Proof of a CWMO problem generalized

Darij Grinberg

version 7 September 2009
The following result is due to Dan Schwarz. It was proposed as problem 4 (c) for the 9th grade of the Romanian Mathematical Olympiad 2004. It was discussed in [1] (where it was posted by tanlsth), in [2] and in [3].

Theorem 1. Let X be a set. Let n and $m \geq 1$ be two nonnegative integers such that $|X| \geq m(n-1)+1$. Let $B_{1}, B_{2}, \ldots, B_{n}$ be n subsets of X such that $\left|B_{i}\right| \leq m$ for every $i \in\{1,2, \ldots, n\}$. Then, there exists a subset Y of X such that $|Y|=n$ and $\left|Y \cap B_{i}\right| \leq 1$ for every $i \in\{1,2, \ldots, n\}$.

Proof of Theorem 1. We will prove Theorem 1 by induction over n.
Induction base: If $n=0$, then Theorem 1 is trivially true (just set $Y=\varnothing$; then, $|Y|=0=n$ and $\left|Y \cap B_{i}\right|=\left|\varnothing \cap B_{i}\right|=|\varnothing|=0 \leq 1$ for every $\left.i \in\{1,2, \ldots, n\}\right)$. This completes the induction base.

Induction step: Let N be a nonnegative integer. Assume that Theorem 1 holds for $n=N$. We have to show that Theorem 1 also holds for $n=N+1$.

We assumed that Theorem 1 holds for $n=N$. In other words, we assumed the following assertion:

Assertion \mathcal{A} : Let X be a set. Let $m \geq 1$ be a nonnegative integer such that $|X| \geq m(N-1)+1$. Let $B_{1}, B_{2}, \ldots, B_{N}$ be N subsets of X such that $\left|B_{i}\right| \leq m$ for every $i \in\{1,2, \ldots, N\}$. Then, there exists a subset Y of X such that $|Y|=N$ and $\left|Y \cap B_{i}\right| \leq 1$ for every $i \in\{1,2, \ldots, N\}$.

Upon renaming X, Y and B_{i} into X^{\prime}, Y^{\prime} and B_{i}^{\prime}, respectively, this assertion rewrites as:

Assertion \mathcal{A}^{\prime} : Let X^{\prime} be a set. Let $m \geq 1$ be a nonnegative integer such that $\left|X^{\prime}\right| \geq m(N-1)+1$. Let $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{N}^{\prime}$ be N subsets of X^{\prime} such that $\left|B_{i}^{\prime}\right| \leq m$ for every $i \in\{1,2, \ldots, N\}$. Then, there exists a subset Y^{\prime} of X^{\prime} such that $\left|Y^{\prime}\right|=N$ and $\left|Y^{\prime} \cap B_{i}^{\prime}\right| \leq 1$ for every $i \in\{1,2, \ldots, N\}$.

Now, we have to show that Theorem 1 also holds for $n=N+1$. In other words, we have to prove the following assertion:

Assertion \mathcal{B} : Let X be a set. Let $m \geq 1$ be a nonnegative integer such that $|X| \geq m((N+1)-1)+1$. Let $B_{1}, B_{2}, \ldots, B_{N+1}$ be $N+1$ subsets of X such that $\left|B_{i}\right| \leq m$ for every $i \in\{1,2, \ldots, N+1\}$. Then, there exists a subset Y of X such that $|Y|=N+1$ and $\left|Y \cap B_{i}\right| \leq 1$ for every $i \in\{1,2, \ldots, N+1\}$.

Proof of Assertion \mathcal{B}. For every choice of X, m and $B_{1}, B_{2}, \ldots, B_{N+1}$, one of the following two cases must hold:

Case 1: We have $X=\underset{j \in\{1,2, \ldots, N+1\}}{\bigcup} B_{j}$.
Case 2: We have $X \neq \underset{j \in\{1,2, \ldots, N+1\}}{ } B_{j}$.

Let us consider Case 1. In this case, let $k \in\{1,2, \ldots, N+1\}$. Then,

$$
\begin{aligned}
\left|\bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}\right| & \leq \sum_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} \underbrace{\left|B_{j}\right|}_{\leq m} \leq \sum_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} m=N m \\
& =m N<m N+1=m((N+1)-1)+1 \leq|X|=\left|\bigcup_{j \in\{1,2, \ldots, N+1\}} B_{j}\right|
\end{aligned}
$$

so that $\bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j} \neq \bigcup_{j \in\{1,2, \ldots, N+1\}} B_{j}$. Since $\bigcup_{j \in\{1,2, \ldots, N+1\}} B_{j}=B_{k} \cup\left(\bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}\right)$,
this becomes $\bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j} \neq B_{k} \cup\left(\bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}\right)$. Thus, $B_{k} \nsubseteq \bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}$
(since $B_{k} \subseteq \bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}$ would yield $\bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}=B_{k} \cup\left(\bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}\right)$).
Hence, we have shown that

$$
B_{k} \nsubseteq \bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j} \quad \text { for every } k \in\{1,2, \ldots, N+1\}
$$

For every $k \in\{1,2, \ldots, N+1\}$, let x_{k} be an element of B_{k} satisfying $x_{k} \notin \underset{j \in\{1,2, \ldots, N+1\} \backslash\{k\}}{\bigcup} B_{j}$ (such an x_{k} exists, since $B_{k} \nsubseteq \bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}$). Then, for every $k \in\{1,2, \ldots, N+1\}$ and for every $i \in\{1,2, \ldots, N+1\}$ satisfying $i \neq k$, we have $x_{k} \notin B_{i}$ (since $x_{k} \notin$ $\bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}$ and $\left.B_{i} \subseteq \bigcup_{j \in\{1,2, \ldots, N+1\} \backslash\{k\}} B_{j}\right)$. Hence, for every $k \in\{1,2, \ldots, N+1\}$ and for every $i \in\{1,2, \ldots, N+1\}$ satisfying $i \neq k$, we have $x_{k} \neq x_{i}$ (since $x_{k} \notin B_{i}$ while $x_{i} \in B_{i}$). Thus, the $N+1$ elements $x_{1}, x_{2}, \ldots, x_{N+1}$ are pairwise distinct. Set $Y=\left\{x_{1}, x_{2}, \ldots, x_{N+1}\right\}$. Then, $|Y|=N+1$ (since the $N+1$ elements x_{1}, x_{2}, \ldots, x_{N+1} are pairwise distinct). Besides, for every $i \in\{1,2, \ldots, N+1\}$, we have $\left\{x_{1}, x_{2}, \ldots, x_{N+1}\right\} \cap B_{i}=\left\{x_{i}\right\}$ (since $x_{i} \in B_{i}$, but $x_{k} \notin B_{i}$ for every $k \in\{1,2, \ldots, N+1\}$ satisfying $i \neq k$), and thus

$$
\left|Y \cap B_{i}\right|=\left|\left\{x_{1}, x_{2}, \ldots, x_{N+1}\right\} \cap B_{i}\right|=\left|\left\{x_{i}\right\}\right|=1 \leq 1 .
$$

Thus, Assertion \mathcal{B} is proven in Case 1.
Now, let us consider Case 2. In this case, $X \supseteq \underset{j \in\{1,2, \ldots, N+1\}}{\bigcup} B_{j}$, but $X \neq \underset{j \in\{1,2, \ldots, N+1\}}{\bigcup} B_{j}$. Hence, $X \nsubseteq \underset{j \in\{1,2, \ldots, N+1\}}{\bigcup} B_{j}$, so that there exists some $x \in X$ such that $x \notin \underset{j \in\{1,2, \ldots, N+1\}}{\bigcup} B_{j}$. Thus, $x \notin B_{i}$ for every $i \in\{1,2, \ldots, N+1\}$.

We want to prove Assertion \mathcal{B}. If every $i \in\{1,2, \ldots, N+1\}$ satisfies $B_{i}=\varnothing$, then Assertion \mathcal{B} is trivial (just let Y be any subset of X satisfying $|Y|=N+1{ }^{1}$; then, for every $i \in\{1,2, \ldots, N+1\}$, we have $\left|Y \cap B_{i}\right|=|Y \cap \varnothing|=|\varnothing|=0 \leq 1$, so that Assertion \mathcal{B} is fulfilled). Hence, for the rest of the proof of Assertion \mathcal{B}, we

[^0]may assume that not every $i \in\{1,2, \ldots, N+1\}$ satisfies $B_{i}=\varnothing$. So assume that not every $i \in\{1,2, \ldots, N+1\}$ satisfies $B_{i}=\varnothing$. In other words, there exists some $k \in\{1,2, \ldots, N+1\}$ such that $B_{k} \neq \varnothing$. WLOG assume that $B_{N+1} \neq \varnothing$. Let u be an element of B_{N+1}.

Set $X^{\prime}=X \backslash\left(\left(B_{N+1} \backslash\{u\}\right) \cup\{x\}\right)$ and $B_{i}^{\prime}=B_{i} \cap X^{\prime}$ for every $i \in\{1,2, \ldots, N+1\}$. Then, $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{N}^{\prime}$ are N subsets of X^{\prime}, and we have

$$
\begin{array}{rlr}
\left|B_{N+1} \backslash\{u\}\right| & =\left|B_{N+1}\right|-1 & \left(\text { since } u \in B_{N+1}\right) \\
& \leq m-1 & \left(\text { since }\left|B_{N+1}\right| \leq m\right)
\end{array}
$$

thus

$$
\begin{aligned}
\left|\left(B_{N+1} \backslash\{u\}\right) \cup\{x\}\right| & =\left|B_{N+1} \backslash\{u\}\right|+1 \quad\left(\text { since } x \notin B_{N+1} \text { yields } x \notin B_{N+1} \backslash\{u\}\right) \\
& \leq(m-1)+1=m
\end{aligned}
$$

hence

$$
\begin{aligned}
&\left|X^{\prime}\right|= \mid X \backslash \\
& \quad\left(\left(B_{N+1} \backslash\{u\}\right) \cup\{x\}\right)\left|=|X|-\left|\left(B_{N+1} \backslash\{u\}\right) \cup\{x\}\right| \geq m((N+1)-1)+1-m\right. \\
&\left.\quad \text { since }|X| \geq m((N+1)-1)+1 \text { and }\left|\left(B_{N+1} \backslash\{u\}\right) \cup\{x\}\right| \leq m\right) \\
&= m N+1-m=m(N-1)+1
\end{aligned}
$$

and $\left|B_{i}^{\prime}\right|=\left|B_{i} \cap X^{\prime}\right| \leq\left|B_{i}\right| \leq m$ for every $i \in\{1,2, \ldots, N\}$. Hence, by Assertion \mathcal{A}^{\prime}, there exists a subset Y^{\prime} of X^{\prime} such that $\left|Y^{\prime}\right|=N$ and $\left|Y^{\prime} \cap B_{i}^{\prime}\right| \leq 1$ for every $i \in\{1,2, \ldots, N\}$. Note that $x \notin Y^{\prime}$, since $Y^{\prime} \subseteq X^{\prime}=X \backslash\left(\left(B_{N+1} \backslash\{u\}\right) \cup\{x\}\right)$ and $x \notin X \backslash\left(\left(B_{N+1} \backslash\{u\}\right) \cup\{x\}\right)$.

Notice that

$$
\begin{aligned}
B_{N+1}^{\prime} & =B_{N+1} \cap X^{\prime}=B_{N+1} \cap \underbrace{\subseteq X \backslash\left(B_{N+1} \backslash\{u\}\right)}_{=\left(X \backslash\left(B_{N+1} \backslash\{u\}\right)\right) \backslash\{x\}} \\
& \subseteq B_{N+1} \cap\left(X \backslash\left(B_{N+1} \backslash\{u\}\right)\right)=\left(B_{N+1} \cap X\right) \backslash\left(B_{N+1} \backslash\{u\}\right) \\
& \left.=B_{N+1} \backslash\left(B_{N+1} \backslash\{u\}\right) \quad \quad \text { since } B_{N+1} \subseteq X \text { yields } B_{N+1} \cap X=B_{N+1}\right) \\
& \left.=\{u\} \quad \quad \text { since } u \in B_{N+1}\right),
\end{aligned}
$$

so that $Y^{\prime} \cap B_{N+1}^{\prime} \subseteq B_{N+1}^{\prime} \subseteq\{u\}$ and thus $\left|Y^{\prime} \cap B_{N+1}^{\prime}\right| \leq|\{u\}|=1$.
Altogether, we have seen that $\left|Y^{\prime} \cap B_{i}^{\prime}\right| \leq 1$ for every $i \in\{1,2, \ldots, N\}$ and that $\left|Y^{\prime} \cap B_{N+1}^{\prime}\right| \leq 1$. Combining these two facts, we conclude that $\left|Y^{\prime} \cap B_{i}^{\prime}\right| \leq 1$ for every $i \in\{1,2, \ldots, N+1\}$.

Now, let $Y=Y^{\prime} \cup\{x\}$. Then,

$$
\begin{aligned}
|Y| & =\left|Y^{\prime} \cup\{x\}\right|=\left|Y^{\prime}\right|+1 \quad\left(\text { since } x \notin Y^{\prime}\right) \\
& =N+1
\end{aligned}
$$

Besides, for every $i \in\{1,2, \ldots, N+1\}$, we have
$\left|Y \cap B_{i}\right|=\left|\left(Y^{\prime} \cup\{x\}\right) \cap B_{i}\right|=|\left(Y^{\prime} \cap B_{i}\right) \cup \underbrace{\left(\{x\} \cap B_{i}\right)}_{\substack{=\varnothing, \text { since } \\ x \notin B_{i}}}|=\left|\left(Y^{\prime} \cap B_{i}\right) \cup \varnothing\right|=\left|Y^{\prime} \cap B_{i}\right|=\left|\left(Y^{\prime} \cap X^{\prime}\right) \cap B_{i}\right|$
(since $Y^{\prime} \subseteq X^{\prime}$ yields $Y^{\prime}=Y^{\prime} \cap X^{\prime}$)
$=|Y^{\prime} \cap \underbrace{\left(B_{i} \cap X^{\prime}\right)}_{=B_{i}^{\prime}}|=\left|Y^{\prime} \cap B_{i}^{\prime}\right| \leq 1$.
Thus, Assertion \mathcal{B} is proven in Case 2.
Altogether, we have now verified Assertion \mathcal{B} in both Cases 1 and 2. But we know that for every choice of X, m and $B_{1}, B_{2}, \ldots, B_{N+1}$, either Case 1 or Case 2 is satisfied. Thus, Assertion \mathcal{B} is proven in every possible case. In other words, Theorem 1 holds for $n=N+1$. This completes the induction step.

Therefore, the induction proof of Theorem 1 is complete.

References

[1] tanlsth et al., MathLinks topic \#118091 ("subset conditions"), posts \#3-\#5. http://www.mathlinks.ro/viewtopic.php?t=118091
[2] Dan Schwarz (alias mavropnevma), MathLinks topic \#299325 ("Renewal of an old problem").
http://www.mathlinks.ro/viewtopic.php?t=299325
[3] perfect_radio, grobber et al., MathLinks topic \#76786 ("S-property of a set"). http://www.mathlinks.ro/viewtopic.php?t=76786

[^0]: ${ }^{1}$ Such a subset Y exists, since $|X| \geq m((N+1)-1)+1=\underbrace{m}_{\geq 1} N+1 \geq N+1$.

