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0.1. Introduction

In this expository note, we prove the Lucas and Babbage congruences for binomial
coefficients. The proof is elementary (by induction) and functions for arbitrary
integer parameters (as opposed to merely for nonnegative integers). Afterwards,

we also prove the congruence
p−1
∑

l=0
lk ≡ 0 mod p for any prime p and any k ∈N that

is not a positive multiple of p.

1
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1. The congruences

1.1. Binomial coefficients

Let us first recall the standard definition of binomial coefficients:1

Definition 1.1. Let n ∈ N and m ∈ Q. Then, the binomial coefficient
(

m
n

)
is a

rational number defined by(
m
n

)
=

m (m− 1) · · · (m− n + 1)
n!

.

This definition is precisely [Grinbe17, Definition 3.1].
The following properties of binomial coefficients are well-known and appear in

[Grinbe17]:

Proposition 1.2. We have (
m
0

)
= 1 (1)

for every m ∈ Q.

Proposition 1.2 is [Grinbe17, Proposition 3.3 (a)].

Proposition 1.3. We have (
m
n

)
= 0 (2)

for every m ∈N and n ∈N satisfying m < n.

Proposition 1.3 is [Grinbe17, Proposition 3.6].

Proposition 1.4. We have (
m
m

)
= 1 (3)

for every m ∈N.

Proposition 1.4 is [Grinbe17, Proposition 3.9].

Proposition 1.5. We have(
m
n

)
=

(
m− 1
n− 1

)
+

(
m− 1

n

)
(4)

for any m ∈ Z and n ∈ {1, 2, 3, . . .}.
1We use the notation N for the set {0, 1, 2, . . .}.
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Proposition 1.5 is a particular case of [Grinbe17, Proposition 3.11].

Proposition 1.6. We have
(

m
n

)
∈ Z for any m ∈ Z and n ∈N.

Proposition 1.6 is [Grinbe17, Proposition 3.20].

Proposition 1.7. For every x ∈ Z and y ∈ Z and n ∈N, we have(
x + y

n

)
=

n

∑
k=0

(
x
k

)(
y

n− k

)
.

Proposition 1.7 is the so-called Vandermonde convolution identity, and is a particu-
lar case of [Grinbe17, Theorem 3.29].

1.2. Negative n

We have so far defined the binomial coefficient
(

m
n

)
only for n ∈ N. For the sake

of convenience, let us extend the definition of
(

m
n

)
to arbitrary integers n. To do

so, we need to define
(

m
n

)
when n is a negative integer. We do so in the simplest

possible way:

Definition 1.8. Let n be a negative integer. Let m ∈ Z. Then, the binomial

coefficient
(

m
n

)
is a rational number defined by

(
m
n

)
= 0.

This convention is the one used by Graham, Knuth and Patashnik in [GrKnPa].
Other authors use other conventions.

Hence, the binomial coefficient
(

m
n

)
is defined for all m ∈ Z and n ∈ Z.

(Namely, it is defined in Definition 1.8 when n is negative, and it is defined in
Definition 1.1 when n is nonnegative.)

The following fact is easy:

Proposition 1.9. We have
(

m
n

)
∈ Z for any m ∈ Z and n ∈ Z.

Proof of Proposition 1.9. When n is negative, Proposition 1.9 follows from
(

m
n

)
= 0.

Thus, we WLOG assume that n is nonnegative. Hence, n ∈ N. Thus, Proposition
1.9 follows from Proposition 1.6.
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We can also extend Proposition 1.5 to arbitrary integer values of n:

Proposition 1.10. We have(
m
n

)
=

(
m− 1
n− 1

)
+

(
m− 1

n

)
for any m ∈ Z and n ∈ Z.

Proof of Proposition 1.10. Let m ∈ Z and n ∈ Z. We are in one of the following three
cases:

Case 1: We have n < 0.
Case 2: We have n = 0.
Case 3: We have n > 0.
Let us first consider Case 1. In this case, we have n < 0. Thus, both n and

n− 1 are negative integers. Hence, all three binomial coefficients
(

m
n

)
,
(

m− 1
n− 1

)
and

(
m− 1

n

)
equal 0 (by Definition 1.8). Therefore, the claim of Proposition 1.10

rewrites as 0 = 0 + 0, which is clearly true. Thus, Proposition 1.10 is proven in
Case 1.

Let us next consider Case 2. In this case, we have n = 0. Hence, n− 1 = −1 is a

negative integer. Therefore, Definition 1.8 yields
(

m− 1
n− 1

)
= 0. Also, from n = 0,

we obtain
(

m
n

)
=

(
m
0

)
= 1 and

(
m− 1

n

)
=

(
m− 1

0

)
= 1. Hence,(

m− 1
n− 1

)
︸ ︷︷ ︸

=0

+

(
m− 1

n

)
︸ ︷︷ ︸

=1

= 1.

Comparing this with
(

m
n

)
= 1, we obtain

(
m
n

)
=

(
m− 1
n− 1

)
+

(
m− 1

n

)
. Thus,

Proposition 1.10 is proven in Case 2.
Let us finally consider Case 3. In this case, we have n > 0. Thus, n ∈ {1, 2, 3, . . .}.

Hence, Proposition 1.5 yields
(

m
n

)
=

(
m− 1
n− 1

)
+

(
m− 1

n

)
. Thus, Proposition 1.10

is proven in Case 3.
We have now proven Proposition 1.10 in each of the three Cases 1, 2 and 3. This

completes the proof.

1.3. The two congruences

Proposition 1.9 shows that
(

m
n

)
is an integer whenever m ∈ Z and n ∈ Z. We

shall use this fact tacitly. It allows us to state congruences involving binomial
coefficients.
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Next, let us state two classical results on the behavior of binomial coefficients
modulo primes:

Theorem 1.11. Let p be a prime. Let a and b be two integers. Let c and d be two
elements of {0, 1, . . . , p− 1}. Then,(

ap + c
bp + d

)
≡
(

a
b

)(
c
d

)
mod p.

Theorem 1.11 is known under the name of Lucas’s theorem, and is proven in many
places (e.g., [Mestro14, §2.1] or [Hausne83, Proof of §4] or [AnBeRo05, proof of Lu-
cas’s theorem] or [GrKnPa, Exercise 5.61]) in the case when a and b are nonnegative
integers. The standard proof of Theorem 1.11 in this case uses generating functions;
it is not hard to tweak this proof so that it applies (mutatis mutandis) in the gen-
eral case as well. But we are going to give a different, more elementary proof of
Theorem 1.11.

Another classical result about binomial coefficients and primes is the following
fact:

Theorem 1.12. Let p be a prime. Let a and b be two integers. Then,(
ap
bp

)
≡
(

a
b

)
mod p2.

In the case when a and b are nonnegative integers, Theorem 1.12 is a known
result, due to Charles Babbage (see, e.g., [Stan11, Exercise 1.14 c] or [GrKnPa, Ex-
ercise 5.62]). Notice that if p ≥ 5, then the modulus p2 can be replaced by p3 or
(depending on a, b and p) by even higher powers of p; see [Mestro14, (22) and (23)]
for the details.

We shall prove Theorem 1.12 later.

2. Proofs

2.1. Basic properties of binomial coefficients modulo primes

Let us first state a simple fact:

Proposition 2.1. Let p be a prime. Let k ∈ {1, 2, . . . , p− 1}. Then, p |
(

p
k

)
.

Proposition 2.1 is [Grinbe16, Corollary 5.6] and [BenQui03, Theorem 13].
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2.2. Restating Vandermonde convolution

Let us also derive one more simple corollary of Proposition 1.7:

Corollary 2.2. Let x ∈ Z and y ∈N and n ∈ Z. Then,(
x + y

n

)
=

y

∑
i=0

(
x

n− i

)(
y
i

)
. (5)

Proof of Corollary 2.2. We are in one of the following two cases:
Case 1: We have n < 0.
Case 2: We have n ≥ 0.
In Case 1, Corollary 2.2 is easy to check, because both sides of (5) are 0 in this

case2.
Let us now consider Case 2. In this case, we have n ≥ 0. Hence, n ∈ N (since

n ∈ Z).
Define a g ∈ N by g = max {y, n}. Thus, g = max {y, n} ≥ y and g =

max {y, n} ≥ n.
We have g ≥ y ≥ 0 (since y ∈N), so that 0 ≤ y ≤ g. Hence, we can split the sum

g
∑

i=0

(
x

n− i

)(
y
i

)
at i = y. We thus obtain

g

∑
i=0

(
x

n− i

)(
y
i

)
=

y

∑
i=0

(
x

n− i

)(
y
i

)
+

g

∑
i=y+1

(
x

n− i

) (
y
i

)
︸︷︷︸
=0

(by Proposition 1.3
(since y<i (since i≥y+1>y)))

=
y

∑
i=0

(
x

n− i

)(
y
i

)
+

g

∑
i=y+1

(
x

n− i

)
0︸ ︷︷ ︸

=0

=
y

∑
i=0

(
x

n− i

)(
y
i

)
. (6)

On the other hand, g ≥ n ≥ 0, so that 0 ≤ n ≤ g. Hence, we can split the sum

2Indeed, the left-hand side of (5) is 0 (since n < 0), and the right-hand side of (5) is 0 (since each

i ∈ {0, 1, . . . , y} satisfies n− i ≤ n < 0 and thus
(

x
n− i

)
= 0).
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g
∑

i=0

(
x

n− i

)(
y
i

)
at i = n. We thus obtain

g

∑
i=0

(
x

n− i

)(
y
i

)
=

n

∑
i=0

(
x

n− i

)(
y
i

)
+

g

∑
i=n+1

(
x

n− i

)
︸ ︷︷ ︸

=0
(since n−i<0

(since i≥n+1>n))

(
y
i

)

=
n

∑
i=0

(
x

n− i

)(
y
i

)
+

g

∑
i=n+1

0
(

y
i

)
︸ ︷︷ ︸

=0

=
n

∑
i=0

(
x

n− i

)(
y
i

)
.

Comparing this with (6), we find

y

∑
i=0

(
x

n− i

)(
y
i

)
=

n

∑
i=0

(
x

n− i

)(
y
i

)
. (7)

Proposition 1.7 yields(
x + y

n

)
=

n

∑
k=0

(
x
k

)(
y

n− k

)
=

n

∑
i=0

(
x

n− i

)(
y

n− (n− i)

)
︸ ︷︷ ︸

=

(
y
i

)
(here, we have substituted n− i for k in the sum)

=
n

∑
i=0

(
x

n− i

)(
y
i

)
=

y

∑
i=0

(
x

n− i

)(
y
i

)
(by (7)). This proves Corollary 2.2.

Let us state a few consequences of Corollary 2.2:

Corollary 2.3. Let x ∈ Z and n ∈ Z. Let y be a positive integer. Then,(
x + y

n

)
=

(
x
n

)
+

y−1

∑
i=1

(
x

n− i

)(
y
i

)
+

(
x

n− y

)
.

Proof of Corollary 2.3. We know that y is a positive integer. Thus, 0 and y are two
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distinct elements of {0, 1, . . . , y}. Corollary 2.2 yields(
x + y

n

)
=

y

∑
i=0

(
x

n− i

)(
y
i

)

=

(
x

n− 0

)
︸ ︷︷ ︸
=

(
x
n

)
(

y
0

)
︸︷︷︸
=1

+
y−1

∑
i=1

(
x

n− i

)(
y
i

)
+

(
x

n− y

) (
y
y

)
︸︷︷︸
=1

(by Proposition 1.4
(applied to m=y))

here, we have split off the
addends for i = 0 and for i = y

from the sum (since 0 and y are two
distinct elements of {0, 1, . . . , y} )


=

(
x
n

)
+

y−1

∑
i=1

(
x

n− i

)(
y
i

)
+

(
x

n− y

)
.

This proves Corollary 2.3.

Corollary 2.4. Let x ∈ Z and n ∈ Z. Let p be a prime. Then,(
x + p

n

)
≡
(

x
n

)
+

(
x

n− p

)
mod p.

Proof of Corollary 2.4. We have(
p
i

)
≡ 0 mod p for each i ∈ {1, 2, . . . , p− 1} (8)

3.
The number p is a prime, and thus a positive integer. Hence, Corollary 2.3

(applied to y = p) yields(
x + p

n

)
=

(
x
n

)
+

p−1

∑
i=1

(
x

n− i

) (
p
i

)
︸︷︷︸
≡0 mod p

(by (8))

+

(
x

n− p

)

≡
(

x
n

)
+

p−1

∑
i=1

(
x

n− i

)
0︸ ︷︷ ︸

=0

+

(
x

n− p

)
=

(
x
n

)
+

(
x

n− p

)
mod p.

This proves Corollary 2.4.

3Proof of (8): Let i ∈ {1, 2, . . . , p− 1}. Proposition 2.1 (applied to k = i) yields p |
(

p
i

)
. In other

words,
(

p
i

)
≡ 0 mod p. This proves (8).
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2.3. The congruence lemma

We now show a general lemma that helps us attack congruences involving binomial
coefficients:4

Lemma 2.5. Let A : Z×Z→ Z be any map. Let N be an integer. Let u ∈ Z.
Assume that the following four conditions hold:

• Every a ∈ Z and b ∈ Z satisfy

A (a, b) ≡ A (a− 1, b) + A (a− 1, b− 1)mod N. (9)

• We have
A (0, 0) ≡ u mod N. (10)

• Every a ∈ Z and every negative b ∈ Z satisfy

A (a, b) ≡ 0 mod N. (11)

• Every positive integer b satisfies

A (0, b) ≡ 0 mod N. (12)

Then, every a ∈ Z and b ∈ Z satisfy

A (a, b) ≡ u
(

a
b

)
mod N.

Proof of Lemma 2.5. Let us first show the following fact:

Observation 1: Let b ∈ Z. We have A (0, b) ≡ u
(

0
b

)
mod N.

[Proof of Observation 1: We are in one of the following three cases:
Case 1: We have b < 0.
Case 2: We have b = 0.
Case 3: We have b > 0.
Let us first consider Case 1. In this case, we have b < 0. Thus, b is a negative

integer (since b ∈ Z). Hence, Definition 1.8 yields
(

0
b

)
= 0. Thus, u

(
0
b

)
︸︷︷︸
=0

= 0,

4We shall only use Lemma 2.5 in the case when N is a positive integer. For the sake of generality,
we are nevertheless stating it for arbitrary integers N. Make sure to correctly interpret the
notation “u ≡ v mod N” when N is 0: If u and v are two integers, then u ≡ v mod 0 holds if and
only if u = v.
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so that 0 = u
(

0
b

)
. But (11) (applied to a = 0) yields A (0, b) ≡ 0 = u

(
0
b

)
mod N.

Thus, Observation 1 is proven in Case 1.

Let us now consider Case 2. In this case, we have b = 0. Thus, u
(

0
b

)
= u

(
0
0

)
︸︷︷︸
=1

=

u, so that u = u
(

0
b

)
. But (10) yields A (0, 0) ≡ u = u

(
0
b

)
mod N. From b = 0, we

obtain A

0, b︸︷︷︸
=0

 = A (0, 0) ≡ u
(

0
b

)
mod N. Thus, Observation 1 is proven in

Case 2.
Finally, let us consider Case 3. In this case, we have b > 0. Thus, b ∈ N and

0 < b. Hence, Proposition 1.3 (applied to m = 0 and n = b) yields
(

0
b

)
= 0. Hence,

u
(

0
b

)
︸︷︷︸
=0

= 0, so that 0 = u
(

0
b

)
. But (12) yields A (0, b) ≡ 0 = u

(
0
b

)
mod N. Thus,

Observation 1 is proven in Case 3.
We have now proven Observation 1 in each of the three Cases 1, 2 and 3. Since

these three Cases cover all possibilities, we thus conclude that Observation 1 always
holds.]

Next, we claim the following fact:

Observation 2: We have A (a, b) ≡ u
(

a
b

)
mod N for each a ∈ N and

b ∈ Z.

[Proof of Observation 2: We shall prove Observation 2 by induction over a.

Induction base: We have A (0, b) ≡ u
(

0
b

)
mod N for each b ∈ Z (according to

Observation 1). In other words, Observation 2 holds for a = 0. This completes the
induction base.

Induction step: Let c be a positive integer. Assume that Observation 2 holds for
a = c− 1. We must prove that Observation 2 holds for a = c.

We have assumed that Observation 2 holds for a = c − 1. In other words, we
have

A (c− 1, b) ≡ u
(

c− 1
b

)
mod N for each b ∈ Z. (13)
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For each b ∈ Z, we have(
c
b

)
=

(
c− 1
b− 1

)
+

(
c− 1

b

)
(by Proposition 1.10 (applied to m = c and n = b))

=

(
c− 1

b

)
+

(
c− 1
b− 1

)
. (14)

Now, for each b ∈ Z, we have

A (c, b) ≡ A (c− 1, b)︸ ︷︷ ︸
≡u

(
c− 1

b

)
mod N

(by (13))

+ A (c− 1, b− 1)︸ ︷︷ ︸
≡u

(
c− 1
b− 1

)
mod N

(by (13)
(applied to b−1 instead of b))

(by (9) (applied to a = c))

≡ u
(

c− 1
b

)
+ u

(
c− 1
b− 1

)
= u

((
c− 1

b

)
+

(
c− 1
b− 1

))
︸ ︷︷ ︸

=

(
c
b

)
(by (14))

= u
(

c
b

)
mod N.

In other words, Observation 2 holds for a = c. This completes the induction step.
Thus, Observation 2 is proven.]

Our next step shall be to prove the following fact:

Observation 3: Let h ∈ N. We have A (a, b) ≡ u
(

a
b

)
mod N for each

a ∈ Z and b ∈ Z satisfying b− a < h.

[Proof of Observation 3: We shall prove Observation 3 by induction over h:

Induction base: We have A (a, b) ≡ u
(

a
b

)
mod N for each a ∈ Z and b ∈ Z

satisfying b − a < 0 5. In other words, Observation 3 holds for h = 0. This
completes the induction base.

5Proof. Let a ∈ Z and b ∈ Z be such that b− a < 0. We must prove that A (a, b) ≡ u
(

a
b

)
mod N.

If a ∈ N, then this follows immediately from Observation 2. Thus, for the rest of this proof,
we WLOG assume that we don’t have a ∈ N. Hence, a /∈ N. Combining a ∈ Z with a /∈ N, we
obtain a ∈ Z \N = {−1,−2,−3, . . .}. Hence, a < 0. But from b− a < 0, we obtain b < a < 0.

Thus, b is a negative integer (since b ∈ Z). Therefore, Definition 1.8 yields
(

a
b

)
= 0. Hence,
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Induction step: Let g ∈ N. Assume that Observation 3 holds for h = g. We must
prove that Observation 3 holds for h = g + 1.

We have assumed that Observation 3 holds for h = g. In other words, we have

A (a, b) ≡ u
(

a
b

)
mod N for each a ∈ Z and b ∈ Z

satisfying b− a < g. (15)

Now, let a ∈ Z and b ∈ Z be such that b− a < g + 1. Then, (9) (applied to a + 1
instead of a) shows that

A (a + 1, b) ≡ A

(a + 1)− 1︸ ︷︷ ︸
=a

, b

+ A

(a + 1)− 1︸ ︷︷ ︸
=a

, b− 1


= A (a, b) + A (a, b− 1)mod N.

Hence,
A (a, b) ≡ A (a + 1, b)− A (a, b− 1)mod N. (16)

Also, Proposition 1.10 (applied to m = a + 1 and n = b) yields(
a + 1

b

)
=

(
(a + 1)− 1

b− 1

)
+

(
(a + 1)− 1

b

)
=

(
a

b− 1

)
+

(
a
b

)
(since (a + 1)− 1 = a)

=

(
a
b

)
+

(
a

b− 1

)
.

Hence, (
a
b

)
=

(
a + 1

b

)
−
(

a
b− 1

)
. (17)

But b− (a + 1) = b− a︸ ︷︷ ︸
<g+1

−1 < g + 1− 1 = g. Hence, we can apply (15) to a + 1

instead of a. We thus obtain

A (a + 1, b) ≡ u
(

a + 1
b

)
mod N.

Also, (b− 1)− a = b− a︸ ︷︷ ︸
<g+1

−1 < g + 1− 1 = g. Hence, we can apply (15) to b− 1

instead of b. We thus obtain

A (a, b− 1) ≡ u
(

a
b− 1

)
mod N.

u
(

a
b

)
︸︷︷︸
=0

= 0, so that 0 = u
(

a
b

)
. But (11) yields A (a, b) ≡ 0 = u

(
a
b

)
mod N. Hence, we have

proven that A (a, b) ≡ u
(

a
b

)
mod N. Qed.
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Thus, (16) becomes

A (a, b) ≡ A (a + 1, b)︸ ︷︷ ︸
≡u

(
a + 1

b

)
mod N

− A (a, b− 1)︸ ︷︷ ︸
≡u

(
a

b− 1

)
mod N

≡ u
(

a + 1
b

)
− u

(
a

b− 1

)
= u

((
a + 1

b

)
−
(

a
b− 1

))
︸ ︷︷ ︸

=

(
a
b

)
(by (17))

= u
(

a
b

)
mod N.

Now, forget that we fixed a and b. We thus have shown that we have A (a, b) ≡

u
(

a
b

)
mod N for each a ∈ Z and b ∈ Z satisfying b− a < g + 1. In other words,

Observation 3 holds for h = g + 1. This completes the induction step. Thus,
Observation 3 is proven.]

Now, let a ∈ Z and b ∈ Z be arbitrary. We must prove that A (a, b) ≡ u
(

a
b

)
mod N.

Define h ∈ Z by h = max {0, b− a + 1}. Thus, h = max {0, b− a + 1} ≥ 0, so
that h ∈ N (since h ∈ Z). Also, h = max {0, b− a + 1} ≥ b− a + 1 > b− a, so that

b− a < h. Hence, Observation 3 shows that we have A (a, b) ≡ u
(

a
b

)
mod N. This

completes the proof of Lemma 2.5.

2.4. Proof of the Lucas theorem

We are now ready to prove Theorem 1.11:

Proof of Theorem 1.11. Let us forget that we fixed a and b.

Define an integer u ∈ Z by u =

(
c
d

)
. Define a map A : Z×Z→ Z by

(
A (a, b) =

(
ap + c
bp + d

)
for each (a, b) ∈ Z×Z

)
.

Let us now prove some properties of the map A:

Observation 1: Every a ∈ Z and b ∈ Z satisfy

A (a, b) ≡ A (a− 1, b) + A (a− 1, b− 1)mod p.

[Proof of Observation 1: Let a ∈ Z and b ∈ Z. Then, the definition of A yields

A (a− 1, b) =
(
(a− 1) p + c

bp + d

)
. (18)
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Also, the definition of A yields

A (a− 1, b− 1) =
(
(a− 1) p + c
(b− 1) p + d

)
=

(
(a− 1) p + c
bp + d− p

)
(19)

(since (b− 1) p + d = bp + d− p).
Corollary 2.4 (applied to x = (a− 1) p + c and n = bp + d) yields(

(a− 1) p + c + p
bp + d

)
≡
(
(a− 1) p + c

bp + d

)
︸ ︷︷ ︸

=A(a−1,b)
(by (18))

+

(
(a− 1) p + c
bp + d− p

)
︸ ︷︷ ︸

=A(a−1,b−1)
(by (19))

= A (a− 1, b) + A (a− 1, b− 1)mod p. (20)

Now, the definition of A yields

A (a, b) =
(

ap + c
bp + d

)
=

(
(a− 1) p + c + p

bp + d

)
(since ap + c = (a− 1) p + c + p)

≡ A (a− 1, b) + A (a− 1, b− 1)mod p

(by (20)). This proves Observation 1.]

Observation 2: We have A (0, 0) ≡ u mod p.

[Proof of Observation 2: The definition of A yields

A (0, 0) =
(

0p + c
0p + d

)
=

(
c
d

)
(since 0p + c = c and 0p + d = d)

= u
(

since u =

(
c
d

))
≡ u mod p.

This proves Observation 2.]

Observation 3: Every a ∈ Z and every negative b ∈ Z satisfy

A (a, b) ≡ 0 mod p.

[Proof of Observation 3: Let a ∈ Z. Let b ∈ Z be negative. Then, bp + d is a

negative integer6. Hence, Definition 1.8 yields
(

ap + c
bp + d

)
= 0. Now, the definition

of A yields

A (a, b) =
(

ap + c
bp + d

)
= 0 ≡ 0 mod p.

This proves Observation 3.]
6Proof. We have d ∈ {0, 1, . . . , p− 1}, so that d ≤ p − 1 < p. But b is a negative integer (since

b ∈ Z is negative); hence, b ∈ {−1,−2,−3, . . .}, so that b ≤ −1. Hence, bp ≤ (−1) p (since p is
positive). Thus, bp︸︷︷︸

≤(−1)p

+ d︸︷︷︸
<p

< (−1) p + p = 0. Therefore, bp + d is a negative integer (since

bp + d ∈ Z). Qed.



The Lucas and Babbage congruences page 15

Observation 4: Every positive integer b satisfies

A (0, b) ≡ 0 mod p.

[Proof of Observation 4: Let b be a positive integer. Thus, b > 0. Also, d ∈
{0, 1, . . . , p− 1}, so that d ≥ 0. Hence, b︸︷︷︸

>0

p︸︷︷︸
>0

+ d︸︷︷︸
≥0

> 0. Thus, bp + d is a

positive integer (since bp+ d ∈ Z), so that bp+ d ∈N. Also, c ∈ {0, 1, . . . , p− 1} ⊆
N. Moreover, b > 0, so that b ≥ 1 (since b is an integer). Using p > 0, we thus find

b︸︷︷︸
≥1

p ≥ p. But c ∈ {0, 1, . . . , p− 1}, so that c ≤ p− 1 < p. Hence, p > c.

Now, bp+ d︸︷︷︸
≥0

≥ bp ≥ p > c, so that c < bp+ d. Hence, Proposition 1.3 (applied

to m = c and n = bp + d) yields
(

c
bp + d

)
= 0.

Now, the definition of A yields

A (0, b) =
(

0p + c
bp + d

)
=

(
c

bp + d

)
(since 0p + c = c)

= 0 ≡ 0 mod p.

This proves Observation 4.]
We have now proven the four Observations 1, 2, 3 and 4. In other words, the

four conditions in Lemma 2.5 hold if we set N = p. Thus, Lemma 2.5 (applied to
N = p) yields that every a ∈ Z and b ∈ Z satisfy

A (a, b) ≡ u
(

a
b

)
mod p. (21)

Now, let a and b be two integers. Thus, a ∈ Z and b ∈ Z. Hence, (21) yields

A (a, b) ≡ u︸︷︷︸
=

(
c
d

)
(

a
b

)
=

(
c
d

)(
a
b

)
=

(
a
b

)(
c
d

)
mod p.

In view of

A (a, b) =
(

ap + c
bp + d

)
(by the definition of A) ,

this rewrites as (
ap + c
bp + d

)
≡
(

a
b

)(
c
d

)
mod p.

This proves Theorem 1.11.
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2.5. Two lemmas for Babbage’s theorem

Before we start proving Theorem 1.12, let us show two more auxiliary results. The
first one is a consequence of Theorem 1.11:

Lemma 2.6. Let p be a prime. Let r ∈ Z and s ∈ Z. Let k ∈ {1, 2, . . . , p− 1}.

Then, p |
(

rp
sp + k

)
.

Proof of Lemma 2.6. From k ∈ {1, 2, . . . , p− 1}, we conclude that k is a positive inte-
ger. Thus, k > 0. Hence, 0 < k. Also, k ∈ {1, 2, . . . , p− 1} ⊆ N. Thus, Proposition

1.3 (applied to m = 0 and n = k) yields
(

0
k

)
= 0.

We have k ∈ {1, 2, . . . , p− 1} ⊆ {0, 1, . . . , p− 1}. Also, 0 ∈ {0, 1, . . . , p− 1} (since
p− 1 ∈ N (since p is a positive integer)). Thus, Theorem 1.11 (applied to a = r,
b = s, c = 0 and d = k) yields(

rp + 0
sp + k

)
≡
(

r
s

)(
0
k

)
︸︷︷︸
=0

= 0 mod p.

In other words, p |
(

rp + 0
sp + k

)
. In view of rp + 0 = rp, this rewrites as p |

(
rp

sp + k

)
.

Hence, Lemma 2.6 is proven.

The next auxiliary result is similar to Corollary 2.4, and also follows from Corol-
lary 2.3:

Corollary 2.7. Let r ∈ Z and b ∈ Z. Let p be a prime. Then,(
(r + 1) p

bp

)
≡
(

rp
bp

)
+

(
rp

(b− 1) p

)
mod p2.

Proof of Corollary 2.7. We have(
rp

bp− i

)(
p
i

)
≡ 0 mod p2 for each i ∈ {1, 2, . . . , p− 1} (22)

7.

7Proof of (22): Let i ∈ {1, 2, . . . , p− 1}. Proposition 2.1 (applied to k = i) yields p |
(

p
i

)
. In other

words, there exists an x ∈ Z such that
(

p
i

)
= px. Consider this x.

On the other hand, from i ∈ {1, 2, . . . , p− 1}, we obtain p − i ∈ {1, 2, . . . , p− 1}. Hence,
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The number p is a prime, and thus a positive integer. Hence, Corollary 2.3
(applied to x = rp, y = p and n = bp) yields(

rp + p
bp

)
=

(
rp
bp

)
+

p−1

∑
i=1

(
rp

bp− i

)(
p
i

)
︸ ︷︷ ︸
≡0 mod p2

(by (22))

+

(
rp

bp− p

)
︸ ︷︷ ︸

=

(
rp

(b− 1) p

)
(since bp−p=(b−1)p)

≡
(

rp
bp

)
+

p−1

∑
i=1

0︸︷︷︸
=0

+

(
rp

(b− 1) p

)
=

(
rp
bp

)
+

(
rp

(b− 1) p

)
mod p2.

In view of rp + p = (r + 1) p, this rewrites as(
(r + 1) p

bp

)
≡
(

rp
bp

)
+

(
rp

(b− 1) p

)
mod p2.

This proves Corollary 2.7.

2.6. Proof of Babbage’s theorem

We are now ready to prove Theorem 1.12:

Proof of Theorem 1.12. Let us forget that we fixed a and b.
Define an integer u ∈ Z by u = 1. Define a map A : Z×Z→ Z by(

A (a, b) =
(

ap
bp

)
for each (a, b) ∈ Z×Z

)
.

Let us now prove some properties of the map A:

Observation 1: Every a ∈ Z and b ∈ Z satisfy

A (a, b) ≡ A (a− 1, b) + A (a− 1, b− 1)mod p2.

Lemma 2.6 (applied to s = b − 1 and k = p − i) yields p |
(

rp
(b− 1) p + p− i

)
=

(
rp

bp− i

)
(since (b− 1) p + p− i = bp− i). In other words, there exists a y ∈ Z such that

(
rp

bp− i

)
= py.

Consider this y.
We have (

rp
bp− i

)
︸ ︷︷ ︸

=py

(
p
i

)
︸︷︷︸
=px

= pypx = p2xy ≡ 0 mod p2.

This proves (22).
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[Proof of Observation 1: Let a ∈ Z and b ∈ Z. Then, the definition of A yields

A (a− 1, b) =
(
(a− 1) p

bp

)
. (23)

Also, the definition of A yields

A (a− 1, b− 1) =
(
(a− 1) p
(b− 1) p

)
. (24)

Corollary 2.7 (applied to r = a− 1) yields(
((a− 1) + 1) p

bp

)
≡
(
(a− 1) p

bp

)
︸ ︷︷ ︸
=A(a−1,b)

(by (23))

+

(
(a− 1) p
(b− 1) p

)
︸ ︷︷ ︸
=A(a−1,b−1)

(by (24))

= A (a− 1, b) + A (a− 1, b− 1)mod p2. (25)

Now, the definition of A yields

A (a, b) =
(

ap
bp

)
=

(
((a− 1) + 1) p

bp

)
(since a = (a− 1) + 1)

≡ A (a− 1, b) + A (a− 1, b− 1)mod p2

(by (25)). This proves Observation 1.]

Observation 2: We have A (0, 0) ≡ u mod p2.

[Proof of Observation 2: The definition of A yields

A (0, 0) =
(

0p
0p

)
=

(
0
0

)
= 1 = u ≡ u mod p2.

This proves Observation 2.]

Observation 3: Every a ∈ Z and every negative b ∈ Z satisfy

A (a, b) ≡ 0 mod p2.

[Proof of Observation 3: Let a ∈ Z. Let b ∈ Z be negative. Then, bp is a negative

integer (since b is negative but p is positive). Hence, Definition 1.8 yields
(

ap
bp

)
= 0.

Now, the definition of A yields

A (a, b) =
(

ap
bp

)
= 0 ≡ 0 mod p2.

This proves Observation 3.]
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Observation 4: Every positive integer b satisfies

A (0, b) ≡ 0 mod p2.

[Proof of Observation 4: Let b be a positive integer. Thus, b > 0. Hence, bp > 0
(since p is positive). Thus, bp is a positive integer (since bp ∈ Z), so that bp ∈ N.
Moreover, 0 < bp (since bp > 0). Hence, Proposition 1.3 (applied to m = 0 and

n = bp) yields
(

0
bp

)
= 0.

Now, the definition of A yields

A (0, b) =
(

0p
bp

)
=

(
0

bp

)
(since 0p = 0)

= 0 ≡ 0 mod p2.

This proves Observation 4.]
We have now proven the four Observations 1, 2, 3 and 4. In other words, the

four conditions in Lemma 2.5 hold if we set N = p2. Thus, Lemma 2.5 (applied to
N = p2) yields that every a ∈ Z and b ∈ Z satisfy

A (a, b) ≡ u
(

a
b

)
mod p2. (26)

Now, let a and b be two integers. Thus, a ∈ Z and b ∈ Z. Hence, (26) yields

A (a, b) ≡ u︸︷︷︸
=1

(
a
b

)
=

(
a
b

)
mod p2.

In view of

A (a, b) =
(

ap
bp

)
(by the definition of A) ,

this rewrites as (
ap
bp

)
≡
(

a
b

)
mod p2.

This proves Theorem 1.12.

3. The sums of the first p powers

3.1. The congruence

Next, we shall prove a well-known congruence concerning the sum
p−1
∑

l=0
lk = 0k +

1k + · · ·+ (p− 1)k for a prime p:
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Theorem 3.1. Let p be a prime. Let k ∈ N. Assume that k is not a positive
multiple of p− 1. Then,

p−1

∑
l=0

lk ≡ 0 mod p.

Theorem 3.1 has nothing to do with binomial coefficients. Nevertheless, we shall
prove it using binomial coefficients.

3.2. Powers and power sums via Stirling numbers of the second
kind

We shall first introduce another family of integers: the so-called Stirling numbers
of the second kind. They have various equivalent definitions; we define them by
recursion:

Definition 3.2. For each m ∈N and n ∈ Z, we define an integer
{

m
n

}
as follows:

We proceed by recursion on m:

• We set {
0
n

}
=

{
1, if n = 0;
0, if n 6= 0

for all n ∈ Z. (27)

This defines
{

m
n

}
for m = 0.

• For each positive integer m and each n ∈ Z, we set{
m
n

}
= n

{
m− 1

n

}
+

{
m− 1
n− 1

}
. (28)

Thus, a family
({

m
n

})
(m,n)∈N×Z

of integers is defined. These integers
{

m
n

}
are called the Stirling numbers of the second kind.

These Stirling numbers
{

m
n

}
have a well-known combinatorial interpretation:

Namely, if m ∈ N and n ∈ N, then
{

m
n

}
is the number of set partitions of the

set {1, 2, . . . , m} into n nonempty subsets. This is actually not hard to prove by
induction on m (for example, the proof is sketched in [Stan11, §1.9] and in [GrKnPa,
§6.1]8); but we don’t need this. Instead, let us prove the following algebraic facts:

8To be more precise, both [Stan11, §1.9] and [GrKnPa, §6.1] define
{

m
n

}
as the number of set
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Proposition 3.3. For each m ∈N and n ∈ Z satisfying n /∈ {0, 1, . . . , m}, we have{
m
n

}
= 0.

Proof of Proposition 3.3. We shall prove Proposition 3.3 by induction on m:
Induction base: Proposition 3.3 holds when m = 0 (as follows easily from (27)).

This completes the induction base.
Induction step: Let k be a positive integer. Assume that Proposition 3.3 holds

when m = k− 1. We must now prove that Proposition 3.3 holds when m = k.
We have assumed that Proposition 3.3 holds when m = k − 1. In other words,

for each n ∈ Z satisfying n /∈ {0, 1, . . . , k− 1}, we have{
k− 1

n

}
= 0. (29)

Now, let n ∈ Z be such that n /∈ {0, 1, . . . , k}. Thus, n − 1 /∈ {0, 1, . . . , k− 1}.

Hence, (29) (applied to n− 1 instead of n) yields
{

k− 1
n− 1

}
= 0. Also, n /∈ {0, 1, . . . , k− 1}

(this again follows from n /∈ {0, 1, . . . , k}). Hence, (29) yields
{

k− 1
n

}
= 0. Now,

(28) (applied to m = k) yields{
k
n

}
= n

{
k− 1

n

}
︸ ︷︷ ︸

=0

+

{
k− 1
n− 1

}
︸ ︷︷ ︸

=0

= 0.

Now, forget that we fixed n. We thus have shown that for each n ∈ Z satisfying

n /∈ {0, 1, . . . , k}, we have
{

k
n

}
= 0. In other words, Proposition 3.3 holds when

m = k. This completes the induction step. Thus, the proof of Proposition 3.3 is
complete.

Lemma 3.4. Let j ∈N and x ∈ Q. Then,

j! (x− j)
(

x
j

)
= (j + 1)!

(
x

j + 1

)
.

Proof of Lemma 3.4. We have j ∈N. Thus, the definition of
(

x
j

)
yields

(
x
j

)
=

x (x− 1) · · · (x− j + 1)
j!

.

partitions of the set {1, 2, . . . , m} into n nonempty subsets, and then prove that (27) and (28)
hold with this definition. This is exactly the opposite of what we are doing; but of course, it is
equivalent.
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Hence,

j! (x− j)
(

x
j

)
︸︷︷︸

=
x (x− 1) · · · (x− j + 1)

j!

= j! (x− j) · x (x− 1) · · · (x− j + 1)
j!

= (x− j) · (x (x− 1) · · · (x− j + 1))
= (x (x− 1) · · · (x− j + 1)) · (x− j)
= x (x− 1) · · · (x− j) . (30)

On the other hand, j + 1 ∈ N (since j ∈ N). Hence, the definition of
(

x
j + 1

)
yields (

x
j + 1

)
=

x (x− 1) · · · (x− (j + 1) + 1)
(j + 1)!

.

Hence,

(j + 1)!
(

x
j + 1

)
= x (x− 1) · · · (x− (j + 1) + 1)

= x (x− 1) · · · (x− j) (since x− (j + 1) + 1 = x− j)

= j! (x− j)
(

x
j

)
(by (30)) .

This proves Lemma 3.4.

Proposition 3.5. Let m ∈N and x ∈ Q. Then,

xm =
m

∑
j=0

j!
{

m
j

}(
x
j

)
.

Proof of Proposition 3.5. We shall prove Proposition 3.5 by induction on m:
Induction base: It is straightforward to see that Proposition 3.5 holds when m = 0.

This completes the induction base.
Induction step: Let k be a positive integer. Assume that Proposition 3.5 holds

when m = k− 1. We must now prove that Proposition 3.5 holds when m = k.
We have assumed that Proposition 3.5 holds when m = k − 1. In other words,

we have

xk−1 =
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
.
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Multiplying both sides of this equality by x, we obtain

xk−1x =

(
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

))
x =

k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
x︸︷︷︸

=j+(x−j)

=
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
(j + (x− j))︸ ︷︷ ︸

=j!

{
k− 1

j

}(
x
j

)
j+j!

{
k− 1

j

}(
x
j

)
(x−j)

=
k−1

∑
j=0

(
j!
{

k− 1
j

}(
x
j

)
j + j!

{
k− 1

j

}(
x
j

)
(x− j)

)

=
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j +

k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
(x− j) . (31)

But Proposition 3.3 (applied to m = k− 1 and n = k) yields
{

k− 1
k

}
= 0, whereas

Proposition 3.3 (applied to m = k− 1 and n = −1) yields
{

k− 1
−1

}
= 0.

But (28) (applied to m = k and n = j) yields{
k
j

}
= j
{

k− 1
j

}
+

{
k− 1
j− 1

}
. (32)

We have k ∈N (since k is a positive integer), so that k ∈ {0, 1, . . . , k}. Now,

k

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j

=
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j + k!

{
k− 1

k

}
︸ ︷︷ ︸

=0

(
x
k

)
k

(
here, we have split off the addend for j = k from the sum

(since k ∈ {0, 1, . . . , k} )

)
=

k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j + k!0

(
x
k

)
k︸ ︷︷ ︸

=0

=
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j,

so that
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j =

k

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j. (33)
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Also, 0 ∈ {0, 1, . . . , k} (since k ∈N). Now,

k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
(x− j)︸ ︷︷ ︸

=(x−j)

(
x
j

){
k− 1

j

}
=

k−1

∑
j=0

j! (x− j)
(

x
j

)
︸ ︷︷ ︸
=(j+1)!

(
x

j + 1

)
(by Lemma 3.4)

{
k− 1

j

}
︸ ︷︷ ︸

=

{
k− 1

(j + 1)− 1

}
(since j=(j+1)−1)

=
k−1

∑
j=0

(j + 1)!
(

x
j + 1

){
k− 1

(j + 1)− 1

}

=
k

∑
j=1

j!
(

x
j

){
k− 1
j− 1

}
(here, we have substituted j for j + 1 in the sum) .

Comparing this with

k

∑
j=0

j!
(

x
j

){
k− 1
j− 1

}

=
k

∑
j=1

j!
(

x
j

){
k− 1
j− 1

}
+ 0!

(
x
0

) {
k− 1
0− 1

}
︸ ︷︷ ︸

=

{
k− 1
−1

}
=0(

here, we have split off the addend for j = 0 from the sum
(since 0 ∈ {0, 1, . . . , k} )

)
=

k

∑
j=1

j!
(

x
j

){
k− 1
j− 1

}
+ 0!

(
x
0

)
0︸ ︷︷ ︸

=0

=
k

∑
j=1

j!
(

x
j

){
k− 1
j− 1

}
,

we find
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
(x− j) =

k

∑
j=0

j!
(

x
j

){
k− 1
j− 1

}
. (34)
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Comparing the equality (31) with xk−1x = xk, we find

xk =
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j︸ ︷︷ ︸

=
k
∑

j=0
j!

{
k− 1

j

}(
x
j

)
j

(by (33))

+
k−1

∑
j=0

j!
{

k− 1
j

}(
x
j

)
(x− j)︸ ︷︷ ︸

=
k
∑

j=0
j!

(
x
j

){
k− 1
j− 1

}
(by (34))

=
k

∑
j=0

j!
{

k− 1
j

}(
x
j

)
j +

k

∑
j=0

j!
(

x
j

){
k− 1
j− 1

}

=
k

∑
j=0

(
j!
{

k− 1
j

}(
x
j

)
j + j!

(
x
j

){
k− 1
j− 1

})
︸ ︷︷ ︸

=j!

j

{
k− 1

j

}
+

{
k− 1
j− 1

}(x
j

)

=
k

∑
j=0

j!
(

j
{

k− 1
j

}
+

{
k− 1
j− 1

})
︸ ︷︷ ︸

=

{
k
j

}
(by (32))

(
x
j

)
=

k

∑
j=0

j!
{

k
j

}(
x
j

)
.

In other words, Proposition 3.5 holds when m = k. This completes the induction
step. Thus, Proposition 3.5 is proven.

Next, we shall prove another basic identity about binomial coefficients, some-
times known as the hockey-stick identity (in this or another equivalent form):

Proposition 3.6. Let j ∈N and h ∈N. Then,

h

∑
x=0

(
x
j

)
=

(
h + 1
j + 1

)
.

Proof of Proposition 3.6. For each x ∈N, we have(
x
j

)
=

(
x + 1
j + 1

)
−
(

x
j + 1

)
(35)

9.

9Proof of (35): Let x ∈N. Then, Proposition 1.10 (applied to m = x + 1 and n = j + 1) yields(
x + 1
j + 1

)
=

(
(x + 1)− 1
(j + 1)− 1

)
+

(
(x + 1)− 1

j + 1

)
=

(
x
j

)
+

(
x

j + 1

)
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Proposition 1.3 (applied to m = 0 and n = j + 1) yields
(

0
j + 1

)
= 0 (since

0 ≤ j < j + 1).
But

h+1

∑
x=0

(
x

j + 1

)
=

h+1

∑
x=1

(
x

j + 1

)
+

(
0

j + 1

)
︸ ︷︷ ︸

=0(
here, we have split off the addend for x = 0 from the sum

(since 0 ∈ {0, 1, . . . , h + 1} )

)
=

h+1

∑
x=1

(
x

j + 1

)
=

h

∑
x=0

(
x + 1
j + 1

)
(here, we have substituted x + 1 for x in the sum). Hence,

h

∑
x=0

(
x + 1
j + 1

)
=

h+1

∑
x=0

(
x

j + 1

)
=

h

∑
x=0

(
x

j + 1

)
+

(
h + 1
j + 1

)
(36)(

here, we have split off the addend for x = h + 1 from the sum
(since h + 1 ∈ {0, 1, . . . , h + 1} (since h + 1 ∈N))

)
.

Now,

h

∑
x=0

(
x
j

)
︸︷︷︸

=

(
x + 1
j + 1

)
−

(
x

j + 1

)
(by (35))

=
h

∑
x=0

((
x + 1
j + 1

)
−
(

x
j + 1

))
=

h

∑
x=0

(
x + 1
j + 1

)
︸ ︷︷ ︸

=
h
∑

x=0

(
x

j + 1

)
+

(
h + 1
j + 1

)
(by (36))

−
h

∑
x=0

(
x

j + 1

)

=
h

∑
x=0

(
x

j + 1

)
+

(
h + 1
j + 1

)
−

h

∑
x=0

(
x

j + 1

)
=

(
h + 1
j + 1

)
.

This proves Proposition 3.6.

We can now obtain a reasonably simple formula for sums of the form
h
∑

x=0
xm:

(since (x + 1)− 1 = x and (j + 1)− 1 = j). Solving this equation for
(

x
j

)
, we obtain

(
x
j

)
=(

x + 1
j + 1

)
−
(

x
j + 1

)
. This proves (35).
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Theorem 3.7. Let m ∈N and h ∈N. Then,

h

∑
x=0

xm =
m

∑
j=0

j!
{

m
j

}(
h + 1
j + 1

)
.

Proof of Theorem 3.7. We have

h

∑
x=0

xm︸︷︷︸
=

m
∑

j=0
j!

{
m
j

}(
x
j

)
(by Proposition 3.5)

=
h

∑
x=0

m

∑
j=0︸ ︷︷ ︸

=
m
∑

j=0

h
∑

x=0

j!
{

m
j

}(
x
j

)

=
m

∑
j=0

h

∑
x=0

j!
{

m
j

}(
x
j

)
=

m

∑
j=0

j!
{

m
j

} h

∑
x=0

(
x
j

)
︸ ︷︷ ︸
=

(
h + 1
j + 1

)
(by Proposition 3.6)

=
m

∑
j=0

j!
{

m
j

}(
h + 1
j + 1

)
.

This proves Theorem 3.7.

We are now ready to prove the following particular case of Theorem 3.1:

Lemma 3.8. Let p be a prime. Let k ∈N. Assume that k < p− 1. Then,

p−1

∑
l=0

lk ≡ 0 mod p.

Proof of Lemma 3.8. We have k < p − 1, so that k + 1 < p. Since k + 1 and p are
integers, this yields k + 1 ≤ p− 1.

For each j ∈ {0, 1, . . . , k}, we have(
p

j + 1

)
≡ 0 mod p (37)

10.
10Proof of (37): Let j ∈ {0, 1, . . . , k}. Thus, 0 ≤ j ≤ k. From j ≥ 0, we obtain j︸︷︷︸

≥0

+1 ≥ 1. Combining

this with j︸︷︷︸
≤k

+1 ≤ k + 1 ≤ p− 1, we obtain 1 ≤ j + 1 ≤ p− 1. Hence, j + 1 ∈ {1, 2, . . . , p− 1}.

Thus, Proposition 2.1 (applied to j+ 1 instead of k) yields p |
(

p
j + 1

)
. In other words,

(
p

j + 1

)
≡

0 mod p. This proves (37).
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Now, p− 1 ∈N (since p ≥ 1 (since p is a prime)). Thus, Theorem 3.7 (applied to
h = p− 1 and m = k) yields

p−1

∑
x=0

xk =
k

∑
j=0

j!
{

k
j

}(
(p− 1) + 1

j + 1

)
=

k

∑
j=0

j!
{

k
j

}(
p

j + 1

)
︸ ︷︷ ︸
≡0 mod p
(by (37))

(since (p− 1) + 1 = p)

≡
k

∑
j=0

j!
{

k
j

}
0 = 0 mod p.

Now,
p−1

∑
l=0

lk =
p−1

∑
x=0

xk (here, we have renamed the summation index l as x)

≡ 0 mod p.

This proves Lemma 3.8.

3.3. Finishing the proof

The last ingredient we need for the proof of Theorem 3.1 is Fermat’s little theorem:

Proposition 3.9. Let p be a prime. Let a ∈ Z. Then, ap ≡ a mod p.

Proposition 3.9 is, of course, one of the fundamental facts of number theory, and
shall not be proven here. We shall use the following corollary of Proposition 3.9:

Corollary 3.10. Let p be a prime. Let a ∈ Z. Let k be a positive integer. Let r
be the remainder of k upon division by p− 1. Assume that k is not a multiple of
p− 1. Then, ak ≡ ar mod p.

Proof of Corollary 3.10. The definition of r shows that r ∈ {0, 1, . . . , (p− 1)− 1} and
r ≡ k mod p − 1 and r ≤ k (since k ≥ 0). But k 6≡ 0 mod p − 1 (since k is not a
multiple of p− 1). Hence, r ≡ k 6≡ 0 mod p− 1, so that r 6= 0.

From k ≡ r mod p− 1, we obtain p− 1 | k− r. Thus, there exists a q ∈ Z such
that k− r = (p− 1) q. Consider this q. We have (p− 1) q = k− r ≥ 0 (since r ≤ k)
and thus q ≥ 0 (since p− 1 > 0). In other words, q ∈N.

Proposition 3.9 yields ap ≡ a mod p. Hence,

a(p−1)m ≡ a mod p for each m ∈N (38)
11. Applying this to m = q, we obtain a(p−1)q+1 ≡ a mod p (since q ∈ N). Mul-
tiplying both sides of this congruence with ar−1, we find a(p−1)q+1ar−1 ≡ aar−1 =
ar mod p. Thus,

ar ≡ a(p−1)q+1ar−1 = a(p−1)q+1+(r−1) = ak mod p
11Proof of (38): We shall prove (38) by induction on m:
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(since (p− 1) q︸ ︷︷ ︸
=k−r

+1 + (r− 1) = k − r + 1 + (r− 1) = k). This proves Corollary

3.10.

Proof of Theorem 3.1. If k < p − 1, then the claim of Theorem 3.1 follows from
Lemma 3.8. Hence, for the rest of this proof, we WLOG assume that we don’t
have k < p− 1. Thus, k ≥ p− 1 > 0. Hence, k is positive. Thus, k is not a multiple
of p− 1 (because k is not a positive multiple of p− 1, but is positive).

Let r be the remainder of k upon division by p− 1. Thus, r ∈ {0, 1, . . . , (p− 1)− 1},
so that r ∈ N and r ≤ (p− 1) − 1 < p − 1. Each l ∈ {0, 1, . . . , p− 1} satisfies
lk ≡ lr mod p (by Corollary 3.10, applied to a = l). Hence,

p−1

∑
l=0

lk︸︷︷︸
≡lr mod p

≡
p−1

∑
l=0

lr ≡ 0 mod p

(by Lemma 3.8, applied to r instead of k). This proves Theorem 3.1.
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