Math 4990 Fall 2017 (Darij Grinberg): homework set 7 with solutions

Contents

0.1.	A generalized principle of inclusion/exclusion	1
0.2.	Summing fixed point numbers of permutations	6
0.3.	Transpositions $t_{1,i}$ generate permutations	9
0.4.	V-permutations as products of cycles	11
0.5.	Lexicographic comparison of permutations	16
0.6.	Comparing subsets of $[n]$	21
0.7.	A rigorous approach to the existence of a cycle decomposition	23

0.1. A generalized principle of inclusion/exclusion

Exercise 1. Let $n \in \mathbb{N}$. Let *S* be a finite set. Let A_1, A_2, \ldots, A_n be finite subsets of *S*. Let $k \in \mathbb{N}$. Let S_k be the set of all elements of *S* that belong to exactly *k* of the subsets A_1, A_2, \ldots, A_n . (In other words, let $S_k = \{s \in S \mid \text{the number of } i \in [n] \text{ satisfying } s \in A_i \text{ equals } k\}$.) Prove that

$$|S_k| = \sum_{I \subseteq [n]} (-1)^{|I|-k} \binom{|I|}{k} \left| \bigcap_{i \in I} A_i \right|.$$

Here, the intersection $\bigcap_{i \in \emptyset} A_i$ is understood to mean the whole set *S*.

Note that the principle of inclusion and exclusion (see, e.g., [Galvin17, §16]) is the particular case of Exercise 1 for k = 0 (since $S_0 = S \setminus \bigcup_{i=1}^{n} A_i$).

Exercise 1 is a result of Charles Jordan (see [Comtet74, §4.8, Theorem A] and [DanRot78] for fairly complicated proofs). I further generalize it in [Grinbe16, Theorem 3.44]. Let me here give a self-contained proof.

First, we recall two facts from the solutions to homework set #5:

Proposition 0.1. We have

$$\binom{m}{n} = 0$$

for every $m \in \mathbb{N}$ and $n \in \mathbb{N}$ satisfying m < n.

Corollary 0.2. Let $n \in \mathbb{N}$. Let $i \in \mathbb{N}$. Then,

$$\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} \binom{j}{i} = (-1)^{i} [n=i].$$

Next, we recall the classical formula for the size of a subset using Iverson brackets:

Lemma 0.3. Let *S* be a finite set. Let *T* be a subset of *S*. Then,

$$|T| = \sum_{s \in S} \left[s \in T \right].$$

Lemma 0.3 allows us to reduce a formula for $|S_k|$ to a formula for $[s \in S_k]$ (for any given $s \in S$). Here is the latter formula:

Lemma 0.4. Let $n \in \mathbb{N}$. Let *S* be a finite set. Let A_1, A_2, \ldots, A_n be finite subsets of *S*. Let $k \in \mathbb{N}$. Let S_k be the set of all elements of *S* that belong to exactly *k* of the subsets A_1, A_2, \ldots, A_n . (In other words, let $S_k = \{s \in S \mid \text{the number of } i \in [n] \text{ satisfying } s \in A_i \text{ equals } k\}$.) Let $s \in S$. Then,

$$[s \in S_k] = \sum_{I \subseteq [n]} (-1)^{|I|-k} \binom{|I|}{k} \left[s \in \bigcap_{i \in I} A_i \right].$$

Here, the intersection $\bigcap A_i$ is understood to mean the whole set *S*.

Proof of Lemma 0.4. Define a subset *C* of [n] by

$$C = \{i \in [n] \mid s \in A_i\}.$$

Thus, for each $i \in [n]$, we have the following equivalence:

$$(i \in C) \iff (s \in A_i). \tag{1}$$

But recall the definition of S_k . From this definition, we obtain the following equivalence:

$$(s \in S_k) \iff \left(\underbrace{\text{the number of } i \in [n] \text{ satisfying } s \in A_i}_{=|\{i \in [n] \mid s \in A_i\}|} \text{ equals } k\right)$$
$$\iff \left(\left|\underbrace{\{i \in [n] \mid s \in A_i\}}_{=C}\right| \text{ equals } k\right) \iff (|C| \text{ equals } k)$$
$$\iff (|C| = k).$$

Hence, we find the following equality between truth values:

$$[s \in S_k] = [|C| = k].$$
(2)

On the other hand, let I be any subset of [n]. Then, we have the following equivalence:

$$\begin{pmatrix} s \in \bigcap_{i \in I} A_i \end{pmatrix} \iff \begin{pmatrix} \underbrace{s \in A_i}_{(i \in C)} & \text{for each } i \in I \end{pmatrix} \iff (i \in C \text{ for each } i \in I) \\ \Leftrightarrow (I \subseteq C).$$

Thus,

$$\left[s \in \bigcap_{i \in I} A_i\right] = \left[I \subseteq C\right].$$
(3)

Now, forget that we fixed *I*. We thus have proven (3) for each subset *I* of [n].

Thus,

$$\begin{split} &\sum_{I \subseteq [n]} (-1)^{|I|-k} \binom{|I|}{k} \underbrace{\int_{i \in I} A_i}_{\substack{i \in I \\ (by (3))}} \\ &= \sum_{I \subseteq [n]} (-1)^{|I|-k} \binom{|I|}{k} \underbrace{I \subseteq C}_{i \subseteq C} \\ &= \sum_{\substack{I \subseteq [n] \\ i \in C \\ i$$

$$=\sum_{j=0}^{|C|} \underbrace{(-1)^{j-k}}_{=(-1)^{j+k}=(-1)^{j}(-1)^{k}} \binom{|C|}{j} \binom{j}{k} + \sum_{j=|C|+1}^{\infty} (-1)^{j-k} \underbrace{\binom{|C|}{j}}_{\substack{=0\\ \text{(by Proposition 0.1, applied to |C| and j instead of m and n (since |C| < j (because j \ge |C|+1>|C|)))}^{(b)}$$
(here, we have split the summation at $j = |C|$)
$$=\sum_{j=0}^{|C|} (-1)^{j} (-1)^{k} \binom{|C|}{j} \binom{j}{k} + \underbrace{\sum_{j=|C|+1}^{\infty} (-1)^{j-k} 0\binom{j}{k}}_{=0}^{j}}_{=0}$$

$$=\sum_{j=0}^{|C|} (-1)^{j} (-1)^{k} \binom{|C|}{j} \binom{j}{k} = (-1)^{k} \underbrace{\sum_{j=0}^{|C|} (-1)^{j} \binom{|C|}{j} \binom{j}{k}}_{=(-1)^{k} [|C|=k]}_{(by Corollary 0.2, applied to |C| and k instead of n and i)}$$

$$=\underbrace{(-1)^{k}(-1)^{k}}_{=(-1)^{2k}=1}[|C|=k] = [|C|=k] = [s \in S_{k}] \quad (by (2)).$$

This proves Lemma 0.4.

Solution to Exercise 1. For every subset *I* of [n], the intersection $\bigcap_{i \in I} A_i$ is a subset of *S*⁻¹. Thus, for every subset *I* of [n], we have

$$\left|\bigcap_{i\in I} A_i\right| = \sum_{s\in S} \left[s\in \bigcap_{i\in I} A_i\right]$$

¹In fact, this is obvious when *I* is nonempty (because all the A_i are subsets of *S*), but it also holds when *I* is empty (because in this case, the intersection $\bigcap_{i \in I} A_i = \bigcap_{i \in \emptyset} A_i$ is defined to be *S*).

(by Lemma 0.3, applied to $T = \bigcap_{i \in I} A_i$). Hence,

$$\begin{split} \sum_{I\subseteq[n]} (-1)^{|I|-k} \binom{|I|}{k} \underbrace{\left| \bigcap_{i\in I} A_i \right|}_{=\sum_{s\in S} \left[s\in\bigcap_{i\in I} A_i\right]} \\ &= \sum_{I\subseteq[n]} (-1)^{|I|-k} \binom{|I|}{k} \sum_{s\in S} \left[s\in\bigcap_{i\in I} A_i\right] = \sum_{\substack{I\subseteq[n] \ s\in S \\ =\sum\sum_{s\in S} \sum_{I\subseteq[n]}} (-1)^{|I|-k} \binom{|I|}{k} \sum_{s\in S} \left[s\in\bigcap_{i\in I} A_i\right] \\ &= \sum_{s\in S} \sum_{\substack{I\subseteq[n] \\ (by \text{ Lemma 0.4)}}} (-1)^{|I|-k} \binom{|I|}{k} \left[s\in\bigcap_{i\in I} A_i\right] = \sum_{s\in S} \left[s\in S_k\right]. \end{split}$$

Comparing this with $|S_k| = \sum_{s \in S} [s \in S_k]$ (which follows from Lemma 0.3, applied to $T = S_k$), we obtain

$$|S_k| = \sum_{I \subseteq [n]} (-1)^{|I|-k} \binom{|I|}{k} \left| \bigcap_{i \in I} A_i \right|.$$

This solves Exercise 1.

0.2. Summing fixed point numbers of permutations

Recall that for any $n \in \mathbb{N}$, we let S_n denote the set of all permutations of [n].

If *S* is a finite set, and if $f : S \to S$ is a map, then we let Fix *f* denote the set of all fixed points of *f*. (That is, Fix $f = \{s \in S \mid f(s) = s\}$.)

Exercise 2. Let *n* be a positive integer. Prove that $\sum_{w \in S_n} |\text{Fix } w| = n!$. [**Hint:** Rewrite |Fix w| as $\sum_{i \in [n]} [w(i) = i]$.]

(In other words, this exercise states that the average number of fixed points of a permutation of [n] is 1.)

Exercise 2 was Problem 1 at the International Mathematical Olympiad (IMO) 1987.

Our solution to Exercise 2 relies on the following facts:

Lemma 0.5. Let $m \in \mathbb{N}$. Let *G* be an *m*-element set. Then, the number of all permutations of *G* is *m*!.

Proof of Lemma 0.5 (sketched). There is a bijection α : $G \rightarrow [m]$ (since *G* is an *m*-element set). Fix such an α . Then, the map

{permutations of *G*} \rightarrow {permutations of [*m*]}, $\sigma \mapsto \alpha \circ \sigma \circ \alpha^{-1}$

is also a bijection². Hence,

 $|\{\text{permutations of } G\}| = |\{\text{permutations of } [m]\}|$ = (the number of all permutations of [m]) = m!.

In other words, the number of all permutations of *G* is *m*!. This proves Lemma 0.5.

Lemma 0.6. Let *n* be a positive integer. Let $i \in [n]$. Then, the number of all permutations $w \in S_n$ satisfying w(i) = i is (n - 1)!.

Proof of Lemma 0.6 (sketched). Roughly speaking, a permutation $w \in S_n$ satisfying w(i) = i is "nothing but" a permutation of the (n - 1)-element set $[n] \setminus \{i\}$ (because it has to map i to i, and therefore must map the remaining elements of [n] to elements other than i). This is not rigorous, because strictly speaking a permutation of [n] cannot be a permutation of $[n] \setminus \{i\}$ (after all, the former has domain [n] while the latter only has domain $[n] \setminus \{i\}$). Here is a rigorous version of the above statement:

To each permutation $w \in S_n$ satisfying w(i) = i, we can assign a permutation \tilde{w} of $[n] \setminus \{i\}$ by letting

$$\widetilde{w}(p) = w(p)$$
 for each $p \in [n] \setminus \{i\}$.

This defines a map

$$A: \{w \in S_n \mid w(i) = i\} \to \{\text{permutations of } [n] \setminus \{i\}\},\ w \mapsto \widetilde{w}.$$
(4)

Conversely, to each permutation u of $[n] \setminus \{i\}$, we can assign a permutation $\hat{u} \in S_n$ satisfying $\hat{u}(i) = i$ by setting

$$\widehat{u}(p) = \begin{cases} u(p), & \text{if } p \neq i; \\ i, & \text{if } p = i \end{cases} \quad \text{for each } p \in [n].$$

This defines a map

$$B: \{\text{permutations of } [n] \setminus \{i\}\} \to \{w \in S_n \mid w(i) = i\},\ u \mapsto \widehat{u}.$$

²This is straightforward to verify.

The maps *A* and *B* are well-defined and mutually inverse³. Thus, there is a bijection from the set $\{w \in S_n \mid w(i) = i\}$ to the set $\{\text{permutations of } [n] \setminus \{i\}\}$ (namely, *A*). Hence,

$$|\{w \in S_n \mid w(i) = i\}| = |\{\text{permutations of } [n] \setminus \{i\}\}|$$

= (the number of all permutations of $[n] \setminus \{i\}$)
= $(n-1)!$

(by Lemma 0.5 (applied to $G = [n] \setminus \{i\}$ and m = n - 1), because $[n] \setminus \{i\}$ is an (n - 1)-element set). In other words, the number of all permutations $w \in S_n$ satisfying w(i) = i is (n - 1)!. This proves Lemma 0.6.

Solution to Exercise 2 (*sketched*). If $w \in S_n$ and $i \in [n]$, then

$$[i \in \operatorname{Fix} w] = [w(i) = i] \tag{5}$$

4

If $w \in S_n$, then Fix w is a subset of [n], and therefore Lemma 0.3 (applied to S = [n] and T = Fix w) yields

$$|\operatorname{Fix} w| = \sum_{s \in [n]} [s \in \operatorname{Fix} w] = \sum_{i \in [n]} \underbrace{[i \in \operatorname{Fix} w]}_{\substack{=[w(i)=i]\\(\text{by }(5))}} \left(\begin{array}{c} \text{here, we have renamed the}\\ \text{summation index } s \text{ as } i \end{array} \right)$$
$$= \sum_{i \in [n]} [w(i) = i]. \tag{6}$$

But if $i \in [n]$, then $\{w \in S_n \mid w(i) = i\}$ is a subset of S_n , and therefore Lemma 0.3 (applied to $S = S_n$ and $T = \{w \in S_n \mid w(i) = i\}$) yields

$$|\{w \in S_n \mid w(i) = i\}| = \sum_{s \in S_n} \left[\underbrace{s \in \{w \in S_n \mid w(i) = i\}}_{\iff (s(i)=i)}\right]$$
$$= \sum_{s \in S_n} [s(i) = i] = \sum_{w \in S_n} [w(i) = i]$$
(7)

(here, we have renamed the summation index s as w).

³This is straightforward to check (just remember that permutations are bijective).

⁴because of the equivalence $(i \in Fix w) \iff (i \text{ is a fixed point of } w) \iff (w(i) = i)$

Now,

$$\sum_{w \in S_n} \underbrace{|\operatorname{Fix} w|}_{\substack{i \in [n] \\ (by (6))}} = \sum_{\substack{w \in S_n \\ i \in [n] \\ (by (6))}} \sum_{\substack{v \in S_n \\ i \in [n] \\ v \in S_n}} \underbrace{|w(i) = i|}_{\substack{v \in S_n \\ v \in$$

This solves Exercise 2.

Remark 0.7. Exercise 2 can be generalized: If $n \in \mathbb{N}$ and $k \in \mathbb{N}$ satisfy $n \ge k$, then

$$\sum_{w \in S_n} \binom{|\operatorname{Fix} w|}{k} = (n-k)! \binom{n}{k} = \frac{n!}{k!}.$$

Do you see how the above solution can be extended to cover this generalization?

0.3. Transpositions $t_{1,i}$ generate permutations

Recall a basic notation regarding permutations:

Definition 0.8. Let $n \in \mathbb{N}$. Let *i* and *j* be two distinct elements of [n]. We let $t_{i,j}$ be the permutation in S_n which switches *i* with *j* while leaving all other elements of [n] unchanged. Such a permutation is called a *transposition*.

Exercise 3. Let $n \in \mathbb{N}$. Prove that each permutation in S_n can be written as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$.

(Note that this composition can be empty – in which case it is understood to be id –, and it can contain any given transposition multiple times.)

To solve this exercise, we recall another definition:

Definition 0.9. Let $n \in \mathbb{N}$. Let $i \in [n-1]$. Then, s_i denotes the permutation $t_{i,i+1} \in S_n$.

We shall use the following well-known fact ([Grinbe16, Exercise 5.1 (b)]):

Lemma 0.10. Let $n \in \mathbb{N}$. Each permutation in S_n can be written as a composition of some of the transpositions $s_1, s_2, \ldots, s_{n-1}$.

The following is easy to check:

Lemma 0.11. Let $n \in \mathbb{N}$. Let $i \in [n-1]$ be such that i > 1. Then, $s_i = t_{1,i+1} \circ t_{1,i} \circ t_{1,i+1}$.

Lemma 0.11 can be proven by straightforward verification (just check how s_i and $t_{1,i+1} \circ t_{1,i} \circ t_{1,i+1}$ transform a given element of [n], depending on whether this element is 1, *i* or *i* + 1 or something else). Let us give a slightly more skillful argument. The following fact is simple and well-known ([Grinbe16, Exercise 5.17 (a)]):

Lemma 0.12. Let $n \in \mathbb{N}$. Let $k \in [n]$. For every $\sigma \in S_n$ and every k distinct elements i_1, i_2, \ldots, i_k of [n], we have

$$\sigma \circ \operatorname{cyc}_{i_1, i_2, \dots, i_k} \circ \sigma^{-1} = \operatorname{cyc}_{\sigma(i_1), \sigma(i_2), \dots, \sigma(i_k)}$$

Proof of Lemma 0.11 (sketched). From $i \in [n-1]$, we obtain $i \le n-1$. But i > 1, so that $i \ge 2$, and thus $2 \le i \le n-1$. Hence, $n \ge 3$. Thus, $2 \in [n]$.

Clearly,

$$t_{u,v} = \operatorname{cyc}_{u,v} \tag{8}$$

for any two distinct elements *u* and *v* of [*n*]. Applying this to u = 1 and v = i, we obtain $t_{1,i} = \text{cyc}_{1,i}$.

Now, let $\sigma = t_{1,i+1}$. Thus, $\sigma(1) = i + 1$ and $\sigma(i) = i$ (since *i* equals neither 1 nor i + 1). But Lemma 0.12 (applied to k = 2, $i_1 = 1$ and $i_2 = i$) yields

$$\sigma \circ \operatorname{cyc}_{1,i} \circ \sigma^{-1} = \operatorname{cyc}_{\sigma(1),\sigma(i)} = \operatorname{cyc}_{i+1,i} \tag{9}$$

(since $\sigma(1) = i + 1$ and $\sigma(i) = i$).

The permutation σ is a transposition (since $\sigma = t_{1,i+1}$), and hence an involution. In other words, $\sigma^{-1} = \sigma$.

But the definition of s_i yields

$$s_{i} = t_{i,i+1} = \operatorname{cyc}_{i,i+1} \quad (by \ (8))$$

= $\operatorname{cyc}_{i+1,i} = \underbrace{\sigma}_{=t_{1,i+1}} \circ \underbrace{\operatorname{cyc}_{1,i}}_{=t_{1,i}} \circ \underbrace{\sigma^{-1}}_{=\sigma=t_{1,i+1}} \quad (by \ (9))$
= $t_{1,i+1} \circ t_{1,i} \circ t_{1,i+1}.$

This proves Lemma 0.11.

Solution to Exercise 3 (sketched). We first show the following fact:

Observation 1: Let $i \in [n-1]$. Then, s_i can be written as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$.

[*Proof of Observation 1:* If i > 1, then this follows immediately from Lemma 0.11. Thus, for the rest of this proof, we WLOG assume that we don't have i > 1. Hence, i = 1. Thus, $s_i = s_1 = t_{1,2}$ (by the definition of s_1). Thus, again it is clear that s_i can be written as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$. This proves Observation 1.]

Now, let $\sigma \in S_n$ be a permutation. We want to write σ as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$.

First write σ as a composition of some of the transpositions $s_1, s_2, \ldots, s_{n-1}$. (This is possible according to Lemma 0.10.) Next, write each of these transpositions $s_1, s_2, \ldots, s_{n-1}$ as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$. (This is possible according to Observation 1.) The resulting expression is now a representation of σ as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$.

Now, forget that we fixed σ . We thus have shown that each $\sigma \in S_n$ has a representation as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$. This solves Exercise 3.

0.4. V-permutations as products of cycles

Recall the following notation:

Definition 0.13. Let *X* be a set. Let *k* be a positive integer. Let $i_1, i_2, ..., i_k$ be *k* distinct elements of *X*. We define $\text{cyc}_{i_1, i_2, ..., i_k}$ to be the permutation of *X* that sends $i_1, i_2, ..., i_k$ to $i_2, i_3, ..., i_k, i_1$, respectively, while leaving all other elements of *X* fixed. In other words, we define $\text{cyc}_{i_1, i_2, ..., i_k}$ to be the permutation of *X* given by

$$\operatorname{cyc}_{i_1,i_2,\ldots,i_k}(p) = \begin{cases} i_{j+1}, & \text{if } p = i_j \text{ for some } j \in \{1,2,\ldots,k\}; \\ p, & \text{otherwise} \end{cases} \text{ for every } p \in X,$$

where i_{k+1} means i_1 .

Exercise 4. Let $n \in \mathbb{N}$. For each $r \in [n]$, let c_r denote the permutation $\operatorname{cyc}_{r,r-1,\ldots,2,1} \in S_n$. (Thus, $c_1 = \operatorname{cyc}_1 = \operatorname{id}$ and $c_2 = \operatorname{cyc}_{2,1} = s_1$.)

Let $G = \{g_1 < g_2 < \cdots < g_p\}$ be a subset of [n]. (The notation " $G = \{g_1 < g_2 < \cdots < g_p\}$ " is simultaneously saying that $G = \{g_1, g_2, \dots, g_p\}$ and that $g_1 < g_2 < \cdots < g_p$.)

Let $\sigma \in S_n$ be the permutation $c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_p}$.

Prove the following:

(a) We have $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$.

- **(b)** We have $\sigma([p]) = G$.
- (c) We have $\sigma(p+1) < \sigma(p+2) < \cdots < \sigma(n)$.

(Note that a chain of inequalities that involves less than two numbers is considered to be vacuously true. For example, Exercise 4 (c) is vacuously true when p = n - 1 and also when p = n.)

Solution to Exercise 4 (*sketched*). For each $r \in [n]$ and $i \in [n]$, we have

$$c_r(i) = \begin{cases} r, & \text{if } i = 1; \\ i - 1, & \text{if } 1 < i \le r; \\ i, & \text{if } i > r \end{cases}$$
(10)

(by the definition of c_r). Thus, each $r \in [n]$ satisfies

$$c_r(2) < c_r(3) < \dots < c_r(n)$$
 (11)

(because the one-line notation of the permutation c_r is (r, 1, 2, ..., r - 1, r + 1, r + 2, ..., n), which shows immediately that c_r is strictly increasing on the set $\{2, 3, ..., n\}$). Moreover, each $r \in [n]$ and $i \in [n]$ satisfy

$$c_r(i) \ge i - 1. \tag{12}$$

(This is easy to check using (10).)

We have $g_1 < g_2 < \cdots < g_p$. Define a further integer g_0 by $g_0 = 0$. Then, the chain of inequalities $g_1 < g_2 < \cdots < g_p$ can be extended to $g_0 < g_1 < \cdots < g_p$ (since each of g_1, g_2, \ldots, g_p is $> 0 = g_0$).

For each $q \in \{0, 1, ..., p\}$, we let σ_q denote the permutation $c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_q} \in S_n$. Thus,

$$\sigma_0 = c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_0} = (\text{empty composition of permutations}) = \text{id}$$

and

$$\sigma_p = c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_p} = \sigma.$$

Notice that

$$\sigma_q = \sigma_{q-1} \circ c_{g_q} \qquad \text{for each } q \in [p] \tag{13}$$

5

Now, we claim the following:

Observation 1: For each $q \in \{0, 1, ..., p\}$, the following holds:

- (a) We have $\sigma_q(i) = g_{q+1-i}$ for each $i \in [q]$.
- **(b)** We have $\sigma_q(j) = j$ for each $j \in [n]$ satisfying $j > g_q$.
- (c) We have $\sigma_q(q+1) < \sigma_q(q+2) < \cdots < \sigma_q(n)$.
- (d) We have $g_q \ge q$.

⁵*Proof of (13):* Let $q \in [p]$. Then, the definition of σ_{q-1} yields $\sigma_{q-1} = c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_{q-1}}$. But the definition of σ_q yields

$$\sigma_q = c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_q} = \underbrace{\left(c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_{q-1}}\right)}_{=\sigma_{q-1}} \circ c_{g_q} = \sigma_{q-1} \circ c_{g_q}.$$

This proves (13).

[Proof of Observation 1: We shall prove Observation 1 by induction:⁶

Induction base: Let us prove Observation 1 for q = 0. To do so, we must prove the following four statements:

(a₀) We have $\sigma_0(i) = g_{0+1-i}$ for each $i \in [0]$. (b₀) We have $\sigma_0(j) = j$ for each $j \in [n]$ satisfying $j > g_0$. (c₀) We have $\sigma_0(0+1) < \sigma_0(0+2) < \cdots < \sigma_0(n)$. (d₀) We have $g_0 \ge 0$.

But all of these four statements are obvious. Indeed, (**a**₀) is vacuously true (since there exist no $i \in [0]$); furthermore, (**b**₀) and (**c**₀) are obvious (since $\sigma_0 = id$); finally, (**d**₀) follows from $g_0 = 0$. Thus, Observation 1 has been proven for q = 0. This completes the induction base.

Induction step: Let $h \in [p]$. Assume that Observation 1 holds for q = h - 1. We must now prove that Observation 1 holds for q = h.

We have assumed that Observation 1 holds for q = h - 1. In other words, the following four statements hold:

(a₁) We have $\sigma_{h-1}(i) = g_{(h-1)+1-i}$ for each $i \in [h-1]$.

(b₁) We have $\sigma_{h-1}(j) = j$ for each $j \in [n]$ satisfying $j > g_{h-1}$.

(c₁) We have $\sigma_{h-1}(h) < \sigma_{h-1}(h+1) < \cdots < \sigma_{h-1}(n)$.

(**d**₁) We have $g_{h-1} \ge h - 1$.

We must prove that Observation 1 holds for q = h. In other words, we must prove the following four statements:

(a₂) We have $\sigma_h(i) = g_{h+1-i}$ for each $i \in [h]$.

(b₂) We have $\sigma_h(j) = j$ for each $j \in [n]$ satisfying $j > g_h$.

(c₂) We have $\sigma_h(h+1) < \sigma_h(h+2) < \cdots < \sigma_h(n)$.

(d₂) We have $g_h \ge h$.

⁶It is rather important to prove the four parts of Observation 1 **together**, rather than trying to prove them separately. This way, they can "lend each other a hand" in the induction step (as we will see below).

Recall that $g_0 < g_1 < \cdots < g_p$. Thus, $g_{h-1} < g_h$, so that $g_h > g_{h-1}$. Thus, $g_h \ge g_{h-1} + 1$ (since g_h and g_{h-1} are integers). But (**d**₁) yields $g_{h-1} \ge h - 1$, so that $g_{h-1} + 1 \ge h$. Hence, $g_h \ge g_{h-1} + 1 \ge h$. This proves statement (**d**₂).

Let $r = g_h$. Thus, $r \in [n]$ (since $h \in [p]$ and thus $g_h \in [n]$). Applying (13) to q = h, we obtain

 $\sigma_h = \sigma_{h-1} \circ c_{g_h} = \sigma_{h-1} \circ c_r \qquad (\text{since } g_h = r) \,.$

Statement (c_2) is easy to derive from statement (c_1) with the help of (11)⁷. Statement (b_2) easily follows from statement (b_1) with the help of (10)⁸.

Applying (10) to i = 1, we obtain $c_r(1) = r = g_h > g_{h-1}$. Hence, statement (**b**₁) (applied to $j = c_r(1)$) yields $\sigma_{h-1}(c_r(1)) = c_r(1) = g_h$. But from $\sigma_h = \sigma_{h-1} \circ c_r$, we obtain

$$\sigma_{h}(1) = (\sigma_{h-1} \circ c_{r})(1) = \sigma_{h-1}(c_{r}(1)) = g_{h} = g_{h+1-1}.$$
(14)

Finally, statement (a_2) can be derived from statement (a_1) using $(14)^9$.

We have $k \in \{h+1, h+2, ..., n-1\}$. Thus, $k \ge h+1 \ge 2$ (since $h \ge 1$). But (11) yields $c_r(2) < c_r(3) < \cdots < c_r(n)$. Thus, $c_r(k) < c_r(k+1)$ (since $k \ge 2$).

Also, (12) yields $c_r(k) \ge k - 1 \ge h$ (since $k \ge h + 1$). Thus, $c_r(k) \in \{h, h + 1, ..., n\}$.

Also, (12) yields $c_r(k+1) \ge (k+1) - 1 = k \ge k - 1 \ge h$. Thus, $c_r(k+1) \in \{h, h+1, ..., n\}$.

Statement (c₁) says that the map σ_{h-1} is strictly increasing on the set {h, h + 1, ..., n}. In other words, if u and v are two elements of {h, h + 1, ..., n} satisfying u < v, then $\sigma_{h-1}(u) < \sigma_{h-1}(v)$. Applying this to $u = c_r(k)$ and $v = c_r(k+1)$, we obtain $\sigma_{h-1}(c_r(k)) < \sigma_{h-1}(c_r(k+1))$ (since $c_r(k) < c_r(k+1)$, and since both $c_r(k)$ and $c_r(k+1)$ are elements of {h, h + 1, ..., n}). But $\sigma_h = \sigma_{h-1} \circ c_r$, and thus

$$\sigma_{h}(k) = (\sigma_{h-1} \circ c_{r})(k) = \sigma_{h-1}(c_{r}(k)) < \sigma_{h-1}(c_{r}(k+1)) = \underbrace{(\sigma_{h-1} \circ c_{r})}_{=\sigma_{h}}(k+1) = \sigma_{h}(k+1).$$

This completes our proof of statement (c₂).

⁸*Proof.* Let $j \in [n]$ be such that $j > g_h$. We want to show that $\sigma_h(j) = j$.

We have $j > g_h = r$. Thus, (10) (applied to i = j) simplifies to $c_r(j) = j$. But $j > g_h > g_{h-1}$; therefore, statement (**b**₁) yields $\sigma_{h-1}(j) = j$.

Now, recall that $\sigma_h = \sigma_{h-1} \circ c_r$. Hence,

$$\sigma_{h}(j) = (\sigma_{h-1} \circ c_{r})(j) = \sigma_{h-1}\left(\underbrace{c_{r}(j)}_{=j}\right) = \sigma_{h-1}(j) = j.$$

This proves statement (b_2) .

⁹*Proof.* Let us prove statement (a₂). In other words, let us prove that $\sigma_h(i) = g_{h+1-i}$ for each $i \in [h]$. Indeed, let $i \in [h]$. We must prove that $\sigma_h(i) = g_{h+1-i}$.

If i = 1, then this follows from (14). Hence, for the rest of this proof, we WLOG assume that $i \neq 1$. Thus, i > 1. Combined with $i \in [h]$, this yields $i \in \{2, 3, ..., h\}$, so that $i - 1 \in [h - 1]$. Therefore, statement (**a**₁) (applied to i - 1 instead of i) yields $\sigma_{h-1}(i-1) = g_{(h-1)+1-(i-1)} = g_{h+1-i}$ (since (h-1) + 1 - (i-1) = h + 1 - i).

But $i \in \{2, 3, ..., h\}$, so that $1 < i \le h \le r$ (because $r = g_h \ge h$). The equality (10) simplifies to

⁷*Proof.* We want to prove statement (c₂). In other words, we want to prove that $\sigma_h(h+1) < \sigma_h(h+2) < \cdots < \sigma_h(n)$. In other words, we want to prove that $\sigma_h(k) < \sigma_h(k+1)$ for each $k \in \{h+1, h+2, \ldots, n-1\}$. So let us fix $k \in \{h+1, h+2, \ldots, n-1\}$. We must prove $\sigma_h(k) < \sigma_h(k+1)$.

We have now proven all four statements (a_2) , (b_2) , (c_2) and (d_2) . Thus, Observation 1 holds for q = h. This completes the induction step; thus, Observation 1 is proven.]

Now, we can apply Observation 1 to q = p. As a result, we obtain the following four statements:

(a₃) We have $\sigma_p(i) = g_{p+1-i}$ for each $i \in [p]$.

(b₃) We have $\sigma_p(j) = j$ for each $j \in [n]$ satisfying $j > g_p$.

- (c₃) We have $\sigma_p (p + 1) < \sigma_p (p + 2) < \cdots < \sigma_p (n)$.
- (d₃) We have $g_p \ge p$.

Statement (c₃) says that $\sigma_p(p+1) < \sigma_p(p+2) < \cdots < \sigma_p(n)$. In view of $\sigma_p = \sigma$, this rewrites as $\sigma(p+1) < \sigma(p+2) < \cdots < \sigma(n)$. This solves Exercise 4 (c).

Statement (a₃) says that $\sigma_p(i) = g_{p+1-i}$ for each $i \in [p]$. In view of $\sigma_p = \sigma$, this rewrites as

$$\sigma(i) = g_{p+1-i} \qquad \text{for each } i \in [p]. \tag{15}$$

In other words,

$$(\sigma(1), \sigma(2), \dots, \sigma(p)) = (g_p, g_{p-1}, \dots, g_1).$$
(16)

Hence,

$$\{\sigma(1), \sigma(2), \dots, \sigma(p)\} = \{g_p, g_{p-1}, \dots, g_1\} = \{g_1, g_2, \dots, g_p\} = G$$

(since $G = \{g_1 < g_2 < \dots < g_p\} = \{g_1, g_2, \dots, g_p\}$). Hence

$$\sigma\left(\underbrace{[p]}_{=\{1,2,\ldots,p\}}\right) = \sigma\left(\{1,2,\ldots,p\}\right) = \{\sigma\left(1\right), \sigma\left(2\right),\ldots,\sigma\left(p\right)\} = G.$$

This solves Exercise 4 (b).

Finally, recall that $g_1 < g_2 < \cdots < g_p$. In other words, $g_p > g_{p-1} > \cdots > g_1$. In view of (15), this rewrites as follows: $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$. This solves Exercise 4 (a).

 $c_r(i) = i - 1$ (since $1 < i \le r$). Now, recall that $\sigma_h = \sigma_{h-1} \circ c_r$. Thus,

$$\sigma_h(i) = (\sigma_{h-1} \circ c_r)(i) = \sigma_{h-1}\left(\underbrace{c_r(i)}_{=i-1}\right) = \sigma_{h-1}(i-1) = g_{h+1-i}.$$

Thus, $\sigma_h(i) = g_{h+1-i}$ is proven, as we wanted. This completes the proof of statement (**a**₂).

Permutations $\sigma \in S_n$ satisfying the inequalities $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$ and $\sigma(p+1) < \sigma(p+2) < \cdots < \sigma(n)$ for some $p \in \{0, 1, \dots, n\}$ are known as "V-permutations" (as their plot looks somewhat like the letter "V": first decreasing for a while, then increasing). Can you guess how permutations $\sigma \in S_n$ satisfying $\sigma(1) < \sigma(2) < \cdots < \sigma(p)$ and $\sigma(p+1) > \sigma(p+2) > \cdots > \sigma(n)$ are called?¹⁰

Exercise 4 is a lemma in the theory of free Lie algebras (see [BleLau92, (10)]).

TODO: Explain how Exercise 4 can also be obtained as a particular case of the formula for a permutation in terms of its Rothe diagram. (See https://sumidiot.blogspot.com/2008/05/rothe-diagram.html for now.)

0.5. Lexicographic comparison of permutations

Definition 0.14. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$ be a permutation. For any $i \in [n]$, we let $\ell_i(\sigma)$ denote the number of $j \in \{i + 1, i + 2, ..., n\}$ such that $\sigma(i) > \sigma(j)$.

For example, if σ is the permutation of [5] written in one-line notation as [4, 1, 5, 2, 3], then $\ell_1(\sigma) = 3$, $\ell_2(\sigma) = 0$, $\ell_3(\sigma) = 2$, $\ell_4(\sigma) = 0$ and $\ell_5(\sigma) = 0$.

Definition 0.15. Let $n \in \mathbb{N}$. Let (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) be two *n*-tuples of integers. We say that $(a_1, a_2, \ldots, a_n) <_{\text{lex}} (b_1, b_2, \ldots, b_n)$ if and only if there exists some $k \in [n]$ such that $a_k \neq b_k$, and the **smallest** such *k* satisfies $a_k < b_k$.

For example, $(4, 1, 2, 5) <_{\text{lex}} (4, 1, 3, 0)$ and $(1, 1, 0, 1) <_{\text{lex}} (2, 0, 0, 0)$. The relation $<_{\text{lex}}$ is usually pronounced "is lexicographically smaller than"; the word "lexicographic" comes from the idea that if numbers were letters, then a "word" $a_1a_2 \cdots a_n$ would appear earlier in a dictionary than $b_1b_2 \cdots b_n$ if and only if $(a_1, a_2, \ldots, a_n) <_{\text{lex}} (b_1, b_2, \ldots, b_n)$.

Exercise 5. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$ and $\tau \in S_n$. Prove the following: (a) If $(\sigma(1), \sigma(2), \dots, \sigma(n)) <_{\text{lex}} (\tau(1), \tau(2), \dots, \tau(n)),$ then $(\ell, (\sigma), \ell, (\sigma)) = (\ell, (\sigma)) <_{\text{lex}} (\tau(1), \tau(2), \dots, \tau(n)),$

 $(\ell_1(\sigma), \ell_2(\sigma), \dots, \ell_n(\sigma)) <_{\text{lex}} (\ell_1(\tau), \ell_2(\tau), \dots, \ell_n(\tau)).$ **(b)** If $(\ell_1(\sigma), \ell_2(\sigma), \dots, \ell_n(\sigma)) = (\ell_1(\tau), \ell_2(\tau), \dots, \ell_n(\tau))$, then $\sigma = \tau$.

The solution to Exercise 5 given below is one of those cases where a simple argument becomes insufferably long and dreary as I try to capture it in writing. Apologies for what you are about to see. The proof relies on the following lemma:

¹⁰*Answer:* They are called "Λ-permutations". Both names "V-permutations" and "Λ-permutations" are due to the shape of the plot when the permutation is plotted in 2D.

Lemma 0.16. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$ and $i \in [n]$. Then: (a) We have $\ell_i(\sigma) = |[\sigma(i) - 1] \setminus \sigma([i])|$. (b) We have $\ell_i(\sigma) = |[\sigma(i) - 1] \setminus \sigma([i - 1])|$.

Proof of Lemma 0.16. (a) We know that $\ell_i(\sigma)$ is the number of $j \in \{i + 1, i + 2, ..., n\}$ such that $\sigma(i) > \sigma(j)$ (by the definition of $\ell_i(\sigma)$). Hence,

$$\ell_{i}(\sigma) = (\text{the number of } j \in \{i+1, i+2, ..., n\} \text{ such that } \sigma(i) > \sigma(j)) = |\{j \in \{i+1, i+2, ..., n\} | \sigma(i) > \sigma(j)\}|.$$
(17)

Define a set *A* by

$$A = \{ j \in \{ i+1, i+2, \dots, n \} \mid \sigma(i) > \sigma(j) \}.$$
(18)

Thus,

$$A| = |\{j \in \{i+1, i+2, \dots, n\} \mid \sigma(i) > \sigma(j)\}| = \ell_i(\sigma)$$
(19)

(by (17)).

Let *B* be the set $[\sigma(i) - 1] \setminus \sigma([i])$.

The map σ is a permutation of [n] (since $\sigma \in S_n$), and thus is invertible, and therefore is injective.

For each $k \in A$, we have $\sigma(k) \in B$ ¹¹. Hence, we can define a map $\alpha : A \to B$ by

$$(\alpha (k) = \sigma (k)$$
 for each $k \in A$).

Consider this α .

On the other hand, for each $k \in B$, we have $\sigma^{-1}(k) \in A$ ¹². Hence, we can define a map $\beta : B \to A$ by

$$\left(\beta\left(k\right) = \sigma^{-1}\left(k\right) \quad \text{for each } k \in B\right).$$

¹¹*Proof.* Let $k \in A$. Thus, $k \in A = \{j \in \{i + 1, i + 2, ..., n\} \mid \sigma(i) > \sigma(j)\}$. In other words, k is an element of $\{i + 1, i + 2, ..., n\}$ and satisfies $\sigma(i) > \sigma(k)$.

From $k \in \{i + 1, i + 2, ..., n\} \subseteq [n]$, we conclude that $\sigma(k)$ is well-defined. Also, $\sigma(k) < \sigma(i)$ (since $\sigma(i) > \sigma(k)$), so that $\sigma(k) \le \sigma(i) - 1$ (since $\sigma(k)$ and $\sigma(i)$ are integers). Thus, $\sigma(k) \in [\sigma(i) - 1]$.

Next, let us prove that $\sigma(k) \notin \sigma([i])$.

Indeed, assume the contrary (for the sake of contradiction). Hence, $\sigma(k) \in \sigma([i])$. In other words, there exists some $j \in [i]$ such that $\sigma(k) = \sigma(j)$. Consider this j. From $\sigma(k) = \sigma(j)$, we obtain k = j (since the map σ is injective). Hence, $k = j \in [i]$. But $k \in \{i+1, i+2, ..., n\} = [n] \setminus [i]$, so that $k \notin [i]$. This contradicts $k \in [i]$. This contradiction shows that our assumption was false. Hence, $\sigma(k) \notin \sigma([i])$ is proven.

Combining $\sigma(k) \in [\sigma(i) - 1]$ with $\sigma(k) \notin \sigma([i])$, we obtain $\sigma(k) \in [\sigma(i) - 1] \setminus \sigma([i]) = B$. Qed.

¹²*Proof.* Let $k \in B$. Thus, $k \in B = [\sigma(i) - 1] \setminus \sigma([i])$. In other words, $k \in [\sigma(i) - 1]$ and $k \notin \sigma([i])$. From $k \in [\sigma(i) - 1]$, we obtain $1 \le k \le \sigma(i) - 1$. Also, $k \in [\sigma(i) - 1] \subseteq [n]$, so that $\sigma^{-1}(k)$ is

a well-defined element of [n].

We have $\sigma(\sigma^{-1}(k)) = k \leq \sigma(i) - 1 < \sigma(i)$. In other words, $\sigma(i) > \sigma(\sigma^{-1}(k))$.

Next, we claim that $\sigma^{-1}(k) \in \{i+1, i+2, ..., n\}$. Indeed, assume the contrary (for the sake of contradiction). Thus, $\sigma^{-1}(k) \notin \{i+1, i+2, ..., n\}$. Combining this with $\sigma^{-1}(k) \in [n]$, we obtain

$$\sigma^{-1}(k) \in [n] \setminus \{i+1, i+2, \dots, n\} = [i].$$

Consider this β .

The maps α and β are mutually inverse (since α is a restriction of σ , whereas β is a restriction of σ^{-1}), and therefore are bijections. Hence, there is a bijection from A to *B* (namely, α). Thus, |A| = |B|.

But (19) yields

$$\ell_{i}(\sigma) = |A| = |B| = |[\sigma(i) - 1] \setminus \sigma([i])|$$

(since $B = [\sigma(i) - 1] \setminus \sigma([i])$). This proves Lemma 0.16 (a).

(b) If we had $\sigma(i) \in [\sigma(i) - 1]$, then we would have $\sigma(i) \leq \sigma(i) - 1 < \sigma(i)$, which would be absurd. Hence, we have $\sigma(i) \notin [\sigma(i) - 1]$.

But $[i] = \{i\} \cup [i-1]$. Hence,

$$\sigma\left(\underbrace{[i]}_{=\{i\}\cup[i-1]}\right) = \sigma\left(\{i\}\cup[i-1]\right) = \underbrace{\sigma\left(\{i\}\right)}_{=\{\sigma(i)\}} \cup \sigma\left([i-1]\right) = \{\sigma\left(i\right)\} \cup \sigma\left([i-1]\right).$$

Thus,

$$\begin{split} [\sigma(i) - 1] \setminus \underbrace{\sigma([i])}_{=\{\sigma(i)\}\cup\sigma([i-1])} \\ &= [\sigma(i) - 1] \setminus (\{\sigma(i)\}\cup\sigma([i-1])) \\ &= \underbrace{([\sigma(i) - 1] \setminus \{\sigma(i)\})}_{=[\sigma(i) - 1]} \setminus \sigma([i-1]) = [\sigma(i) - 1] \setminus \sigma([i-1]) . \end{split}$$

Now, Lemma 0.16 (a) yields

$$\ell_{i}(\sigma) = \left| \underbrace{\left[\sigma\left(i\right) - 1 \right] \setminus \sigma\left([i]\right)}_{=\left[\sigma(i) - 1\right] \setminus \sigma\left([i - 1]\right)} \right| = \left| \left[\sigma\left(i\right) - 1 \right] \setminus \sigma\left([i - 1]\right) \right|.$$

This proves Lemma 0.16 (b).

Solution to Exercise 5 (sketched). (a) Assume that

$$(\sigma(1), \sigma(2), \ldots, \sigma(n)) <_{\text{lex}} (\tau(1), \tau(2), \ldots, \tau(n)).$$

Hence, $k = \sigma \left(\underbrace{\sigma^{-1}(k)}_{i} \right) \in \sigma([i])$, which contradicts $k \notin \sigma([i])$. This contradiction shows that

our assumption was false. Thus, $\sigma^{-1}(k) \in \{i+1, i+2, ..., n\}$ is proven. Now, we know that $\sigma^{-1}(k) \in \{i+1, i+2, ..., n\}$ and $\sigma(i) > \sigma(\sigma^{-1}(k))$. In other words, $\sigma^{-1}(k)$ is a $j \in \{i+1, i+2, \ldots, n\}$ satisfying $\sigma(i) > \sigma(j)$. In other words,

$$\sigma^{-1}(k) \in \{j \in \{i+1, i+2, \dots, n\} \mid \sigma(i) > \sigma(j)\}.$$

In view of (18), this rewrites as $\sigma^{-1}(k) \in A$. Qed.

According to Definition 0.15, this means the following: There exists some $k \in [n]$ such that $\sigma(k) \neq \tau(k)$, and the **smallest** such *k* satisfies $\sigma(k) < \tau(k)$.

Let *i* be the smallest such *k*. Thus, $\sigma(i) < \tau(i)$, but

each
$$k \in [i-1]$$
 satisfies $\sigma(k) = \tau(k)$ (20)

(since *i* is the **smallest** $k \in [n]$ such that $\sigma(k) \neq \tau(k)$).

Thus,

each
$$k \in [i]$$
 satisfies $\sigma([k-1]) = \tau([k-1])$ (21)

¹³. Hence,

each
$$k \in [i-1]$$
 satisfies $\ell_k(\sigma) = \ell_k(\tau)$ (22)

¹⁴. Furthermore,

$$\ell_i(\sigma) < \ell_i(\tau) \tag{23}$$

¹⁵. Thus, $\ell_i(\sigma) \neq \ell_i(\tau)$. In other words, *i* is a $k \in [n]$ such that $\ell_k(\sigma) \neq \ell_k(\tau)$. Moreover, (22) shows that *i* is the **smallest** such *k*. Thus, the smallest $k \in [n]$ such that $\ell_k(\sigma) \neq \ell_k(\tau)$ satisfies $\ell_k(\sigma) < \ell_k(\tau)$ (because this *k* is *i*, and *i* satisfies (23)).

¹³*Proof of (21):* Let $k \in [i]$. Thus, $k \leq i$. Let $j \in [k-1]$. Thus, $j \leq \underbrace{k}_{k} -1 \leq i-1$, so that $j \in [i-1]$. Hence, (20) (applied to j instead

of *k*) shows that $\sigma(j) = \tau(j)$.

Now, forget that we fixed *j*. We thus have shown that $\sigma(j) = \tau(j)$ for each $j \in [k-1]$. In other words,

$$(\sigma(1), \sigma(2), \dots, \sigma(k-1)) = (\tau(1), \tau(2), \dots, \tau(k-1))$$

Thus,

$$\{\sigma(1), \sigma(2), \dots, \sigma(k-1)\} = \{\tau(1), \tau(2), \dots, \tau(k-1)\}.$$

Now,

$$\sigma\left(\underbrace{[k-1]}_{=\{1,2,\dots,k-1\}}\right) = \sigma\left(\{1,2,\dots,k-1\}\right) = \{\sigma(1),\sigma(2),\dots,\sigma(k-1)\}$$
$$= \{\tau(1),\tau(2),\dots,\tau(k-1)\} = \tau\left(\underbrace{\{1,2,\dots,k-1\}}_{=[k-1]}\right) = \tau\left([k-1]\right).$$

This proves (21).

¹⁴Proof of (22): Let $k \in [i-1]$. Then, Lemma 0.16 (b) (applied to k instead of i) yields $\ell_k(\sigma) = |[\sigma(k) - 1] \setminus \sigma([k - 1])|$. The same argument (applied to τ instead of σ) yields $\ell_k(\tau) = |[\tau(k) - 1] \setminus \tau([k - 1])|.$

But $k \in [i-1] \subseteq [i]$. Hence, (21) yields $\sigma([k-1]) = \tau([k-1])$. Also, (20) yields $\sigma(k) = \tau(k)$. Hence,

$$\ell_{k}(\sigma) = \left| \left[\underbrace{\sigma(k)}_{=\tau(k)} - 1 \right] \setminus \underbrace{\sigma([k-1])}_{=\tau([k-1])} \right| = \left| [\tau(k) - 1] \setminus \tau([k-1]) \right| = \ell_{k}(\tau).$$

This proves (22).

¹⁵*Proof of (23):* We have $i \in [i]$. Hence, (21) (applied to k = i) yields $\sigma([i-1]) = \tau([i-1])$.

Thus, we have shown that there exists some $k \in [n]$ such that $\ell_k(\sigma) \neq \ell_k(\tau)$, and the **smallest** such *k* satisfies $\ell_k(\sigma) < \ell_k(\tau)$. But this means precisely that

 $(\ell_1(\sigma), \ell_2(\sigma), \dots, \ell_n(\sigma)) <_{\text{lex}} (\ell_1(\tau), \ell_2(\tau), \dots, \ell_n(\tau))$

(according to Definition 0.15). Hence, Exercise 5 (a) is solved.

(b) Assume that

$$(\ell_1(\sigma), \ell_2(\sigma), \dots, \ell_n(\sigma)) = (\ell_1(\tau), \ell_2(\tau), \dots, \ell_n(\tau)).$$
(25)

We must prove that $\sigma = \tau$.

Indeed, assume the contrary. Thus, $\sigma \neq \tau$. Hence, there exists some $k \in [n]$ satisfying $\sigma(k) \neq \tau(k)$. Therefore, there exists the **smallest** such k. This smallest k must satisfy either $\sigma(k) < \tau(k)$ or $\sigma(k) > \tau(k)$ (because it satisfies $\sigma(k) \neq \tau(k)$). We can WLOG assume that it satisfies $\sigma(k) < \tau(k)$ (because otherwise, we can simply switch the roles of σ and τ). Assume this. Thus, $(\sigma(1), \sigma(2), \ldots, \sigma(n)) <_{\text{lex}}$ $(\tau(1), \tau(2), \ldots, \tau(n))$ (because of Definition 0.15). Hence, Exercise 5 (a) shows that $(\ell_1(\sigma), \ell_2(\sigma), \ldots, \ell_n(\sigma)) <_{\text{lex}} (\ell_1(\tau), \ell_2(\tau), \ldots, \ell_n(\tau))$. In other words, there

Also, $\sigma(i) < \tau(i)$, so that $\sigma(i) - 1 < \tau(i) - 1$ and therefore $[\sigma(i) - 1] \subseteq [\tau(i) - 1]$.

From $\sigma(i) < \tau(i)$, we also obtain $\sigma(i) \le \tau(i) - 1$ (since $\sigma(i)$ and $\tau(i)$ are integers), and thus $\sigma(i) \in [\tau(i) - 1]$.

Also, $\sigma(i) \notin \sigma([i-1])$. [*Proof:* Assume the contrary. Thus, $\sigma(i) \in \sigma([i-1])$. In other words, $\sigma(i) = \sigma(j)$ for some $j \in [i-1]$. Consider this j. From $\sigma(i) = \sigma(j)$, we obtain i = j (since σ is injective), so that $i = j \in [i-1]$ and thus $i \leq i-1 < i$. But this is absurd. Hence, we found a contradiction, so that $\sigma(i) \notin \sigma([i-1])$ is proven.]

If we had $\sigma(i) \in [\sigma(i) - 1]$, then we would have $\sigma(i) \leq \sigma(i) - 1 < \sigma(i)$, which is absurd. Hence, we have $\sigma(i) \notin [\sigma(i) - 1]$. Thus, also $\sigma(i) \notin [\sigma(i) - 1] \setminus \sigma([i - 1])$.

Combining $\sigma(i) \in [\tau(i) - 1]$ with $\sigma(i) \notin \sigma([i - 1])$, we obtain $\sigma(i) \in [\tau(i) - 1] \setminus \sigma([i - 1])$. Now,

$$\underbrace{[\sigma(i)-1]}_{\subseteq [\tau(i)-1]} \setminus \sigma([i-1]) \subseteq [\tau(i)-1] \setminus \sigma([i-1]).$$
(24)

Moreover, the set $[\tau(i) - 1] \setminus \sigma([i - 1])$ contains $\sigma(i)$ (since $\sigma(i) \in [\tau(i) - 1] \setminus \sigma([i - 1])$), but the set $[\sigma(i) - 1] \setminus \sigma([i - 1])$ does not (since $\sigma(i) \notin [\sigma(i) - 1] \setminus \sigma([i - 1])$). Thus, these two sets are distinct. In other words, $[\sigma(i) - 1] \setminus \sigma([i - 1]) \neq [\tau(i) - 1] \setminus \sigma([i - 1])$. Combining this with (24), we conclude that $[\sigma(i) - 1] \setminus \sigma([i - 1])$ is a **proper** subset of $[\tau(i) - 1] \setminus \sigma([i - 1])$. Thus,

$$\left|\left[\sigma\left(i\right)-1\right]\setminus\sigma\left(\left[i-1\right]\right)\right|<\left|\left[\tau\left(i\right)-1\right]\setminus\sigma\left(\left[i-1\right]\right)\right|$$

(since a proper subset of any finite set must always have smaller size than the latter).

But Lemma 0.16 (b) yields $\ell_i(\sigma) = |[\sigma(i) - 1] \setminus \sigma([i - 1])|$. The same argument (applied to τ instead of σ) yields $\ell_i(\tau) = |[\tau(i) - 1] \setminus \tau([i - 1])|$. Hence,

$$\begin{split} \ell_{i}\left(\sigma\right) &= \left|\left[\sigma\left(i\right)-1\right] \setminus \sigma\left(\left[i-1\right]\right)\right| \\ &< \left|\left[\tau\left(i\right)-1\right] \setminus \underbrace{\sigma\left(\left[i-1\right]\right)}_{=\tau\left(\left[i-1\right]\right)}\right| = \left|\left[\tau\left(i\right)-1\right] \setminus \tau\left(\left[i-1\right]\right)\right| = \ell_{i}\left(\tau\right). \end{split}$$

This proves (23).

exists some $k \in [n]$ such that $\ell_k(\sigma) \neq \ell_k(\tau)$, and the **smallest** such *k* satisfies $\ell_k(\sigma) < \ell_k(\tau)$ (according to Definition 0.15).

In particular, there exists some $k \in [n]$ such that $\ell_k(\sigma) \neq \ell_k(\tau)$. In other words, $(\ell_1(\sigma), \ell_2(\sigma), \dots, \ell_n(\sigma)) \neq (\ell_1(\tau), \ell_2(\tau), \dots, \ell_n(\tau))$. But this contradicts (25). This contradiction shows that our assumption was false. Hence, $\sigma = \tau$ is proven. This solves Exercise 5 (b).

0.6. Comparing subsets of [n]

If *I* and *J* are two finite sets of integers, then we write $I \leq_{\#} J$ if and only if the following two properties hold:

- We have $|I| \ge |J|$.
- For every $r \in \{1, 2, ..., |J|\}$, the *r*-th smallest element of *I* is \leq to the *r*-th smallest element of *J*.

For example, $\{2,4\} \leq_{\#} \{2,5\}$ and $\{1,3\} \leq_{\#} \{2,4\}$ and $\{1,3,5\} \leq_{\#} \{2,4\}$. (But not $\{1,3\} \leq_{\#} \{2,4,5\}$.)

The relation $\leq_{\#}$ is called the *Gale order* on the powerset of [n].

Exercise 6. Let $n \in \mathbb{N}$. Let *I* and *J* be two subsets of [n]. (a) For every subset *S* of [n] and every $\ell \in [n]$, let $\alpha_S(\ell)$ denote the number of all elements of *S* that are $\leq \ell$. Prove that $I \leq_{\#} J$ holds if and only if every $\ell \in [n]$ satisfies $\alpha_I(\ell) \geq \alpha_J(\ell)$.

(b) Prove that $I \leq_{\#} J$ if and only if $[n] \setminus J \leq_{\#} [n] \setminus I$.

The following solution is mostly copypasted from [GriRei18, Proof of Proposition 12.75.2], where the exercise serves as a lemma for a combinatorial proof of an identity between Schur polynomials.

Solution to Exercise 6. (a) We must prove the equivalence

$$(I \leq_{\#} J) \iff (\text{every } \ell \in [n] \text{ satisfies } \alpha_{I}(\ell) \geq \alpha_{J}(\ell)).$$
 (26)

 \implies : Assume that $I \leq_{\#} J$. In other words, the following two properties hold:

Property α : We have $|I| \ge |J|$.

Property β : For every $r \in \{1, 2, ..., |J|\}$, the *r*-th smallest element of *I* is \leq to the *r*-th smallest element of *J*.

Now, let $\ell \in [n]$. Then, we need to show that $\alpha_I(\ell) \ge \alpha_J(\ell)$. Since this is obvious if $\alpha_I(\ell) = 0$ (because $\alpha_I(\ell) \ge 0$), we can WLOG assume that $\alpha_I(\ell) \ne 0$. Assume

this. Thus,
$$\alpha_J(\ell) \ge 1$$
. Also, $\alpha_J(\ell) = \left| \underbrace{\{s \in J \mid s \le \ell\}}_{\subseteq J} \right| \le |J| \le |I|$ (since $|I| \ge |J|$).

Hence, both the $\alpha_J(\ell)$ -th smallest element of *J* and the $\alpha_J(\ell)$ -th smallest element of *I* are well-defined.

Since $\alpha_J(\ell) = |\{s \in J \mid s \le \ell\}|$, we know that the elements of *J* which are $\le \ell$ are precisely the $\alpha_I(\ell)$ smallest elements of *J*. Thus,

(the $\alpha_I(\ell)$ -th smallest element of J) = (the largest element of J which is $\leq \ell$).

But by Property β (applied to $r = \alpha_I(\ell)$), we have

(the $\alpha_{J}(\ell)$ -th smallest element of I) \leq (the $\alpha_{J}(\ell)$ -th smallest element of J)

= (the largest element of *J* which is $\leq \ell$) $\leq \ell$.

Hence, there are at least $\alpha_I(\ell)$ elements of I which are $\leq \ell$ (namely, the $\alpha_I(\ell)$ smallest ones). In other words, $|\{s \in I \mid s \leq \ell\}| \geq \alpha_I(\ell)$. Now, the definition of $\alpha_I(\ell)$ yields $\alpha_I(\ell) = |\{s \in I \mid s \leq \ell\}| \geq \alpha_I(\ell)$. We thus have proven the \Longrightarrow direction of (26).

 \Leftarrow : Assume that every $\ell \in [n]$ satisfies $\alpha_I(\ell) \ge \alpha_J(\ell)$. We need to prove that $I \le \# J$. In other words, we need to prove that the following two properties hold:

Property α : We have $|I| \ge |J|$.

Property β : For every $r \in \{1, 2, ..., |J|\}$, the *r*-th smallest element of *I* is \leq to the *r*-th smallest element of *J*.

First of all, $\{s \in I \mid s \le n\} = I$ (since every $s \in I$ satisfies $s \le n$), and the definition of $\alpha_I(n)$ yields $\alpha_I(n) = \left|\underbrace{\{s \in I \mid s \le n\}}_{=I}\right| = |I|$. Similarly, $\alpha_J(n) = |J|$.

Applying $\alpha_I(\ell) \ge \alpha_J(\ell)$ to $\ell = n$, we obtain $\alpha_I(n) \ge \alpha_J(n)$, so that $|I| = \alpha_I(n) \ge \alpha_J(n) = |J|$, and thus Property α is proven.

Now, let $r \in \{1, 2, ..., |J|\}$. The *r*-th smallest element of *I* and the *r*-th smallest element of *J* are then well-defined (because of $r \leq |J| \leq |I|$). Let ℓ be the *r*-th smallest element of *J*. Then, $\{s \in J \mid s \leq \ell\}$ is the set consisting of the *r* smallest elements of *J*, so that $|\{s \in J \mid s \leq \ell\}| = r$. Now, the definition of $\alpha_J(\ell)$ yields $\alpha_J(\ell) = |\{s \in J \mid s \leq \ell\}| = r$.

But the definition of $\alpha_I(\ell)$ yields $\alpha_I(\ell) = |\{s \in I \mid s \leq \ell\}|$, so that

$$|\{s \in I \mid s \leq \ell\}| = \alpha_I(\ell) \geq \alpha_J(\ell) = r.$$

In other words, there exist at least *r* elements of *I* which are $\leq \ell$. Hence, the *r*-th smallest element of *I* must be $\leq \ell$. Since ℓ is the *r*-th smallest element of *J*, this rewrites as follows: The *r*-th smallest element of *I* is \leq to the *r*-th smallest element of *J*. Thus, Property β holds. Now we know that both Properties α and β hold. Hence, $I \leq_{\#} J$ holds (which, as we know, is equivalent to the conjunction of said properties). This proves the \Leftarrow direction of (26). Thus, (26) is proven. In other words, Exercise 6 (a) is solved.

(b) For every $\ell \in [n]$ and $S \subseteq [n]$, let $\alpha_S(\ell)$ denote the number $|\{s \in S \mid s \leq \ell\}|$. Thus, every $\ell \in [n]$ satisfies

$$\begin{aligned} \alpha_{I}\left(\ell\right) + \alpha_{[n]\setminus I}\left(\ell\right) &= \left|\left\{s \in I \mid s \leq \ell\right\}\right| + \left|\left\{s \in [n] \setminus I \mid s \leq \ell\right\}\right| \\ &= \left|\left\{s \in \underbrace{I \cup \left([n] \setminus I\right)}_{=[n]} \mid s \leq \ell\right\}\right| \qquad (\text{since } I \text{ and } [n] \setminus I \text{ are disjoint}) \\ &= \left|\left\{s \in [n] \mid s \leq \ell\right\}\right| = \left|\left\{1, 2, \dots, \ell\right\}\right| = \ell, \end{aligned}$$

so that $\alpha_{[n]\setminus I}(\ell) = \ell - \alpha_I(\ell)$. Similarly, every $\ell \in [n]$ satisfies $\alpha_{[n]\setminus J}(\ell) = \ell - \alpha_J(\ell)$. Applying (26) to $[n] \setminus J$ and $[n] \setminus I$ in lieu of *I* and *J*, we obtain the equivalence

$$([n] \setminus J \leq_{\#} [n] \setminus I) \iff \left(\text{every } \ell \in [n] \text{ satisfies } \alpha_{[n] \setminus J} \left(\ell\right) \geq \alpha_{[n] \setminus I} \left(\ell\right)\right).$$

Hence, we have the following chain of equivalences:

$$([n] \setminus J \leq_{\#} [n] \setminus I)$$

$$\iff \left(every \ \ell \in [n] \text{ satisfies } \underbrace{\alpha_{[n] \setminus J}(\ell)}_{=\ell - \alpha_{I}(\ell)} \geq \underbrace{\alpha_{[n] \setminus I}(\ell)}_{=\ell - \alpha_{I}(\ell)} \right)$$

$$\iff (every \ \ell \in [n] \text{ satisfies } \ell - \alpha_{I}(\ell) \geq \ell - \alpha_{I}(\ell))$$

$$\iff (every \ \ell \in [n] \text{ satisfies } \alpha_{I}(\ell) \geq \alpha_{J}(\ell))$$

$$\iff (I \leq_{\#} J) \qquad (by (26)).$$

This solves Exercise 6 (b).

Remark 0.17. Recall that we have defined a *Dyck word* as a list w of 2n numbers, exactly n of which are 0's while the other n are 1's, and having the property that for each $k \in [2n]$, the number of 0's among the first k entries of w is \leq to the number of 1's among the first k entries of w.

It is not hard to see the connection between the relation $\leq_{\#}$ and Dyck words: Let $w = (w_1, w_2, ..., w_{2n}) \in \{0, 1\}^{2n}$ be a list of 2n numbers, exactly *n* of which are 0's while the other *n* are 1's. Then, *w* is a Dyck word if and only if

 $\{i \in [2n] \mid w_i = 1\} \leq_{\#} \{i \in [2n] \mid w_i = 0\}$

(in other words, for every $r \in [n]$, the *r*-th appearance of 1 in *w* precedes the *r*-th appearance of 0 in *w*).

0.7. A rigorous approach to the existence of a cycle decomposition

The purpose of the following exercise is to give a rigorous proof of the fact that any permutation can be decomposed into disjoint cycles.

Exercise 7. Let *X* be a finite set. Let σ be a permutation of *X*.

Define a binary relation \sim on the set *X* as follows: For two elements $x \in X$ and $y \in X$, we set $x \sim y$ if and only if there exists some $k \in \mathbb{N}$ such that $y = \sigma^k(x)$. (a) Prove that \sim is an equivalence relation.

For any $x \in X$, we let $[x]_{\sim}$ denote the \sim -equivalence class of x.

(b) For any $x \in X$, prove that $[x]_{\sim} = \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{k-1}(x)\}$, where $k = |[x]_{\sim}|$.

(c) For any \sim -equivalence class *E*, let us define c_E to be the map

$$X \to X$$
, $x \mapsto \begin{cases} \sigma(x), & \text{if } x \in E; \\ x, & \text{if } x \notin E \end{cases}$

Prove that c_E is a permutation of *X*.

(d) Prove that if $E = [x]_{\sim}$ for some $x \in X$, then c_E can be written as $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\ldots,\sigma^{k-1}(x)}$, where $k = |[x]_{\sim}|$. (Don't forget to show that $\sigma^0(x), \sigma^1(x), \ldots, \sigma^{k-1}(x)$ are distinct, so that $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\ldots,\sigma^{k-1}(x)}$ is well-defined.)

(e) Let $E_1, E_2, ..., E_m$ be all \sim -equivalence classes (listed without repetitions – that is, $E_i \neq E_j$ whenever $i \neq j$). Prove that

$$\sigma=c_{E_1}\circ c_{E_2}\circ\cdots\circ c_{E_m}.$$

Exercise 7 is mostly an exercise in understanding the definitions and writing up proofs. The first two parts of it are similar to Exercise 6 on homework set #3; thus, our solution below is partly copypasted from the latter (with the necessary changes made).

Our solution relies on a few lemmas:

Lemma 0.18. Let *X* be a set. Let $f : X \to X$ be any map. Let $x \in X$. Let *i* and *j* be two nonnegative integers satisfying i < j and $f^i(x) = f^j(x)$. Then,

$$\left\{ f^{h}(x) \mid h \in \mathbb{N} \right\} = \left\{ f^{0}(x), f^{1}(x), \dots, f^{j-1}(x) \right\}.$$

Proof of Lemma 0.18. We have

$$\left\{f^{0}(x), f^{1}(x), \dots, f^{j-1}(x)\right\} = \left\{f^{h}(x) \mid h \in \underbrace{\{0, 1, \dots, j-1\}}_{\subseteq \mathbb{N}}\right\}$$
$$\subseteq \left\{f^{h}(x) \mid h \in \mathbb{N}\right\}.$$
(27)

On the other hand, we have $i \in \{0, 1, ..., j-1\}$ (since *i* is a nonnegative integer satisfying i < j), and thus $f^i(x) \in \{f^0(x), f^1(x), ..., f^{j-1}(x)\}$. Hence, $\{f^i(x)\} \subseteq$

 $\{f^{0}(x), f^{1}(x), \dots, f^{j-1}(x)\}$. Therefore,

$$\left\{ f^{0}(x), f^{1}(x), \dots, f^{j-1}(x) \right\} = \left\{ f^{0}(x), f^{1}(x), \dots, f^{j-1}(x) \right\} \cup \left\{ \underbrace{f^{i}(x)}_{=f^{j}(x)} \right\}$$
$$= \left\{ f^{0}(x), f^{1}(x), \dots, f^{j-1}(x) \right\} \cup \left\{ f^{j}(x) \right\}$$
$$= \left\{ f^{0}(x), f^{1}(x), \dots, f^{j}(x) \right\}.$$
(28)

Now,

$$f^{h}(x) \in \left\{ f^{0}(x), f^{1}(x), \dots, f^{j-1}(x) \right\}$$
 for each $h \in \mathbb{N}$. (29)

[*Proof of (29*): We shall prove (29) by induction over *h*:

Induction base: We have i < j, hence $j > i \ge 0$ and thus $j \ge 1$ (since j is an integer). Hence, $0 \in \{0, 1, \dots, j-1\}$, so that $f^0(x) \in \{f^0(x), f^1(x), \dots, f^{j-1}(x)\}$. In other words, (29) holds for h = 0. This completes the induction base.

Induction step: Let $g \in \mathbb{N}$. Assume that (29) holds for h = g. We must now show that (29) holds for h = g + 1 as well.

We have assumed that (29) holds for h = g. In other words, $f^g(x) \in \{f^0(x), f^1(x), \dots, f^{j-1}(x)\}$. In other words, there exists some $k \in \{0, 1, ..., j-1\}$ such that $f^{g}(x) = f^{k}(x)$. Consider this k.

We have $k \in \{0, 1, ..., j - 1\}$, so that $k + 1 \in \{1, 2, ..., j\} \subseteq \{0, 1, ..., j\}$ and therefore

$$f^{k+1}(x) \in \left\{ f^{0}(x), f^{1}(x), \dots, f^{j}(x) \right\} = \left\{ f^{0}(x), f^{1}(x), \dots, f^{j-1}(x) \right\}$$

(by (28)). But

$$f^{g+1}(x) = f\left(\underbrace{f^g(x)}_{=f^k(x)}\right) = f\left(f^k(x)\right) = f^{k+1}(x) \in \left\{f^0(x), f^1(x), \dots, f^{j-1}(x)\right\}$$

(as we have just proven). In other words, (29) holds for h = g + 1 as well. This completes the induction step. Thus, (29) is proven.]

From (29), we immediately obtain

$$\left\{f^{h}(x) \mid h \in \mathbb{N}\right\} \subseteq \left\{f^{0}(x), f^{1}(x), \dots, f^{j-1}(x)\right\}.$$

Combining this with (27), we obtain

$$\left\{ f^{h}(x) \mid h \in \mathbb{N} \right\} = \left\{ f^{0}(x), f^{1}(x), \dots, f^{j-1}(x) \right\}.$$

This proves Lemma 0.18.

- **Lemma 0.19.** Let *X* be a finite set. Let σ be a permutation of *X*. Let $x \in X$. (a) There exists a $j \in \mathbb{N}$ such that $\sigma^{j}(x) \in \{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{j-1}(x)\}$. Let *p* be the smallest such *j*.
 - **(b)** The integer *p* is positive and satisfies $\sigma^{p}(x) = x$.
 - (c) The elements $\sigma^0(x)$, $\sigma^1(x)$, ..., $\sigma^{p-1}(x)$ are pairwise distinct. (d) We have $\{\sigma^h(x) \mid h \in \mathbb{N}\} = \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{p-1}(x)\}.$

١

Proof of Lemma 0.19. The map σ is a permutation of *X*. In other words, σ is a bijection $X \to X$. Hence, σ is injective.

(a) Define an $n \in \mathbb{N}$ by n = |X|. (This is well-defined, since X is a finite set.)

The n + 1 elements $\sigma^0(x)$, $\sigma^1(x)$, ..., $\sigma^n(x)$ cannot all be distinct, because they all belong to the *n*-element set *X*. Hence, at least two of these n + 1 elements are equal. In other words, there exist two elements *u* and *v* of $\{0, 1, ..., n\}$ such that u < v and $\sigma^u(x) = \sigma^v(x)$. Consider these *u* and *v*.

We have $u \in \{0, 1, ..., n\} \subseteq \mathbb{N}$. Thus, $u \in \{0, 1, ..., v-1\}$ (since u < v). Hence, $\sigma^{u}(x) \in \{\sigma^{0}(x), \sigma^{1}(x), ..., \sigma^{v-1}(x)\}$. In view of $\sigma^{u}(x) = \sigma^{v}(x)$, this rewrites as $\sigma^{v}(x) \in \{\sigma^{0}(x), \sigma^{1}(x), ..., \sigma^{v-1}(x)\}$. Thus, there exists a $j \in \mathbb{N}$ such that $\sigma^{j}(x) \in \{\sigma^{0}(x), \sigma^{1}(x), ..., \sigma^{j-1}(x)\}$ (namely, j = v). This proves Lemma 0.19 (a).

Now, let us study the *p* in Lemma 0.19. We have defined *p* as the smallest $j \in \mathbb{N}$ such that $\sigma^{j}(x) \in \{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{j-1}(x)\}$. Thus, *p* is an element of \mathbb{N} and satisfies $\sigma^{p}(x) \in \{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{p-1}(x)\}$. Hence, the set $\{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{p-1}(x)\}$ is nonempty (since it contains the element $\sigma^{p}(x)$). Thus, $p \neq 0$ (because if we had p = 0, then the set $\{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{p-1}(x)\}$ would be empty). Hence, *p* is a positive integer (since $p \in \mathbb{N}$).

(b) We already know that *p* is positive. It thus remains to show that $\sigma^p(x) = x$. Indeed, we have $\sigma^p(x) \in \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{p-1}(x)\}$. In other words, there exists some $i \in \{0, 1, \dots, p-1\}$ such that $\sigma^p(x) = \sigma^i(x)$. Consider this *i*.

Next, we claim that i = 0. We shall prove this by contradiction. Indeed, assume the contrary. Thus, $i \neq 0$, so that i > 0 (since $i \in \mathbb{N}$). Hence, $\sigma^i(x) = \sigma(\sigma^{i-1}(x))$. But the integer p is also positive; hence, $p - 1 \in \mathbb{N}$ and $\sigma^p(x) = \sigma(\sigma^{p-1}(x))$. Hence, $\sigma(\sigma^{p-1}(x)) = \sigma^p(x) = \sigma(\sigma^{i-1}(x))$. Since σ is injective, we thus conclude that $\sigma^{p-1}(x) = \sigma^{i-1}(x)$. But $i - 1 \in \mathbb{N}$ (since i > 0). From $i \in \{0, 1, \dots, p - 1\}$, we obtain $i - 1 \in \{-1, 0, \dots, (p - 1) - 1\}$. Combined with $i - 1 \in \mathbb{N}$, this yields $i - 1 \in \{-1, 0, \dots, (p - 1) - 1\} \cap \mathbb{N} = \{0, 1, \dots, (p - 1) - 1\}$. Hence, $\sigma^{i-1}(x) \in \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{(p-1)-1}(x)\}$. Hence,

$$\sigma^{p-1}(x) = \sigma^{i-1}(x) \in \left\{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{(p-1)-1}(x)\right\}.$$

Thus, p - 1 is a $j \in \mathbb{N}$ such that $\sigma^{j}(x) \in \{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{j-1}(x)\}$ (because $p - 1 \in \mathbb{N}$). But we defined p to be the **smallest** such j. Hence, $p \leq p - 1$. This contradicts p > p - 1. This contradiction shows that our assumption was false; hence, we have shown that i = 0. Therefore, $\sigma^{i}(x) = \sigma^{0}(x) = \operatorname{id}(x) = x$.

=id

Now, $\sigma^p(x) = \sigma^i(x) = x$. This completes the proof of Lemma 0.19 (b).

(c) Assume the contrary. Thus, two of the elements $\sigma^0(x)$, $\sigma^1(x)$, ..., $\sigma^{p-1}(x)$ are equal. In other words, there exist two elements u and v of $\{0, 1, ..., p-1\}$ such that u < v and $\sigma^u(x) = \sigma^v(x)$. Consider these u and v. Notice that $v \le p-1$ (since $v \in \{0, 1, ..., p-1\}$).

From $u \in \{0, 1, ..., p-1\}$, we obtain $u \ge 0$. From u < v, we obtain $u \le v-1$ (since u and v are integers), so that $u \in \{0, 1, ..., v-1\}$ (since $u \ge 0$).

Hence, $\sigma^u(x) \in \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{v-1}(x)\}$. From $\sigma^u(x) = \sigma^v(x)$, we obtain $\sigma^v(x) = \sigma^u(x) \in \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{v-1}(x)\}$. Thus, v is a $j \in \mathbb{N}$ such that $\sigma^j(x) \in \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{j-1}(x)\}$ (because $v \in \mathbb{N}$). But we defined p to be the **smallest** such j. Hence, $p \leq v$. This contradicts $v \leq p - 1 < p$. This contradiction shows that our assumption was false. Thus, Lemma 0.19 (c) is proven.

(d) We have $\sigma^p(x) \in \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{p-1}(x)\}$. In other words, there exists some $i \in \{0, 1, \dots, p-1\}$ such that $\sigma^p(x) = \sigma^i(x)$. Consider this *i*. Hence, i < p (since $i \in \{0, 1, \dots, p-1\}$) and $\sigma^i(x) = \sigma^p(x)$. Thus, Lemma 0.18 (applied to $f = \sigma$ and j = p) yields

$$\left\{\sigma^{h}(x) \mid h \in \mathbb{N}\right\} = \left\{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{p-1}(x)\right\}$$

This proves Lemma 0.19 (d).

Lemma 0.20. Let *X* be a set. Let $f : X \to X$ be any map. Let $x \in X$. Let $p \in \mathbb{N}$ be such that $f^p(x) = x$. Then, $f^{kp}(x) = x$ for each $k \in \mathbb{N}$.

Proof of Lemma 0.20. Lemma 0.20 is intuitively obvious: All it says is that if applying the map f to x a total of p times brings you back to x, then applying the map f to x a total of kp times brings you back to x as well. This intuition can easily be translated into a rigorous argument:

We shall prove Lemma 0.20 by induction over *k*:

Induction base: We have $f^{0p} = f^0 = id_X$, so that $f^{0p}(x) = id_X(x) = x$. Thus, Lemma 0.20 holds for k = 0. This completes the induction base.

Induction step: Let $m \in \mathbb{N}$. Assume that Lemma 0.20 holds for k = m. We must prove that Lemma 0.20 holds for k = m + 1.

Let $x \in X$. Let $p \in \mathbb{N}$ be such that $f^p(x) = x$. Then, $f^{mp}(x) = x$ (since Lemma 0.20 holds for k = m). But $f^{mp} \circ f^p = f^{mp+p} = f^{(m+1)p}$. Hence, $(f^{mp} \circ f^p)(x) = f^{(m+1)p}(x)$, and therefore

$$f^{(m+1)p}(x) = (f^{mp} \circ f^p)(x) = f^{mp}\left(\underbrace{f^p(x)}_{=x}\right) = f^{mp}(x) = x.$$

In other words, Lemma 0.20 holds for k = m + 1. This completes the induction step. Thus, Lemma 0.20 is proven.

Lemma 0.21. Let *X* be a set. Let $m \in \mathbb{N}$. Let f_1, f_2, \ldots, f_m be *m* maps from *X* to *X*. Let *x* and *y* be two elements of *X*.

Let $i \in [m]$. Assume that $f_i(x) = y$. Assume further that

$$f_j(x) = x$$
 for each $j \in [m]$ satisfying $j < i$. (30)

Assume also that

$$f_j(y) = y$$
 for each $j \in [m]$ satisfying $j > i$. (31)

Then, $(f_m \circ f_{m-1} \circ \cdots \circ f_1)(x) = y.$

Proof of Lemma 0.21. The idea behind this proof is very simple (if we don't insist on being rigorous): Imagine the element x undergoing the maps f_1, f_2, \ldots, f_m in this order; the result is, of course, $(f_m \circ f_{m-1} \circ \cdots \circ f_1)(x)$. But let us look closer at the step-by-step procedure. The element is initially x. Then, the maps f_1, f_2, \ldots, f_m are being applied to it in this order. Up until the map f_i is applied, the element does not change (because of (30)). Then, the map f_i is applied, and the element becomes *y* (since $f_i(x) = y$). From then on, the maps $f_{i+1}, f_{i+2}, \ldots, f_m$ again leave the element unchanged (due to (31)). Thus, the final result is y. This shows that $(f_m \circ f_{m-1} \circ \cdots \circ f_1)(x) = y.$

Let us now rewrite the above argument in rigorous terms.

We have $i \in [m]$, so that $1 \le i \le m$. Now, we claim the following:

Observation 1: We have
$$(f_g \circ f_{g-1} \circ \cdots \circ f_1)(x) = \begin{cases} x, & \text{if } g < i; \\ y, & \text{if } g \ge i \end{cases}$$
 for each $g \in \{0, 1, \dots, m\}$.

[Proof of Observation 1: We shall prove Observation 1 by induction on g:

Induction base: We have 0 < i (since $i \in [m]$). Thus, $\begin{cases} x, & \text{if } 0 < i; \\ y, & \text{if } 0 \ge i \end{cases} = x$. Comparing this with

$$\underbrace{(f_0 \circ f_{0-1} \circ \cdots \circ f_1)}_{\text{(empty composition of maps } X \to X)} (x) = \operatorname{id}(x) = x,$$

we obtain $(f_0 \circ f_{0-1} \circ \cdots \circ f_1)(x) = \begin{cases} x, & \text{if } 0 < i; \\ y, & \text{if } 0 \ge i \end{cases}$. In other words, Observation 1 holds for g = 0.

This completes the induction base.

Induction step: Let $h \in \{0, 1, ..., m\}$ be positive. Assume that Observation 1 holds for g = h - 1. We must then prove that Observation 1 holds for g = h.

We have

$$f_h\left(\begin{cases} x, & \text{if } h-1 < i; \\ y, & \text{if } h-1 \ge i \end{cases}\right) = \begin{cases} x, & \text{if } h < i; \\ y, & \text{if } h \ge i \end{cases}$$
(32)

1	6
	n

¹⁶*Proof of (32):* We are in one of the following three cases:

=

Case 1: We have h < i.

- *Case 2:* We have h = i.
- *Case 3:* We have h > i.

Let us first consider Case 1. In this case, we have h < i. Thus, $\begin{cases} x, & \text{if } h < i; \\ y, & \text{if } h \ge i \end{cases} = x.$

Applying (30) to j = h, we find $f_h(x) = x$ (since h < i). Also, h - 1 < h < i. Hence, $\begin{cases} x, & \text{if } h - 1 < i; \\ y, & \text{if } h - 1 \ge i \end{cases} = x$. Applying the map f_h to this equality, we

$$f_h\left(\begin{cases} x, & \text{if } h-1 < i; \\ y, & \text{if } h-1 \ge i \end{cases}\right) = f_h(x) = x = \begin{cases} x, & \text{if } h < i; \\ y, & \text{if } h \ge i \end{cases}.$$

Hence, (32) is proven in Case 1.

Let us now consider case 2. In this case, we have h = i. Thus, $h \ge i$. Hence, $\begin{cases} x, & \text{if } h < i; \\ y, & \text{if } h \ge i \end{cases} = y.$

But we assumed that Observation 1 holds for g = h - 1. In other words, we have

$$\left(f_{h-1} \circ f_{(h-1)-1} \circ \cdots \circ f_1\right)(x) = \begin{cases} x, & \text{if } h-1 < i; \\ y, & \text{if } h-1 \ge i \end{cases}.$$

Now,

$$\underbrace{(f_{h} \circ f_{h-1} \circ \dots \circ f_{1})}_{=f_{h} \circ (f_{h-1} \circ f_{h-2} \circ \dots \circ f_{1})} (x) = \left(f_{h} \circ \left(f_{h-1} \circ f_{(h-1)-1} \circ \dots \circ f_{1}\right)\right)(x)$$

$$= f_{h} \circ \left(f_{h-1} \circ f_{(h-1)-1} \circ \dots \circ f_{1}\right)(x)$$

$$= f_{h} \left(\underbrace{(f_{h-1} \circ f_{(h-1)-1} \circ \dots \circ f_{1})(x)}_{=\begin{cases}x, & \text{if } h - 1 < i; \\y, & \text{if } h - 1 \ge i\end{cases}\right)$$

$$= f_{h} \left(\begin{cases}x, & \text{if } h - 1 < i; \\y, & \text{if } h - 1 \ge i\end{cases}\right)$$

$$= f_{h} \left(\begin{cases}x, & \text{if } h - 1 < i; \\y, & \text{if } h - 1 \ge i\end{cases}\right) = \begin{cases}x, & \text{if } h < i; \\y, & \text{if } h \ge i\end{cases} \text{ (by (32))}$$

In other words, Observation 1 holds for g = h. This completes the induction step. Thus, Observation 1 is proven.]

We can now apply Observation 1 to g = m. We thus obtain

$$(f_m \circ f_{m-1} \circ \cdots \circ f_1)(x) = \begin{cases} x, & \text{if } m < i; \\ y, & \text{if } m \ge i \end{cases} = y$$

(since $m \ge i$ (since $i \le m$)). This proves Lemma 0.21.

From h = i, we obtain $f_h(x) = f_i(x) = y$. Also, h - 1 < h = i. Hence, $\begin{cases} x, & \text{if } h - 1 < i; \\ y, & \text{if } h - 1 \ge i \end{cases} = x$. Applying the map f_h to this equality, we btain

$$f_h\left(\begin{cases} x, & \text{if } h-1 < i; \\ y, & \text{if } h-1 \ge i \end{cases}\right) = f_h(x) = y = \begin{cases} x, & \text{if } h < i; \\ y, & \text{if } h \ge i \end{cases}$$

Hence, (32) is proven in Case 2.

Let us first consider Case 3. In this case, we have h > i. Thus, $h \ge i$, so that $\begin{cases} x, & \text{if } h < i; \\ y, & \text{if } h \ge i \end{cases} = y$. Applying (31) to j = h, we find $f_h(y) = y$ (since h > i).

Also, h > i, so that $h \ge i + 1$ (since h and i are integers). Thus, $h - 1 \ge i$. Hence, $\begin{cases} x, & \text{if } h - 1 < i; \\ y, & \text{if } h - 1 \ge i \end{cases} = y$. Applying the map f_h to this equality, we obtain

$$f_h\left(\begin{cases} x, & \text{if } h-1 < i; \\ y, & \text{if } h-1 \ge i \end{cases}\right) = f_h\left(y\right) = y = \begin{cases} x, & \text{if } h < i; \\ y, & \text{if } h \ge i \end{cases}.$$

Hence, (32) is proven in Case 3.

We have now proven (32) in each of the three Cases 1, 2 and 3 (which are the only cases that can occur). Thus, (32) always holds.

Lemma 0.22. Let *X* be a set. Let $m \in \mathbb{N}$. Let g_1, g_2, \ldots, g_m be *m* maps from *X* to *X*. Let *x* and *y* be two elements of *X*.

Let $i \in [m]$. Assume that $g_i(x) = y$. Assume further that

$$g_j(x) = x$$
 for each $j \in [m]$ satisfying $j > i$. (33)

Assume also that

$$g_i(y) = y$$
 for each $j \in [m]$ satisfying $j < i$. (34)

 $g_j(y) = y$ for $(g_1 \circ g_2 \circ \cdots \circ g_m)(x) = y.$

Proof of Lemma 0.22. Lemma 0.22 follows by applying Lemma 0.21 to $g_m, g_{m-1}, \ldots, g_1$ instead of f_1, f_2, \ldots, f_m .

Here is the argument in more detail:

For each $j \in [m]$, we define a map f_j from *X* to *X* by $f_j = g_{m+1-j}$.

From $i \in [m]$, we obtain $m + 1 - i \in [m]$. Thus, we can define $i' \in [m]$ by i' = m + 1 - i. Consider this i'. From i' = m + 1 - i, we obtain m + 1 - i' = i. Now, the definition of $f_{i'}$ yields $f_{i'} = g_{m+1-i'} = g_i$ (since m + 1 - i' = i). Thus, $f_{i'}(x) = g_i(x) = y$. Furthermore, $f_j(x) = x$ for each $j \in [m]$ satisfying j < i' ¹⁷. Also, $f_j(y) = y$ for each $j \in [m]$

Furthermore, $f_j(x) = x$ for each $j \in [m]$ satisfying j < i' = 1'. Also, $f_j(y) = y$ for each $j \in [m]$ satisfying $j > i' = 1^8$. Hence, Lemma 0.21 (applied to i' instead of i) yields $(f_m \circ f_{m-1} \circ \cdots \circ f_1)(x) = y$.

But each $j \in [m]$ satisfies

$$f_{m+1-j} = g_{m+1-(m+1-j)}$$
 (by the definition of f_{m+1-j})
= g_i (since $m + 1 - (m + 1 - j) = j$).

In other words, we have $(f_m, f_{m-1}, ..., f_1) = (g_1, g_2, ..., g_m)$. Hence, $f_m \circ f_{m-1} \circ \cdots \circ f_1 = g_1 \circ g_2 \circ \cdots \circ g_m$. Hence, $(f_m \circ f_{m-1} \circ \cdots \circ f_1)(x) = (g_1 \circ g_2 \circ \cdots \circ g_m)(x)$. Therefore,

$$(g_1 \circ g_2 \circ \cdots \circ g_m)(x) = (f_m \circ f_{m-1} \circ \cdots \circ f_1)(x) = y_1$$

This proves Lemma 0.22.

Solution to Exercise 7 (*sketched*). The map σ is a permutation of *X*, thus a bijection $X \rightarrow X$. Hence, in particular, σ is injective.

Before we properly start solving the exercise, let us make some basic observations:

Observation 1. For every $x \in X$, there exists some positive integer p such that $\sigma^{p}(x) = x$.

¹⁷*Proof.* Let $j \in [m]$ be such that j < i'. Then, $m + 1 - j \in [m]$ (since $j \in [m]$) and m + 1 - j > (i')m + 1 - i' = i. Hence, (33) (applied to m + 1 - j instead of j) yields $g_{m+1-j}(x) = x$. But the definition of f_j yields $f_j = g_{m+1-j}$. Thus, $f_j(x) = g_{m+1-j}(x) = x$. Qed. ¹⁸*Proof.* Let $j \in [m]$ be such that j > i'. Then, $m + 1 - j \in [m]$ (since $j \in [m]$) and m + 1 - j < (m + 1 - i') = i. Hence, (34) (applied to m + 1 - j instead of j) yields $g_{m+1-j}(y) = y$. But the definition of f_j yields $f_j = g_{m+1-j}$. Thus, $f_j(y) = g_{m+1-j}(y) = y$. Qed.

[*Proof of Observation 1:* Let $x \in X$. Let n = |X|. The n + 1 elements $\sigma^0(x), \sigma^1(x), \ldots, \sigma^n(x)$ cannot all be distinct, because they belong to the *n*-element set X. Hence, at least two of these n + 1 elements are equal. In other words, there exist two elements *i* and *j* of $\{0, 1, \ldots, n\}$ such that i < j and $\sigma^i(x) = \sigma^j(x)$. Consider these *i* and *j*. From i < j, we conclude that j - i is a positive integer. Thus, $\sigma^j = \sigma^i \circ \sigma^{j-i}$.

Also, the map σ^i is injective (since the map σ is injective, but any composition of injective maps is injective). Hence, from

$$\sigma^{i}(x) = \underbrace{\sigma^{j}}_{=\sigma^{i} \circ \sigma^{j-i}}(x) = \left(\sigma^{i} \circ \sigma^{j-i}\right)(x) = \sigma^{i}\left(\sigma^{j-i}(x)\right),$$

we obtain $x = \sigma^{j-i}(x)$. In other words, $\sigma^{j-i}(x) = x$. Hence, there exists some positive integer p such that $\sigma^p(x) = x$ (namely, p = j - i). This proves Observation 1.]

Now, we must show that \sim is an equivalence relation. Indeed, the relation \sim is reflexive¹⁹, symmetric²⁰ and transitive²¹. In other words, the relation \sim is an equivalence relation. This solves Exercise 7 (a).

²⁰*Proof.* Let $x \in X$ and $y \in X$ be such that $x \sim y$. We shall show that $y \sim x$.

Indeed, we have $x \sim y$. In other words, there exists some $k \in \mathbb{N}$ such that $y = \sigma^k(x)$ (by the definition of the relation \sim). Consider such a k, and denote it by u. Thus, $u \in \mathbb{N}$ satisfies $y = \sigma^u(x)$.

Observation 1 yields that there exists some positive integer p such that $\sigma^p(x) = x$. Consider this p. Hence, Lemma 0.20 (applied to $f = \sigma$ and k = u) yields $\sigma^{up}(x) = x$. But p is positive; hence, $p \ge 1$ and thus $up \ge u1 = u$. Hence, $up - u \in \mathbb{N}$. Hence, $\sigma^{up-u} \circ \sigma^u = \sigma^{(up-u)+u} = u$

$$\sigma^{up}$$
. Thus, $(\sigma^{up-u} \circ \sigma^u)(x) = \sigma^{up}(x) = x$. Hence, $x = (\sigma^{up-u} \circ \sigma^u)(x) = \sigma^{up-u}\left(\underbrace{\sigma^u(x)}_{=y}\right) = \frac{1}{2}$

 $\sigma^{up-u}(y)$. Thus, there exists some $k \in \mathbb{N}$ such that $x = \sigma^k(y)$ (namely, k = up - u). In other words, $y \sim x$ (by the definition of the relation \sim).

Now, forget that we fixed *x* and *y*. We thus have shown that if $x \in X$ and $y \in X$ satisfy $x \sim y$, then $y \sim x$. In other words, the relation \sim is symmetric.

²¹*Proof.* Let $x \in X$, $y \in X$ and $z \in X$ be such that $x \sim y$ and $y \sim z$. We shall show that $x \sim z$.

Indeed, we have $x \sim y$. In other words, there exists some $k \in \mathbb{N}$ such that $y = \sigma^k(x)$ (by the definition of the relation \sim). Consider such a k, and denote it by u. Thus, $u \in \mathbb{N}$ satisfies $y = \sigma^u(x)$.

Also, we have $y \sim z$. In other words, there exists some $k \in \mathbb{N}$ such that $z = \sigma^k(y)$ (by the definition of the relation \sim). Consider such a k, and denote it by v. Thus, $v \in \mathbb{N}$ satisfies $z = \sigma^v(y)$.

But
$$\sigma^{v} \circ \sigma^{u} = \sigma^{v+u}$$
. Thus, $(\sigma^{v} \circ \sigma^{u})(x) = \sigma^{v+u}(x)$. In view of $(\sigma^{v} \circ \sigma^{u})(x) = \sigma^{v}\left(\underbrace{\sigma^{u}(x)}_{=y}\right) = v^{v+u}(x)$.

 $\sigma^{v}(y) = z$, this rewrites as $z = \sigma^{v+u}(x)$. Thus, there exists some $k \in \mathbb{N}$ such that $z = \sigma^{k}(x)$ (namely, k = v + u). In other words, $x \sim z$ (by the definition of the relation \sim).

Now, forget that we fixed *x*, *y* and *z*. We thus have shown that if $x \in X$, $y \in X$ and $z \in X$ satisfy $x \sim y$ and $y \sim z$, then $x \sim z$. In other words, the relation \sim is transitive.

¹⁹*Proof.* Let $x \in X$. We shall show that $x \sim x$.

Indeed, $\sigma^0 = id_X$, so that $\sigma^0(x) = id_X(x) = x$. Hence, there exists some $k \in \mathbb{N}$ such that $x = \sigma^k(x)$ (namely, k = 0). In other words, $x \sim x$ (by the definition of the relation \sim).

Now, forget that we fixed *x*. We thus have shown that every $x \in X$ satisfies $x \sim x$. In other words, the relation \sim is reflexive.

(b) Let $x \in X$. Lemma 0.19 **(a)** shows that there exists a $j \in \mathbb{N}$ such that $\sigma^j(x) \in \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{j-1}(x)\}$. Let p be the smallest such j.

Lemma 0.19 (b) shows that the integer *p* is positive and satisfies $\sigma^p(x) = x$. Lemma 0.19 (c) shows that the elements $\sigma^0(x), \sigma^1(x), \dots, \sigma^{p-1}(x)$ are pairwise distinct. Lemma 0.19 (d) shows that $\{\sigma^h(x) \mid h \in \mathbb{N}\} = \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{p-1}(x)\}$. Define a set *S* by $S = \{\sigma^h(x) \mid h \in \mathbb{N}\}$. Thus,

$$S = \left\{ \sigma^{h}(x) \mid h \in \mathbb{N} \right\} = \left\{ \sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{p-1}(x) \right\}.$$

The definition of the equivalence class $[x]_{\sim}$ of *x* shows that

 $[x]_{\sim} = \{y \in X \mid y \sim x\}.$

Now, $[x]_{\sim} \subseteq S^{22}$ and $S \subseteq [x]_{\sim}^{23}$. Combining these two relations, we obtain $[x]_{\sim} = S = \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{p-1}(x)\}.$

The *p* elements $\sigma^0(x)$, $\sigma^1(x)$, ..., $\sigma^{p-1}(x)$ are pairwise distinct (as we have seen above). Thus, $|\{\sigma^0(x), \sigma^1(x), \dots, \sigma^{p-1}(x)\}| = p$.

Let $k = |[x]_{\sim}|$. Then,

$$k = |[x]_{\sim}| = \left| \left\{ \sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{p-1}(x) \right\} \right| = p.$$

Now,

$$[x]_{\sim} = \left\{ \sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{p-1}(x) \right\} = \left\{ \sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{k-1}(x) \right\}$$

(since p = k). This solves Exercise 7 (b).

(c) Let *E* be a \sim -equivalence class. We must prove that c_E is a permutation of *X*. It is clear that c_E is well-defined. Next, we claim that

$$t \in c_E(X)$$
 for each $t \in X$. (35)

²²*Proof.* Let $w \in [x]_{\sim}$. Thus, $w \in [x]_{\sim} = \{y \in X \mid y \sim x\}$. In other words, w is an element of X and satisfies $w \sim x$.

We have $w \sim x$. Hence, $x \sim w$ (since the relation \sim is symmetric). In other words, there exists some $k \in \mathbb{N}$ such that $w = \sigma^k(x)$ (by the definition of the relation \sim). Consider this k. We have $w = \sigma^k(x) \in \{\sigma^h(x) \mid h \in \mathbb{N}\} = S$.

Now, forget that we fixed w. We thus have shown that $w \in S$ for each $w \in [x]_{\sim}$. In other words, $[x]_{\sim} \subseteq S$.

²³*Proof.* Let $w \in S$. Thus, $w \in S = \{\sigma^h(x) \mid h \in \mathbb{N}\}$. In other words, $w = \sigma^h(x)$ for some $h \in \mathbb{N}$. Consider this *h*.

There exists some $k \in \mathbb{N}$ such that $w = \sigma^k(x)$ (namely, k = h). In other words, $x \sim w$ (by the definition of the relation \sim). Thus, $w \sim x$ (since the relation \sim is symmetric).

Hence, *w* is an element of *X* and satisfies $w \sim x$. In other words, $w \in \{y \in X \mid y \sim x\}$. In view of $[x]_{\sim} = \{y \in X \mid y \sim x\}$, this rewrites as $w \in [x]_{\sim}$.

Now, forget that we fixed w. We thus have shown that $w \in [x]_{\sim}$ for each $w \in S$. In other words, $S \subseteq [x]_{\sim}$.

[*Proof of* (35): Let $t \in X$. We must prove that $t \in c_E(X)$.

We are in one of the following two cases:

Case 1: We have $t \in E$.

Case 2: We have $t \notin E$.

Let us first consider Case 1. In this case, we have $t \in E$. But *E* is an \sim -equivalence class. Hence, *E* is an \sim -equivalence class containing *t* (since $t \in E$). In other words, $E = [t]_{\sim}$ (since the only \sim -equivalence class containing *t* is $[t]_{\sim}$).

Recall that σ is a permutation of *X*. Hence, an element $\sigma^{-1}(t)$ of *X* is well-defined. Denote this element by *z*. Thus, $z = \sigma^{-1}(t)$. Hence, $\sigma(z) = t$.

We have $\underbrace{\sigma^{1}}_{=\sigma}(z) = \sigma(z) = t$, so that $t = \sigma^{1}(z)$. Hence, there exists some $k \in \mathbb{N}$ such that

 $t = \sigma^k(z)$ (namely, k = 1). In other words, $z \sim t$ (by the definition of the relation \sim). Hence, z is an element of X and satisfies $z \sim t$. In other words, $z \in \{y \in X \mid y \sim t\}$. But $E = [t]_{\sim} = \{y \in X \mid y \sim t\}$ (by the definition of the equivalence class $[t]_{\sim}$). Hence, $z \in \{y \in X \mid y \sim t\} = E$. The definition of c_E yields

$$c_E(z) = \begin{cases} \sigma(z), & \text{if } z \in E; \\ z, & \text{if } z \notin E \end{cases} = \sigma(z) \qquad (\text{since } z \in E) \\ = t. \end{cases}$$

Hence, $t = c_E\left(\underbrace{z}_{\in X}\right) \in c_E(X)$. Thus, we have proven $t \in c_E(X)$ in Case 1.

Let us now consider Case 2. In this case, we have $t \notin E$. The definition of c_E yields

$$c_E(t) = \begin{cases} \sigma(t), & \text{if } t \in E; \\ t, & \text{if } t \notin E \end{cases} = t \qquad (\text{since } t \notin E).$$

Hence, $t = c_E\left(\underbrace{t}_{\in X}\right) \in c_E(X)$. Thus, we have proven $t \in c_E(X)$ in Case 2.

We have now proven $t \in c_E(X)$ in each of the two Cases 1 and 2. Hence, $t \in c_E(X)$ is proven. This proves (35).]

Now, (35) shows that $X \subseteq c_E(X)$. In other words, the map c_E is surjective. Thus, c_E is a surjective map between two finite sets of the same size (namely, X and X), and therefore must be bijective (since any surjective map between two finite sets of the same size is bijective). In other words, c_E is a bijection $X \to X$, therefore a permutation of X. This solves Exercise 7 (c).

(d) Let $x \in X$ be such that $E = [x]_{\sim}$. Let $k = |[x]_{\sim}|$. We must prove that c_E can be written as $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\dots,\sigma^{k-1}(x)}$ (and in particular, we must prove that $\sigma^0(x), \sigma^1(x),\dots,\sigma^{k-1}(x)$ are distinct, so that $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\dots,\sigma^{k-1}(x)}$ is well-defined).

Lemma 0.19 (a) shows that there exists a $j \in \mathbb{N}$ such that $\sigma^{j}(x) \in {\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{j-1}(x)}$. Let p be the smallest such j. As in the solution to Exercise 7 (b) (which we have given above), we can see that k = p.

Lemma 0.19 (b) shows that the integer p is positive and satisfies $\sigma^p(x) = x$. In view of k = p, this rewrites as follows: The integer k is positive and satisfies $\sigma^k(x) = x$. Since the integer k is positive, we have $1 \in [k]$.

Lemma 0.19 (c) shows that the elements $\sigma^0(x)$, $\sigma^1(x)$, ..., $\sigma^{p-1}(x)$ are pairwise distinct. In view of k = p, this rewrites as follows: The elements $\sigma^0(x)$, $\sigma^1(x)$, ..., $\sigma^{k-1}(x)$

are pairwise distinct. Hence, the permutation $cyc_{\sigma^0(x),\sigma^1(x),...,\sigma^{k-1}(x)}$ is well-defined (since *k* is a positive integer).

Exercise 7 (b) shows that $[x]_{\sim} = \{\sigma^0(x), \sigma^1(x), \dots, \sigma^{k-1}(x)\}$. Hence,

$$\left\{\sigma^{0}(x), \sigma^{1}(x), \dots, \sigma^{k-1}(x)\right\} = [x]_{\sim} = E$$
 (36)

(since $E = [x]_{\sim}$).

It remains to prove that c_E can be written as $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\ldots,\sigma^{k-1}(x)}$. We define a *k*-tuple (i_1, i_2, \ldots, i_k) of elements of *X* by

$$(i_1, i_2, \dots, i_k) = \left(\sigma^0(x), \sigma^1(x), \dots, \sigma^{k-1}(x)\right).$$
(37)

Thus,

$$i_u = \sigma^{u-1}(x)$$
 for each $u \in [k]$. (38)

Applying this to u = 1, we obtain $i_1 = \sigma^{1-1}(x)$ (since $1 \in [k]$).

Also, from (37), we obtain

$$\{i_1, i_2, \dots, i_k\} = \left\{\sigma^0(x), \sigma^1(x), \dots, \sigma^{k-1}(x)\right\} = E$$
(39)

(by (36)).

We also let i_{k+1} stand for i_1 . Thus, $i_{k+1} = i_1 = \underbrace{\sigma^{1-1}}_{=\sigma^0 = id} (x) = id(x) = x = \sigma^k(x)$

(since $\sigma^{k}(x) = x$). Therefore, we see that

$$i_u = \sigma^{u-1}(x)$$
 for each $u \in [k+1]$. (40)

[*Proof of (40):* Let $u \in [k+1]$. We must prove that $i_u = \sigma^{u-1}(x)$. If $u \in [k]$, then this follows from (38). Hence, for the rest of this proof, we WLOG assume that $u \notin [k]$. Combining $u \in [k+1]$ with $u \notin [k]$, we obtain $u \in [k+1] \setminus [k] = \{k+1\}$, so that u = k+1. Thus, $i_u = i_{k+1} = \sigma^k(x) = \sigma^{u-1}(x)$ (since k = u - 1 (since u = k + 1)). This proves (40).]

We have $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\ldots,\sigma^{k-1}(x)} = \operatorname{cyc}_{i_1,i_2,\ldots,i_k}$ (since $(\sigma^0(x), \sigma^1(x),\ldots,\sigma^{k-1}(x)) = (i_1, i_2, \ldots, i_k)$). But the definition of $\operatorname{cyc}_{i_1,i_2,\ldots,i_k}$ yields

$$\operatorname{cyc}_{i_1,i_2,\ldots,i_k}(p) = \begin{cases} i_{j+1}, & \text{if } p = i_j \text{ for some } j \in \{1,2,\ldots,k\};\\ p, & \text{otherwise} \end{cases}$$
(41)

for every $p \in X$.

Now, we claim that

$$\operatorname{cyc}_{i_1,i_2,\ldots,i_k}(p) = c_E(p)$$
 for each $p \in X$. (42)

[*Proof of (42):* Let $p \in X$. We must prove the equality (42). We are in one of the following two cases: *Case 1:* We have $p = i_i$ for some $j \in \{1, 2, ..., k\}$.

Case 2: We don't have $(p = i_j \text{ for some } j \in \{1, 2, ..., k\})$.

Let us first consider Case 1. In this case, we have $p = i_j$ for some $j \in \{1, 2, ..., k\}$. Consider this j. Thus, (41) simplifies to $\text{cyc}_{i_1, i_2, ..., i_k}(p) = i_{j+1}$.

We have $j \in \{1, 2, ..., k\} = [k]$. Hence, (38) (applied to u = j) yields $i_j = \sigma^{j-1}(x)$. Hence, $\sigma^{j-1}(x) = i_j = p$.

But $j \in \{1, 2, ..., k\}$, so that $j + 1 \in \{2, 3, ..., k + 1\} \subseteq [k + 1]$. Hence, (40) (applied to u = j + 1) yields

$$i_{j+1} = \underbrace{\sigma^{(j+1)-1}}_{=\sigma^j} (x) = \sigma^j (x) = \sigma \left(\underbrace{\sigma^{j-1} (x)}_{=p} \right) = \sigma (p).$$

$$(43)$$

However,

$$p = i_j \in \{i_1, i_2, \dots, i_k\}$$
 (since $j \in \{1, 2, \dots, k\}$)
= E (by (39)).

The definition of c_E now shows that

$$c_E(p) = \begin{cases} \sigma(p), & \text{if } p \in E; \\ p, & \text{if } p \notin E \end{cases} = \sigma(p) \qquad (\text{since } p \in E) \\ = i_{j+1} \qquad (\text{by (43)}). \end{cases}$$

Comparing this with $\operatorname{cyc}_{i_1,i_2,\ldots,i_k}(p) = i_{j+1}$, we obtain $\operatorname{cyc}_{i_1,i_2,\ldots,i_k}(p) = c_E(p)$. Thus, (42) is proven in Case 1.

Let us now consider Case 2. In this case, we don't have $(p = i_j \text{ for some } j \in \{1, 2, ..., k\})$. Thus, (41) simplifies to $\text{cyc}_{i_1, i_2, ..., i_k}(p) = p$.

But we don't have $(p = i_j \text{ for some } j \in \{1, 2, ..., k\})$. In other words, $p \notin \{i_1, i_2, ..., i_k\}$. In view of (39), this rewrites as $p \notin E$. The definition of c_E now shows that

$$c_E(p) = \begin{cases} \sigma(p), & \text{if } p \in E; \\ p, & \text{if } p \notin E \end{cases} = p \qquad (\text{since } p \notin E).$$

Comparing this with $\operatorname{cyc}_{i_1,i_2,\ldots,i_k}(p) = p$, we obtain $\operatorname{cyc}_{i_1,i_2,\ldots,i_k}(p) = c_E(p)$. Thus, (42) is proven in Case 2.

We have now proven (42) in each of the two Cases 1 and 2. This completes the proof of (42).]

The equality (42) shows that $cyc_{i_1,i_2,...,i_k} = c_E$ (since both $cyc_{i_1,i_2,...,i_k}$ and c_E are maps $X \to X$). Thus,

$$c_E = \operatorname{cyc}_{i_1, i_2, \dots, i_k} = \operatorname{cyc}_{\sigma^0(x), \sigma^1(x), \dots, \sigma^{k-1}(x)}$$

(by (37)). In other words, c_E can be written as $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\ldots,\sigma^{k-1}(x)}$. This concludes the solution to Exercise 7 (d).

(e) Recall that the \sim -equivalence classes form a set partition of the set *X* (in fact, this holds for the equivalence classes of any equivalence relation on *X*). Thus, each element of *X* belongs to exactly one \sim -equivalence class. Since E_1, E_2, \ldots, E_m are all the \sim -equivalence classes (listed without repetition), we can rewrite this fact as follows: Each element of *X* belongs to exactly one of the sets E_1, E_2, \ldots, E_m . Thus, the sets E_1, E_2, \ldots, E_m are disjoint. In other words, if *i* and *j* are two distinct elements of [m], then

$$E_i \cap E_j = \varnothing. \tag{44}$$

Now, fix $x \in X$. Define $y \in X$ by $y = \sigma(x)$. We are going to show that $(c_{E_1} \circ c_{E_2} \circ \cdots \circ c_{E_m})(x) = y$.

The element *x* of *X* belongs to exactly one of the sets $E_1, E_2, ..., E_m$ (since each element of *X* belongs to exactly one of the sets $E_1, E_2, ..., E_m$). In other words, there is exactly one $i \in [m]$ such that $x \in E_i$. Consider this *i*.

Hence, *i* is the **only** element $j \in [m]$ such that $x \in E_j$. Therefore, every $j \in [m]$ distinct from *i* must satisfy

$$x \notin E_j. \tag{45}$$

We have $x \sim y$ ²⁴. Thus, $y \in [x]_{\sim}$. But recall that E_i is a \sim -equivalence class (since E_1, E_2, \ldots, E_m are all the \sim -equivalence classes) and contains x (since $x \in E_i$). Hence, E_i is the \sim -equivalence class of x. In other words, $E_i = [x]_{\sim}$. Hence, $y \in [x]_{\sim} = E_i$. Hence, every $j \in [m]$ distinct from i must satisfy

$$y \notin E_j \tag{46}$$

25

We have $\sigma_{E_i}(x) = y$ ²⁶. Furthermore, $\sigma_{E_j}(x) = x$ for each $j \in [m]$ satisfying j > i ²⁷. Also, $\sigma_{E_j}(y) = y$ for each $j \in [m]$ satisfying j < i ²⁸. Therefore, Lemma 0.22 (applied to $g_j = \sigma_{E_j}$) shows that $(c_{E_1} \circ c_{E_2} \circ \cdots \circ c_{E_m})(x) = y = \sigma(x)$.

²⁴*Proof.* We have $y = \underbrace{\sigma}_{=\sigma^1} (x) = \sigma^1 (x)$. Thus, there exists some $k \in \mathbb{N}$ such that $y = \sigma^k (x)$ (namely,

k = 1). In other words, $x \sim y$ (since $x \sim y$ if and only if there exists some $k \in \mathbb{N}$ such that $y = \sigma^k(x)$).

²⁵*Proof of (46):* Fix $j \in [m]$ distinct from *i*. We must show that $y \notin E_j$.

Assume the contrary. Thus, $y \in E_j$. Combining this with $y \in E_i$, we find $y \in E_i \cap E_j$. Therefore, the set $E_i \cap E_j$ is nonempty (namely, it contains y). But j is distinct from i. Hence, (44) yields $E_i \cap E_j = \emptyset$. This contradicts the fact that the set $E_i \cap E_j$ is nonempty. This contradiction shows that our assumption was false, qed.

²⁶*Proof.* The definition of σ_{E_i} yields

$$\sigma_{E_i}(x) = \begin{cases} \sigma(x), & \text{if } x \in E_i; \\ x, & \text{if } x \notin E_i \end{cases} = \sigma(x) \qquad (\text{since } x \in E_i) \\ = y. \end{cases}$$

²⁷*Proof.* Let $j \in [m]$ be such that j > i. Thus, j is distinct from i (since j > i). Hence, (45) shows that $x \notin E_j$. Now, the definition of σ_{E_j} yields

$$\sigma_{E_j}(x) = \begin{cases} \sigma(x), & \text{if } x \in E_j; \\ x, & \text{if } x \notin E_j \end{cases} = x \qquad (\text{since } x \notin E_j).$$

Qed.

²⁸*Proof.* Let $j \in [m]$ be such that j < i. Thus, j is distinct from i (since j < i). Hence, (46) shows that $y \notin E_j$. Now, the definition of σ_{E_j} yields

$$\sigma_{E_j}(y) = \begin{cases} \sigma(y), & \text{if } y \in E_j; \\ y, & \text{if } y \notin E_j \end{cases} = y \qquad (\text{since } y \notin E_j).$$

Now, forget that we fixed x. We thus have shown that $(c_{E_1} \circ c_{E_2} \circ \cdots \circ c_{E_m})(x) = \sigma(x)$ for each $x \in X$. In other words, $c_{E_1} \circ c_{E_2} \circ \cdots \circ c_{E_m} = \sigma$. This solves Exercise 7 (e).

References

- [BleLau92] D. Blessenohl and H. Laue, Algebraic combinatorics related to the free Lie algebra, Séminaire Lotharingien de Combinatoire 29, page B29e (1992). https://eudml.org/doc/121542
- [Comtet74] Louis Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing Company, 1974.
- [DanRot78] Ottavio D'Antona, Gian-Carlo Rota, *Two Rings Connected with the Inclusion-Exclusion Principle*, Journal of Combinatorial Theory, Series A, Volume 24, Issue 3, May 1978, pp. 395–402.
- [Galvin17] David Galvin, Basic discrete mathematics, 13 December 2017. http://www.cip.ifi.lmu.de/~grinberg/t/17f/ 60610lectures2017-Galvin.pdf
- [Grinbe16] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019. http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https: //github.com/darijgr/detnotes/releases/tag/2019-01-10.
- [GriRei18] Darij Grinberg, Victor Reiner, Hopf algebras in Combinatorics, version of 11 May 2018, arXiv:1409.8356v5. See also http://www.cip.ifi.lmu.de/~grinberg/algebra/ HopfComb-sols.pdf for a version that gets updated.

Qed.