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In this note, we shall give a direct proof of the Chio pivotal condensation theorem.
This theorem is one of many that relate the determinant of a matrix to the deter-
minant of a smaller matrix (and, in many cases, reduce the computation of the
former to that of the latter – thus “condensing” the determinant). It can be stated
as follows:

Theorem 0.1. Let K be a commutative ring with unity. Let n ≥ 2 be an integer.
Let A =

(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n be a matrix. Then,

det
((

ai,jan,n − ai,nan,j
)

1≤i≤n−1, 1≤j≤n−1

)
= an−2

n,n · det
((

ai,j
)

1≤i≤n, 1≤j≤n

)
.

We refer to [Grinbe15] for undefined notations used here (though they should all
be standard).

Classically, Theorem 0.1 is proven using a trick. Namely, it is first proven un-
der the assumption that an,n be invertible (see, e.g., [Grinbe15, Exercise 6.19] and
the reference therein); then, the “universality of polynomial identities” [Conrad09]
shows that it holds in the general case as well (since it is an identity between two
fixed polynomials in the n2 variables a1,1, a1,2, . . . , an,n).

In this note, we shall give a different proof of Theorem 0.1 which proceeds di-
rectly (and, to some extent, combinatorially, using bijections and sign-reversing
involutions).

We fix K, n, A and ai,j as in Theorem 0.1.
We start with a computation:
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The definition of a determinant yields

det
((

ai,jan,n − ai,nan,j
)

1≤i≤n−1, 1≤j≤n−1

)
= ∑

σ∈Sn−1

(−1)σ
n−1

∏
i=1

(
ai,σ(i)an,n − ai,nan,σ(i)

)
= ∑

σ∈Sn−1

(−1)σ ∑
(p1,p2,...,pn−1)∈{0,1}n−1

n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1 since every σ ∈ Sn satisfies

n−1
∏
i=1

(
ai,σ(i)an,n − ai,nan,σ(i)

)
= ∑

(p1,p2,...,pn−1)∈{0,1}n−1

n−1
∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1


= ∑

(p1,p2,...,pn−1)∈{0,1}n−1
∑

σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

. (1)

We shall need three further notations:

• For any p = (p1, p2, . . . , pn−1) ∈ {0, 1}n−1, set |p| = p1 + p2 + · · ·+ pn−1 ∈N.
(Here and further below, N means the set {0, 1, 2, . . .}.)

• We set [m] = {1, 2, . . . , m} for every m ∈N.

• For every k ∈ [n], we set Tn,k = {τ ∈ Sn | τ (k) = n}. It is clear that the sets
Tn,1, Tn,2, . . . , Tn,n are pairwise disjoint, and their union is Sn.

Now, we state a lemma:

Lemma 0.2. Let p = (p1, p2, . . . , pn−1) ∈ {0, 1}n−1.

(a) If |p| = 0, then

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= an−2
n,n ∑

τ∈Tn,n

(−1)τ
n

∏
i=1

ai,τ(i).

(b) If |p| = 1, then p = (0, 0, . . . , 0, 1, 0, 0, . . . , 0) with the 1 being at position k
for some k ∈ [n− 1]. This k further satisfies

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= an−2
n,n ∑

τ∈Tn,k

(−1)τ
n

∏
i=1

ai,τ(i).

(c) If |p| > 1, then

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= 0.
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We shall prove Lemma 0.2 further below; let us first see how we can derive
Theorem 0.1 from it:

Proof of Theorem 0.1 using Lemma 0.2. Among all the (n− 1)-tuples p = (p1, p2, . . . , pn−1) ∈
{0, 1}n−1, exactly one satisfies |p| = 0 (namely, p = (0, 0, . . . , 0)), and exactly n− 1
satisfy |p| = 1 (namely, the (n− 1)-tuples p = (0, 0, . . . , 0, 1, 0, 0, . . . , 0), with the 1
being at position k for some k ∈ [n− 1]); all other (n− 1)-tuples p satisfy |p| > 1.
Using this observation, and using Lemma 0.2, we may simplify the right hand side
of (1) as follows:

∑
(p1,p2,...,pn−1)∈{0,1}n−1

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= an−2
n,n ∑

τ∈Tn,n

(−1)τ
n

∏
i=1

ai,τ(i) +
n−1

∑
k=1

an−2
n,n ∑

τ∈Tn,k

(−1)τ
n

∏
i=1

ai,τ(i)

=
n

∑
k=1

an−2
n,n ∑

τ∈Tn,k

(−1)τ
n

∏
i=1

ai,τ(i) = an−2
n,n

n

∑
k=1

∑
τ∈Tn,k

(−1)τ
n

∏
i=1

ai,τ(i).

Since Tn,1, Tn,2, . . . , Tn,n are pairwise disjoint and their union is Sn, this reduces to

an−2
n,n ∑

τ∈Sn

(−1)τ
n

∏
i=1

ai,τ(i) = an−2
n,n · det

((
ai,j
)

1≤i≤n, 1≤j≤n

)
.

Thus, (1) becomes

det
((

ai,jan,n − ai,nan,j
)

1≤i≤n−1, 1≤j≤n−1

)
= an−2

n,n · det
((

ai,j
)

1≤i≤n, 1≤j≤n

)
.

Hence, Theorem 0.1 is proven.

It remains to prove Lemma 0.2.
Before we do so, we shall introduce one further notation. Namely, for any σ ∈

Sn−1, we let σ̂ be the permutation of [n] defined by

σ̂(i) =

{
σ(i), if i < n;
n, if i = n

for every i ∈ {1, 2, . . . , n}.

It is well-known that the map Sn−1 → Tn,n, σ 7→ σ̂ is well-defined (i.e., we have
σ̂ ∈ Tn,n for every σ ∈ Sn−1) and a bijection.1 Furthermore, it is well-known2 that

(−1)σ̂ = (−1)σ for every σ ∈ Sn. (2)

1See [Grinbe15, proof of Lemma 6.44] (where this map has been denoted by Φ, and where Tn,n has
been denoted by T) for a proof.

2See, for example, [Grinbe15, Section 6.6, (395)].
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Proof of Lemma 0.2. (a) Assume that |p| = 0. In other words, p1 + p2 + · · ·+ pn−1 =
0. Since (p1, p2, . . . , pn−1) ∈ {0, 1}n−1, this yields p1 = p2 = · · · = pn−1 = 0.

Now,

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= ∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

(
ai,σ(i)an,n

)
(since pi = 0)

= an−1
n,n ∑

σ∈Sn−1

(−1)σ
n−1

∏
i=1

ai,σ(i) = an−2
n,n an,n ∑

σ∈Sn−1

(−1)σ
n−1

∏
i=1

ai,σ(i)

= an−2
n,n ∑

σ∈Sn−1

(−1)σan,n

n−1

∏
i=1

ai,σ(i) = an−2
n,n ∑

σ∈Sn−1

(−1)σ̂
n

∏
i=1

ai,σ̂(i) since the definition of σ̂ shows that an,n
n−1
∏
i=1

ai,σ(i) =
n
∏
i=1

ai,σ̂(i),

and since (2) shows that (−1)σ = (−1)σ̂ for every σ ∈ Sn−1


= an−2

n,n ∑
τ∈Tn,n

(−1)τ
n

∏
i=1

ai,τ(i)

(here, we have substituted τ for σ̂, since the map Sn−1 → Tn,n, σ 7→ σ̂ is a bijection).
This proves Lemma 0.2 (a).

(b) Assume that |p| = 1. In other words, p1 + p2 + · · · + pn−1 = 1. Since
(p1, p2, . . . , pn−1) ∈ {0, 1}n−1, this yields that exactly one of the pi’s must be equal
to 1. In other words, pk = 1 for a unique k ∈ {1, 2, . . . , n− 1}. Consider this k.

Then we have

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= ∑
σ∈Sn−1

(−1)σ(−ak,nan,σ(k)) ∏
i∈[n−1]\{k}

(
ai,σ(i)an,n

)
= an−2

n,n ∑
σ∈Sn−1

(−1)σ(−ak,nan,σ(k)) ∏
i∈[n−1]\{k}

ai,σ(i). (3)

Now, let tn,k ∈ Sn be the transposition which switches n with k while leaving
all other elements of {1, 2, . . . , n} unchanged. Since tn,k is a transposition, we have
(−1)tn,k = −1. Furthermore, it is easy to see that the map Tn,n → Tn,k, τ 7→ τ ◦ tn,k
is well-defined and a bijection3.

But recall that the map Sn−1 → Tn,n, σ 7→ σ̂ is a bijection. Composing this
bijection with the bijection Tn,n → Tn,k, τ 7→ τ ◦ tn,k, we obtain a bijection Sn−1 →

3Its inverse is the map Tn,k → Tn,n, τ 7→ τ ◦ tn,k.
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Tn,k, σ 7→ σ̂ ◦ tn,k. This bijection satisfies

(−1)σ̂◦tn,k = (−1)σ̂︸ ︷︷ ︸
=(−1)σ

· (−1)tn,k︸ ︷︷ ︸
=−1

= − (−1)σ for every σ ∈ Sn−1. (4)

Moreover, for any σ ∈ Sn−1, it is easy to see that (σ̂ ◦ tn,k) (i) =


σ(i), if i 6∈ {k, n} ;
n, if i = k;
σ(k), if i = n

for all i ∈ [n]. Thus, for any σ ∈ Sn−1, we have

ak,nan,σ(k) ∏
i∈[n−1]\{k}

ai,σ(i) =
n

∏
i=1

ai,(σ̂◦tn,k)(i)
. (5)

Now, (3) becomes

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= an−2
n,n ∑

σ∈Sn−1

(−1)σ(−ak,nan,σ(k)) ∏
i∈[n−1]\{k}

ai,σ(i)

= an−2
n,n ∑

σ∈Sn−1

(
− (−1)σ)︸ ︷︷ ︸
=(−1)σ̂◦tn,k

(by (4))

ak,nan,σ(k) ∏
i∈[n−1]\{k}

ai,σ(i)︸ ︷︷ ︸
=

n
∏
i=1

a
i,(σ̂◦tn,k)(i)

(by (5))

= an−2
n,n ∑

σ∈Sn−1

(−1)σ̂◦tn,k
n

∏
i=1

ai,(σ̂◦tn,k)(i)
= an−2

n,n ∑
τ∈Tn,k

(−1)τ
n

∏
i=1

ai,τ(i)

(here, we have substituted τ for σ̂ ◦ tn,k in the sum, since the map Sn−1 → Tn,k, σ 7→
σ̂ ◦ tn,k is a bijection). This proves Lemma 0.2 (b).

(c) Assume that |p| > 1. In other words, p1 + p2 + · · · + pn−1 > 1. Thus
there exist two distinct elements u and v of [n− 1] such that pu = pv = 1 (since
(p1, p2, . . . , pn−1) ∈ {0, 1}n−1). We choose such u and v.

We now consider the sum

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

(6)

To show that this sum is equal to 0, we use the following claim.

Claim 1: For each σ ∈ Sn−1, we have

n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

=
n−1

∏
i=1

{
ai,(σ◦tu,v)(i)an,n, if pi = 0;
−ai,nan,(σ◦tu,v)(i), if pi = 1

. (7)
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Proof of Claim 1: Let σ ∈ Sn−1. We must prove the equation (7). We note that the
products on the left and the right hand sides of this equation are identical for each
factor except for the uth factor and the vth factor (because for any i ∈ [n− 1] \ {u, v},

we have (σ ◦ tu,v)(i) = σ

tu,v (i)︸ ︷︷ ︸
=i

 = σ (i)). Thus it remains to show that

(−au,nan,σ(u))(−av,nan,σ(v)) = (−au,nan,(σ◦tu,v)(u))(−av,nan,(σ◦tu,v)(v))

(here we are using the fact that pu = pv = 1). But this follows from (σ ◦ tu,v)(u) =
σ(v) and (σ ◦ tu,v)(v) = σ(u). Hence, Claim 1 is proven. �

Let
An−1 =

{
σ ∈ Sn−1 | (−1)σ = 1

}
and

Cn−1 =
{

σ ∈ Sn−1 | (−1)σ = −1
}

.

The sets An−1 and Cn−1 are disjoint, and satisfy An−1 ∪Cn−1 = Sn−1. Furthermore,
every σ ∈ An−1 satisfies (−1)σ◦tu,v = (−1)σ︸ ︷︷ ︸

=1
(since σ∈An−1)

· (−1)tu,v︸ ︷︷ ︸
=−1

= −1 and thus σ ◦ tu,v ∈

Cn−1. Hence, the map An−1 → Cn−1, σ 7→ σ ◦ tu,v is well-defined. It is easy to see
that this map is also a bijection4. Now,

∑
σ∈Sn−1

(−1)σ
n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= ∑
σ∈An−1

(−1)σ︸ ︷︷ ︸
=1

(since σ∈An−1)

n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

+ ∑
σ∈Cn−1

(−1)σ︸ ︷︷ ︸
=−1

(since σ∈Cn−1)

n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= ∑
σ∈An−1

n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

− ∑
σ∈Cn−1

n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

= ∑
σ∈An−1

n−1

∏
i=1

{
ai,σ(i)an,n, if pi = 0;
−ai,nan,σ(i), if pi = 1

− ∑
σ∈An−1

n−1

∏
i=1

{
ai,(σ◦tu,v)(i)an,n, if pi = 0;
−ai,nan,(σ◦tu,v)(i), if pi = 1

(here, we have substituted σ ◦ tu,v for σ in the second sum, since the map An−1 →
Cn−1, σ 7→ σ ◦ tu,v is a bijection). But Claim 1 shows that the two sums on the right
hand side of this equation are equal to each other term by term, and thus the right
hand side is 0. Therefore, so is the left hand side.

This proves Lemma 0.2 (c) and completes the proof of Theorem 0.1.
4Its inverse is the map Cn−1 → An−1, σ 7→ σ ◦ tu,v.
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