−1 (x)

}
, where

k = |[x]∼|.
(c) For any ∼-equivalence class E, let us define cE to be the map

X → X, x 7→
{

σ (x) , if x ∈ E;
x, if x /∈ E

.

Prove that cE is a permutation of X.
(d) Prove that if E = [x]∼ for some x ∈ X, then cE can be writ-

ten as cycσ0(x),σ1(x),...,σk−1(x), where k = |[x]∼|. (Don’t forget to show that
σ0 (x) , σ1 (x) , . . . , σk−1 (x) are distinct, so that cycσ0(x),σ1(x),...,σk−1(x) is well-
defined.)

(e) Let E1, E2, . . . , Em be all ∼-equivalence classes (listed without repetitions –
that is, Ei 6= Ej whenever i 6= j). Prove that

σ = cE1 ◦ cE2 ◦ · · · ◦ cEm .

Exercise 7 is mostly an exercise in understanding the definitions and writing up
proofs. The first two parts of it are similar to Exercise 6 on homework set #3; thus,
our solution below is partly copypasted from the latter (with the necessary changes
made).

Our solution relies on a few lemmas:

Lemma 0.18. Let X be a set. Let f : X → X be any map. Let x ∈ X. Let i and j
be two nonnegative integers satisfying i < j and f i (x) = f j (x). Then,{

f h (x) | h ∈N
}
=
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}

.

Proof of Lemma 0.18. We have

{
f 0 (x) , f 1 (x) , . . . , f j−1 (x)

}
=

 f h (x) | h ∈ {0, 1, . . . , j− 1}︸ ︷︷ ︸
⊆N


⊆
{

f h (x) | h ∈N
}

. (27)

On the other hand, we have i ∈ {0, 1, . . . , j− 1} (since i is a nonnegative integer
satisfying i < j), and thus f i (x) ∈

{
f 0 (x) , f 1 (x) , . . . , f j−1 (x)

}
. Hence,

{
f i (x)

}
⊆

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw3os.pdf
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{
f 0 (x) , f 1 (x) , . . . , f j−1 (x)

}
. Therefore,

{
f 0 (x) , f 1 (x) , . . . , f j−1 (x)

}
=
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}
∪

 f i (x)︸ ︷︷ ︸
= f j(x)


=
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}
∪
{

f j (x)
}

=
{

f 0 (x) , f 1 (x) , . . . , f j (x)
}

. (28)

Now,

f h (x) ∈
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}

for each h ∈N. (29)

[Proof of (29): We shall prove (29) by induction over h:
Induction base: We have i < j, hence j > i ≥ 0 and thus j ≥ 1 (since j is an integer). Hence,

0 ∈ {0, 1, . . . , j− 1}, so that f 0 (x) ∈
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}

. In other words, (29) holds for
h = 0. This completes the induction base.

Induction step: Let g ∈ N. Assume that (29) holds for h = g. We must now show that (29) holds
for h = g + 1 as well.

We have assumed that (29) holds for h = g. In other words, f g (x) ∈
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}

.
In other words, there exists some k ∈ {0, 1, . . . , j− 1} such that f g (x) = f k (x). Consider this k.

We have k ∈ {0, 1, . . . , j− 1}, so that k + 1 ∈ {1, 2, . . . , j} ⊆ {0, 1, . . . , j} and therefore

f k+1 (x) ∈
{

f 0 (x) , f 1 (x) , . . . , f j (x)
}
=
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}

(by (28)). But

f g+1 (x) = f

 f g (x)︸ ︷︷ ︸
= f k(x)

 = f
(

f k (x)
)
= f k+1 (x) ∈

{
f 0 (x) , f 1 (x) , . . . , f j−1 (x)

}

(as we have just proven). In other words, (29) holds for h = g + 1 as well. This completes the
induction step. Thus, (29) is proven.]

From (29), we immediately obtain{
f h (x) | h ∈N

}
⊆
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}

.

Combining this with (27), we obtain{
f h (x) | h ∈N

}
=
{

f 0 (x) , f 1 (x) , . . . , f j−1 (x)
}

.

This proves Lemma 0.18.

Lemma 0.19. Let X be a finite set. Let σ be a permutation of X. Let x ∈ X.
(a) There exists a j ∈N such that σj (x) ∈

{
σ0 (x) , σ1 (x) , . . . , σj−1 (x)

}
.

Let p be the smallest such j.
(b) The integer p is positive and satisfies σp (x) = x.
(c) The elements σ0 (x) , σ1 (x) , . . . , σp−1 (x) are pairwise distinct.
(d) We have

{
σh (x) | h ∈N

}
=
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}

.
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Proof of Lemma 0.19. The map σ is a permutation of X. In other words, σ is a bijec-
tion X → X. Hence, σ is injective.

(a) Define an n ∈N by n = |X|. (This is well-defined, since X is a finite set.)
The n + 1 elements σ0 (x) , σ1 (x) , . . . , σn (x) cannot all be distinct, because they

all belong to the n-element set X. Hence, at least two of these n + 1 elements are
equal. In other words, there exist two elements u and v of {0, 1, . . . , n} such that
u < v and σu (x) = σv (x). Consider these u and v.

We have u ∈ {0, 1, . . . , n} ⊆ N. Thus, u ∈ {0, 1, . . . , v− 1} (since u < v). Hence,
σu (x) ∈

{
σ0 (x) , σ1 (x) , . . . , σv−1 (x)

}
. In view of σu (x) = σv (x), this rewrites

as σv (x) ∈
{

σ0 (x) , σ1 (x) , . . . , σv−1 (x)
}

. Thus, there exists a j ∈ N such that
σj (x) ∈

{
σ0 (x) , σ1 (x) , . . . , σj−1 (x)

}
(namely, j = v). This proves Lemma 0.19 (a).

Now, let us study the p in Lemma 0.19. We have defined p as the small-
est j ∈ N such that σj (x) ∈

{
σ0 (x) , σ1 (x) , . . . , σj−1 (x)

}
. Thus, p is an ele-

ment of N and satisfies σp (x) ∈
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}

. Hence, the set{
σ0 (x) , σ1 (x) , . . . , σp−1 (x)

}
is nonempty (since it contains the element σp (x)).

Thus, p 6= 0 (because if we had p = 0, then the set
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}

would be empty). Hence, p is a positive integer (since p ∈N).
(b) We already know that p is positive. It thus remains to show that σp (x) = x.
Indeed, we have σp (x) ∈

{
σ0 (x) , σ1 (x) , . . . , σp−1 (x)

}
. In other words, there

exists some i ∈ {0, 1, . . . , p− 1} such that σp (x) = σi (x). Consider this i.
Next, we claim that i = 0. We shall prove this by contradiction. Indeed, assume

the contrary. Thus, i 6= 0, so that i > 0 (since i ∈ N). Hence, σi (x) = σ
(
σi−1 (x)

)
.

But the integer p is also positive; hence, p − 1 ∈ N and σp (x) = σ
(
σp−1 (x)

)
.

Hence, σ
(
σp−1 (x)

)
= σp (x) = σ

(
σi−1 (x)

)
. Since σ is injective, we thus conclude

that σp−1 (x) = σi−1 (x). But i − 1 ∈ N (since i > 0). From i ∈ {0, 1, . . . , p− 1},
we obtain i − 1 ∈ {−1, 0, . . . , (p− 1)− 1}. Combined with i − 1 ∈ N, this yields
i − 1 ∈ {−1, 0, . . . , (p− 1)− 1} ∩N = {0, 1, . . . , (p− 1)− 1}. Hence, σi−1 (x) ∈{

σ0 (x) , σ1 (x) , . . . , σ(p−1)−1 (x)
}

. Hence,

σp−1 (x) = σi−1 (x) ∈
{

σ0 (x) , σ1 (x) , . . . , σ(p−1)−1 (x)
}

.

Thus, p − 1 is a j ∈ N such that σj (x) ∈
{

σ0 (x) , σ1 (x) , . . . , σj−1 (x)
}

(because
p− 1 ∈ N). But we defined p to be the smallest such j. Hence, p ≤ p− 1. This
contradicts p > p − 1. This contradiction shows that our assumption was false;
hence, we have shown that i = 0. Therefore, σi (x) = σ0︸︷︷︸

=id

(x) = id (x) = x.

Now, σp (x) = σi (x) = x. This completes the proof of Lemma 0.19 (b).
(c) Assume the contrary. Thus, two of the elements σ0 (x) , σ1 (x) , . . . , σp−1 (x)

are equal. In other words, there exist two elements u and v of {0, 1, . . . , p− 1} such
that u < v and σu (x) = σv (x). Consider these u and v. Notice that v ≤ p − 1
(since v ∈ {0, 1, . . . , p− 1}).

From u ∈ {0, 1, . . . , p− 1}, we obtain u ≥ 0. From u < v, we obtain u ≤
v − 1 (since u and v are integers), so that u ∈ {0, 1, . . . , v− 1} (since u ≥ 0).
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Hence, σu (x) ∈
{

σ0 (x) , σ1 (x) , . . . , σv−1 (x)
}

. From σu (x) = σv (x), we obtain
σv (x) = σu (x) ∈

{
σ0 (x) , σ1 (x) , . . . , σv−1 (x)

}
. Thus, v is a j ∈ N such that

σj (x) ∈
{

σ0 (x) , σ1 (x) , . . . , σj−1 (x)
}

(because v ∈ N). But we defined p to be the
smallest such j. Hence, p ≤ v. This contradicts v ≤ p− 1 < p. This contradiction
shows that our assumption was false. Thus, Lemma 0.19 (c) is proven.

(d) We have σp (x) ∈
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}

. In other words, there exists
some i ∈ {0, 1, . . . , p− 1} such that σp (x) = σi (x). Consider this i. Hence, i < p
(since i ∈ {0, 1, . . . , p− 1}) and σi (x) = σp (x). Thus, Lemma 0.18 (applied to
f = σ and j = p) yields{

σh (x) | h ∈N
}
=
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}

.

This proves Lemma 0.19 (d).

Lemma 0.20. Let X be a set. Let f : X → X be any map. Let x ∈ X. Let p ∈ N

be such that f p (x) = x. Then, f kp (x) = x for each k ∈N.

Proof of Lemma 0.20. Lemma 0.20 is intuitively obvious: All it says is that if applying
the map f to x a total of p times brings you back to x, then applying the map f
to x a total of kp times brings you back to x as well. This intuition can easily be
translated into a rigorous argument:

We shall prove Lemma 0.20 by induction over k:
Induction base: We have f 0p = f 0 = idX , so that f 0p (x) = idX (x) = x. Thus, Lemma 0.20 holds

for k = 0. This completes the induction base.
Induction step: Let m ∈N. Assume that Lemma 0.20 holds for k = m. We must prove that Lemma

0.20 holds for k = m + 1.
Let x ∈ X. Let p ∈ N be such that f p (x) = x. Then, f mp (x) = x (since Lemma 0.20 holds for

k = m). But f mp ◦ f p = f mp+p = f (m+1)p. Hence, ( f mp ◦ f p) (x) = f (m+1)p (x), and therefore

f (m+1)p (x) = ( f mp ◦ f p) (x) = f mp

 f p (x)︸ ︷︷ ︸
=x

 = f mp (x) = x.

In other words, Lemma 0.20 holds for k = m + 1. This completes the induction step. Thus, Lemma
0.20 is proven.

Lemma 0.21. Let X be a set. Let m ∈ N. Let f1, f2, . . . , fm be m maps from X to
X. Let x and y be two elements of X.

Let i ∈ [m]. Assume that fi (x) = y. Assume further that

f j (x) = x for each j ∈ [m] satisfying j < i. (30)

Assume also that

f j (y) = y for each j ∈ [m] satisfying j > i. (31)

Then, ( fm ◦ fm−1 ◦ · · · ◦ f1) (x) = y.
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Proof of Lemma 0.21. The idea behind this proof is very simple (if we don’t insist on
being rigorous): Imagine the element x undergoing the maps f1, f2, . . . , fm in this
order; the result is, of course, ( fm ◦ fm−1 ◦ · · · ◦ f1) (x). But let us look closer at the
step-by-step procedure. The element is initially x. Then, the maps f1, f2, . . . , fm
are being applied to it in this order. Up until the map fi is applied, the element
does not change (because of (30)). Then, the map fi is applied, and the element
becomes y (since fi (x) = y). From then on, the maps fi+1, fi+2, . . . , fm again leave
the element unchanged (due to (31)). Thus, the final result is y. This shows that
( fm ◦ fm−1 ◦ · · · ◦ f1) (x) = y.

Let us now rewrite the above argument in rigorous terms.
We have i ∈ [m], so that 1 ≤ i ≤ m. Now, we claim the following:

Observation 1: We have
(

fg ◦ fg−1 ◦ · · · ◦ f1
)
(x) =

{
x, if g < i;
y, if g ≥ i

for each g ∈ {0, 1, . . . , m}.

[Proof of Observation 1: We shall prove Observation 1 by induction on g:

Induction base: We have 0 < i (since i ∈ [m]). Thus,

{
x, if 0 < i;
y, if 0 ≥ i

= x. Comparing this with

( f0 ◦ f0−1 ◦ · · · ◦ f1)︸ ︷︷ ︸
=(empty composition of maps X→X)

=id

(x) = id (x) = x,

we obtain ( f0 ◦ f0−1 ◦ · · · ◦ f1) (x) =

{
x, if 0 < i;
y, if 0 ≥ i

. In other words, Observation 1 holds for g = 0.

This completes the induction base.
Induction step: Let h ∈ {0, 1, . . . , m} be positive. Assume that Observation 1 holds for g = h− 1.

We must then prove that Observation 1 holds for g = h.
We have

fh

({
x, if h− 1 < i;
y, if h− 1 ≥ i

)
=

{
x, if h < i;
y, if h ≥ i

(32)

16.

16Proof of (32): We are in one of the following three cases:
Case 1: We have h < i.
Case 2: We have h = i.
Case 3: We have h > i.

Let us first consider Case 1. In this case, we have h < i. Thus,

{
x, if h < i;
y, if h ≥ i

= x.

Applying (30) to j = h, we find fh (x) = x (since h < i).

Also, h− 1 < h < i. Hence,

{
x, if h− 1 < i;
y, if h− 1 ≥ i

= x. Applying the map fh to this equality, we

obtain

fh

({
x, if h− 1 < i;
y, if h− 1 ≥ i

)
= fh (x) = x =

{
x, if h < i;
y, if h ≥ i

.

Hence, (32) is proven in Case 1.

Let us now consider case 2. In this case, we have h = i. Thus, h ≥ i. Hence,

{
x, if h < i;
y, if h ≥ i

= y.
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But we assumed that Observation 1 holds for g = h− 1. In other words, we have

(
fh−1 ◦ f(h−1)−1 ◦ · · · ◦ f1

)
(x) =

{
x, if h− 1 < i;
y, if h− 1 ≥ i

.

Now,

( fh ◦ fh−1 ◦ · · · ◦ f1)︸ ︷︷ ︸
= fh◦( fh−1◦ fh−2◦···◦ f1)

= fh◦( fh−1◦ f(h−1)−1◦···◦ f1)

(x) =
(

fh ◦
(

fh−1 ◦ f(h−1)−1 ◦ · · · ◦ f1

))
(x)

= fh


(

fh−1 ◦ f(h−1)−1 ◦ · · · ◦ f1

)
(x)︸ ︷︷ ︸

=

x, if h− 1 < i;
y, if h− 1 ≥ i


= fh

({
x, if h− 1 < i;
y, if h− 1 ≥ i

)
=

{
x, if h < i;
y, if h ≥ i

(by (32)) .

In other words, Observation 1 holds for g = h. This completes the induction step. Thus, Observation
1 is proven.]

We can now apply Observation 1 to g = m. We thus obtain

( fm ◦ fm−1 ◦ · · · ◦ f1) (x) =

{
x, if m < i;
y, if m ≥ i

= y

(since m ≥ i (since i ≤ m)). This proves Lemma 0.21.

From h = i, we obtain fh (x) = fi (x) = y.

Also, h− 1 < h = i. Hence,

{
x, if h− 1 < i;
y, if h− 1 ≥ i

= x. Applying the map fh to this equality, we

obtain

fh

({
x, if h− 1 < i;
y, if h− 1 ≥ i

)
= fh (x) = y =

{
x, if h < i;
y, if h ≥ i

.

Hence, (32) is proven in Case 2.

Let us first consider Case 3. In this case, we have h > i. Thus, h ≥ i, so that

{
x, if h < i;
y, if h ≥ i

= y.

Applying (31) to j = h, we find fh (y) = y (since h > i).
Also, h > i, so that h ≥ i + 1 (since h and i are integers). Thus, h − 1 ≥ i. Hence,{
x, if h− 1 < i;
y, if h− 1 ≥ i

= y. Applying the map fh to this equality, we obtain

fh

({
x, if h− 1 < i;
y, if h− 1 ≥ i

)
= fh (y) = y =

{
x, if h < i;
y, if h ≥ i

.

Hence, (32) is proven in Case 3.
We have now proven (32) in each of the three Cases 1, 2 and 3 (which are the only cases that

can occur). Thus, (32) always holds.
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Lemma 0.22. Let X be a set. Let m ∈ N. Let g1, g2, . . . , gm be m maps from X to
X. Let x and y be two elements of X.

Let i ∈ [m]. Assume that gi (x) = y. Assume further that

gj (x) = x for each j ∈ [m] satisfying j > i. (33)

Assume also that

gj (y) = y for each j ∈ [m] satisfying j < i. (34)

Then, (g1 ◦ g2 ◦ · · · ◦ gm) (x) = y.

Proof of Lemma 0.22. Lemma 0.22 follows by applying Lemma 0.21 to gm, gm−1, . . . , g1
instead of f1, f2, . . . , fm.

Here is the argument in more detail:
For each j ∈ [m], we define a map f j from X to X by f j = gm+1−j.
From i ∈ [m], we obtain m + 1 − i ∈ [m]. Thus, we can define i′ ∈ [m] by i′ = m + 1 − i.

Consider this i′. From i′ = m + 1− i, we obtain m + 1− i′ = i. Now, the definition of fi′ yields
fi′ = gm+1−i′ = gi (since m + 1− i′ = i). Thus, fi′ (x) = gi (x) = y.

Furthermore, f j (x) = x for each j ∈ [m] satisfying j < i′ 17. Also, f j (y) = y for each j ∈ [m]

satisfying j > i′ 18. Hence, Lemma 0.21 (applied to i′ instead of i) yields ( fm ◦ fm−1 ◦ · · · ◦ f1) (x) =
y.

But each j ∈ [m] satisfies

fm+1−j = gm+1−(m+1−j)
(
by the definition of fm+1−j

)
= gj (since m + 1− (m + 1− j) = j) .

In other words, we have ( fm, fm−1, . . . , f1) = (g1, g2, . . . , gm). Hence, fm ◦ fm−1 ◦ · · · ◦ f1 = g1 ◦ g2 ◦
· · · ◦ gm. Hence, ( fm ◦ fm−1 ◦ · · · ◦ f1) (x) = (g1 ◦ g2 ◦ · · · ◦ gm) (x). Therefore,

(g1 ◦ g2 ◦ · · · ◦ gm) (x) = ( fm ◦ fm−1 ◦ · · · ◦ f1) (x) = y.

This proves Lemma 0.22.

Solution to Exercise 7 (sketched). The map σ is a permutation of X, thus a bijection
X → X. Hence, in particular, σ is injective.

Before we properly start solving the exercise, let us make some basic observa-
tions:

Observation 1. For every x ∈ X, there exists some positive integer p such
that σp (x) = x.

17Proof. Let j ∈ [m] be such that j < i′. Then, m + 1− j ∈ [m] (since j ∈ [m]) and m + 1− j︸︷︷︸
<i′

>

m + 1− i′ = i. Hence, (33) (applied to m + 1− j instead of j) yields gm+1−j (x) = x. But the
definition of f j yields f j = gm+1−j. Thus, f j (x) = gm+1−j (x) = x. Qed.

18Proof. Let j ∈ [m] be such that j > i′. Then, m + 1− j ∈ [m] (since j ∈ [m]) and m + 1− j︸︷︷︸
>i′

<

m + 1− i′ = i. Hence, (34) (applied to m + 1− j instead of j) yields gm+1−j (y) = y. But the
definition of f j yields f j = gm+1−j. Thus, f j (y) = gm+1−j (y) = y. Qed.
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[Proof of Observation 1: Let x ∈ X. Let n = |X|. The n + 1 elements σ0 (x) , σ1 (x) , . . . , σn (x)
cannot all be distinct, because they belong to the n-element set X. Hence, at least two of these n + 1
elements are equal. In other words, there exist two elements i and j of {0, 1, . . . , n} such that i < j
and σi (x) = σj (x). Consider these i and j. From i < j, we conclude that j− i is a positive integer.
Thus, σj = σi ◦ σj−i.

Also, the map σi is injective (since the map σ is injective, but any composition of injective maps
is injective). Hence, from

σi (x) = σj︸︷︷︸
=σi◦σj−i

(x) =
(

σi ◦ σj−i
)
(x) = σi

(
σj−i (x)

)
,

we obtain x = σj−i (x). In other words, σj−i (x) = x. Hence, there exists some positive integer p
such that σp (x) = x (namely, p = j− i). This proves Observation 1.]

Now, we must show that ∼ is an equivalence relation. Indeed, the relation ∼
is reflexive19, symmetric20 and transitive21. In other words, the relation ∼ is an
equivalence relation. This solves Exercise 7 (a).

19Proof. Let x ∈ X. We shall show that x ∼ x.
Indeed, σ0 = idX , so that σ0 (x) = idX (x) = x. Hence, there exists some k ∈ N such that

x = σk (x) (namely, k = 0). In other words, x ∼ x (by the definition of the relation ∼).
Now, forget that we fixed x. We thus have shown that every x ∈ X satisfies x ∼ x. In other

words, the relation ∼ is reflexive.
20Proof. Let x ∈ X and y ∈ X be such that x ∼ y. We shall show that y ∼ x.

Indeed, we have x ∼ y. In other words, there exists some k ∈ N such that y = σk (x) (by
the definition of the relation ∼). Consider such a k, and denote it by u. Thus, u ∈ N satisfies
y = σu (x).

Observation 1 yields that there exists some positive integer p such that σp (x) = x. Consider
this p. Hence, Lemma 0.20 (applied to f = σ and k = u) yields σup (x) = x. But p is positive;
hence, p ≥ 1 and thus up ≥ u1 = u. Hence, up− u ∈ N. Hence, σup−u ◦ σu = σ(up−u)+u =

σup. Thus, (σup−u ◦ σu) (x) = σup (x) = x. Hence, x = (σup−u ◦ σu) (x) = σup−u

σu (x)︸ ︷︷ ︸
=y

 =

σup−u (y). Thus, there exists some k ∈ N such that x = σk (y) (namely, k = up− u). In other
words, y ∼ x (by the definition of the relation ∼).

Now, forget that we fixed x and y. We thus have shown that if x ∈ X and y ∈ X satisfy x ∼ y,
then y ∼ x. In other words, the relation ∼ is symmetric.

21Proof. Let x ∈ X, y ∈ X and z ∈ X be such that x ∼ y and y ∼ z. We shall show that x ∼ z.
Indeed, we have x ∼ y. In other words, there exists some k ∈ N such that y = σk (x) (by

the definition of the relation ∼). Consider such a k, and denote it by u. Thus, u ∈ N satisfies
y = σu (x).

Also, we have y ∼ z. In other words, there exists some k ∈ N such that z = σk (y) (by the
definition of the relation ∼). Consider such a k, and denote it by v. Thus, v ∈ N satisfies
z = σv (y).

But σv ◦ σu = σv+u. Thus, (σv ◦ σu) (x) = σv+u (x). In view of (σv ◦ σu) (x) = σv

σu (x)︸ ︷︷ ︸
=y

 =

σv (y) = z, this rewrites as z = σv+u (x). Thus, there exists some k ∈ N such that z = σk (x)
(namely, k = v + u). In other words, x ∼ z (by the definition of the relation ∼).

Now, forget that we fixed x, y and z. We thus have shown that if x ∈ X, y ∈ X and z ∈ X
satisfy x ∼ y and y ∼ z, then x ∼ z. In other words, the relation ∼ is transitive.
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(b) Let x ∈ X. Lemma 0.19 (a) shows that there exists a j ∈ N such that σj (x) ∈{
σ0 (x) , σ1 (x) , . . . , σj−1 (x)

}
. Let p be the smallest such j.

Lemma 0.19 (b) shows that the integer p is positive and satisfies σp (x) = x.
Lemma 0.19 (c) shows that the elements σ0 (x) , σ1 (x) , . . . , σp−1 (x) are pairwise
distinct. Lemma 0.19 (d) shows that

{
σh (x) | h ∈N

}
=
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}

.
Define a set S by S =

{
σh (x) | h ∈N

}
. Thus,

S =
{

σh (x) | h ∈N
}
=
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}

.

The definition of the equivalence class [x]∼ of x shows that

[x]∼ = {y ∈ X | y ∼ x} .

Now, [x]∼ ⊆ S 22 and S ⊆ [x]∼
23. Combining these two relations, we obtain

[x]∼ = S =
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}

.
The p elements σ0 (x) , σ1 (x) , . . . , σp−1 (x) are pairwise distinct (as we have seen

above). Thus,
∣∣{σ0 (x) , σ1 (x) , . . . , σp−1 (x)

}∣∣ = p.
Let k = |[x]∼|. Then,

k = |[x]∼| =
∣∣∣{σ0 (x) , σ1 (x) , . . . , σp−1 (x)

}∣∣∣ = p.

Now,

[x]∼ =
{

σ0 (x) , σ1 (x) , . . . , σp−1 (x)
}
=
{

σ0 (x) , σ1 (x) , . . . , σk−1 (x)
}

(since p = k). This solves Exercise 7 (b).
(c) Let E be a ∼-equivalence class. We must prove that cE is a permutation of X.
It is clear that cE is well-defined. Next, we claim that

t ∈ cE (X) for each t ∈ X. (35)

22Proof. Let w ∈ [x]∼. Thus, w ∈ [x]∼ = {y ∈ X | y ∼ x}. In other words, w is an element of X
and satisfies w ∼ x.

We have w ∼ x. Hence, x ∼ w (since the relation ∼ is symmetric). In other words, there exists
some k ∈ N such that w = σk (x) (by the definition of the relation ∼). Consider this k. We have

w = σk (x) ∈
{

σh (x) | h ∈N
}
= S.

Now, forget that we fixed w. We thus have shown that w ∈ S for each w ∈ [x]∼. In other
words, [x]∼ ⊆ S.

23Proof. Let w ∈ S. Thus, w ∈ S =
{

σh (x) | h ∈N
}

. In other words, w = σh (x) for some h ∈ N.
Consider this h.

There exists some k ∈ N such that w = σk (x) (namely, k = h). In other words, x ∼ w (by the
definition of the relation ∼). Thus, w ∼ x (since the relation ∼ is symmetric).

Hence, w is an element of X and satisfies w ∼ x. In other words, w ∈ {y ∈ X | y ∼ x}. In
view of [x]∼ = {y ∈ X | y ∼ x}, this rewrites as w ∈ [x]∼.

Now, forget that we fixed w. We thus have shown that w ∈ [x]∼ for each w ∈ S. In other
words, S ⊆ [x]∼.



Math 4990 Fall 2017 (Darij Grinberg): homework set 7 page 33

[Proof of (35): Let t ∈ X. We must prove that t ∈ cE (X).
We are in one of the following two cases:
Case 1: We have t ∈ E.
Case 2: We have t /∈ E.
Let us first consider Case 1. In this case, we have t ∈ E. But E is an ∼-equivalence class. Hence,

E is an ∼-equivalence class containing t (since t ∈ E). In other words, E = [t]∼ (since the only
∼-equivalence class containing t is [t]∼).

Recall that σ is a permutation of X. Hence, an element σ−1 (t) of X is well-defined. Denote this
element by z. Thus, z = σ−1 (t). Hence, σ (z) = t.

We have σ1︸︷︷︸
=σ

(z) = σ (z) = t, so that t = σ1 (z). Hence, there exists some k ∈ N such that

t = σk (z) (namely, k = 1). In other words, z ∼ t (by the definition of the relation ∼). Hence,
z is an element of X and satisfies z ∼ t. In other words, z ∈ {y ∈ X | y ∼ t}. But E = [t]∼ =
{y ∈ X | y ∼ t} (by the definition of the equivalence class [t]∼). Hence, z ∈ {y ∈ X | y ∼ t} = E.
The definition of cE yields

cE (z) =

{
σ (z) , if z ∈ E;
z, if z /∈ E

= σ (z) (since z ∈ E)

= t.

Hence, t = cE

 z︸︷︷︸
∈X

 ∈ cE (X). Thus, we have proven t ∈ cE (X) in Case 1.

Let us now consider Case 2. In this case, we have t /∈ E. The definition of cE yields

cE (t) =

{
σ (t) , if t ∈ E;
t, if t /∈ E

= t (since t /∈ E) .

Hence, t = cE

 t︸︷︷︸
∈X

 ∈ cE (X). Thus, we have proven t ∈ cE (X) in Case 2.

We have now proven t ∈ cE (X) in each of the two Cases 1 and 2. Hence, t ∈ cE (X) is proven.
This proves (35).]

Now, (35) shows that X ⊆ cE (X). In other words, the map cE is surjective. Thus,
cE is a surjective map between two finite sets of the same size (namely, X and X),
and therefore must be bijective (since any surjective map between two finite sets
of the same size is bijective). In other words, cE is a bijection X → X, therefore a
permutation of X. This solves Exercise 7 (c).

(d) Let x ∈ X be such that E = [x]∼. Let k = |[x]∼|. We must prove that
cE can be written as cycσ0(x),σ1(x),...,σk−1(x) (and in particular, we must prove that
σ0 (x) , σ1 (x) , . . . , σk−1 (x) are distinct, so that cycσ0(x),σ1(x),...,σk−1(x) is well-defined).

Lemma 0.19 (a) shows that there exists a j ∈N such that
σj (x) ∈

{
σ0 (x) , σ1 (x) , . . . , σj−1 (x)

}
. Let p be the smallest such j. As in the

solution to Exercise 7 (b) (which we have given above), we can see that k = p.
Lemma 0.19 (b) shows that the integer p is positive and satisfies σp (x) = x.

In view of k = p, this rewrites as follows: The integer k is positive and satisfies
σk (x) = x. Since the integer k is positive, we have 1 ∈ [k].

Lemma 0.19 (c) shows that the elements σ0 (x) , σ1 (x) , . . . , σp−1 (x) are pairwise
distinct. In view of k = p, this rewrites as follows: The elements σ0 (x) , σ1 (x) , . . . , σk−1 (x)
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are pairwise distinct. Hence, the permutation cycσ0(x),σ1(x),...,σk−1(x) is well-defined
(since k is a positive integer).

Exercise 7 (b) shows that [x]∼ =
{

σ0 (x) , σ1 (x) , . . . , σk−1 (x)
}

. Hence,{
σ0 (x) , σ1 (x) , . . . , σk−1 (x)

}
= [x]∼ = E (36)

(since E = [x]∼).
It remains to prove that cE can be written as cycσ0(x),σ1(x),...,σk−1(x).
We define a k-tuple (i1, i2, . . . , ik) of elements of X by

(i1, i2, . . . , ik) =
(

σ0 (x) , σ1 (x) , . . . , σk−1 (x)
)

. (37)

Thus,
iu = σu−1 (x) for each u ∈ [k] . (38)

Applying this to u = 1, we obtain i1 = σ1−1 (x) (since 1 ∈ [k]).
Also, from (37), we obtain

{i1, i2, . . . , ik} =
{

σ0 (x) , σ1 (x) , . . . , σk−1 (x)
}
= E (39)

(by (36)).
We also let ik+1 stand for i1. Thus, ik+1 = i1 = σ1−1︸︷︷︸

=σ0=id

(x) = id (x) = x = σk (x)

(since σk (x) = x). Therefore, we see that

iu = σu−1 (x) for each u ∈ [k + 1] . (40)

[Proof of (40): Let u ∈ [k + 1]. We must prove that iu = σu−1 (x). If u ∈ [k], then this follows from
(38). Hence, for the rest of this proof, we WLOG assume that u /∈ [k]. Combining u ∈ [k + 1] with
u /∈ [k], we obtain u ∈ [k + 1] \ [k] = {k + 1}, so that u = k + 1. Thus, iu = ik+1 = σk (x) = σu−1 (x)
(since k = u− 1 (since u = k + 1)). This proves (40).]

We have cycσ0(x),σ1(x),...,σk−1(x) = cyci1,i2,...,ik
(since

(
σ0 (x) , σ1 (x) , . . . , σk−1 (x)

)
=

(i1, i2, . . . , ik)). But the definition of cyci1,i2,...,ik
yields

cyci1,i2,...,ik
(p) =

{
ij+1, if p = ij for some j ∈ {1, 2, . . . , k} ;

p, otherwise
(41)

for every p ∈ X.
Now, we claim that

cyci1,i2,...,ik
(p) = cE (p) for each p ∈ X. (42)

[Proof of (42): Let p ∈ X. We must prove the equality (42).
We are in one of the following two cases:
Case 1: We have p = ij for some j ∈ {1, 2, . . . , k}.
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Case 2: We don’t have
(

p = ij for some j ∈ {1, 2, . . . , k}
)
.

Let us first consider Case 1. In this case, we have p = ij for some j ∈ {1, 2, . . . , k}. Consider this
j. Thus, (41) simplifies to cyci1,i2,...,ik

(p) = ij+1.
We have j ∈ {1, 2, . . . , k} = [k]. Hence, (38) (applied to u = j) yields ij = σj−1 (x). Hence,

σj−1 (x) = ij = p.
But j ∈ {1, 2, . . . , k}, so that j + 1 ∈ {2, 3, . . . , k + 1} ⊆ [k + 1]. Hence, (40) (applied to u = j + 1)

yields

ij+1 = σ(j+1)−1︸ ︷︷ ︸
=σj

(x) = σj (x) = σ

σj−1 (x)︸ ︷︷ ︸
=p

 = σ (p) . (43)

However,

p = ij ∈ {i1, i2, . . . , ik} (since j ∈ {1, 2, . . . , k})
= E (by (39)) .

The definition of cE now shows that

cE (p) =

{
σ (p) , if p ∈ E;
p, if p /∈ E

= σ (p) (since p ∈ E)

= ij+1 (by (43)) .

Comparing this with cyci1,i2,...,ik
(p) = ij+1, we obtain cyci1,i2,...,ik

(p) = cE (p). Thus, (42) is proven
in Case 1.

Let us now consider Case 2. In this case, we don’t have
(

p = ij for some j ∈ {1, 2, . . . , k}
)
. Thus,

(41) simplifies to cyci1,i2,...,ik
(p) = p.

But we don’t have
(

p = ij for some j ∈ {1, 2, . . . , k}
)
. In other words, p /∈ {i1, i2, . . . , ik}. In view

of (39), this rewrites as p /∈ E. The definition of cE now shows that

cE (p) =

{
σ (p) , if p ∈ E;
p, if p /∈ E

= p (since p /∈ E) .

Comparing this with cyci1,i2,...,ik
(p) = p, we obtain cyci1,i2,...,ik

(p) = cE (p). Thus, (42) is proven in
Case 2.

We have now proven (42) in each of the two Cases 1 and 2. This completes the proof of (42).]
The equality (42) shows that cyci1,i2,...,ik

= cE (since both cyci1,i2,...,ik
and cE are

maps X → X). Thus,

cE = cyci1,i2,...,ik
= cycσ0(x),σ1(x),...,σk−1(x)

(by (37)). In other words, cE can be written as cycσ0(x),σ1(x),...,σk−1(x). This concludes
the solution to Exercise 7 (d).

(e) Recall that the ∼-equivalence classes form a set partition of the set X (in fact,
this holds for the equivalence classes of any equivalence relation on X). Thus, each
element of X belongs to exactly one ∼-equivalence class. Since E1, E2, . . . , Em are
all the ∼-equivalence classes (listed without repetition), we can rewrite this fact
as follows: Each element of X belongs to exactly one of the sets E1, E2, . . . , Em.
Thus, the sets E1, E2, . . . , Em are disjoint. In other words, if i and j are two distinct
elements of [m], then

Ei ∩ Ej = ∅. (44)
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Now, fix x ∈ X. Define y ∈ X by y = σ (x). We are going to show that
(cE1 ◦ cE2 ◦ · · · ◦ cEm) (x) = y.

The element x of X belongs to exactly one of the sets E1, E2, . . . , Em (since each
element of X belongs to exactly one of the sets E1, E2, . . . , Em). In other words, there
is exactly one i ∈ [m] such that x ∈ Ei. Consider this i.

Hence, i is the only element j ∈ [m] such that x ∈ Ej. Therefore, every j ∈ [m]
distinct from i must satisfy

x /∈ Ej. (45)

We have x ∼ y 24. Thus, y ∈ [x]∼. But recall that Ei is a ∼-equivalence
class (since E1, E2, . . . , Em are all the ∼-equivalence classes) and contains x (since
x ∈ Ei). Hence, Ei is the ∼-equivalence class of x. In other words, Ei = [x]∼. Hence,
y ∈ [x]∼ = Ei. Hence, every j ∈ [m] distinct from i must satisfy

y /∈ Ej (46)

25.
We have σEi (x) = y 26. Furthermore, σEj (x) = x for each j ∈ [m] satisfying

j > i 27. Also, σEj (y) = y for each j ∈ [m] satisfying j < i 28. Therefore, Lemma
0.22 (applied to gj = σEj) shows that (cE1 ◦ cE2 ◦ · · · ◦ cEm) (x) = y = σ (x).

24Proof. We have y = σ︸︷︷︸
=σ1

(x) = σ1 (x). Thus, there exists some k ∈N such that y = σk (x) (namely,

k = 1). In other words, x ∼ y (since x ∼ y if and only if there exists some k ∈ N such that
y = σk (x)).

25Proof of (46): Fix j ∈ [m] distinct from i. We must show that y /∈ Ej.
Assume the contrary. Thus, y ∈ Ej. Combining this with y ∈ Ei, we find y ∈ Ei ∩ Ej. Therefore,

the set Ei ∩ Ej is nonempty (namely, it contains y). But j is distinct from i. Hence, (44) yields
Ei ∩ Ej = ∅. This contradicts the fact that the set Ei ∩ Ej is nonempty. This contradiction shows
that our assumption was false, qed.

26Proof. The definition of σEi yields

σEi (x) =

{
σ (x) , if x ∈ Ei;
x, if x /∈ Ei

= σ (x) (since x ∈ Ei)

= y.

27Proof. Let j ∈ [m] be such that j > i. Thus, j is distinct from i (since j > i). Hence, (45) shows that
x /∈ Ej. Now, the definition of σEj yields

σEj (x) =

{
σ (x) , if x ∈ Ej;

x, if x /∈ Ej
= x

(
since x /∈ Ej

)
.

Qed.
28Proof. Let j ∈ [m] be such that j < i. Thus, j is distinct from i (since j < i). Hence, (46) shows that

y /∈ Ej. Now, the definition of σEj yields

σEj (y) =

{
σ (y) , if y ∈ Ej;

y, if y /∈ Ej
= y

(
since y /∈ Ej

)
.
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Now, forget that we fixed x. We thus have shown that (cE1 ◦ cE2 ◦ · · · ◦ cEm) (x) =
σ (x) for each x ∈ X. In other words, cE1 ◦ cE2 ◦ · · · ◦ cEm = σ. This solves Exercise
7 (e).
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