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0.1. A generalized principle of inclusion/exclusion

Exercise 1. Let n € IN. Let S be a finite set. Let Aj,Aj,..., A, be finite
subsets of S. Let k € IN. Let S; be the set of all elements of S that be-
long to exactly k of the subsets Aj, Ay, ..., A,. (In other words, let Sy =
{s € S | the number of i € [n] satisfying s € A; equals k}.) Prove that

Skl = Z]( Ol k(’”)

IC[n

Al

i€l

Here, the intersection [\ A; is understood to mean the whole set S.
i€Q
Note that the principle of inclusion and exclusion (see e.g., [Galvinl?7, §16]) is the

particular case of Exercise (1| for k = 0 (since Sp = S\ U Aj).

Exercise [I] is a result of Charles Jordan (see [Comtet74 §4.8, Theorem A] and
[DanRot78] for fairly complicated proofs). I further generalize it in [Grinbel6,
Theorem 3.44]. Let me here give a self-contained proof.

First, we recall two facts from the solutions to homework set #5:

(5)-s

for every m € IN and n € IN satisfying m < n.

Proposition 0.1. We have

Corollary 0.2. Let n € IN. Let i € IN. Then,

() -t



http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw5os.pdf
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Next, we recall the classical formula for the size of a subset using Iverson brack-
ets:

Lemma 0.3. Let S be a finite set. Let T be a subset of S. Then,

T =Y [eT].

seS

Lemma |0.3 allows us to reduce a formula for |Si| to a formula for [s € S| (for
any given s € S). Here is the latter formula:

Lemma 0.4. Let n € IN. Let S be a finite set. Let Ay, A,,..., A, be finite
subsets of S. Let k € IN. Let S; be the set of all elements of S that be-
long to exactly k of the subsets Aj, Ay, ..., A,. (In other words, let S, =
{s € S | the number of i € [n] satisfying s € A; equals k}.) Let s € S. Then,

[s € S = QZ i k(|l£|> lseﬂAi :

i€l

Here, the intersection [\ A; is understood to mean the whole set S.
icg

Proof of Lemma Define a subset C of [n] by
C={ie[n] | seA}.
Thus, for each i € [n], we have the following equivalence:
(ieC) < (se€A)). (1)

But recall the definition of Sy. From this definition, we obtain the following
equivalence:

(s € S¢) <= | the number of i € [n] satisfying s € A; equals k

=[{i€[n] | seA;}|

= (;{ie[n] | s €A}

<~ (|C| =k).

equals k) <= (|C| equals k)
—C

Hence, we find the following equality between truth values:

[s € Si] = [IC] =K. 2
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On the other hand, let I be any subset of [n]. Then, we have the following
equivalence:

(sEﬂAi> = sc€A; foreachiel| <= (ieCforeachiecl)
! N——r
el — (ieC)

(by (@)
— (I CC).

~[1cal. ©)

Feﬂ&

iel

Now, forget that we fixed I. We thus have proven (3) for each subset I of [n].
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Thus,
1j-k (]
ICZ (1)1 (k> lseﬂAi
_[Vl] el
=[1cC]
(by @)

1]

- L o ()uce
= (—D“"('i') Uea+ ¥« 1! "('i') 1cq

IC[n]; ~ IC[n); T
\IEEJ (since [CC) ~ notICC (since we don’t have ICC)
=¥

1cc

(since CC[n])

_ E& )l (‘i‘) + IC%]; (—1)!1I=k (|I£|)O -z (1)1 (\i\)

not ICC ~~
~~ - =) L
= JENICC;
1|=j
_ -k (1Y _ j—k (]
-y () - (]
JENICC; jEN ICC;
= 1= )
~(1y (] ~ -
(since | I‘:I;.) =(the number of all subsets I of C satisfying |I \:j)(—l)j -k <I]C)

= Z (the number of all subsets I of C satisfying |I| = ]) (— )] -k ({{)
AN -~
C]

=(the number of all j-element subsets of C)=

(by the combinatorial interpretation of the binomial coefficients)

() e ()= 2o () 6)

z

€

~.
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£ oo (DO Ee ()0

=(=1) T =(-1)/ (1)

(by Propogition
applied to |C| and j
instead of m and n (since |C|<j
(because j>|C|+1>|C|)))

(here, we have split the summation at j = |C|)

_ Ji(_l)j (—1)f (’f') @ +1_§+1 (_1)j_k0<ii)

J/

-

=0
C| , IC\ /j €| vale ;
_ AN i (1€ (7
Eever(@))-cr ()
]g) ] k =0 ] k
=(-D[|C|=k
(by Corollary
applied to |C| and k instead of n and i)
=D CVICI =k =[Cl=K=[es]  (by@).
:(71)2](:1
This proves Lemma O

Solution to Exercise[ll For every subset I of [n], the intersection (] A; is a subset of
i€l
S [l Thus, for every subset I of [n], we have

(4

i€l

:Z[SeﬂAi

SES i€l

!In fact, this is obvious when I is nonempty (because all the A; are subsets of S), but it also holds

when [ is empty (because in this case, the intersection (| A; = [\ A; is defined to be S).
iel i€o
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(by Lemma applied to T = N A;). Hence,

iel

iel
——
ZSES {SEIQI AZ}
A _
£ (N lena] - £ nen({) ena
I1C[n] ses | icl IC[n] s€S icl
——
=L X
s€S IC[n|
=) (—1)HI=k (’Ii’) se(Ai| =) [s €S-
s€S IC[n] L iel seS
:[;gsk}
(by Lemma 0.4)
Comparing this with |[Sx| = Y [s € Sk] (which follows from Lemma (0.3} applied to
seS
T = S;), we obtain
11—k (I
s = £ 0 () nay.
IC[n] i€l
This solves Exercise [l O

0.2. Summing fixed point numbers of permutations

Recall that for any n € IN, we let S,, denote the set of all permutations of [n].
If S is a finite set, and if f : S — S is a map, then we let Fix f denote the set of all
fixed points of f. (Thatis, Fixf ={se€ S | f(s) =s}.)

Exercise 2. Let n be a positive integer. Prove that ) |Fixw| = n!.
weSy,
[Hint: Rewrite |Fixw| as Y. [w (i) =i].]
ie[n]

(In other words, this exercise states that the average number of fixed points of a
permutation of [n] is 1.)

Exercise |2l was Problem 1 at the International Mathematical Olympiad (IMO)
1987.

Our solution to Exercise 2| relies on the following facts:

Lemma 0.5. Let m € IN. Let G be an m-element set. Then, the number of all
permutations of G is m!.



http://artofproblemsolving.com/wiki/index.php?title=1987_IMO_Problems/Problem_1
http://artofproblemsolving.com/wiki/index.php?title=1987_IMO_Problems/Problem_1
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Proof of Lemma [0.5] (sketched). There is a bijection « : G — [m] (since G is an m-
element set). Fix such an «. Then, the map

{permutations of G} — {permutations of [m]},

(Tl—>ocoaoofl

is also a bijectiorﬂ Hence,

|{permutations of G}| = |{permutations of [m]}|
= (the number of all permutations of [m]) = m!.

In other words, the number of all permutations of G is m!. This proves Lemma
0.5 O

Lemma 0.6. Let n be a positive integer. Let i € [n]. Then, the number of all
permutations w € S, satisfying w (i) =iis (n — 1)L

Proof of Lemma [0.6] (sketched). Roughly speaking, a permutation w € S, satisfying
w (i) = iis “nothing but” a permutation of the (n — 1)-element set [n] \ {i} (because
it has to map i to i, and therefore must map the remaining elements of [n] to
elements other than 7). This is not rigorous, because strictly speaking a permutation
of [n] cannot be a permutation of [n] \ {i} (after all, the former has domain [n]
while the latter only has domain [n] \ {i}). Here is a rigorous version of the above
statement:

To each permutation w € S, satisfying w (i) = i, we can assign a permutation w
of [n] \ {i} by letting

w(p) =w(p) for each p € [n] \ {i}.
This defines a map

A:{weS, | w(i) =i} — {permutations of [n]\ {i}},
w — . 4)
Conversely, to each permutation u of [n] \ {i}, we can assign a permutation i € S,

satisfying i (i) = i by setting

(p):{l.l(p)’ %fpfz.; for each p € [n].
i, ifp=i
This defines a map

B : {permutations of [n]\ {i}} = {w e S, | w(i) =i},
T T

2This is straightforward to verify.
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The maps A and B are well-defined and mutually inverseﬂ Thus, there is a bijection
from the set {w € S, | w (i) =i} to the set {permutations of [n]\ {i}} (namely,
A). Hence,

{w e S, | w(i) =i} = |{permutations of [n]\ {i}}|
= (the number of all permutations of [n]\ {i})
=(n—1)!

(by Lemma [0.5| (applied to G = [n]\ {i} and m = n — 1), because [n] \ {i} is
an (n — 1)-element set). In other words, the number of all permutations w € S,
satisfying w (i) = i is (n — 1)!. This proves Lemma O

Solution to Exercise 2] (sketched). If w € S, and i € [n], then
[i € Fixw] = [w (i) = i 5)

il

If w € Sy, then Fixw is a subset of [n], and therefore Lemma (applied to
S = [n] and T = Fixw) yields

Fixw| = Y_ [s € Fixw] = Y [i € Fixw] ( here, we have.feé‘amed the )
s€n] icn] W summation index s as 1
=|w(1)=1
by &)
=) [w(i) =1 ©

ie[n]

But if i € [n], then {w € S, | w (i) =i} is a subset of S, and therefore Lemma
0.3 (applied to S =S, and T = {w € S, | w (i) = i}) yields

{weS, | w(i)y=i}=Y [sc{weS, | w(i)=i}

= (s(i)=i)
ZZS;[S(i)Zi]Z ZS:[W(Z')ZZ'] )

(here, we have renamed the summation index s as w).

3This is straightforward to check (just remember that permutations are bijective).
“because of the equivalence (i € Fixw) <= (i is a fixed point of w) <= (w (i) = i)
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Now,
Z |Fixw| = Z Z [w (i) =1i] = Z Z [w (i) = 1]
weSy, " - weSyic[n] i€[n] weSy
== e ;\{wGSnTw(i):i;\
(by @) i) wedn by @)
=) {we S, | w(i)=i}|
i€fn] =(the number:)f all permutz;trions weSy, satjisfying w(i)=i)
(by Lommap8
=Y n-D'=|n)|-n-!'=n-(n—-1)! =n
ie[n] ~
This solves Exercise O

Remark 0.7. Exercise 2| can be generalized: If n € IN and k € IN satisfy n > k,

then |Fix w]| n n!
£ ()=o)

Do you see how the above solution can be extended to cover this generalization?

0.3. Transpositions t;; generate permutations

Recall a basic notation regarding permutations:

Definition 0.8. Let n € IN. Let i and j be two distinct elements of [n]. We let t;
be the permutation in S, which switches i with j while leaving all other elements
of [n] unchanged. Such a permutation is called a transposition.

Exercise 3. Let n € IN. Prove that each permutation in S, can be written as a
composition of some of the transpositions t15,t13,...,t1 5.

(Note that this composition can be empty — in which case it is understood to
be id —, and it can contain any given transposition multiple times.)

To solve this exercise, we recall another definition:

| Definition 0.9. Let n € IN. Let i € [n—1]. Then, s; denotes the permutation
tiit1 € Su.

We shall use the following well-known fact ([Grinbel6, Exercise 5.1 (b)]):

Lemma 0.10. Let n € IN. Each permutation in S, can be written as a composition
of some of the transpositions sq,sy,...,5,_1.

The following is easy to check:
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Lemma 0.11. Let n € IN. Let i € [n — 1] be such that i > 1. Then, s; = t;,41 ©
t1iotyivr

Lemma can be proven by straightforward verification (just check how s;
and f1 1 0t ; 0ty ;41 transform a given element of [1], depending on whether this
element is 1, i or i + 1 or something else). Let us give a slightly more skillful
argument. The following fact is simple and well-known ([Grinbel6, Exercise 5.17

@]):

Lemma 0.12. Let n € IN. Let k € [n]. For every ¢ € S, and every k distinct
elements iy, iy, ..., i of [n], we have

71 _
o Cycil,iz,...,ik or - CyC(T(il),O’(iz),...,O'(ik) .

Proof of Lemma [0.11| (sketched). From i € [n — 1], we obtain i < n —1. Buti > 1, so
thati > 2, and thus 2 <i < n — 1. Hence, n > 3. Thus, 2 € [n].
Clearly,
tuo = Cyc, , (8)

for any two distinct elements u and v of [n]. Applying this to u =1 and v = i, we
obtain t;; = cyc ;.

Now, let o =t ;+1. Thus, 0 (1) =i+ 1 and o (i) = i (since i equals neither 1 nor
i+ 1). But Lemma (applied to k = 2,7y = 1 and i = i) yields

0 oCycy ool = CYCo(1),0(i) = CYCit1,i 9)

(since o (1) =i+ 1and o (i) =1i).

The permutation ¢ is a transposition (since ¢ = t ;1 1), and hence an involution.
In other words, o1 = ¢.

But the definition of s; yields

Si = tiit1 = CYC;i1q (by @)
—1
A N i ¥ (by ©))
=t1,iv1 ; =0=t1,i1

=ty

=t 0tiotyip
This proves Lemma [0.11] O
Solution to Exercise 3| (sketched). We first show the following fact:

Observation 1: Let i € [n — 1]. Then, s; can be written as a composition
of some of the transpositions t15,t13,...,t1 4.




Math 4990 Fall 2017 (Darij Grinberg): homework set 7 page 11

[Proof of Observation 1: If i > 1, then this follows immediately from Lemma [0.11]
Thus, for the rest of this proof, we WLOG assume that we don’t have i > 1. Hence,
i = 1. Thus, s; = 51 = t1 (by the definition of s1). Thus, again it is clear that s;
can be written as a composition of some of the transpositions t1,,t13,...,t ,. This
proves Observation 1.]

Now, let o € S, be a permutation. We want to write ¢ as a composition of some
of the transpositions t12,t13,...,t1 5.

First write o as a composition of some of the transpositions sy, sy, ...,s,—1. (This
is possible according to Lemma [0.10])) Next, write each of these transpositions
S1,82,...,5,—1 as a composition of some of the transpositions t; 5,1 3,...,t1 . (This
is possible according to Observation 1.) The resulting expression is now a repre-
sentation of ¢ as a composition of some of the transpositions t12,t13,...,t1 5.

Now, forget that we fixed o. We thus have shown that each ¢ € S, has a rep-
resentation as a composition of some of the transpositions t5,t13,...,t1,. This
solves Exercise Bl O

0.4. V-permutations as products of cycles

Recall the following notation:

Definition 0.13. Let X be a set. Let k be a positive integer. Let iy,ip,...,i be
k distinct elements of X. We define cyc; ; ; to be the permutation of X that

Jdn,. i
sends iy,1y,...,1k to i2,13,...,1k, 11, respectively, while leaving all other elements

of X fixed. In other words, we define cyc; ; . to be the permutation of X given
by

g, ifp =1 f e {1,2,...,k};
ijy1, ifp 1]. or some j € { } for every p € X,
p, otherwise

CYCil g, it (p) = {

where i}, 1 means ij.

Exercise 4. Let n € IN. For each r € [n], let ¢, denote the permutation
ey, 1..21 € Sn. (Thus, ¢ = cye; =id and ¢z = cyc, | = 51.)

Let G = {g1<g <---<gp} be a subset of [n]. (The notation “G =
{g1 < g <--- < gp}” is simultaneously saying that G = {g1,8,...,8,} and
that g1 < g < -+- < gp.)

Let o € Sy, be the permutation ¢g, 0cg, 0 -+ 0Cg,.

Prove the following:

(@ Wehaveo (1) >0 (2) > --- >0 (p).

(b) We have o ([p]) = G.

(@Wehaveo (p+1)<o(p+2)<---<o(n).

(Note that a chain of inequalities that involves less than two numbers is con-
sidered to be vacuously true. For example, Exercise 4| (¢) is vacuously true when
p =n —1 and also when p = n.)
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Solution to Exercise ] (sketched). For each r € [n] and i € [n], we have

r, ifi=1;
(i)=<i—1, ifl<i<w (10)
i ifi>r

(by the definition of ¢,). Thus, each r € [n] satisfies

¢r(2) <cr(3) < <cr(n) (11)

(because the one-line notation of the permutation ¢, is (v,1,2,...,r —1,r+1,r+2,...

which shows immediately that ¢, is strictly increasing on the set {2,3,...,n}).
Moreover, each r € [n] and i € [n] satisfy

cr (i) >i—1. (12)

(This is easy to check using (10).)

We have g1 < ¢ < -+ < gp. Define a further integer ¢o by ¢o = 0. Then, the
chain of inequalities g1 < g2 < -+ < gp can be extended to gp < g1 < -+ < gp
(since each of g1,82,...,8p is > 0 = go).

For each q € {0,1,...,p}, we let 0; denote the permutation cg, 0 cg, 0+ 0cq, €
S,. Thus,

0p = Cq, ©Cq, O - -+ O Cqy = (empty composition of permutations) = id
and
(Tp :CglngZO”'ngp =J.

Notice that
0q = 04-10Cg, for each g € [p] (13)

Bl

Now, we claim the following;:

Observation 1: For each g € {0,1,...,p}, the following holds:
(a) We have oy (i) = g,11-; for each i € [g].

(b) We have o; (j) = j for each j € [n] satisfying j > g,.

() Wehave 0, (g +1) <0y (g+2) < -+ <0oy(n).

(d) We have g, > q.

>Proof of : Let g € [p]. Then, the definition of 051 yields 01 = cg, 0cg, 0+ 0cg, ;. But the
definition of ¢, yields

Uq == C81 Ong O--- chq == (Cgl Ong O - Ong_1> Ong = U‘q,l Ong.

=051

This proves (13).




Math 4990 Fall 2017 (Darij Grinberg): homework set 7 page 13

[Proof of Observation 1: We shall prove Observation 1 by inductionﬂ
Induction base: Let us prove Observation 1 for g = 0. To do so, we must prove the
following four statements:

(ag) We have oy (i) = go41-; for each i € [0].

(bg) We have oy (j) = j for each j € [n] satisfying j > go.
(co) Wehave 0p (0+1) <op(0+2) < --- < g (n).

(dp) We have go > 0.

But all of these four statements are obvious. Indeed, (ag) is vacuously true (since
there exist no i € [0]); furthermore, (bg) and (cp) are obvious (since oy = id); finally,
(dp) follows from ggp = 0. Thus, Observation 1 has been proven for g = 0. This
completes the induction base.

Induction step: Let h € [p]. Assume that Observation 1 holds for g = h — 1. We
must now prove that Observation 1 holds for g = h.

We have assumed that Observation 1 holds for 4 = h — 1. In other words, the
following four statements hold:

(a1) We have 03,_1 (i) = g(4-1)11-; for eachi € [h —1].

(b1) We have 0,1 (j) = j for each j € [n] satisfying j > g,_1.
(c1) Wehave 0y, 1 (h) <o, 1 (h+1) <--- <051 (n).

(d1) We have g, 1 > h—1.

We must prove that Observation 1 holds for 4 = h. In other words, we must
prove the following four statements:

(az) We have oy, (i) = gy.1_; for each i € [h].
(b2) We have 0y, (j) = j for each j € [n] satisfying j > gy,
(c2) Wehave oy, (h+1) <oy, (h+2) <--- <oy (n).

(d2) We have g, > h.

61t is rather important to prove the four parts of Observation 1 together, rather than trying to
prove them separately. This way, they can “lend each other a hand” in the induction step (as we
will see below).
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Recall that g9 < g1 < -+ < gp. Thus, g1 < gy, so that g, > ¢;_1. Thus,
gn > gn—1+ 1 (since g, and gj,_1 are integers). But (dy) yields g, _1 > h — 1, so that
gn—1+1 > h. Hence, g, > g,—1 +1 > h. This proves statement (dy).

Letr = g;,. Thus, r € [n] (since h € [p] and thus g;, € [n]). Applying tog =nh,
we obtain

O = Ojp—1 0 Cgy = 01 0 Cy (since g, =71).

Statement (cy) is easy to derive from statement (c;) with the help of (11)/]
Statement (by) easily follows from statement (by) with the help of (10}
Applying toi =1, we obtain ¢, (1) = r = g, > gj,_1. Hence, statement (b)

(applied to j = ¢, (1)) yields 03,1 (¢; (1)) = ¢r (1) = gp. But from 0y, = 03,1 o ¢;, we

obtain

0, (1) = (op—10¢r) (1) = 031 (cr (1)) = & = &nt1-1- (14)

Finally, statement (a;) can be derived from statement (a1) using |Dﬁ

"Proof. We want to prove statement (c;). In other words, we want to prove that oj, (h+1) <
o, (h+2) < --- < 0, (n). In other words, we want to prove that oy, (k) < 03, (k+1) for each
ke{h+1,h+2,...,n—1}. Soletus fixk € {h+1,h+2,...,n—1}. We must prove oy, (k) <
o, (k+1).

We have k € {h+1,h+2,...,n—1}. Thus, k > h+1 > 2 (since h > 1). But yields
cr(2) <¢r(3) <--- <cr(n). Thus, ¢r (k) < ¢ (k+ 1) (since k > 2).

Also, (12) yields ¢, (k) > k—1 > h (since k > h+1). Thus, ¢, (k) € {h,h+1,...,n}.

Also, yields cr(k+1)>(k+1)—1=k>k—1>h. Thus, ¢, (k+1) e {h,h+1,...,n}.

Statement (cq) says that the map 0}, is strictly increasing on the set {h,h+1,...,n}. In other
words, if # and v are two elements of {l,h +1,...,n} satisfying u < v, then 0,1 (1) < 03,1 (v).
Applying this to u = ¢, (k) and v = ¢, (k+ 1), we obtain 0,1 (¢, (k)) < 031 (¢r (k+ 1)) (since
cr (k) < ¢ (k+1), and since both ¢, (k) and ¢ (k + 1) are elements of {h,h+1,...,n}).

But 03, = 03,_1 o ¢4, and thus

oy, (k) = (op—10¢r) (k) = 031 (cr (k)) < op—1 (cr (k+1)) = (op_10¢r) (k+1) =03, (k+1).

=0p

This completes our proof of statement (cp).
8Proof. Let j € [n] be such that j > g;. We want to show that oy, (j) = .
We have j > g, = r. Thus, (applied to i = j) simplifies to ¢, (j) = j. Butj > g5 > gn—1;
therefore, statement (bq) yields oy, 1 (j) = j.
Now, recall that 03, = 03,_1 o ¢,. Hence,

o (j) = (on—10¢) (j) = o1 w =01 (j) = J.
e

This proves statement (by).
9Proof. Let us prove statement (az). In other words, let us prove that oy, (i) = gj,,.1_; for each i € [h].
Indeed, let i € [h]. We must prove that 0y, (i) = gp11_;-
If i = 1, then this follows from . Hence, for the rest of this proof, we WLOG assume that
i # 1. Thus, i > 1. Combined with i € [h], this yields i € {2,3,...,h}, so thati—1 € [h —1].
Therefore, statement (a;) (applied to i — 1 instead of i) yields 0, 1 (i —1) = h-1)+1-(i-1) =
Qni1_i (since (h—=1)+1—-(i—1)=h+1-1).
Butie {2,3,...,h},sothat 1 <i <h <r (because r = g, > h). The equality simplifies to
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We have now proven all four statements (ay), (bz), (c2) and (dp). Thus, Observa-
tion 1 holds for g = h. This completes the induction step; thus, Observation 1 is
proven.]

Now, we can apply Observation 1 to g = p. As a result, we obtain the following
four statements:

(a3) We have oy, (i) = gp41-; for each i € [p].

(b3) We have 0y, (j) = j for each j € [n] satisfying j > gp.
(c3) We have o, (p+1) <oy (p+2) <--- < 0p(n).

(d3) We have g, > p.

Statement (c3) says that o, (p+1) <0, (p+2) < --- < 0y (n). Inview of 0, = 0,
this rewrites as 0 (p+1) < o (p+2) < --- < o (n). This solves Exercise 4 (c).
Statement (a3) says that o, (i) = gp41-; for each i € [p]. In view of ¢, = 0, this
rewrites as
o (i) = gps1-i for each i € [p]. (15)

In other words,

(€(1),02),.00 (1)) = (8 8p-1,--- 1) . (16)

Hence,
{c(1),0(2),....0(p)} = {8p&p-1,---.81} = {81.82,---, 8} =G

(since G={g1 < <---<gp}=1{81,8,-..,8p}) Hence

ol o] |=cdL2..,p)={c),r2),...,c(p)} =G.
~

={12,...p}

This solves Exercise 4 (b).

Finally, recall that g1 < g2 < -+ < gp. In other words, g, > ¢, 1 > -+ > g1.
In view of (15), this rewrites as follows: ¢ (1) > ¢ (2) > --- > o (p). This solves
Exercise [ (a). O

¢ (i) =i—1 (since 1 < i <r). Now, recall that 0, = 03, _1 o ¢;. Thus,

0y, (1) = (Op-1 0 ¢r) (i) = Op1 (Cr (0) =0p-1(i—1) = gny1-i-

=i—1

Thus, 0y, (i) = gy+1- is proven, as we wanted. This completes the proof of statement (ap).
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Permutations o € S, satisfying the inequalities o (1) > ¢ (2) > --- > ¢ (p) and
c(p+1) <o(p+2) <--- <o(n)for some p € {0,1,...,n} are known as “V-
permutations” (as their plot looks somewhat like the letter “V”: first decreasing
for a while, then increasing). Can you guess how permutations ¢ € S, satisfying
c(l)<oc(2)<---<o(p)ando(p+1)>c(p+2)>--->0c(n)are called?”

Exercise [ is a lemma in the theory of free Lie algebras (see [BleLau92, (10)]).

TODO: Explain how Exercise 4 can also be obtained as a particular case of the
formula for a permutation in terms of its Rothe diagram. (See https://sumidiot.
blogspot.com/2008/05/rothe-diagram. html for now.)

0.5. Lexicographic comparison of permutations

Definition 0.14. Let n € IN. Let o € S, be a permutation. For any i € [n], we let
¢; (o) denote the number of j € {i+1,i+2,...,n} such that o (i) > o (j).

For example, if ¢ is the permutation of [5] written in one-line notation as [4, 1,5, 2, 3],
then (1 (o) =3, 4 (0) =0, 43 (0) =2,44(0) =0and ¢5(0) = 0.

Definition 0.15. Let n € IN. Let (ay,ay,...,a,) and (by,by,...,b,) be two n-
tuples of integers. We say that (a1,ay,...,an) <jex (b1,b2,...,by) if and only if
there exists some k € [n] such that a; # by, and the smallest such k satisfies
ay < bg.

For example, (4,1,2,5) <jex (4,1,3,0) and (1,1,0,1) <jex (2,0,0,0). The relation
<Jex is usually pronounced “is lexicographically smaller than”; the word “lexico-
graphic” comes from the idea that if numbers were letters, then a “word” aja; - - - a,
would appear earlier in a dictionary than b1b, - - - b, if and only if (a1,az, ..., a4,) <jex

(by, by, ..., by).

Exercise 5. Let n € IN. Let 0 € S;, and 7T € S,. Prove the following;:
(@) If

(c(1),0(2),...,0(n)) <eex (t(1),7(2),...,7(n)),
then
(1 (0),€2(0), - ln (0) <tex (£1(T), L2 (T) - lu (T))-
) If (01 (o), ba(0),.... 0y (0)) = (41 (7),l2(T),..., ¢, (T)), theno = T.

The solution to Exercise [5| given below is one of those cases where a simple
argument becomes insufferably long and dreary as I try to capture it in writing.
Apologies for what you are about to see. The proof relies on the following lemma:

10 Answer: They are called “A-permutations”. Both names “V-permutations” and “A-permutations”
are due to the shape of the plot when the permutation is plotted in 2D.



https://sumidiot.blogspot.com/2008/05/rothe-diagram.html
https://sumidiot.blogspot.com/2008/05/rothe-diagram.html
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Lemma 0.16. Let n € N. Let 0 € S, and i € [n]. Then:
(@) We have /; () = |[o (i) — 1] \ o ([]])]-
(b) We have /; (o) = |[o (i) — 1] \ o ([i — 1])|-

Proof of Lemma (a) We know that /; (0) is the numberofj € {i+1,i+2,...,n}
such that ¢ (i) > o (j) (by the definition of ¢; (¢)). Hence,

l;i (o) = (the number of j € {i+1,i+2,...,n} such that o (i) > 0 (j))

={je{i+1i+2,...,n} | (i) >0c(j)}. (17)
Define a set A by
A={je{i+1,i+2,...,n} | c(i)>0c(j)}. (18)
Thus,
Al={je{i+Li+2,...,n} | (i) >c(j)} =¥ (o) (19)

(by (A7)

Let B be the set [0 (i) — 1] \ o ([i]).

The map o is a permutation of [n] (since ¢ € S,), and thus is invertible, and
therefore is injective.

For each k € A, we have ¢ (k) € B E Hence, we can defineamapa: A — B
by

(a (k) = o (k) foreachk € A).

Consider this a.

On the other hand, for each k € B, we have ¢! (k) € A Hence, we can
define a map f: B — A by

<ﬁ (k) = ot (k) for each k € B) )

1Proof. Letk € A. Thus, k€ A= {je{i+1,i+2,...,n} | o(i) >0 (j)}. In other words, k is an
element of {i+1,i+2,...,n} and satisfies o (i) > o (k).

Fromk € {i+1,i+2,...,n} C [n], we conclude that ¢ (k) is well-defined. Also, ¢ (k) < o (i)
(since o (i) > o (k)), so that o (k) < o (i) — 1 (since o (k) and o (i) are integers). Thus, o (k) €
[o (i) —1].

Next, let us prove that o (k) ¢ o ([1]).

Indeed, assume the contrary (for the sake of contradiction). Hence, o (k) € o ([i]). In other
words, there exists some j € [i] such that o (k) = o (j). Consider this j. From ¢ (k) = o (j), we
obtain k = j (since the map o is injective). Hence, k = j € [i]. Butk € {i+1,i+2,...,n} =
[n] \ [i], so that k ¢ [i]. This contradicts k € [i]. This contradiction shows that our assumption
was false. Hence, o (k) ¢ o ([i]) is proven.

Combining o (k) € [0 (i) — 1] with ¢ (k) ¢ o ([i]), we obtain ¢ (k) € [0 (i) —1]\ ¢ ([i]) = B.
Qed.

12Proof. Let k € B. Thus, k € B = [0 (i) — 1] \ o ([i]). In other words, k € [0 (i) — 1] and k ¢ o ([i]).

From k € [0 (i) — 1], we obtain 1 < k < ¢ (i) — 1. Also, k € [o (i) — 1] C [n], so that o~ ! (k) is
a well-defined element of [n].

We have o (071 (k)) —k < U(l) —1 < 0 (i). In other words, ¢ (i) > o (¢~ (k)).

Next, we claim that o7 (k) € {l +1,i+2,...,n}. Indeed, assume the contrary (for the sake
of contradiction). Thus, o (k) {i+1,i+2,...,n}. Combining this with ¢~ (k) € [n], we
obtain

ol (k) em\{i+1,i+2,...,n}=][i.




Math 4990 Fall 2017 (Darij Grinberg): homework set 7 page 18

Consider this .

The maps « and B are mutually inverse (since « is a restriction of o, whereas p is
a restriction of ¢—1), and therefore are bijections. Hence, there is a bijection from A
to B (namely, «). Thus, |A| = |B].

But (I9) yields
li(0) = |A] = [B] = |[e (i) = 1] \ o ([i])]

(since B = [ (i) — 1]\ o ([i])). This proves Lemma (a).

(b) If we had o (i) € [0 (i) — 1], then we would have ¢ (i) < ¢ (i) —1 < o (i),
which would be absurd. Hence, we have o (i) ¢ [0 (i) — 1].

But [i] = {i} U [i —1]. Hence,

ol 11 |=cliuli-1)=c({i})uo(i—1) = {e@)}ua(i-1]).
N~~~ N——~
={i}ufi—1] ={o(i)}
Thus,

@ =1\ o)
—{U()}UU([Z 1)
=[le @) -1\ {e@}ve(li-1])
={e® -1\ e@P e (li=1) = [o () -\ ({i—1).

—lo(i)1]
(since o (i) &[0 (i) —1])

Now, Lemma (a) yields

4(0) = |l =1\ (1)) = le () =1\ (i =1)].
=[e(@)-1\e([i-1])

This proves Lemma (b). O

Solution to Exercise 5| (sketched). (a) Assume that

(c(1),0(2),...,0(n)) <ex (t(1),7(2),...,7(1)).

Hence, k = ¢ (01 (k)) € o ([i]), which contradicts k ¢ ¢ ([i]). This contradiction shows that
——
€[]
our assumption was false. Thus, ¢! (k) € {i+1,i +2,..., n} is proven.
Now, we know that o1 (k) € {i+1,i+2,...,n} and ¢ (i) > o (¢! (k)). In other words,
cl(k)isaje {i+1,i+2,...,n} satisfying ¢ (i) > ¢ (j). In other words,
ctk)e{jeli+1i+2,..., n} | o(i)>oc(j)}.

In view of (18), this rewrites as ¢! (k) € A. Qed.
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According to Definition this means the following: There exists some k € [#]

such that o (k) # 7 (k), and the smallest such k satisfies o (k) < T (k).
Let i be the smallest such k. Thus, ¢ (i) < 7 (i), but

each k € [i — 1] satisfies o (k) = 7 (k) (20)
(since 7 is the smallest k € [n] such that o (k) # T (k)).
Thus,
each k € [i] satisfies o ([k —1]) = 7 ([k —1]) (21)
H Hence,
each k € [i — 1] satisfies ¢, (0) = ¢, (T) (22)
M Furthermore,
ti (o) < £i(7) (23)

[l Thus, ¢; (0) # ¢; (7). In other words, i is a k € [n] such that £ (¢) # 4 (7).
Moreover, shows that i is the smallest such k. Thus, the smallest k € [n] such
that ¢ () # {x (7) satisfies ¢ (0) < ¢ (T) (because this k is 7, and i satisfies (23)).

13Proof of : Let k € [i]. Thus, k <.
Letje [k—1]. Thus, j < k —1<i—1,sothatj€ [i —1]. Hence, @ (applied to j instead

<i

of k) shows that o (j) = 7 (j).
Now, forget that we fixed j. We thus have shown that ¢ (j) = 7(j) for each j € [k—1]. In

other words,
(c(1),0(2),...,.0k=1))=(r(1),t(2),...,T(k—=1)).

Thus,
{c(1),0(2),...,.0(k=1)}={7(1),7(2),...,T(k—1)}.
Now,
o ( [k—1] ) =0c({1,2,....k=1})={c(1),0(2),..., ock—1)}
N
={12,...,k—1}
={t(1),7t(2),..., T(kl)}r({l,z ..... kl}) =1([k—1]).
— ———
~[k-1]
This proves .
14Proof of : Let k € [i—1]. Then, Lemma (b) (applied to k instead of i) yields
le(0) = |[o(k)—=1]\o([k—1])]. The same argument (applied to T instead of ¢) yields

(0 = [ (k) — 1] \ ¢ (K~ 1))
But k € [i — 1] C [i]. Hence, yields o ([k — 1]) = T ([k — 1]). Also, yields o (k) = T (k).

Hence,
b (0) = {U(k) 1] \o (k=1 = ([t (k) =\ T ([k=1])| = & (7).
—~ ———r
—1(k) (k1))
This proves (22).

15Proof of (23): We have i € [i]. Hence, (21) (applied to k = i) yields o ([i — 1]) = 7 ([i — 1]).
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Thus, we have shown that there exists some k € [n] such that ¢, (¢) # ¢, (7), and
the smallest such k satisfies ¢ (o) < ¢ (7). But this means precisely that

(b (0), 62 () .. ln (7)) <tex (01 (T), 2 (T) .., b (T))

(according to Definition 0.15). Hence, Exercise 5| (a) is solved.
(b) Assume that

(b (0), o (), L (7)) = (€1 (T), L2 (T) ... £u (T)). (25)

We must prove that o = 7.

Indeed, assume the contrary. Thus, ¢ # 7. Hence, there exists some k € [n]
satisfying o (k) # 7 (k). Therefore, there exists the smallest such k. This smallest k
must satisfy either o (k) < T (k) or o (k) > 7 (k) (because it satisfies o (k) # T (k)).
We can WLOG assume that it satisfies ¢ (k) < 7 (k) (because otherwise, we can
simply switch the roles of o and 7). Assume this. Thus, (¢ (1),0(2),...,0(n)) <jex
(t(1),7(2),...,7(n)) (because of Definition 0.15). Hence, Exercise [j| (a) shows
that (/1 (0),02(0),..., 00 (0)) <tex ({1 (T),42(T),..., ¥y (T)). In other words, there

Also, 0 (i) < 7 (i), so that 0 (i) —1 < 7 (i) — 1 and therefore [o (i) — 1] C [t (i) — 1].
From o (i) < 7 (i), we also obtaln o (i) < (i) — 1 (since o (i) and 7 (i) are integers), and thus
o (i) € [t (i) —1].

Also, o (i) ¢ o ([i — 1]). [Proof: Assume the contrary. Thus, ¢ (i) € o ([i — 1]). In other words,
o (i) = o (j) for some j € [i —1]. Consider this j. From o (i) = o (j), we obtain i = j (since o is
injective), so that i = j € [i — 1] and thus i < i—1 < i. But this is absurd. Hence, we found a
contradiction, so that o (i) ¢ o ([i — 1]) is proven.]

If we had o (i) € [0 (i) — 1], then we would have ¢ (i) < ¢ (i) —1 < o (i), which is absurd.
Hence, wehavetf( ) & [0 (i) — 1]. Thus, also o (i) ¢ [0 (i) —1] \o([i —1]).

Combining o (i) € [t (i) — 1] with o (i) ¢ o ([i — 1]), we obtain ¢ (i) € [T (i) — 1] \ o ([i — 1]).

Now,

(i) = \e ([ =1]) S [t (i) =Y\ o (i =1]). (24)
SEORS)

Moreover, the set [T (i) — 1] \ o ([i — 1]) contains o (i) (since o (i
the set [o (i) — 1] \ o ([i —1]) does not (since o (i) & [o (i) — 1] \
are distinct. In other words, [0 (i) — 1]\ o ([i — 1]) # [t (i) — 1] \
(24), we conclude that [o (i) — 1] \ o ([i — 1]) is a proper subset of

o () =1\ ([f =1 <[t (@) =\ (i =1])|

(since a proper subset of any finite set must always have smaller size than the latter).
But Lemma (b) yields ¢; (¢) = |[o (i) — 1] \ o ([i — 1])|. The same argument (applied to T
instead of ¢) yields ¢; (t) = |[t (i) — 1] \ T ([i — 1])|. Hence,

ti (o) = |le (i) =\ o ([i =1])|

€ [t (i) =1\ ([i—1])), but

i —1])). Thus, these two sets

[i —1]). Combining this with
(i) 1] \ e ([i - 1]). Thus,

g
g

)
(If
(
[t

<

[z (i) =1\ e (i —1])

This proves (23).
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exists some k € [n] such that ¢ (0) # /x(7), and the smallest such k satisfies
l (7) < 4k (7) (according to Definition [0.15).

In particular, there exists some k € [n] such that ¢ (0) # ¢ (7). In other words,
(b1(0), (), ..., n(0)) # (L1(T),€2(T),..., Ly (T)). But this contradicts [25).

This contradiction shows that our assumption was false. Hence, ¢ = 7 is proven.
This solves Exercise [5] (b). N

0.6. Comparing subsets of [n]

If I and | are two finite sets of integers, then we write I <y | if and only if the
following two properties hold:

e We have |I| > |]].

e For every r € {1,2,...,]]|}, the r-th smallest element of I is < to the r-th
smallest element of J.

For example, {2,4} <4 {2,5} and {1,3} <4 {2,4} and {1,3,5} <4 {2,4}. (But
not {1,3} <4 {2,4,5}.)
The relation <y is called the Gale order on the powerset of [n].

Exercise 6. Let n € IN. Let I and | be two subsets of [n].

(a) For every subset S of [n] and every ¢ € [n], let ag (¢) denote the number of
all elements of S that are < /. Prove that I <y | holds if and only if every ¢ € [n]
satisfies ay (¢) > aj (£).

(b) Prove that I <4 J if and only if [n] \ J <y [n] \ L.

The following solution is mostly copypasted from [GriReil8, Proof of Proposition
12.75.2], where the exercise serves as a lemma for a combinatorial proof of an
identity between Schur polynomials.

Solution to Exercisel6l (a) We must prove the equivalence
(I <4]) <= (every { € [n] satisfies ay (£) > aj ({)). (26)
=>: Assume that [ <4 . In other words, the following two properties hold:
Property a: We have |I| > |]|.

Property B: For every r € {1,2,...,|]|}, the r-th smallest element of I is
< to the r-th smallest element of J.

Now, let £ € [n]. Then, we need to show that a; (£) > aj (¢). Since this is obvious
if aj (¢) = 0 (because aj (£) > 0), we can WLOG assume that aj (£) # 0. Assume

this. Thus, aj (€) > 1. Also, aj () = |{s €] | s <L}| < |]J| < |I] (since |I| > |])).

cJ
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Hence, both the aj (£)-th smallest element of | and the aj (¢)-th smallest element
of I are well-defined.

Since aj (¢) = |[{s € ] | s < {£}|, we know that the elements of | which are < /¢
are precisely the aj (¢) smallest elements of J. Thus,

(the aj (£) -th smallest element of |) = (the largest element of | whichis < /).

)
But by Property B (applied to r = a;j (¢)), we have

(the aj (£) -th smallest element of I) < (the a; (£) -th smallest element of |)
= (the largest element of | whichis < /) < /.

Hence, there are at least aj (¢) elements of I which are < /¢ (namely, the a; (£)
smallest ones). In other words, [{s €I | s </}| > aj(¢). Now, the definition
of ay (¢) yields a; (¢) = [{s€ I | s <{}| > aj(¢). We thus have proven the —
direction of (26).

<=: Assume that every ¢ € [n] satisfies a; (£) > aj (£). We need to prove that
I <4 J. In other words, we need to prove that the following two properties hold:

Property a: We have |I| > |]|.

Property B: For every r € {1,2,...,|]|}, the r-th smallest element of I is
< to the r-th smallest element of J.

First of all, {s€ I | s <n} = I (since every s € I satisfies s < n), and the

definition of a; (n) yields a; (n) = [{se€ I | s <n}

=1
Applying «; (¢) > «aj (£) to £ = n, we obtain ay (n) > aj(n), so that [I| = ay(n) >
ay (n) = |J|, and thus Property « is proven.

Now, let r € {1,2,...,|]J|}. The r-th smallest element of I and the r-th smallest
element of | are then well-defined (because of ¥ < |J| < |I|). Let £ be the r-th
smallest element of J. Then, {s € ] | s < ¢} is the set consisting of the r smallest
elements of |, so that [{s €] | s </}| = r. Now, the definition of a; (¢) yields
w0 =|{se] | s< e =r.

But the definition of a; (¢) yields a; (¢) = |[{s € I | s < ¢}|, so that

= |I|. Similarly, aj (n) = |]|.

{sel | s<t}=ar(l)>a;(l)=r.

In other words, there exist at least r elements of I which are < /. Hence, the r-th
smallest element of I must be < /. Since / is the r-th smallest element of ], this
rewrites as follows: The r-th smallest element of [ is < to the r-th smallest element
of J. Thus, Property B holds. Now we know that both Properties a« and § hold.
Hence, I <y | holds (which, as we know, is equivalent to the conjunction of said
properties). This proves the <= direction of (26). Thus, is proven. In other
words, Exercise [f] (a) is solved.
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(b) For every ¢ € [n] and S C [n], let ag (¢) denote the number |[{s € S | s < (}].
Thus, every ¢ € [n] satisfies

ap (O) Fapp () =[{sel | s<l+[{se]\I]|s<l}

=|¢selu([n\I) | s</t (since I and [n] \ I are disjoint)
=[]
={sen] | s<l}=|{1,2,...,0}] =¢,

so that ap,\; (£) = £ — ay (£). Similarly, every ¢ € [n] satisfies ap,\j (£) = £ — a; (£).
Applying to [n] \ J and [n] \ I in lieu of I and ], we obtain the equivalence

(M\ ] <# ]\ I) <> (every ¢ € [n] satisfies ap\ | (£) > &gy (e)) .
Hence, we have the following chain of equivalences:

(MI\T < [n]\ 1)

< | every ( € [n] satisfies aj,)\;(€) > ap,\ g (£)
N e’ N s’
:E—rx](ﬂ) :E—ﬂ[(ﬂ)

<= (every { € [n] satisfies £ —aj (£) > £ —aj ({))
<= (every { € [n] satisfies aj (¢) > aj (¢))
— (I<4])) (by (6)) -
This solves Exercise [6] (b). O

Remark 0.17. Recall that we have defined a Dyck word as a list w of 2n numbers,
exactly n of which are 0’s while the other n are 1’s, and having the property that
for each k € [2n], the number of 0’s among the first k entries of w is < to the
number of 1’s among the first k entries of w.

It is not hard to see the connection between the relation <4 and Dyck words:
Let w = (wq,wy, ..., wy,) € {0, 1}2" be a list of 2n numbers, exactly n of which
are 0’s while the other n are 1’s. Then, w is a Dyck word if and only if

{fie2n] | wy=1} <y {i € 2n] | w; =0}

(in other words, for every r € [n], the r-th appearance of 1 in w precedes the r-th
appearance of 0 in w).

0.7. A rigorous approach to the existence of a cycle
decomposition

The purpose of the following exercise is to give a rigorous proof of the fact that
any permutation can be decomposed into disjoint cycles.
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Exercise 7. Let X be a finite set. Let o be a permutation of X.

Define a binary relation ~ on the set X as follows: For two elements x € X and
y € X, we set x ~ y if and only if there exists some k € IN such that y = ¢ (x).

(a) Prove that ~ is an equivalence relation.

For any x € X, we let [x]_, denote the ~-equivalence class of x.

(b) For any x € X, prove that [x], = {¢%(x),0t (x),...,0" 1 (x)}, where
k=],

(c) For any ~-equivalence class E, let us define cg to be the map

X X s o(x), ifxekE;
’ X, ifx¢ E
Prove that cg is a permutation of X.
(d) Prove that if E = [x]_ for some x € X, then cp can be writ-
ten as Cyc,o(y) o1(y),. ok 1(x)r Where k = |[x]_|. (Don’t forget to show that

o (x),ol(x),...,05 1 (x) are distinct, so that CYCH0(x), 01 (x),.... k1 (x) 1S well-
defined.)

(e) Let Eq,Ey, ..., Ey be all ~-equivalence classes (listed without repetitions —
that is, E; # E; whenever i # j). Prove that

0 =CE ©CE, 0 OCE,.-

Exercise [7]is mostly an exercise in understanding the definitions and writing up
proofs. The first two parts of it are similar to Exercise 6 on homework set #3; thus,
our solution below is partly copypasted from the latter (with the necessary changes
made).

Our solution relies on a few lemmas:

Lemma 0.18. Let X be a set. Let f : X — X be any map. Let x € X. Leti and j
be two nonnegative integers satisfying i < j and f* (x) = f/ (x). Then,

@ heNp={ @&, " @}

Proof of Lemma We have

P 0 =710 | e o, j-1)

CIN

g{fh(x) | heN}. 7 (27)

On the other hand, we have i € {0,1,...,j — 1} (since i is a nonnegative integer
satisfying i < j), and thus f' (x) € {f%(x), f! (x),..., f/71 (x)}. Hence, {f' (x)} C
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{fo ), fH(x),.. -,fj_1 (X)} Therefore,

(P @ @) = {0 @) @ UL ()

e
= {0 T U {f 0]
:{fo(x),fl(x),...,ff(x)}. (28)

Now,

fh (x) € {fo (x), fH(x),..., fi7} (x)} for each h € IN. (29)

[Proof of (29): We shall prove @I) by induction over h:

Induction base: We have i < j, hence j > i > 0and thus j > 1 (since j is an integer). Hence,
0€{01,...,j—1}, so that f0(x) € {fo f1 (x),..., fI71( } Inotherwords,holdsfor
h = 0. This completes the induction base.

Induction step: Let g € IN. Assume that (29) holds for & = g. We must now show that holds
for h = ¢ +1 as well.

We have assumed that (29) holds for = g. In other words, f$ (x) € {f° (x), f1 (x),..., /71 (x)}.
In other words, there exists some k € {0,1,...,j — 1} such that 8 (x) = f* (x ) Consider this k.

We have k € {0,1,...,j—1},sothatk+1€ {1,2,...,j} €{0,1,...,j} and therefore

A {00, )= {0 ), )
(by (28)). But

S =f| £ =f(F@) =@ e {0 @0 @)
—
=f*(x)
(as we have just proven) In other words, holds for i = g+ 1 as well. This completes the

induction step. Thus, (29) is proven.]
From (29), we 1mmed1ately obtain

{Fr@ T heNp {12, 7 (0}
Combining this with (27), we obtain

@ 1 heNp={@.FE,.. 7w}
This proves Lemma [0.18] O

Lemma 0.19. Let X be a finite set. Let ¢ be a permutation of X. Let x € X.
(a) There exists a j € N such that o7 (x) € {0 (x), 0! (x),..., 0/  (x) }.
Let p be the smallest such j.

(b) The integer p is positive and satisfies o (x) = x.
(c) The elements ¢ (x) ol (x),...,0P71 (x) are pairwise distinct.

(d) We have {o" (x) | he]N}—{(r Jol(x), ..., 0P (x)].
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Proof of Lemma The map ¢ is a permutation of X. In other words, ¢ is a bijec-
tion X — X. Hence, 0 is injective.

(@) Define an n € IN by n = | X|. (This is well-defined, since X is a finite set.)

The n + 1 elements ¢ (x),c? (x),...,0" (x) cannot all be distinct, because they
all belong to the n-element set X. Hence, at least two of these n 4 1 elements are
equal. In other words, there exist two elements © and v of {0,1,...,n} such that
u <vando*(x) = 0" (x). Consider these u and v.

We have u € {0,1,...,n} C N. Thus, u € {0,1,...,v—1} (since u < v). Hence,
o (x) € {0%(x), 0t (x),...,0"7 1 (x)}. In view of 0¥ (x) = o7 (x), this rewrites
as 0° (x) € {0%(x),0! (x),...,0"" 1 (x)}. Thus, there exists a j € N such that
ol (x) € {0 (x),0" (x),...,0/7 (x)} (namely, j = v). This proves Lemma 0.19] ().

Now, let us study the p in Lemma We have defined p as the small-
est j € N such that o/ (x) € {¢%(x),0 (x),...,0/71(x)}. Thus, p is an ele-
ment of N and satisfies o7 (x) € {0°(x),o! (x),...,0P71 (x)}. Hence, the set
{9 (x),0! (x),...,0P71 (x)} is nonempty (since it contains the element o7 (x)).
Thus, p # 0 (because if we had p = 0, then the set {00 (x),0! (x),..., 0771 (x)}
would be empty). Hence, p is a positive integer (since p € IN).

(b) We already know that p is positive. It thus remains to show that o7 (x) = x.

Indeed, we have o7 (x) € {0 (x),0o! (x),..., 0771 (x)}. In other words, there
exists some i € {0,1,...,p — 1} such that o7 (x) = ¢/ (x). Consider this i.

Next, we claim that i = 0. We shall prove this by contradiction. Indeed, assume
the contrary. Thus, i # 0, so that i > 0 (since i € N). Hence, ¢’ (x) = o (¢ "1 (x)).
But the integer p is also positive; hence, p —1 € N and 0% (x) = o (0P~ (x)).
Hence, 0 (077! (x)) = o (x) = o (¢! (x)). Since ¢ is injective, we thus conclude
that P~ (x) = ¢! (x). Buti—1 € N (since i > 0). From i € {0,1,...,p—1},
we obtain i —1 € {-1,0,...,(p—1) —1}. Combined with i —1 € N, this yields
i—-1¢€{-10,...,(p—1) -1} NN = {0,1,...,(p—1) —1}. Hence, ¢’ ! (x) €
{0’0 (x),0' (x),...,cP~D-1 (x)} Hence,

oL (x) =01 (x) € {(70 (x), 0! (x),...,0P~ D1 (x)} .

Thus, p—1is a j € N such that o/ (x) € {¢°(x),0t (x),...,07 71 (x)} (because
p —1 € IN). But we defined p to be the smallest such j. Hence, p < p — 1. This
contradicts p > p — 1. This contradiction shows that our assumption was false;
hence, we have shown that i = 0. Therefore, o (x) = \02/ (x) =id (x) = x.

=id

Now, ¢¥ (x) = ¢! (x) = x. This completes the proof of Lemma (b).

(c) Assume the contrary. Thus, two of the elements ¢° (x),c' (x),..., 0771 (x)
are equal. In other words, there exist two elements © and v of {0,1,...,p — 1} such
that © < v and ¢* (x) = ¢” (x). Consider these # and v. Notice thatv < p —1
(sincev € {0,1,...,p—1}).

From u € {0,1,...,p — 1}, we obtain u > 0. From u < v, we obtain u <
v —1 (since u and v are integers), so that u € {0,1,...,v—1} (since u > 0).
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Hence, 0" (x) € {0%(x),o! (x),...,0° 1 (x)}. From ¢"(x) = ¢ (x), we obtain
o ( ) = o (x) € {o%(x), ot (x),...,0°7 1 (x)}. Thus, vis aj € N such that

) € {co%(x),0t (x),...,0/7 1 (x)} (because v € N). But we defined p to be the
smallest such j. Hence, p < v. This contradicts v < p —1 < p. This contradiction
shows that our assumption was false. Thus, Lemma [0.19] (c) is proven.

(d) We have o7 (x) € {¢°(x),0! (x),..., 077! (x)}. In other words, there exists
somei € {0,1,...,p—1} such that o7 (x ) o' (x). Consider this i. Hence, i < p
(since i € {0,1,...,p—1}) and ¢’ (x) = o? (x). Thus, Lemma [0.1§ “ (applied to
f =cand j = p) yields

{ah (x) | he ]N} = {00 (x),0 (x),...,07! (x)}.
This proves Lemma (d). O

Lemma 0.20. Let X be a set. Let f : X — X be any map. Let x € X. Let p € N
be such that f? (x) = x. Then, f* (x) = x for each k € N.

Proof of Lemma Lemma is intuitively obvious: Allit says is that if applying
the map f to x a total of p times brings you back to x, then applying the map f
to x a total of kp times brings you back to x as well. This intuition can easily be

translated into a rigorous argument:

We shall prove Lemma by induction over k:

Induction base: We have fO7 = fO = idy, so that f' (x) = idx (x) = x. Thus, Lemma holds
for k = 0. This completes the induction base.

Induction step: Let m € IN. Assume that Lemma [0.20|holds for k = m. We must prove that Lemma
[0:20| holds for k = m + 1.

Let x € X. Let p € N be such that f? (x) = x. Then, f™? (x) = x (since Lemma [0.20 holds for
k =m). But f"P o fP = frrtp = fm+)p Hence, (f"F o fP) (x) = f("*+DP (x), and therefore

FOEIP (x) = (77 0 f7) (x) = F (f’” <x>) = (x) = .
——

=X

In other words, Lemma holds for k = m + 1. This completes the induction step. Thus, Lemma
is proven. O]

Lemma 0.21. Let X be a set. Let m € IN. Let fy, f»,..., fu be m maps from X to
X. Let x and y be two elements of X.
Let i € [m]. Assume that f; (x) = y. Assume further that

fi(x)=x for each j € [m] satisfying j < i. (30)
Assume also that

fily) =y for each j € [m] satisfying j > i. (31)
Then, (fiwo fu_10-+-0f1) (x) =
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Proof of Lemma The idea behind this proof is very simple (if we don’t insist on
being rigorous): Imagine the element x undergoing the maps fi, f2,..., fu in this
order; the result is, of course, (fi; © f;u_10--- 0 f1) (x). But let us look closer at the
step-by-step procedure. The element is initially x. Then, the maps fi, f2,..., fu
are being applied to it in this order. Up until the map f; is applied, the element
does not change (because of (30)). Then, the map f; is applied, and the element
becomes y (since f; (x) = y). From then on, the maps fi1, fi12, ..., fm again leave
the element unchanged (due to (31)). Thus, the final result is y. This shows that
(fmo fma0---0f1)(x) =y.

Let us now rewrite the above argument in rigorous terms.

We have i € [m], so that 1 < i < m. Now, we claim the following:

x, iftg<i;

Observation 1: We have (fy o fe_10---0 f1) (x) = { "foreachg € {0,1,...,m}.

y, ifg>i
[Proof of Observation 1: We shall prove Observation 1 by induction on g:
x, if0<i;

0> x. Comparing this with
y, if0>i

Induction base: We have 0 < i (since i € [m]). Thus, {

(foo fo—10--0f1) (x) =id (x) = x,

=(empty composition of maps X—X)
=id

we obtain (foo fo-10---0f1) (x) = {x, lig i l' In other words, Observation 1 holds for ¢ = 0.
y, if0>1

This completes the induction base.
Induction step: Let h € {0,1,...,m} be positive. Assume that Observation 1 holds for g = h — 1.

We must then prove that Observation 1 holds for g = h.
We have
x, ifh—1<i x, ifh<i
fn . J )= . : (32)
y, ifh—1>i y, ifh>i

16proof of : We are in one of the following three cases:
Case 1: We have h < i.
Case 2: We have h = i.
Case 3: We have h > i.

£ < i
Let us first consider Case 1. In this case, we have h < i. Thus, {x, ?f | i l_’ = x
y, ifh>i
Applying to j = h, we find f}, (x) = x (since h < i).
x, ifh—1<i
y, ifh—1>i

x, ifth—1<i; x, ifh<i
y, ifh—1>i y, ifth>i

Hence, is proven in Case 1.

Also, h —1 < h < i. Hence, = x. Applying the map f}, to this equality, we

obtain

x, ifh<i;

Let us now consider case 2. In this case, we have h = i. Thus, & > i. Hence, { n>i
y, ifh>i
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But we assumed that Observation 1 holds for g = h — 1. In other words, we have

x, ifh—1<1i;

(fh_lof(h,l)qo---Ofl) (X) - {]/, ifh—1>i ’

Now,

(fiofiro--0f) ()= (fuo (firofun1o--0fi)) ()

:fho(fh—lofhfZO'“ofl)
=fuo(fu-10f(h-1)-19"0f1)

= fn (fhfl o fth-1)-1°""" Ofl) (x)

Jx, ifR-1<;
Ny, ifh—1>i
x, ith—1<i; x, ith <i
= ' =1 / by (2)).
fh({y, ifh—1>z‘> {y, ifh>i (by (32))

In other words, Observation 1 holds for g = k. This completes the induction step. Thus, Observation
1 is proven.]
We can now apply Observation 1 to g = m. We thus obtain

x, ifm<i
<Mom4o~wﬁww—{% NS
(since m > i (since i < m)). This proves Lemma ]

From h = i, we obtain fj, (x) = fi (x) =y
x, ifh—1<i
y, ifh—1>i

x, ifh—1<i) ) x, ifh <
h(LhiM—12i>_ﬁd@_y_{% ifh>i’

Hence, is proven in Case 2.

Also, h —1 < h = i. Hence, = x. Applying the map f} to this equality, we

obtain

Let us first consider Case 3. In this case, we have h > i. Thus, h > i, so that {x, 1; Z i Z.; =
y, ifh>i
Applying to j = h, we find f}, (y) = y (since h > i).
Also, h > i, so that h > i+ 1 (since h and i are integers). Thus, h —1 > i. Hence,
{L ifh—1<i;

gh_1>i =Y Applying the map f;, to this equality, we obtain
y, ifh—1>i

x, ifh—1<i\ o x ifh <
h(ibiw—1>i>_hﬁn_y_{% ifh>i

Hence, is proven in Case 3.
We have now proven (32) in each of the three Cases 1, 2 and 3 (which are the only cases that
can occur). Thus, always holds.
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Lemma 0.22. Let X be a set. Let m € IN. Let g1, $2,...,9m be m maps from X to
X. Let x and y be two elements of X.
Let i € [m]. Assume that g; (x) = y. Assume further that

gi(x)=x for each j € [m] satisfying j > i. (33)
Assume also that

gi(y) =y for each j € [m] satisfying j < i. (34)

Then, (10820 0gm) (x) =y

Proof of Lemma Lemma follows by applying Lemma to Sm, m—1,---,§1
instead of f1, fo,..., fu.

Here is the argument in more detail:

For each j € [m], we define a map f; from X to X by f; = g1 ;.

From i € [m], we obtain m +1—1i € [m]. Thus, we can define i’ € [m] by i’ = m+1—i.
Consider this i’. From i’ = m + 1 — i, we obtain m + 1 — i = i. Now, the definition of f; yields
fir = §me1_in = gi (since m+1—i" =i). Thus, fy (x) = g (x) =y.

Furthermore, f; (x) = x for each j € [m] satisfying j < i’ Also, f;(y) = y for each j € [m]
satisfying j > i’ Hence, Lemma|[0.21] (applied to i’ instead of i) yields (fu © fu—10---0 f1) (x) =
y

But each j € [m] satisfies

fmt1-j = Sma1—(m+1-j) (by the definition of f,,41_)
=gj (sincem+1—(m+1—j)=j).

In other words, we have (fu, fm—1,.--,f1) = (£1,82,--.,8m). Hence, fyy 0 fry_10---0fy =g1ogo0
---ogp. Hence, (fio fru—10---0f1)(x) =(g10820---0gm) (x). Therefore,

(10820 08m) (¥) = (fmo fu-10---0fi) (x) =y.
This proves Lemma [l

Solution to Exercise[7] (sketched). The map ¢ is a permutation of X, thus a bijection
X — X. Hence, in particular, ¢ is injective.

Before we properly start solving the exercise, let us make some basic observa-
tions:

Observation 1. For every x € X, there exists some positive integer p such
that 0% (x) = x.

7Proof. Let j € [m] be such that j < i’. Then, m+1—j € [m] (sincej € [m)) and m+1— j >
~~
<
m+1—1 = i. Hence, (applied to m + 1 — j instead of j) yields g, +1-j(x) = x. But the
definition of f; yields f; = gy41-j- Thus, f; (x) = gui1-j (x) = x. Qed.
18Proof. Let j € [m] be such that j > . Then, m+1—j € [m] (sincej € m))and m+1— | <
~~
>i!
m+1—1i = i. Hence, (applied to m + 1 — j instead of j) yields g, 1-j(y) = y. But the
definition of f; yields f; = gy 11-j. Thus, f; (y) = gm1-j (v) = y- Qed.
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[Proof of Observation 1: Let x € X. Let n = |X|. The n+1 elements ¢° (x),c' (x),...,0" (x)
cannot all be distinct, because they belong to the n-element set X. Hence, at least two of these n + 1
elements are equal. In other words, there exist two elements i and j of {0,1,...,n} such thati < j
and ¢’ (x) = ¢/ (x). Consider these i and j. From i < j, we conclude that j — i is a positive integer.
Thus, ¢/ = ¢l o g/,

Also, the map ¢’ is injective (since the map ¢ is injective, but any composition of injective maps
is injective). Hence, from

dW= g W= (e ) =c (I ),

=ciogi—i

we obtain x = ¢/~ (x). In other words, 0/~ (x) = x. Hence, there exists some positive integer p
such that o7 (x) = x (namely, p = j — i). This proves Observation 1.]

Now, we must show that ~ is an equivalence relation. Indeed, the relation ~
is reﬂexivelﬂ symmetriﬂ and transitivﬂ In other words, the relation ~ is an
equivalence relation. This solves Exercise [/| (a).

9Proof. Let x € X. We shall show that x ~ x.

Indeed, ¢® = idy, so that ¢ (x) = idx (x) = x. Hence, there exists some k € IN such that
x =k (x) (namely, k = 0). In other words, x ~ x (by the definition of the relation ~).

Now, forget that we fixed x. We thus have shown that every x € X satisfies x ~ x. In other
words, the relation ~ is reflexive.

20Proof. Let x € X and y € X be such that x ~ y. We shall show that y ~ x.

Indeed, we have x ~ y. In other words, there exists some k € N such that y = ¢* (x) (by
the definition of the relation ~). Consider such a k, and denote it by u. Thus, u € IN satisfies
y=0c"(x).

Observation 1 yields that there exists some positive integer p such that o7 (x) = x. Consider
this p. Hence, Lemma (applied to f = o and k = u) yields ¢*? (x) = x. But p is positive;
hence, p > 1 and thus up > ul = u. Hence, up —u € IN. Hence, ¢"?P" " oco" = glup—u)tu —

o"P. Thus, (¢"P~"oo") (x) = c"F (x) = x. Hence, x = (¢"P " oo") (x) ="’ " | o" (x) | =
N——"

=y
c“P~" (y). Thus, there exists some k € IN such that x = ¢* (y) (namely, k = up — u). In other
words, y ~ x (by the definition of the relation ~).
Now, forget that we fixed x and y. We thus have shown that if x € X and y € X satisfy x ~ y,
then y ~ x. In other words, the relation ~ is symmetric.
2 Proof. Let x € X, y € X and z € X be such that x ~ y and y ~ z. We shall show that x ~ z.
Indeed, we have x ~ y. In other words, there exists some k € N such that y = ¢* (x) (by
the definition of the relation ~). Consider such a k, and denote it by u. Thus, u € IN satisfies
y=0c"(x).
Also, we have y ~ z. In other words, there exists some k € IN such that z = ¢* (y) (by the
definition of the relation ~). Consider such a k, and denote it by v. Thus, v € IN satisfies

z=0"(y).

But 0? o ¢ = ¢¥**. Thus, (0% o) (x) = "™ (x). In view of (¢ oc") (x) =0° | 0" (x) | =
———"
=Yy
0¥ (y) = z, this rewrites as z = ¢°* (x). Thus, there exists some k € N such that z = ¢* (x)
(namely, k = v 4 u). In other words, x ~ z (by the definition of the relation ~).
Now, forget that we fixed x, y and z. We thus have shown thatif x € X, y € X and z € X
satisfy x ~ y and y ~ z, then x ~ z. In other words, the relation ~ is transitive.
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(b) Let x € X. Lemma (a) shows that there exists a j € IN such that ¢/ (x) €
{0%(x),0t (x),...,0771 (x)}. Let p be the smallest such j.

Lemma (b) shows that the integer p is positive and satisfies o” (x) = x.
Lemma (c) shows that the elements ¢° (x),co! (x),...,0P~! (x) are pairwise
distinct. Lemma [0.19|(d) shows that {¢" (x) | h € N} = {0 (x),0? (x),..., 0771 (x)}.

Define a set Sby S = {¢" (x) | h € N}. Thus,

S = {ah (x) | he N} = {00 (x),0 (x),...,0P! (x)}.
The definition of the equivalence class [x]_ of x shows that

(x].={yeX | y~x}.

Now, [x] _ C S @and S C [x]. @ Combining these two relations, we obtain
(x].=S={c"(x), 0! (x),...,07 1 (x)}.

The p elements ¢ (x), 0! (x),...,0P~1 (x) are pairwise distinct (as we have seen
above). Thus, [{¢° (x),0! (x),...,07 71 (x)}| = p.

Let k = |[x]_|. Then,

Now,

x]. = {UO (x),0' (x),..., 07 (x)} = {00 (x),0 (x),..., 051 (x)}

(since p = k). This solves Exercise [7] (b).
(c) Let E be a ~-equivalence class. We must prove that cg is a permutation of X.
It is clear that ¢ is well-defined. Next, we claim that

t € cp(X) for each t € X. (35)

22Proof. Let w € [x]._. Thus, w € [x]_ = {y € X | y ~ x}. In other words, w is an element of X
and satisfies w ~ x.

We have w ~ x. Hence, x ~ w (since the relation ~ is symmetric). In other words, there exists

some k € IN such that w = ¢ (x) (by the definition of the relation ~). Consider this k. We have

w=c"(x) € {Uh(x) | hE]N} =S.
Now, forget that we fixed w. We thus have shown that w € S for each w € [x]|_. In other
words, [x] , C S.
BProof. Letw € S. Thus, w € S = {O'h (x) | he ]N}. In other words, w = ¢ (x) for some 1 € N.

Consider this h.

There exists some k € N such that w = ¢ (x) (namely, k = h). In other words, x ~ w (by the
definition of the relation ~). Thus, w ~ x (since the relation ~ is symmetric).

Hence, w is an element of X and satisfies w ~ x. In other words, w € {y € X | y ~x}. In
view of [x] , = {y € X | y ~ x}, this rewrites as w € [x] _.

Now, forget that we fixed w. We thus have shown that w € [x]|_ for each w € S. In other
words, S C [x] _.
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[Proof of (35): Let t € X. We must prove that t € cg (X).

We are in one of the following two cases:

Case 1: We have t € E.

Case 2: We have t ¢ E.

Let us first consider Case 1. In this case, we have t € E. But E is an ~-equivalence class. Hence,
E is an ~-equivalence class containing ¢ (since t € E). In other words, E = [t]_ (since the only
~-equivalence class containing t is [t] ).

Recall that ¢ is a permutation of X. Hence, an element ¢! (t) of X is well-defined. Denote this
element by z. Thus, z = ¢! (t). Hence, o (z) = t.

We have \(7’1_/ (z) = o(z) = t, so that t = ¢! (z). Hence, there exists some k € IN such that

=0

t = ok (z) (namely, k = 1). In other words, z ~ t (by the definition of the relation ~). Hence,
z is an element of X and satisfies z ~ t. In other words, z € {y € X | y~t}. ButE = [t| =
{y € X | y ~ t} (by the definition of the equivalence class [t]_ ). Hence,z € {y € X | y ~t} =E.
The definition of cg yields

_Jo(z), ifz€E ,
CE (Z)_{z, if2¢E =0(z) (since z € E)

=t

Hence, t = cg ( z ) € cg (X). Thus, we have proven t € cg (X) in Case 1.

ex
Let us now consider Case 2. In this case, we have t ¢ E. The definition of cf yields

_Jo(t), ifteE; .
CE(t)_{t, ¢ E =t (since t ¢ E).

Hence, t = cg ( t ) € cg (X). Thus, we have proven t € cg (X) in Case 2.

ex
We have now proven t € cg (X) in each of the two Cases 1 and 2. Hence, t € cg (X) is proven.

This proves (35).]

Now, shows that X C cg (X). In other words, the map cg is surjective. Thus,
cg is a surjective map between two finite sets of the same size (namely, X and X),
and therefore must be bijective (since any surjective map between two finite sets
of the same size is bijective). In other words, cg is a bijection X — X, therefore a
permutation of X. This solves Exercise 7] (c).

(d) Let x € X be such that E = [x]_. Let k = |[x]_|. We must prove that

cg can be written as cyCyoy) o1(y),... ok-1(x) (@nd in particular, we must prove that

0% (x),0t (x),...,0"1 (x) are distinct, so that CYCH0(x) 01 (x),....ok 1 (x) 15 Well-defined).
Lemma O__(1)2| (a) shows that there exists a j € IN such that
ol (x) € {0%(x),0" (x),...,0/7 1 (x)}. Let p be the smallest such j. As in the
solution to Exercise [7] (b) (which we have given above), we can see that k = p.
Lemma (b) shows that the integer p is positive and satisfies o (x) = «x.
In view of k = p, this rewrites as follows: The integer k is positive and satisfies
o* (x) = x. Since the integer k is positive, we have 1 € [k].
Lemma (c) shows that the elements ¢ (x), 0! (x),...,0P~! (x) are pairwise
distinct. In view of k = p, this rewrites as follows: The elements 0¥ (x), ¢! (x),..., 0% 1 (x)
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are pairwise distinct. Hence, the permutation cyc,o(y) o1(y), . o+1(x) is Well-defined
(since k is a positive integer).
Exercise |Z]p(b) shows that [x] , = {¢% (x),0t (x),...,0*"1 (x)}. Hence,

{(70 (x),0! (x),..., 0k (x)} =[x, =E (36)

(since E = [x]_).
It remains to prove that cg can be written as CYCo0 ()0 (x), 0.k 1 (x)
We define a k-tuple (i1, 1, ..., i) of elements of X by

(in, i, ..., if) = (UO (x),0t (x),..., 051 (x)) . (37)

Thus,
iy = 0" (x) for each u € [k]. (38)
Applying this to u = 1, we obtain i; = ¢! (x) (since 1 € [k]).
Also, from (37), we obtain
{in,in, ..., ik} = {aﬂ (x),0' (x),..., 051 (x)} —E (39)

(by (36)).-

We also let iy 1 stand for iy. Thus, ix.q = i1 = ¢ L (x) =id (x) = x = ¢ (x)

0
=0V=id
(since 0¥ (x) = x). Therefore, we see that
iy = o1 (x) for each u € [k +1]. (40)

[Proof of @): Let u € [k + 1]. We must prove that i, = c*~! (x). If u € [k], then this follows from
(38). Hence, for the rest of this proof, we WLOG assume that u ¢ [k]. Combining u € [k + 1] with
u ¢ [k], we obtain u € [k+1]\ [k] = {k+1}, so that u = k + 1. Thus, i, = i1 = 0% (x) = "1 (x)
(since k = u — 1 (since u = k + 1)). This proves (40).]

We have eyC,o(y) 41(x), ..ot 1(x) = VG ..., (8inCe (00 (2), 0 (x),...,0% 1 (x)) =
(11,12, ..., ix))- But the definition of cyc; , , yields

_ )ijy1, if p=ijforsomej € {1,2,...,k};
YCi, iy, i (P) = {p, otherwise (41)
for every p € X.
Now, we claim that
CYCiy iy (p) =ce(p) for each p € X. 42)

[Proof of (@2): Let p € X. We must prove the equality (42).
We are in one of the following two cases:
Case 1: We have p = i; for some j € {1,2,...,k}.
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Case 2: We don’t have (p = i; for some j € {1,2,...,k}).

Let us first consider Case 1. In this case, we have p = i; for some j € {1,2,...,k}. Consider this
j. Thus, simplifies to cyc; ;, ;. (p) = ijs1-

We have j € {1,2,...,k} = [k]. Hence, (applied to u = j) yields i; = ¢/~! (x). Hence,
o (x) =i =p.

Butje {1,2,...,k},sothatj+1 € {2,3,...,k+1} C [k+1]. Hence, (applied to u = j+ 1)
yields

i = gt -1 ) — j—1 —

i =0 =0 =0 |0 =0 . 43
=g (@) =0l () () | =) 3)

=0/ =p
However,
p:ijE{il,iz,...,ik} (sincej€{1,2,...,k})
=E (by @9)) -
The definition of cg now shows that
ce (p) = {‘;’(P)f gg Z i; = o (p) (since p € E)

=41 (by ) :

Comparing this with cyc; ; (p) = ij+1, we obtain CYCi, in i (p) = ce (p). Thus, is proven
in Case 1.

Let us now consider Case 2. In this case, we don’t have (p =1ij for some j € {1,2,... ,k}). Thus,
simplifies to cyc; ;) ;. (p) = p.

But we don’t have (p = i; for some j € {1,2,...,k}). In other words, p ¢ {i, iz,...,i}. In view
of (39), this rewrites as p ¢ E. The definition of cg now shows that

_Jo(p), ifpeE _ .
CE(p)_{P, itpgE =p (sincep ¢ E).

Comparing this with cyc; ; . (p) = p, we obtain cyc; ;. . (p) = ce (p). Thus, is proven in

Case 2.
We have now proven (#2) in each of the two Cases 1 and 2. This completes the proof of [#2).]
The equality l) shows that cyc; ; . = cg (since both cyc; ; . and cg are

maps X — X). Thus,

CE = CyCil,iz,...,ik = Cycao(x),crl(x),...,kal(x)

(by ). In other words, cg can be written as cyc,o )
the solution to Exercise [7] (d).

(e) Recall that the ~-equivalence classes form a set partition of the set X (in fact,
this holds for the equivalence classes of any equivalence relation on X). Thus, each
element of X belongs to exactly one ~-equivalence class. Since Ej, Ey, ..., E; are
all the ~-equivalence classes (listed without repetition), we can rewrite this fact
as follows: Each element of X belongs to exactly one of the sets Eq, Ey, ..., Ey.
Thus, the sets Ej, Ey, ..., E; are disjoint. In other words, if i and j are two distinct
elements of [m], then

0L (2), k1 () This concludes

EiN E] = @. (44)
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Now, fix x € X. Define y € X by y = o(x). We are going to show that
(cg,0cp, 0+ -ocg,) (x) =y.

The element x of X belongs to exactly one of the sets Ej, E, ..., E; (since each
element of X belongs to exactly one of the sets Ej, E, ..., Ej;). In other words, there
is exactly one i € [m] such that x € E;. Consider this i.

Hence, i is the only element j € [m] such that x € E;. Therefore, every j € [m]
distinct from i must satisfy

x & Ej. 45)

We have x ~ vy @ Thus, y € [x]_. But recall that E; is a ~-equivalence
class (since Ej, E, ..., E; are all the ~-equivalence classes) and contains x (since
x € E;). Hence, E; is the ~-equivalence class of x. In other words, E; = [x] _. Hence,
y € [x] , = E;. Hence, every j € [m] distinct from 7 must satisfy

yé& E; (46)
Pl

We have og, (x) =y E} Furthermore, 0, (x) = x for each j € [m] satisfying
j>i m Also, 0, (y) =y for each j € [m] satisfying j < i m Therefore, Lemma
(applied to g; = oF;) shows that (cg, ocp, 0+ -ocg,) (x) =y =0 (x).

24Proof. Wehavey = ¢ (x) = 0! (x). Thus, there exists some k € IN such that y = ¢* (x) (namely,

=ol
k = 1) In other words, x ~ y (since x ~ y if and only if there exists some k € IN such that

)-
25P1’00f of (46} H Fix j € [m] distinct from i. We must show thaty ¢ E;.

Assume the contrary. Thus, y € E;. Combining this with y € El, we findy € E;NE;. Therefore,
the set E; N E; is nonempty (namely, it contains y). But j is distinct from i. Hence, yields
EiNE;=o. This contradicts the fact that the set E; N E; is nonempty. This contradiction shows
that our assumption was false, qed.

26Proof. The definition of o, yields

X, if x ¢ E;
:y'

o, (x) = {a(x) o dfxe by o (x) (since x € E;)

2’Proof. Let j € [m] be such that j > i. Thus, j is distinct from i (since j > i). Hence, shows that
x ¢ Ej. Now, the definition of ¢, yields

c(x), ifxekE;
o, (x):{x,() ifxééE; =x (since x ¢ Ej) .

Qed.
2Proof. Let j € [m] be such that j < i. Thus, j is distinct from i (since j < i). Hence, shows that
y ¢ Ej. Now, the definition of 0%, yields

o(y), ifyeE; .
og; (y) = {y, ify ¢ E =y (since y & E;) .
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Now, forget that we fixed x. We thus have shown that (cg, ocg,0---ocg,) (x) =
o (x) for each x € X. In other words, cg, ocg, o---ocg, = 0. This solves Exercise

(e).

References

[BleLau92] D. Blessenohl and H. Laue, Algebraic combinatorics related to the free Lie
algebra, Séminaire Lotharingien de Combinatoire 29, page B29e (1992).
https://eudml.org/doc/121542

[Comtet74] Louis Comtet, Advanced Combinatorics: The Art of Finite and Infinite Ex-
pansions, D. Reidel Publishing Company, 1974.

[DanRot78] Ottavio D’Antona, Gian-Carlo Rota, Two Rings Connected with the
Inclusion-Exclusion Principle, Journal of Combinatorial Theory, Series A,
Volume 24, Issue 3, May 1978, pp. 395—402.

[Galvin17] David Galvin, Basic discrete mathematics, 13 December 2017.
http://www.cip.ifi.lmu.de/ grinberg/t/17f/
60610lectures2017-Galvin.pdf

[Grinbel6] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 Jan-
uary 2019.
http://www.cip.ifi.lmu.de/ grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift
when the project gets updated; for a “frozen” version whose num-
bering is guaranteed to match that in the citations above, see https:
//github.com/darijgr/detnotes/releases/tag/2019-01-10 .

[GriReil8] Darij Grinberg, Victor Reiner, Hopf algebras in Combinatorics, version of
11 May 2018, arXiv:1409.8356vb5.
See also http://www.cip.ifi.lmu.de/ grinberg/algebra/
HopfComb-sols.pdf| for a version that gets updated.

]

Qed.



https://eudml.org/doc/121542
https://doi.org/10.1016/0097-3165(78)90069-9
https://doi.org/10.1016/0097-3165(78)90069-9
https://doi.org/10.1016/0097-3165(78)90069-9
http://www.cip.ifi.lmu.de/~grinberg/t/17f/60610lectures2017-Galvin.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/60610lectures2017-Galvin.pdf
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
https://github.com/darijgr/detnotes/releases/tag/2019-01-10
https://github.com/darijgr/detnotes/releases/tag/2019-01-10
http://www.arxiv.org/abs/1409.8356v5
http://www.cip.ifi.lmu.de/~grinberg/algebra/HopfComb-sols.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/HopfComb-sols.pdf

	A generalized principle of inclusion/exclusion
	Summing fixed point numbers of permutations
	Transpositions t1,i generate permutations
	V-permutations as products of cycles
	Lexicographic comparison of permutations
	Comparing subsets of [ n] 
	A rigorous approach to the existence of a cycle decomposition

