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The following result is due to Dan Schwarz. It was proposed as problem 4 (c) for
the 9th grade of the Romanian Mathematical Olympiad 2004. It was discussed in [1]
(where it was posted by tanlsth), in [2] and in [3].

Theorem 1. Let X be a set. Let n and m ≥ 1 be two nonnegative integers
such that |X| ≥ m (n− 1) + 1. Let B1, B2, ..., Bn be n subsets of X such
that |Bi| ≤ m for every i ∈ {1, 2, ..., n}. Then, there exists a subset Y of
X such that |Y | = n and |Y ∩Bi| ≤ 1 for every i ∈ {1, 2, ..., n}.

Proof of Theorem 1. We will prove Theorem 1 by induction over n.
Induction base: If n = 0, then Theorem 1 is trivially true (just set Y = ∅; then,

|Y | = 0 = n and |Y ∩Bi| = |∅ ∩Bi| = |∅| = 0 ≤ 1 for every i ∈ {1, 2, ..., n}). This
completes the induction base.

Induction step: Let N be a nonnegative integer. Assume that Theorem 1 holds for
n = N . We have to show that Theorem 1 also holds for n = N + 1.

We assumed that Theorem 1 holds for n = N . In other words, we assumed the
following assertion:

Assertion A: Let X be a set. Let m ≥ 1 be a nonnegative integer such that
|X| ≥ m (N − 1) + 1. Let B1, B2, ..., BN be N subsets of X such that |Bi| ≤ m for
every i ∈ {1, 2, ..., N}. Then, there exists a subset Y of X such that |Y | = N and
|Y ∩Bi| ≤ 1 for every i ∈ {1, 2, ..., N}.

Upon renaming X, Y and Bi into X ′, Y ′ and B′
i, respectively, this assertion rewrites

as:
Assertion A′: Let X ′ be a set. Let m ≥ 1 be a nonnegative integer such that

|X ′| ≥ m (N − 1) + 1. Let B′
1, B′

2, ..., B′
N be N subsets of X ′ such that |B′

i| ≤ m for
every i ∈ {1, 2, ..., N}. Then, there exists a subset Y ′ of X ′ such that |Y ′| = N and
|Y ′ ∩B′

i| ≤ 1 for every i ∈ {1, 2, ..., N}.
Now, we have to show that Theorem 1 also holds for n = N + 1. In other words,

we have to prove the following assertion:
Assertion B: Let X be a set. Let m ≥ 1 be a nonnegative integer such that

|X| ≥ m ((N + 1)− 1) + 1. Let B1, B2, ..., BN+1 be N + 1 subsets of X such that
|Bi| ≤ m for every i ∈ {1, 2, ..., N + 1}. Then, there exists a subset Y of X such that
|Y | = N + 1 and |Y ∩Bi| ≤ 1 for every i ∈ {1, 2, ..., N + 1}.

Proof of Assertion B. For every choice of X, m and B1, B2, ..., BN+1, one of the
following two cases must hold:

Case 1: We have X =
⋃

j∈{1,2,...,N+1}
Bj.

Case 2: We have X 6=
⋃

j∈{1,2,...,N+1}
Bj.
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Let us consider Case 1. In this case, let k ∈ {1, 2, ..., N + 1}. Then,∣∣∣∣∣∣
⋃

j∈{1,2,...,N+1}\{k}

Bj

∣∣∣∣∣∣ ≤
∑

j∈{1,2,...,N+1}\{k}

|Bj|︸︷︷︸
≤m

≤
∑

j∈{1,2,...,N+1}\{k}

m = Nm

= mN < mN + 1 = m ((N + 1)− 1) + 1 ≤ |X| =

∣∣∣∣∣∣
⋃

j∈{1,2,...,N+1}

Bj

∣∣∣∣∣∣ ,
so that

⋃
j∈{1,2,...,N+1}\{k}

Bj 6=
⋃

j∈{1,2,...,N+1}
Bj. Since

⋃
j∈{1,2,...,N+1}

Bj = Bk∪

( ⋃
j∈{1,2,...,N+1}\{k}

Bj

)
,

this becomes
⋃

j∈{1,2,...,N+1}\{k}
Bj 6= Bk∪

( ⋃
j∈{1,2,...,N+1}\{k}

Bj

)
. Thus, Bk *

⋃
j∈{1,2,...,N+1}\{k}

Bj

(since Bk ⊆
⋃

j∈{1,2,...,N+1}\{k}
Bj would yield

⋃
j∈{1,2,...,N+1}\{k}

Bj = Bk∪

( ⋃
j∈{1,2,...,N+1}\{k}

Bj

)
).

Hence, we have shown that

Bk *
⋃

j∈{1,2,...,N+1}\{k}

Bj for every k ∈ {1, 2, ..., N + 1} .

For every k ∈ {1, 2, ..., N + 1}, let xk be an element of Bk satisfying xk /∈
⋃

j∈{1,2,...,N+1}\{k}
Bj

(such an xk exists, since Bk *
⋃

j∈{1,2,...,N+1}\{k}
Bj). Then, for every k ∈ {1, 2, ..., N + 1}

and for every i ∈ {1, 2, ..., N + 1} satisfying i 6= k, we have xk /∈ Bi (since xk /∈⋃
j∈{1,2,...,N+1}\{k}

Bj and Bi ⊆
⋃

j∈{1,2,...,N+1}\{k}
Bj). Hence, for every k ∈ {1, 2, ..., N + 1}

and for every i ∈ {1, 2, ..., N + 1} satisfying i 6= k, we have xk 6= xi (since xk /∈ Bi

while xi ∈ Bi). Thus, the N + 1 elements x1, x2, ..., xN+1 are pairwise distinct.
Set Y = {x1, x2, ..., xN+1}. Then, |Y | = N + 1 (since the N + 1 elements x1, x2,
..., xN+1 are pairwise distinct). Besides, for every i ∈ {1, 2, ..., N + 1}, we have
{x1, x2, ..., xN+1}∩Bi = {xi} (since xi ∈ Bi, but xk /∈ Bi for every k ∈ {1, 2, ..., N + 1}
satisfying i 6= k), and thus

|Y ∩Bi| = |{x1, x2, ..., xN+1} ∩Bi| = |{xi}| = 1 ≤ 1.

Thus, Assertion B is proven in Case 1.
Now, let us consider Case 2. In this case, X ⊇

⋃
j∈{1,2,...,N+1}

Bj, but X 6=
⋃

j∈{1,2,...,N+1}
Bj.

Hence, X *
⋃

j∈{1,2,...,N+1}
Bj, so that there exists some x ∈ X such that x /∈

⋃
j∈{1,2,...,N+1}

Bj.

Thus, x /∈ Bi for every i ∈ {1, 2, ..., N + 1}.
We want to prove Assertion B. If every i ∈ {1, 2, ..., N + 1} satisfies Bi = ∅, then

Assertion B is trivial (just let Y be any subset of X satisfying |Y | = N + 1 1;
then, for every i ∈ {1, 2, ..., N + 1}, we have |Y ∩Bi| = |Y ∩∅| = |∅| = 0 ≤ 1,
so that Assertion B is fulfilled). Hence, for the rest of the proof of Assertion B, we

1Such a subset Y exists, since |X| ≥ m ((N + 1)− 1) + 1 = m︸︷︷︸
≥1

N + 1 ≥ N + 1.
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may assume that not every i ∈ {1, 2, ..., N + 1} satisfies Bi = ∅. So assume that
not every i ∈ {1, 2, ..., N + 1} satisfies Bi = ∅. In other words, there exists some
k ∈ {1, 2, ..., N + 1} such that Bk 6= ∅. WLOG assume that BN+1 6= ∅. Let u be an
element of BN+1.

Set X ′ = X \ ((BN+1 \ {u}) ∪ {x}) and B′
i = Bi∩X ′ for every i ∈ {1, 2, ..., N + 1}.

Then, B′
1, B′

2, ..., B′
N are N subsets of X ′, and we have

|BN+1 \ {u}| = |BN+1| − 1 (since u ∈ BN+1)

≤ m− 1 (since |BN+1| ≤ m) ,

thus

|(BN+1 \ {u}) ∪ {x}| = |BN+1 \ {u}|+ 1 (since x /∈ BN+1 yields x /∈ BN+1 \ {u})
≤ (m− 1) + 1 = m,

hence

|X ′| = |X \ ((BN+1 \ {u}) ∪ {x})| = |X| − |(BN+1 \ {u}) ∪ {x}| ≥ m ((N + 1)− 1) + 1−m

(since |X| ≥ m ((N + 1)− 1) + 1 and |(BN+1 \ {u}) ∪ {x}| ≤ m)

= mN + 1−m = m (N − 1) + 1

and |B′
i| = |Bi ∩X ′| ≤ |Bi| ≤ m for every i ∈ {1, 2, ..., N}. Hence, by Assertion

A′, there exists a subset Y ′ of X ′ such that |Y ′| = N and |Y ′ ∩B′
i| ≤ 1 for every

i ∈ {1, 2, ..., N}. Note that x /∈ Y ′, since Y ′ ⊆ X ′ = X \ ((BN+1 \ {u}) ∪ {x}) and
x /∈ X \ ((BN+1 \ {u}) ∪ {x}).

Notice that

B′
N+1 = BN+1 ∩X ′ = BN+1 ∩ (X \ ((BN+1 \ {u}) ∪ {x}))︸ ︷︷ ︸

=(X\(BN+1\{u}))\{x}
⊆X\(BN+1\{u})

⊆ BN+1 ∩ (X \ (BN+1 \ {u})) = (BN+1 ∩X) \ (BN+1 \ {u})
= BN+1 \ (BN+1 \ {u}) (since BN+1 ⊆ X yields BN+1 ∩X = BN+1)

= {u} (since u ∈ BN+1) ,

so that Y ′ ∩B′
N+1 ⊆ B′

N+1 ⊆ {u} and thus
∣∣Y ′ ∩B′

N+1

∣∣ ≤ |{u}| = 1.
Altogether, we have seen that |Y ′ ∩B′

i| ≤ 1 for every i ∈ {1, 2, ..., N} and that∣∣Y ′ ∩B′
N+1

∣∣ ≤ 1. Combining these two facts, we conclude that |Y ′ ∩B′
i| ≤ 1 for every

i ∈ {1, 2, ..., N + 1}.
Now, let Y = Y ′ ∪ {x}. Then,

|Y | = |Y ′ ∪ {x}| = |Y ′|+ 1 (since x /∈ Y ′)

= N + 1.
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Besides, for every i ∈ {1, 2, ..., N + 1}, we have

|Y ∩Bi| = |(Y ′ ∪ {x}) ∩Bi| =

∣∣∣∣∣∣∣∣∣(Y
′ ∩Bi) ∪ ({x} ∩Bi)︸ ︷︷ ︸

=∅, since
x/∈Bi

∣∣∣∣∣∣∣∣∣ = |(Y ′ ∩Bi) ∪∅| = |Y ′ ∩Bi| = |(Y ′ ∩X ′) ∩Bi|

(since Y ′ ⊆ X ′ yields Y ′ = Y ′ ∩X ′)

=

∣∣∣∣∣∣∣Y ′ ∩ (Bi ∩X ′)︸ ︷︷ ︸
=B′

i

∣∣∣∣∣∣∣ = |Y ′ ∩B′
i| ≤ 1.

Thus, Assertion B is proven in Case 2.
Altogether, we have now verified Assertion B in both Cases 1 and 2. But we know

that for every choice of X, m and B1, B2, ..., BN+1, either Case 1 or Case 2 is satisfied.
Thus, Assertion B is proven in every possible case. In other words, Theorem 1 holds
for n = N + 1. This completes the induction step.

Therefore, the induction proof of Theorem 1 is complete.
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