Integral-valued polynomials

Darij Grinberg

14 October 2013, Storrs
http://www.cip.ifi.lmu.de/~grinberg/storrs2013.pdf

What is an integral-valued polynomial?

This talk is about polynomials: $2 x^{4}+5 x, 3 x^{7}-\sqrt{2} x+17, \ldots$.
Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Example: If every coefficient of $P(x)$ is an integer, then $P(x)$ is integral-valued, e.g., $P(x)=2 x^{4}+5 x$.

This talk is about polynomials: $2 x^{4}+5 x, 3 x^{7}-\sqrt{2} x+17, \ldots$.
Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Example: If every coefficient of $P(x)$ is an integer, then $P(x)$ is integral-valued, e.g., $P(x)=2 x^{4}+5 x$.

The converse is false: $P(x)$ can be integral-valued without having integral coefficients!
Example: $P(x)=\frac{1}{2} x^{2}-\frac{1}{2} x=\frac{x(x-1)}{2}$. For $n \in \mathbb{Z}, n$ or $n-1$ is even, so $\frac{n(n-1)}{2} \in \mathbb{Z}$.

This talk is about polynomials: $2 x^{4}+5 x, 3 x^{7}-\sqrt{2} x+17, \ldots$
Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Example: If every coefficient of $P(x)$ is an integer, then $P(x)$ is integral-valued, e.g., $P(x)=2 x^{4}+5 x$.

The converse is false: $P(x)$ can be integral-valued without having integral coefficients!
Example: $P(x)=\frac{1}{2} x^{2}-\frac{1}{2} x=\frac{x(x-1)}{2}$. For $n \in \mathbb{Z}, n$ or $n-1$ is even, so $\frac{n(n-1)}{2} \in \mathbb{Z}$.
Integral-valued polynomials occur in several areas of math, such as combinatorics, commutative algebra, and algebraic topology.
Our goal: find a nice description of all integral-valued polynomials.

A polynomial is determined by "sufficiently many" of its values.

- If $P(x)$ and $Q(x)$ are polynomials such that $P(x)=Q(x)$ for infinitely many numbers x, then $P(x)=Q(x)$ for all x. For instance, a polynomial is completely determined by knowing its values at all $x>0$.
- If $P(x)$ and $Q(x)$ are polynomials of degree d such that $P(x)=Q(x)$ for $d+1$ choices of x, then $P(x)=Q(x)$ for all x.
For instance, a quadratic polynomial is completely determined by knowing its values at (any) three choices of x.

A polynomial is determined by "sufficiently many" of its values.

- If $P(x)$ and $Q(x)$ are polynomials of degree d such that $P(x)=Q(x)$ for $d+1$ choices of x, then $P(x)=Q(x)$ for all x.

Example. To verify the identity $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ for all x, it is enough to check both sides are equal at 4 numbers: both sides are polynomials of degree 3 , so if they agree at 4 numbers then they agree everywhere. At $x=0,1,2,3$, both sides take the same values ($-1,0,7$, and 26).

This method can be used in other cases to prove polynomial identities combinatorially: when x is an integer, the two sides of the identity could count the same thing in two different ways. And equality at enough integers forces equality everywhere.

Background: polynomials and their values

A polynomial is determined by "sufficiently many" of its values.

- If a polynomial $P(x)$ satisfies $P(r) \in \mathbb{Q}$ for all $r \in \mathbb{Q}$, then all coefficients of $P(x)$ lie in \mathbb{Q}.

A polynomial is determined by "sufficiently many" of its values.

- If a polynomial $P(x)$ satisfies $P(r) \in \mathbb{Q}$ for all $r \in \mathbb{Q}$, then all coefficients of $P(x)$ lie in \mathbb{Q}.
- If a polynomial $P(x)$ satisfies $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$, then the coefficients need not all lie in \mathbb{Z}.
(1) $P(x)=\frac{x^{2}-x}{2}\left(\right.$ since $\frac{n(n-1)}{2} \in \mathbb{Z}$ for all $\left.n \in \mathbb{Z}\right)$.
(2) $P(x)=\frac{x^{2}+x}{2}\left(\right.$ since $\frac{n(n+1)}{2} \in \mathbb{Z}$ for all $\left.n \in \mathbb{Z}\right)$.
(3) not $P(x)=\frac{x^{4}-x}{4}\left(\right.$ since $\left.P(2)=\frac{7}{2}\right)$.

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Examples.

- A polynomial with integer coefficients, of course. :)

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Examples.

- A polynomial with integer coefficients, of course. :)
- $P(x)=\frac{1}{p}\left(x^{p}-x\right)$ for all primes p. (Fermat's little theorem.)

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Examples.

- A polynomial with integer coefficients, of course. :)
- $P(x)=\frac{1}{p}\left(x^{p}-x\right)$ for all primes p. (Fermat's little theorem.)
- $P(x)=\frac{1}{6} x(x+1)(2 x+1)$, because

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Examples.

- A polynomial with integer coefficients, of course. :)
- $P(x)=\frac{1}{p}\left(x^{p}-x\right)$ for all primes p. (Fermat's little theorem.)
- $P(x)=\frac{1}{6} x(x+1)(2 x+1)$, because

$$
P(n)=1^{2}+2^{2}+\cdots+n^{2} \in \mathbb{Z}
$$

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Examples.

- A polynomial with integer coefficients, of course. :)
- $P(x)=\frac{1}{p}\left(x^{p}-x\right)$ for all primes p. (Fermat's little theorem.)
- $P(x)=\frac{1}{6} x(x+1)(2 x+1)$, because

$$
\begin{aligned}
& P(n)=1^{2}+2^{2}+\cdots+n^{2} \in \mathbb{Z} \text { for } n \geq 0 \\
& P(n)=-\left(1^{2}+2^{2}+\cdots+\left(n^{\prime}-1\right)^{2}\right) \in \mathbb{Z} \text { for } n=-n^{\prime}<0 .
\end{aligned}
$$

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Further example.

$$
P(x)=\binom{x}{m}:=\frac{x(x-1) \cdots(x-m+1)}{m!}
$$

for integers $m \geq 0$. The first few of these polynomials are

$$
\binom{x}{0}=1,\binom{x}{1}=x,\binom{x}{2}=\frac{x(x-1)}{2},\binom{x}{3}=\frac{x(x-1)(x-2)}{6} .
$$

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Further example.

$$
P(x)=\binom{x}{m}:=\frac{x(x-1) \cdots(x-m+1)}{m!}
$$

for integers $m \geq 0$. The first few of these polynomials are

$$
\binom{x}{0}=1,\binom{x}{1}=x,\binom{x}{2}=\frac{x(x-1)}{2},\binom{x}{3}=\frac{x(x-1)(x-2)}{6} .
$$

Indeed, for $n \geq 0$, the number $\binom{n}{m}$ counts the number of m-element subsets of $\{1,2, \ldots, n\}$ ("sampling balls from urns").

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Further example.

$$
P(x)=\binom{x}{m}:=\frac{x(x-1) \cdots(x-m+1)}{m!}
$$

for integers $m \geq 0$. The first few of these polynomials are

$$
\binom{x}{0}=1,\binom{x}{1}=x,\binom{x}{2}=\frac{x(x-1)}{2},\binom{x}{3}=\frac{x(x-1)(x-2)}{6} .
$$

Indeed, for $n \geq 0$, the number $\binom{n}{m}$ counts the number of m-element subsets of $\{1,2, \ldots, n\}$ ("sampling balls from urns"). For $n=-N<0$, we have $\binom{n}{m}=(-1)^{m}\binom{N+m-1}{m} \in \mathbb{Z}$.

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Further example.

$$
P(x)=\frac{1}{m} \sum_{d \mid m} \phi\left(\frac{m}{d}\right) x^{d}
$$

for integers $m \geq 1$, where $\phi(k)$ is the number of integers among $1,2, \ldots, k$ that are relatively prime to k. The first few are

$$
x, \quad \frac{1}{2}\left(x^{2}+x\right), \quad \frac{1}{3}\left(x^{3}+2 x\right), \quad \frac{1}{4}\left(x^{4}+x^{2}+2 x\right)
$$

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Further example.

$$
P(x)=\frac{1}{m} \sum_{d \mid m} \phi\left(\frac{m}{d}\right) x^{d}
$$

for integers $m \geq 1$, where $\phi(k)$ is the number of integers among $1,2, \ldots, k$ that are relatively prime to k. The first few are

$$
x, \quad \frac{1}{2}\left(x^{2}+x\right), \quad \frac{1}{3}\left(x^{3}+2 x\right), \quad \frac{1}{4}\left(x^{4}+x^{2}+2 x\right)
$$

For $n \geq 1, \frac{1}{m} \sum_{d \mid m} \phi\left(\frac{m}{d}\right) n^{d}$ counts the number of necklaces with m beads of colors $1,2, \ldots, n$ up to a cyclic rotation (MacMahon 1892). It is not clear why it's in \mathbb{Z} for $n<0$. Will see why later!

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Further examples. If $P(x)$ is an integral-valued polynomial, so are

- $P(-x)$,
- $P(x+b)$ for $b \in \mathbb{Z}$,
- $P(Q(x))$ for any other integral-valued polynomial $Q(x)$,

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Further examples. If $P(x)$ is an integral-valued polynomial, so are

- $P(-x)$,
- $P(x+b)$ for $b \in \mathbb{Z}$,
- $P(Q(x))$ for any other integral-valued polynomial $Q(x)$,
- $a P(x)+b Q(x)+c R(x)$, where $Q(x)$ and $R(x)$ are integral-valued polynomials and $a, b, c \in \mathbb{Z}$.

Call a polynomial $P(x)$ integral-valued if $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
Further examples. If $P(x)$ is an integral-valued polynomial, so are

- $P(-x)$,
- $P(x+b)$ for $b \in \mathbb{Z}$,
- $P(Q(x))$ for any other integral-valued polynomial $Q(x)$,
- $a P(x)+b Q(x)+c R(x)$, where $Q(x)$ and $R(x)$ are integral-valued polynomials and $a, b, c \in \mathbb{Z}$.

What kind of nice description could there be of all such polynomials?

Theorem (Polya, 1915)

Let $N \in \mathbb{N}$. The integral-valued polynomials of degree $\leq N$ are exactly the polynomials that can be written as

$$
a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N}
$$

for some integers $a_{0}, a_{1}, \ldots, a_{N}$. Moreover, an integral-valued polynomial can be written in this form in exactly one way.

We will explain where this formula for integral-valued polynomials comes from (not its uniqueness) using the method of finite differences, which is a discrete analogue of derivatives.

Classification of integral-valued polynomials: Examples

Recall that

$$
\binom{x}{0}=1,\binom{x}{1}=x,\binom{x}{2}=\frac{x(x-1)}{2},\binom{x}{3}=\frac{x(x-1)(x-2)}{6} .
$$

In terms of these, integral-valued polynomials seen earlier are

$$
\begin{aligned}
\frac{1}{2}\left(x^{2}+x\right) & =\binom{x}{2}+\binom{x}{1}, \\
\frac{1}{6} x(x+1)(2 x+1) & =2\binom{x}{3}+3\binom{x}{2}+\binom{x}{1}, \\
\frac{1}{3}\left(x^{3}+2 x\right) & =2\binom{x}{3}+2\binom{x}{2}+\binom{x}{1}, \\
\frac{1}{4}\left(x^{4}+x^{2}+2 x\right) & =6\binom{x}{4}+9\binom{x}{3}+4\binom{x}{2}+\binom{x}{1} .
\end{aligned}
$$

[Motivation for proof] Finite differences of x^{2}

Start with a polynomial P.

- Write the values $P(0), P(1), P(2), \ldots$ in a line.
- Write the successive differences $P(1)-P(0), P(2)-P(1), \ldots$ on the next line.
- Write the successive differences of these successive differences on the next line.
- Etc.

Here is $P(x)=x^{2}$.

Start with a polynomial P.

- Write the values $P(0), P(1), P(2), \ldots$ in a line.
- Write the successive differences $P(1)-P(0), P(2)-P(1), \ldots$ on the next line.
- Write the successive differences of these successive differences on the next line.
- Etc.

Here is $P(x)=3 x^{2}-x+7$.

7		9		17		31		51		77		109
	2		8		14		20		26		32	
	6		6		6		6		6			
		0		0		0		0				

Start with a polynomial P.

- Write the values $P(0), P(1), P(2), \ldots$ in a line.
- Write the successive differences $P(1)-P(0), P(2)-P(1), \ldots$ on the next line.
- Write the successive differences of these successive differences on the next line.
- Etc.

Here is $P(x)=x^{3}$.

0		1		8		27		64		125		216
	1		7		19		37		61		91	
	6		12		18		24		30			
		6		6		6		6				

Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?

Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?

Main lemma: If $P(x)$ is a polynomial of degree $N \geq 1$ then $P(x+1)-P(x)$ is a polynomial of degree $N-1$.

Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?
Main lemma: If $P(x)$ is a polynomial of degree $N \geq 1$ then $P(x+1)-P(x)$ is a polynomial of degree $N-1$.

Special case: $P(x)=x^{N}$.
To show $(x+1)^{N}-x^{N}$ is a polynomial of degree $N-1$, the binomial theorem says

$$
(x+1)^{N}=x^{N}+\binom{N}{1} x^{N-1}+\binom{N}{2} x^{N-2}+\cdots+1
$$

Subtracting the x^{N} term leaves only terms of degree $\leq N-1$ on the right hand side, and the term $\binom{N}{1} x^{N-1}=N x^{N-1}$ has degree $N-1$.

Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?
Main lemma: If $P(x)$ is a polynomial of degree $N \geq 1$ then $P(x+1)-P(x)$ is a polynomial of degree $N-1$.

Classification of integral-valued polynomials: proof

Why does it always boil down to zeroes?
Main lemma: If $P(x)$ is a polynomial of degree $N \geq 1$ then $P(x+1)-P(x)$ is a polynomial of degree $N-1$.

General case: Set $P(x)=a_{0}+a_{1} x^{1}+\cdots+a_{N} x^{N}, a_{N} \neq 0$. Then

$$
\begin{aligned}
& P(x+1)-P(x) \\
& =\left(a_{0}+a_{1}(x+1)^{1}+\cdots+a_{N}(x+1)^{N}\right) \\
& -\left(a_{0}+a_{1} x^{1}+\cdots+a_{N} x^{N}\right) \\
& =a_{0} \underbrace{(1-1)}_{\text {vanishes }}+a_{1} \underbrace{\left((x+1)^{1}-x^{1}\right)}_{\begin{array}{c}
\text { degree } 0 \\
\text { (by special case) }
\end{array}}+\cdots+a_{N} \underbrace{\left((x+1)^{N}-x^{N}\right)}_{\begin{array}{c}
\text { degree } \\
\text { (by special case) }
\end{array}} .
\end{aligned}
$$

Since $a_{N} \neq 0, P(x+1)-P(x)$ has degree $N-1$. After enough successive differences the polynomial becomes constant, and at the next step all successive differences are 0 .

Classification of integral-valued polynomials: proof

We are now ready to prove the theorem (minus the "exactly one way" claim) by induction on N.
For polynomials of degree $\leq 0, P(x)=a_{0}=a_{0}\binom{x}{0}$, where $a_{0}=P(0) \in \mathbb{Z}$. So we can take $N \geq 1$.

Let $P(x)$ be an integral-valued polynomial of degree $\leq N$.
By main lemma, $P(x+1)-P(x)$ is a polynomial of degree $\leq N-1$, and is integral-valued of course. Hence by induction hypothesis,

$$
P(x+1)-P(x)=b_{0}\binom{x}{0}+b_{1}\binom{x}{1}+\cdots+b_{N-1}\binom{x}{N-1}
$$

for some integers $b_{0}, b_{1}, \ldots, b_{N-1}$.

Classification of integral-valued polynomials: proof

We are now ready to prove the theorem (minus the "exactly one way" claim) by induction on N.
For polynomials of degree $\leq 0, P(x)=a_{0}=a_{0}\binom{x}{0}$, where $a_{0}=P(0) \in \mathbb{Z}$. So we can take $N \geq 1$.

Let $P(x)$ be an integral-valued polynomial of degree $\leq N$.
By main lemma, $P(x+1)-P(x)$ is a polynomial of degree $\leq N-1$, and is integral-valued of course. Hence by induction hypothesis,

$$
P(x+1)-P(x)=b_{0}\binom{x}{0}+b_{1}\binom{x}{1}+\cdots+b_{N-1}\binom{x}{N-1}
$$

for some integers $b_{0}, b_{1}, \ldots, b_{N-1}$.
Using $P(x)-P(0)$ in place of $P(x)$, WLOG $P(0)=0$ (subtracting constant term can't hurt).

Classification of integral-valued polynomials: proof

Using a telescoping sum, for every $n \geq 1$ we have

$$
\sum_{k=0}^{n-1}(P(k+1)-P(k))=P(n)-\underbrace{P(0)}_{=0}=P(n) .
$$

Classification of integral-valued polynomials: proof

Using a telescoping sum, for every $n \geq 1$ we have

$$
\sum_{k=0}^{n-1}(P(k+1)-P(k))=P(n)-\underbrace{P(0)}_{=0}=P(n)
$$

Since

$$
P(x+1)-P(x)=b_{0}\binom{x}{0}+b_{1}\binom{x}{1}+\cdots+b_{N-1}\binom{x}{N-1}
$$

we set $x=k$ and get

$$
P(k+1)-P(k)=b_{0}\binom{k}{0}+b_{1}\binom{k}{1}+\cdots+b_{N-1}\binom{k}{N-1} .
$$

Substituting this above,

Classification of integral-valued polynomials: proof

Using a telescoping sum, for every $n \geq 1$ we have

$$
\sum_{k=0}^{n-1}(P(k+1)-P(k))=P(n)-\underbrace{P(0)}_{=0}=P(n)
$$

Since

$$
P(x+1)-P(x)=b_{0}\binom{x}{0}+b_{1}\binom{x}{1}+\cdots+b_{N-1}\binom{x}{N-1}
$$

we set $x=k$ and get

$$
P(k+1)-P(k)=b_{0}\binom{k}{0}+b_{1}\binom{k}{1}+\cdots+b_{N-1}\binom{k}{N-1} .
$$

Substituting this above,

$$
\sum_{k=0}^{n-1}\left(b_{0}\binom{k}{0}+b_{1}\binom{k}{1}+\cdots+b_{N-1}\binom{k}{N-1}\right)=P(n)
$$

Classification of integral-valued polynomials: proof

So for $n \geq 1$

$$
\begin{aligned}
P(n) & =\sum_{k=0}^{n-1}\left(b_{0}\binom{k}{0}+b_{1}\binom{k}{1}+\cdots+b_{N-1}\binom{k}{N-1}\right) \\
& =b_{0} \sum_{k=0}^{n-1}\binom{k}{0}+b_{1} \sum_{k=0}^{n-1}\binom{k}{1}+\cdots+b_{N-1} \sum_{k=0}^{n-1}\binom{k}{N-1} .
\end{aligned}
$$

But the hockey-stick identity says for every $j \geq 0$ that

$$
\sum_{k=0}^{n-1}\binom{k}{j}=\binom{n}{j+1}
$$

Classification of integral-valued polynomials: proof

So for $n \geq 1$

$$
\begin{aligned}
P(n) & =\sum_{k=0}^{n-1}\left(b_{0}\binom{k}{0}+b_{1}\binom{k}{1}+\cdots+b_{N-1}\binom{k}{N-1}\right) \\
& =b_{0} \sum_{k=0}^{n-1}\binom{k}{0}+b_{1} \sum_{k=0}^{n-1}\binom{k}{1}+\cdots+b_{N-1} \sum_{k=0}^{n-1}\binom{k}{N-1} \\
& =b_{0}\binom{n}{1}+b_{1}\binom{n}{2}+\cdots+b_{N-1}\binom{n}{N},
\end{aligned}
$$

since the hockey-stick identity says for all $j \geq 0$ that

$$
\sum_{k=0}^{n-1}\binom{k}{j}=\binom{n}{j+1}
$$

Classification of integral-valued polynomials: proof

So

$$
P(n)=b_{0}\binom{n}{1}+b_{1}\binom{n}{2}+\cdots+b_{N-1}\binom{n}{N}
$$

for all $n \geq 1$.

Classification of integral-valued polynomials: proof

So

$$
P(n)=b_{0}\binom{n}{1}+b_{1}\binom{n}{2}+\cdots+b_{N-1}\binom{n}{N}
$$

for all $n \geq 1$. Setting

$$
Q(x)=b_{0}\binom{x}{1}+b_{1}\binom{x}{2}+\cdots+b_{N-1}\binom{x}{N}
$$

the polynomials $P(x)$ and $Q(x)$ have $P(n)=Q(n)$ for all $n \geq 1$. Since a polynomial is determined by its values at infinitely many numbers, $P(x)=Q(x)$ for all x, so

$$
P(x)=b_{0}\binom{x}{1}+b_{1}\binom{x}{2}+\cdots+b_{N-1}\binom{x}{N} .
$$

Classification of integral-valued polynomials: proof

So

$$
P(n)=b_{0}\binom{n}{1}+b_{1}\binom{n}{2}+\cdots+b_{N-1}\binom{n}{N}
$$

for all $n \geq 1$. Setting

$$
Q(x)=b_{0}\binom{x}{1}+b_{1}\binom{x}{2}+\cdots+b_{N-1}\binom{x}{N}
$$

the polynomials $P(x)$ and $Q(x)$ have $P(n)=Q(n)$ for all $n \geq 1$. Since a polynomial is determined by its values at infinitely many numbers, $P(x)=Q(x)$ for all x, so

$$
P(x)=b_{0}\binom{x}{1}+b_{1}\binom{x}{2}+\cdots+b_{N-1}\binom{x}{N} .
$$

Summary

We have now proven the existence part of

Theorem

Let $N \in \mathbb{N}$. The integral-valued polynomials of degree $\leq N$ are exactly the polynomials that can be written as

$$
a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N}
$$

for some integers $a_{0}, a_{1}, \ldots, a_{N}$. Moreover, an integral-valued polynomial can be written in this form in exactly one way.

Summary

We have now proven the existence part of

Theorem

Let $N \in \mathbb{N}$. The integral-valued polynomials of degree $\leq N$ are exactly the polynomials that can be written as

$$
a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N}
$$

for some integers $a_{0}, a_{1}, \ldots, a_{N}$. Moreover, an integral-valued polynomial can be written in this form in exactly one way.

A polynomial of degree $\leq N$ is determined by its values at 0,1 , \ldots, N, and our proof only needed such values, so we proved

Corollary

If a polynomial $P(x)$ of degree $\leq N$ satisfies $P(n) \in \mathbb{Z}$ for $n=0,1, \ldots, N$ then $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Therefore if $P(n) \in \mathbb{Z}$ for $n \geq 0, P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Coefficients

If $P(x)$ is integral-valued, how can we find $a_{0}, a_{1}, \ldots, a_{N}$ such that

$$
P(x)=a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N} ?
$$

Coefficients

If $P(x)$ is integral-valued, how can we find $a_{0}, a_{1}, \ldots, a_{N}$ such that

$$
P(x)=a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N} ?
$$

Ans: Use higher-order differences. Set $(\Delta P)(x)=P(x+1)-P(x)$, and for $j \geq 1$ set $\left(\Delta^{j+1} P\right)(x)=\left(\Delta^{j} P\right)(x+1)-\left(\Delta^{j} P\right)(x)$. Think of $\left(\Delta^{j} P\right)(x)$ as discrete analogue of j th derivative $P^{(j)}(x)$.
(Compare $P(x+1)-P(x)$ to $P^{\prime}(x)=\lim _{h \rightarrow 0} \frac{P(x+h)-P(x)}{h}$.)

If $P(x)$ is integral-valued, how can we find $a_{0}, a_{1}, \ldots, a_{N}$ such that

$$
P(x)=a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N} ?
$$

Ans: Use higher-order differences. Set $(\Delta P)(x)=P(x+1)-P(x)$, and for $j \geq 1$ set $\left(\Delta^{j+1} P\right)(x)=\left(\Delta^{j} P\right)(x+1)-\left(\Delta^{j} P\right)(x)$. Think of $\left(\Delta^{j} P\right)(x)$ as discrete analogue of j th derivative $P^{(j)}(x)$.
(Compare $P(x+1)-P(x)$ to $P^{\prime}(x)=\lim _{h \rightarrow 0} \frac{P(x+h)-P(x)}{h}$.)
Example. If $P(x)=3 x^{2}-x+7$ then

$$
\begin{aligned}
(\Delta P)(x) & =P(x+1)-P(x) \\
& =6 x+2 \\
\left(\Delta^{2} P\right)(x) & =(\Delta P)(x+1)-(\Delta P)(x) \\
& =6
\end{aligned}
$$

and $\left(\Delta^{j} P\right)(x)=0$ for $j>2$.

Coefficients

Theorem. For any polynomial $P(x)$ of degree $\leq N$,

$$
P(x)=a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N}
$$

where $a_{j}=\left(\Delta^{j} P\right)(0)=\sum_{i=0}^{j}(-1)^{j-i}\binom{j}{i} P(i)$. That is,

$$
P(x)=\sum_{j=0}^{\operatorname{deg} P}\left(\Delta^{j} P\right)(0)\binom{x}{j} .
$$

Theorem. For any polynomial $P(x)$ of degree $\leq N$,

$$
P(x)=a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N}
$$

where $a_{j}=\left(\Delta^{j} P\right)(0)=\sum_{i=0}^{j}(-1)^{j-i}\binom{j}{i} P(i)$. That is,

$$
P(x)=\sum_{j=0}^{\operatorname{deg} P}\left(\Delta^{j} P\right)(0)\binom{x}{j} .
$$

This is a discrete analogue of Taylor's formula

$$
P(x)=\sum_{j=0}^{\operatorname{deg} P} P^{(j)}(0) \frac{x^{j}}{j!}
$$

We have seen several integral-valued polynomials $P(x)$ earlier, and how they are written as $a_{0}\binom{x}{0}+a_{1}\binom{x}{1}+\cdots+a_{N}\binom{x}{N}$:

$$
\begin{aligned}
\frac{1}{2}\left(x^{2}+x\right) & =\binom{x}{2}+\binom{x}{1}, \\
\frac{1}{6} x(x+1)(2 x+1) & =2\binom{x}{3}+3\binom{x}{2}+\binom{x}{1}, \\
\frac{1}{3}\left(x^{3}+2 x\right) & =2\binom{x}{3}+2\binom{x}{2}+\binom{x}{1}, \\
\frac{1}{4}\left(x^{4}+x^{2}+2 x\right) & =6\binom{x}{4}+9\binom{x}{3}+4\binom{x}{2}+\binom{x}{1} .
\end{aligned}
$$

All coefficients on the right can be found using the higher-order difference formula $\left(\Delta^{j} P\right)(0)=\sum_{i=0}^{j}(-1)^{j-i}\binom{j}{i} P(i)$ for the coefficient of $\binom{x}{j}$. Let's look at other examples.

Coefficients of $\left(x^{p}-x\right) / p$.

For prime $p, \frac{1}{p}\left(x^{p}-x\right)$ is integral-valued. How does it look in
Polya's theorem?

$$
\text { - } \frac{1}{2}\left(x^{2}-x\right)=\binom{x}{2}
$$

Coefficients of $\left(x^{p}-x\right) / p$.

For prime $p, \frac{1}{p}\left(x^{p}-x\right)$ is integral-valued. How does it look in Polya's theorem?

$$
\begin{aligned}
& \frac{1}{2}\left(x^{2}-x\right)=\binom{x}{2} \\
& \frac{1}{3}\left(x^{3}-x\right)=2\binom{x}{3}+2\binom{x}{2} .
\end{aligned}
$$

For prime $p, \frac{1}{p}\left(x^{p}-x\right)$ is integral-valued. How does it look in Polya's theorem?

$$
\text { - } \frac{1}{2}\left(x^{2}-x\right)=\binom{x}{2}
$$

- $\frac{1}{3}\left(x^{3}-x\right)=2\binom{x}{3}+2\binom{x}{2}$.
- $\frac{1}{5}\left(x^{5}-x\right)=24\binom{x}{5}+48\binom{x}{4}+30\binom{x}{3}+6\binom{x}{2}$.

For prime $p, \frac{1}{p}\left(x^{p}-x\right)$ is integral-valued. How does it look in Polya's theorem?

- $\frac{1}{2}\left(x^{2}-x\right)=\binom{x}{2}$.
- $\frac{1}{3}\left(x^{3}-x\right)=2\binom{x}{3}+2\binom{x}{2}$.
- $\frac{1}{5}\left(x^{5}-x\right)=24\binom{x}{5}+48\binom{x}{4}+30\binom{x}{3}+6\binom{x}{2}$.
- $\frac{1}{p}\left(x^{p}-x\right)=\sum_{j=2}^{p} \frac{j!}{p}\left\{\begin{array}{l}p \\ j\end{array}\right\}\binom{x}{j}$, where the curly braces denote

Stirling numbers of the second kind.

Coefficients for sums of powers

Famous identities: for any integer $n \geq 1$,

$$
\begin{aligned}
1+2+\cdots+n & =\frac{1}{2} n(n+1) \\
1^{2}+2^{2}+\cdots+n^{2} & =\frac{1}{6} n(n+1)(2 n+1)
\end{aligned}
$$

For any $k \geq 1,1^{k}+2^{k}+\cdots+n^{k}=S_{k}(n)$ for a polynomial $S_{k}(x)$ of degree $k+1$.

- $\frac{1}{2} x(x+1)=\binom{x}{2}+\binom{x}{1}$.
- $\frac{1}{6} x(x+1)(2 x+1)=2\binom{x}{3}+3\binom{x}{2}+\binom{x}{1}$.
- $S_{k}(x)=\sum_{j=1}^{k+1}(j-1)!\left\{\begin{array}{c}k+1 \\ j\end{array}\right\}\binom{x}{j}$, where the curly braces denote Stirling numbers of the second kind.

$$
\binom{x}{m}=\binom{x}{m} \text {, duh. }
$$

$$
\begin{aligned}
& \text { - }\binom{x}{m}=\binom{x}{m} \text {, duh. } \\
& \text { - }\binom{x+1}{m}=\binom{x}{m-1}+\binom{x}{m} . \\
& \bullet\binom{x+2}{m}=\binom{x}{m-2}+2\binom{x}{m-1}+\binom{x}{m} . \\
& -\binom{x+\ell}{m}=\sum_{k=0}^{m}\binom{\ell}{m-k}\binom{x}{k} \text { for } \ell \geq 0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }\binom{x}{m}=\binom{x}{m} \text {, duh. } \\
& \text { - }\binom{x+1}{m}=\binom{x}{m-1}+\binom{x}{m} . \\
& \bullet\binom{x+2}{m}=\binom{x}{m-2}+2\binom{x}{m-1}+\binom{x}{m} . \\
& -\binom{x+\ell}{m}=\sum_{k=0}^{m}\binom{\ell}{m-k}\binom{x}{k} \text { for } \ell \geq 0 .
\end{aligned}
$$

This is the Chu-Vandermonde convolution identity. To prove it, it suffices to show that $\binom{n+\ell}{m}=\sum_{k=0}^{m}\binom{\ell}{m-k}\binom{n}{k}$ for $n \in \mathbb{N}$, or even just for $0 \leq n \leq m$. There is a balls-and-urns argument.

- $\binom{k x}{m}=\sum_{j=0}^{m} a_{j, k, m}\binom{x}{j}$ for $k \geq 1$,
where $a_{j, k, m}$ is the number of 0,1 -matrices of size $k \times j$ with entry sum m without zero columns. (Thanks to Gjergji Zaimi.)

For each $m \geq 1$, let

$$
\begin{aligned}
P_{m}(x) & =\frac{1}{m!} \prod_{i=0}^{m-1}\left(x^{m}-x^{i}\right) \\
& =\frac{1}{m!}\left(x^{m}-1\right)\left(x^{m}-x\right)\left(x^{m}-x^{2}\right) \cdots\left(x^{m}-x^{m-1}\right)
\end{aligned}
$$

Why is $P_{m}(x)$ integral-valued?

For each $m \geq 1$, let

$$
\begin{aligned}
P_{m}(x) & =\frac{1}{m!} \prod_{i=0}^{m-1}\left(x^{m}-x^{i}\right) \\
& =\frac{1}{m!}\left(x^{m}-1\right)\left(x^{m}-x\right)\left(x^{m}-x^{2}\right) \cdots\left(x^{m}-x^{m-1}\right)
\end{aligned}
$$

Why is $P_{m}(x)$ integral-valued?
There is a slick proof that $P_{m}(p) \in \mathbb{Z}$ for prime p. (Namely: The symmetric group S_{m} embeds into $\mathrm{GL}_{m}(\mathbb{Z} / p \mathbb{Z})$.) This generalizes to $P_{m}\left(p^{r}\right) \in \mathbb{Z}$ for prime powers p^{r}. But this is not enough to ensure $P_{m}(n) \in \mathbb{Z}$ for all integers $n!$ (Yet, this holds.)

For each $m \geq 1$, let

$$
\begin{aligned}
P_{m}(x) & =\frac{1}{m!} \prod_{i=0}^{m-1}\left(x^{m}-x^{i}\right) \\
& =\frac{1}{m!}\left(x^{m}-1\right)\left(x^{m}-x\right)\left(x^{m}-x^{2}\right) \cdots\left(x^{m}-x^{m-1}\right)
\end{aligned}
$$

Why is $P_{m}(x)$ integral-valued?
There is a slick proof that $P_{m}(p) \in \mathbb{Z}$ for prime p. (Namely: The symmetric group S_{m} embeds into $\mathrm{GL}_{m}(\mathbb{Z} / p \mathbb{Z})$.) This generalizes to $P_{m}\left(p^{r}\right) \in \mathbb{Z}$ for prime powers p^{r}. But this is not enough to ensure $P_{m}(n) \in \mathbb{Z}$ for all integers $n!$ (Yet, this holds.)

Thanks to Keith Conrad and Tom Roby for help.
Thank you for listening!

- Wikipedia, Integer-valued polynomial. http: //en.wikipedia.org/wiki/Integer-valued_polynomial and references therein.
- Manjul Bhargava, The Factorial Function and Generalizations, American Mathematical Monthly, vol. 107, Nov. 2000, pp. 783-799. http:
//www.maa.org/sites/default/files/pdf/upload_ library/22/Hasse/00029890.di021346.02p00641.pdf
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd edition, 1994.
- http://mathlinks.ro/viewtopic.php?t=421474, http://mathlinks.ro/viewtopic.php?t=299793
- Qimh Ritchey Xantcha, Binomial rings: axiomatisation, transfer, and classification, arXiv:1104.1931v3.
http://arxiv.org/abs/1104.1931v3
- Manjul Bhargava, On P-orderings, rings of integer-valued polynomials, and ultrametric analysis, Journal of the AMS, vol. 22, no. 4, Oct. 2009, pp. 963-993.
http://www.ams.org/journals/jams/2009-22-04/ S0894-0347-09-00638-9/S0894-0347-09-00638-9.pdf
and many others ("binomial rings", λ-rings, etc.).

