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Problem

Let L�K be a separable algebraic extension of fields.
Let V , W and U be L-vector spaces. Then, V , W and U canonically become

K-vector spaces.
Let h : V × W → U be a K-bilinear map (not necessarily an L-bilinear map).

Assume that

h (xa, xb) = x2h (a, b) for every x ∈ L, a ∈ V and b ∈ W. (1)

Then, prove that h is L-bilinear.

Solutions of the problem

We give three solutions to the above problem.

First solution

First solution of the problem:
We first prove the following lemma:

Lemma 1. Under the conditions of the problem, let x ∈ L, a ∈ V and
b ∈ W be arbitrary. Let α = h (a, b) and β = h (a, xb) − xh (a, b). Then,
every positive n ∈ N satisfies

h (a, xnb) = xnα + nxn−1β. (2)

Proof of Lemma 1. Let us prove that (2) holds for every positive n ∈ N. We will
prove this by strong induction over n:

Induction step1: Let N ∈ N be positive. Assume that (2) holds for every positive
n ∈ N satisfying n < N . We must then prove that (2) holds for n = N .

The equality (2) holds for n = 1 (since

h

(
a, x1︸︷︷︸

=x

b

)
= h (a, xb) = x︸︷︷︸

=x1

h (a, b)︸ ︷︷ ︸
=α

+ h (a, xb)− xh (a, b)︸ ︷︷ ︸
=β=1β=1x1−1β

(since 1x1−1=1x0=1 and thus 1=1x1−1)

= xα+1x1−1β

). In other words, if N = 1, then (2) holds for n = N . Hence, if N = 1, the induction
step is already completed. Thus, for the rest of the induction step, we can WLOG
assume that N 6= 1. Assume this.

1A strong induction does not need an induction base.
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Since N ∈ N is positive, but N 6= 1, we must have N ≥ 2. Thus, N − 1 lies in
N and is positive. Consequently, (2) holds for n = N − 1 (since we assumed that (2)
holds for every n ∈ N satisfying n < N). In other words, h

(
a, xN−1b

)
= xN−1α +

(N − 1) x(N−1)−1β. Now,

h

xa, xN︸︷︷︸
=xxN−1

b

 = h
(
xa, xxN−1b

)
= x2h

(
a, xN−1b

)
(3)

(by (1), applied to xN−1b instead of b).
It is easy to show that

h
(
xa, xN−1b

)
= xNα + (N − 2) xN−1β (4)

2.
But (1) (applied to 1+x and xN−1b instead of x and b) yields h

(
(1 + x) a, (1 + x) xN−1b

)
=

2Proof of (4). We have N ≥ 2. Thus, we must be in one of the following two cases:
Case 1: We have N = 2.
Case 2: We have N > 2.
Let us first consider Case 1. In this case, N = 2, so that N − 1 = 1, and thus xN−1 = x1 = x, so

that

h
(
xa, xN−1b

)
= h (xa, xb) = x2 h (a, b)︸ ︷︷ ︸

=α

(by (1))

= x2α

Compared with
xN︸︷︷︸
=x2

(since N=2)

α + (N − 2)︸ ︷︷ ︸
=0

(since N=2)

xN−1β = x2α + 0xN−1β = x2α,

this yields h
(
xa, xN−1b

)
= xNα + (N − 2) xN−1β. Thus, (4) is proven in Case 1.

Now, let us consider Case 2. In this case, N > 2, so that N − 2 is a positive element of N.
Consequently, (2) holds for n = N − 2 (since we assumed that (2) holds for every n ∈ N satisfying
n < N). In other words, h

(
a, xN−2b

)
= xN−2α + (N − 2) x(N−2)−1β. Now,

h

xa, xN−1︸ ︷︷ ︸
=xxN−2

b

 = h
(
xa, xxN−2b

)
= x2 h

(
a, xN−2b

)︸ ︷︷ ︸
=xN−2α+(N−2)x(N−2)−1β

(
by (1), applied to xN−2b instead of b

)
= x2

(
xN−2α + (N − 2) x(N−2)−1β

)
= x2xN−2︸ ︷︷ ︸

=x2+(N−2)=xN

α + (N − 2) x2x(N−2)−1︸ ︷︷ ︸
=x2+((N−2)−1)=xN−1

β = xNα + (N − 2) xN−1β.

Thus, (4) is proven in Case 2.
Thus, in each of the two cases 1 and 2, we have shown that (4) holds. Since Cases 1 and 2 are the

only two possible cases, this shows that (4) always holds, qed.
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(1 + x)2 h
(
a, xN−1b

)
. Since

h

(1 + x) a︸ ︷︷ ︸
=a+xa

, (1 + x) xN−1b︸ ︷︷ ︸
=xN−1b+xxN−1b


= h

a + xa, xN−1b + xxN−1︸ ︷︷ ︸
=xN

b

 = h
(
a + xa, xN−1b + xNb

)
= h

(
a, xN−1b

)
+ h

(
a, xNb

)
+ h

(
xa, xN−1b

)
+ h

(
xa, xNb

)︸ ︷︷ ︸
=x2h(a,xN−1b)

(by (3))

(since h is K-bilinear)

= h
(
a, xN−1b

)
+ h

(
a, xNb

)
+ h

(
xa, xN−1b

)
+ x2h

(
a, xN−1b

)
= h

(
a, xNb

)
+ h

(
a, xN−1b

)
+ x2h

(
a, xN−1b

)
+ h

(
xa, xN−1b

)
,

this rewrites as

h
(
a, xNb

)
+ h

(
a, xN−1b

)
+ x2h

(
a, xN−1b

)
+ h

(
xa, xN−1b

)
= (1 + x)2 h

(
a, xN−1b

)
.

In other words,

h
(
a, xNb

)
= (1 + x)2 h

(
a, xN−1b

)
− h

(
a, xN−1b

)
− x2h

(
a, xN−1b

)︸ ︷︷ ︸
=((1+x)2−1−x2)h(a,xN−1b)

−h
(
xa, xN−1b

)
=
(
(1 + x)2 − 1

)︸ ︷︷ ︸
=2x

h
(
a, xN−1b

)︸ ︷︷ ︸
=xN−1α+(N−1)x(N−1)−1β

− h
(
xa, xN−1b

)︸ ︷︷ ︸
=xNα+(N−2)xN−1β

(by (4))

= 2x
(
xN−1α + (N − 1) x(N−1)−1β

)
−
(
xNα + (N − 2) xN−1β

)
= 2 xxN−1︸ ︷︷ ︸

=x1+(N−1)=xN

α + 2 (N − 1) xx(N−1)−1︸ ︷︷ ︸
=x1+((N−1)−1)=xN−1

β − xNα− (N − 2) xN−1β

= 2xNα + 2 (N − 1) xN−1β − xNα− (N − 2) xN−1β

=
(
2xNα− xNα

)︸ ︷︷ ︸
=(2−1)xNα

+
(
2 (N − 1) xN−1β − (N − 2) xN−1β

)︸ ︷︷ ︸
=(2(N−1)−(N−2))xN−1β

= (2− 1)︸ ︷︷ ︸
=1

xNα + (2 (N − 1)− (N − 2))︸ ︷︷ ︸
=N

xN−1β = xNα + NxN−1β.

In other words, (2) holds for n = N . This completes the induction step. Thus, the
induction proof of (2) is done. In other words, Lemma 1 is proven.

Now, we will show:

Lemma 2. Under the conditions of the problem, let x ∈ L, a ∈ V and
b ∈ W be arbitrary. Then, h (a, xb) = xh (a, b).

Proof of Lemma 2. Let α = h (a, b) and β = h (a, xb) − xh (a, b). According to
Lemma 1, every n ∈ N satisfies (2).

Since L is an algebraic extension of K, the element x ∈ L has a minimal polynomial
over K. Let P ∈ K [X] be this minimal polynomial. Then, P is separable (since
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L is a separable extension of K, so that x is separable over K). In other words,
gcd (P, P ′) = 1 (where P ′ denotes the X-derivative of the polynomial P ). Hence, no
root of the polynomial P is simultaneously a root of P ′. Thus, x is not a root of P ′

(because x is a root of the polynomial P (since P is the minimal polynomial of x)). In
other words, P ′ (x) 6= 0.

Since P is the minimal polynomial of x, we have P (x) = 0.

Since P ∈ K [X] is a polynomial over K, we can write P in the form P =
M∑

n=0

λnX
n

for some M ∈ N and some elements λ0, λ1, ..., λM of K. Consider this M and these
elements λ0, λ1, ..., λM .

Since P =
M∑

n=0

λnX
n, we have P ′ =

M∑
n=1

nλnX
n−1 (by the definition of the derivative

of a polynomial), so that P ′ (x) =
M∑

n=1

nλnx
n−1.

On the other hand, 0 = P (x) =
M∑

n=0

λnx
n (since P =

M∑
n=0

λnX
n), so that 0b =

M∑
n=0

λnx
nb. In other words, 0 =

M∑
n=0

λnx
nb. Hence,

h (a, 0) = h

(
a,

M∑
n=0

λnx
nb

)
=

M∑
n=0

λnh (a, xnb) (since h is K-bilinear)

= λ0h

(
a, x0︸︷︷︸

=1

b

)
+

M∑
n=1

λn h (a, xnb)︸ ︷︷ ︸
=xnα+nxn−1β

(by (2))

= λ0 h (a, b)︸ ︷︷ ︸
=α=x0α

(since x0=1 and
thus x0α=α)

+
M∑

n=1

λn

(
xnα + nxn−1β

)︸ ︷︷ ︸
=λnxnα+λnnxn−1β

= λ0x
0α +

M∑
n=1

(
λnx

nα + λnnxn−1β
)

︸ ︷︷ ︸
=

 
MP

n=1
λnxn

!
α+

 
MP

n=1
λnnxn−1

!
β

= λ0x
0α +

(
M∑

n=1

λnx
n

)
α︸ ︷︷ ︸

=

 
λ0x0+

MP
n=1

λnxn

!
α

+

 M∑
n=1

λnn︸︷︷︸
=nλn

xn−1

 β

=

(
λ0x

0 +
M∑

n=1

λnx
n

)
︸ ︷︷ ︸

=
MP

n=0
λnxn=0

α +

(
M∑

n=1

nλnx
n−1

)
︸ ︷︷ ︸

=P ′(x)

β = 0α + P ′ (x) · β = P ′ (x) · β.

Since h (a, 0) = 0 (because h is K-bilinear), this becomes 0 = P ′ (x)·β. Since P ′ (x) 6= 0,
this yields 0 = β (since L is a field). Now, (2) (applied to n = 1) yields

h
(
a, x1b

)
= x1︸︷︷︸

=x

α + 1x1−1 β︸︷︷︸
=0

= x α︸︷︷︸
=h(a,b)

+ 1x1−10︸ ︷︷ ︸
=0

= xh (a, b) .

Since x1 = x, this simplifies to h (a, xb) = xh (a, b). This proves Lemma 2.
Notice that h (a, b + b′) = h (a, b) + h (a, b′) for all a ∈ V , b ∈ W and b′ ∈ W (since

h is K-bilinear). This, combined with Lemma 2, yields that the map h is L-linear in
its second variable. Similarly, the map h is L-linear in its first variable. Hence, the
map h is L-linear in each of its two variables, i. e., an L-bilinear map.
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Second solution

Second solution of the problem:
Let us first completely forget about the problem. In particular, let us forget about

the notations K, L, V , W , U and h.
We define a well-known notion from ring theory:

Definition 11. Let L be a commutative ring. Let U be an L-module. A
derivation from L to U means a homomorphism δ : L → U of additive
groups (not a priori required to be L-linear) which satisfies

(δ (xy) = δ (x) · y + x · δ (y) for all x ∈ L and y ∈ L) .

Let us now prove a known fact about separable algebraic field extensions:

Proposition 12. Let L�K be a separable algebraic extension of fields.
Let U be a L-vector space. Let D : L → U be a derivation3 such that
D (K) = 0. Then, D = 0.

Proof of Proposition 12. Let x ∈ L. It is easy to see that

D (xn) = D (x) · nxn−1 for all positive n ∈ N. (5)

4

Since L is an algebraic extension of K, the element x ∈ L has a minimal polynomial
over K. Let P ∈ K [X] be this minimal polynomial. Then, P is separable (since
L is a separable extension of K, so that x is separable over K). In other words,
gcd (P, P ′) = 1 (where P ′ denotes the X-derivative of the polynomial P ). Hence, no
root of the polynomial P is simultaneously a root of P ′. Thus, x is not a root of P ′

(because x is a root of the polynomial P (since P is the minimal polynomial of x)). In
other words, P ′ (x) 6= 0.

3The notion of a ”derivation” has been defined in Definition 11. Keep in mind that a derivation
isn’t a priori required to be K-linear or L-linear.

4Proof of (5): We will prove (5) by induction over n:
Induction base: For n = 1, we have D (xn) = D

(
x1
)

= D (x) and D (x) · nxn−1 = D (x) · 1 x1−1︸︷︷︸
=x0=1

=

D (x). Hence, for n = 1, we have D (xn) = D (x) = D (x) · nxn−1. Thus, (5) holds for n = 1. This
completes the induction base.

Induction step: Let m be a positive integer. Assume that (5) holds for n = m. We must now prove
that (5) also holds for n = m + 1.

Since (5) holds for n = m, we have D (xm) = D (x) ·mxm−1. Now, since D is a derivation, we have

D (xm · x) = D (xm)︸ ︷︷ ︸
=D(x)·mxm−1

·x + xm ·D (x) = D (x) ·m xm−1 · x︸ ︷︷ ︸
=xm

+xm ·D (x)︸ ︷︷ ︸
=D(x)·xm

= D (x) ·mxm + D (x) · xm = D (x) · (mxm + xm)︸ ︷︷ ︸
=(m+1)xm

= D (x) · (m + 1) xm︸︷︷︸
=x(m+1)−1

= D (x) · (m + 1) x(m+1)−1.

Since xm · x = xm+1, this rewrites as D
(
xm+1

)
= D (x) · (m + 1) x(m+1)−1. In other words, (5) also

holds for n = m + 1. This completes the induction step. Thus, the induction proof of (5) is complete.
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Since P ∈ K [X] is a polynomial over K, we can write P in the form P =
M∑

n=0

λnX
n

for some M ∈ N and some elements λ0, λ1, ..., λM of K. Consider this M and these
elements λ0, λ1, ..., λM .

Since P =
M∑

n=0

λnX
n, we have P ′ =

M∑
n=1

nλnX
n−1 (by the definition of the derivative

of a polynomial), so that P ′ (x) =
M∑

n=1

nλnx
n−1.

On the other hand, from P =
M∑

n=0

λnX
n, we obtain P (x) =

M∑
n=0

λnx
n. Compared

with P (x) = 0 (because P is the minimal polynomial of x), this yields 0 =
M∑

n=0

λnx
n.

Thus,

D (0) = D

(
M∑

n=0

λnx
n

)
=

M∑
n=0

D (λnx
n)

(since D is a derivation and thus a homomorphism of additive groups)

= D

(
λ0 x0︸︷︷︸

=1

)
+

M∑
n=1

D (λnx
n)︸ ︷︷ ︸

=D(λn)·xn+λn·D(xn)
(since D is a derivation)

= D (λ0)︸ ︷︷ ︸
=0

(since λ0∈K and thus
D(λ0)∈D(K)=0)

+
M∑

n=1

 D (λn)︸ ︷︷ ︸
=0

(since λn∈K and thus
D(λn)∈D(K)=0)

·xn + λn ·D (xn)


=

M∑
n=1

(
0 · xn︸ ︷︷ ︸

=0

+λn ·D (xn)

)
=

M∑
n=1

λn · D (xn)︸ ︷︷ ︸
=D(x)·nxn−1

(by (5))

=
M∑

n=1

λn ·D (x) · nxn−1

= D (x) ·
M∑

n=1

nλnx
n−1

︸ ︷︷ ︸
=P ′(x)

= D (x) · P ′ (x) .

Compared with D (0) = 0 (because D is a derivation and thus a homomorphism of
additive groups), this yields D (x) · P ′ (x) = 0. We can divide this equation by P ′ (x)
(this is allowed since P ′ (x) 6= 0), and thus obtain D (x) = 0.

Now forget that we fixed x. We thus have proven that every x ∈ L satisfies D (x) =
0. In other words, D = 0. This proves Proposition 12.

Next, let us state a very simple fact:

Lemma 13. Let K be a commutative ring, and L a commutative K-
algebra.

Let V , W and U be L-modules. Then, V , W and U canonically become
K-modules.
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Let h : V × W → U be a K-bilinear map (not necessarily an L-bilinear
map). Assume that

h (xa, xb) = x2h (a, b) for every x ∈ L, a ∈ V and b ∈ W. (6)

Then,

h (xa, yb)+h (ya, xb) = 2xyh (a, b) for every x ∈ L, y ∈ L, a ∈ V and b ∈ W.
(7)

Proof of Lemma 13. Let x ∈ L, y ∈ L, a ∈ V and b ∈ W . Applying (6) to x + y
instead of x, we obtain

h ((x + y) a, (x + y) b) = (x + y)2 h (a, b) .

Since

h

(x + y) a︸ ︷︷ ︸
=xa+ya

, (x + y) b︸ ︷︷ ︸
=xb+yb


= h (xa + ya, xb + yb) = h (xa, xb + yb)︸ ︷︷ ︸

=h(xa,xb)+h(xa,yb)
(since h is K-bilinear)

+ h (ya, xb + yb)︸ ︷︷ ︸
=h(ya,xb)+h(ya,yb)

(since h is K-bilinear)

(since h is K-bilinear)

= h (xa, xb)︸ ︷︷ ︸
=x2h(a,b)
(by (6))

+h (xa, yb) + h (ya, xb) + h (ya, yb)︸ ︷︷ ︸
=y2h(a,b)

(by (6), applied
to y instead of x)

= x2h (a, b) + h (xa, yb) + h (ya, xb) + y2h (a, b) ,

this rewrites as

x2h (a, b) + h (xa, yb) + h (ya, xb) + y2h (a, b) = (x + y)2 h (a, b) .

Subtracting x2h (a, b) + y2h (a, b) from this equation, we obtain

h (xa, yb) + h (ya, xb) = (x + y)2 h (a, b)− x2h (a, b)− y2h (a, b)

=
(
(x + y)2 − x2 − y2

)︸ ︷︷ ︸
=2xy

h (a, b) = 2xyh (a, b) .

This proves Lemma 13.
The next lemma lies at the heart of our second solution:

Lemma 14. Let K be a commutative ring, and L a commutative K-
algebra.

Let V , W and U be L-modules. Then, V , W and U canonically become
K-modules.
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Let h : V × W → U be a K-bilinear map (not necessarily an L-bilinear
map). Assume that

h (xa, yb)+h (ya, xb) = 2xyh (a, b) for every x ∈ L, y ∈ L, a ∈ V and b ∈ W.
(8)

Assume that

every derivation D : L → U satisfying D (K) = 0 satisfies D = 0. (9)

Then:

(a) Any x ∈ L, y ∈ L, a ∈ V and b ∈ W satisfy h (xa, yb) = h (ya, xb).

(b) Any x ∈ L, a ∈ V and b ∈ W satisfy 2h (a, xb) = 2xh (a, b).

(c) Any x ∈ L, a ∈ V and b ∈ W satisfy 2h (xa, b) = 2xh (a, b).

Proof of Lemma 14. Let a ∈ V and b ∈ W .
Define a map E : L → U by

(E (x) = 2h (a, xb)− 2xh (a, b) for all x ∈ L) .

We are now going to show that E is a derivation.
Since h is K-bilinear, it is easy to see that E is K-linear. In particular, E is a

homomorphism of additive groups.
(b) Now, it is easy to see that any x ∈ L and y ∈ L satisfy

2yh (a, xb)− h (ya, xb) = h (a, xyb) . (10)

5 Also, any x ∈ L and y ∈ L satisfy

2xh (a, yb)− h (xa, yb) = h

a, yx︸︷︷︸
=xy

b

 (by (10), applied to y and x instead of x and y)

= h (a, xyb) . (11)

Now, let x ∈ L and y ∈ L. Adding (10) to (11), we obtain

2yh (a, xb)− h (ya, xb) + 2xh (a, yb)− h (xa, yb) = h (a, xyb) + h (a, xyb) = 2h (a, xyb) .

5Proof of (10): Let x ∈ L and y ∈ L. Applying (8) to y, 1 and xb instead of x, y and b, we obtain

h (ya, 1 · xb) + h (1a, y · xb) = 2y · 1 · h (a, xb) .

Thus,

h (1a, y · xb) = 2y · 1︸ ︷︷ ︸
=2y

·h (a, xb)− h

ya, 1 · xb︸ ︷︷ ︸
=xb

 = 2yh (a, xb)− h (ya, xb) .

In other words, 2yh (a, xb)− h (ya, xb) = h

 1a︸︷︷︸
=a

, y · x︸︷︷︸
=xy

b

 = h (a, xyb). This proves (10).
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Thus,

2h (a, xyb) = 2yh (a, xb)− h (ya, xb) + 2xh (a, yb)− h (xa, yb)

= 2yh (a, xb) + 2xh (a, yb)− (h (xa, yb) + h (ya, xb))︸ ︷︷ ︸
=2xyh(a,b)

(by (8))

= 2yh (a, xb) + 2xh (a, yb)− 2xyh (a, b) . (12)

Now, by the definition of E, we have

E (xy) = 2h (a, xyb)︸ ︷︷ ︸
=2yh(a,xb)+2xh(a,yb)−2xyh(a,b)

(by (12))

−2xyh (a, b)

= 2yh (a, xb) + 2xh (a, yb)− 2xyh (a, b)− 2xyh (a, b)

= 2yh (a, xb)− 2xyh (a, b)︸ ︷︷ ︸
=(2h(a,xb)−2xh(a,b))·y

+ 2xh (a, yb)− 2xyh (a, b)︸ ︷︷ ︸
=x·(2h(a,yb)−2yh(a,b))

= (2h (a, xb)− 2xh (a, b))︸ ︷︷ ︸
=E(x)

(since E(x)=2h(a,xb)−2xh(a,b)
by the definition of E)

·y + x · (2h (a, yb)− 2yh (a, b))︸ ︷︷ ︸
=E(y)

(since E(y)=2h(a,yb)−2yh(a,b)
by the definition of E)

= E (x) · y + x · E (y) .

Now forget that we fixed x and y. We thus have proven that every x ∈ L and y ∈ L
satisfy E (xy) = E (x) ·y+x ·E (y). Combined with the fact that E is a homomorphism
of additive groups, this yields that E is a derivation.

Every x ∈ K satisfies

E (x) = 2 h (a, xb)︸ ︷︷ ︸
=xh(a,b)

(since h is K-bilinear)

−2xh (a, b) = 2xh (a, b)− 2xh (a, b) = 0.

In other words, E (K) = 0. Hence, (9) (applied to D = E) yields E = 0. Thus, every
x ∈ L satisfies E (x) = 0. Since E (x) = 2h (a, xb) − 2xh (a, b) (by the definition of
E), this rewrites as follows: Every x ∈ L satisfies 2h (a, xb) − 2xh (a, b) = 0. In other
words,

every x ∈ L satisfies 2h (a, xb) = 2xh (a, b) .

This proves Lemma 14 (b).
(c) A similar argument, but with the roles of the left and the right variable inter-

changed, proves Lemma 14 (c).
(a) Now, let x ∈ L, y ∈ L, a ∈ V and b ∈ W . Then, (8) yields

h (xa, yb) + h (ya, xb)

= 2xyh (a, b) = x · 2yh (a, b)︸ ︷︷ ︸
=2h(ya,b)

(since Lemma 14 (c) (applied to y instead of x)
yields 2h(ya,b)=2yh(a,b))

= x · 2h (ya, b) = 2xh (ya, b) = 2h (ya, xb)

(since Lemma 14 (b) (applied to ya instead of a) yields 2h (ya, xb) = 2xh (ya, b)) .
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Subtracting h (ya, xb) from this, we obtain h (xa, yb) = h (ya, xb). This proves Lemma
14 (a). Thus, Lemma 14 is proven.

While Lemma 14 is enough to easily solve the problem in all characteristics but 2,
characteristic 2 doesn’t allow the solution to be completed that easily. Let us prove
another field-theoretical proposition:

Proposition 15. Let p be a prime number. Let L�K be a separable
algebraic extension of fields of characteristic p. Then, every element of L
is a K-linear combination of p-th powers of elements of L.

To prove this, we need a known fact from algebra:

Lemma 16. If B�A is a field extension, and Q and R are two polynomials
in A [X], then the greatest common divisor of the polynomials Q and R in
A [X] is identical with the greatest common divisor of the polynomials Q
and R in B [X].

The proof of Lemma 16 becomes trivial once we notice that the Euclidean algorithm
(for computing the greatest common divisor of two polynomials) does not depend on
the field in which the polynomials lie in, so that computing the greatest common divisor
of the polynomials Q and R in A [X] using the Euclidean algorithm yields the same
result as computing the greatest common divisor of the polynomials Q and R in B [X]
using the Euclidean algorithm. The details of this proof are left to the reader, unless
he already knows them.

Proof of Proposition 15. Let S denote the set of all K-linear combinations of p-th
powers of elements of L.

First, let us show that S is a K-subalgebra of L (and thus a subfield of L).
We defined S as the set of all K-linear combinations of p-th powers of elements of

L. In other words, S is the K-linear span of the set of all p-th powers of elements of
L. Thus, S is a K-vector subspace of L.

It is very easy to show that S is also a K-subalgebra of L (since the product of p-th
powers is a p-th power). Since L is a field and L�K is an algebraic extension, this
yields that S is a subfield of L and a field extension of K (because whenever L�K is
an algebraic extension of fields, every K-subalgebra of L is a subfield of L).

Now, let x ∈ L be arbitrary. Since L is an algebraic extension of K, the element
x ∈ L has a minimal polynomial over K. Let P ∈ K [X] be this minimal polynomial.
Then, P is separable (since L is a separable extension of K, so that x is separable over
K). Thus, P has no multiple roots over any field extension of K. In particular, P has
no multiple roots over S (since S is a field extension of K).

Since xp ∈ S, the polynomial Xp − xp is well-defined in the polynomial ring S [X].
Now, Lemma 16 (applied to A = S, B = L, Q = P and R = Xp − xp) yields that

the greatest common divisor of the polynomials P and Xp − xp in S [X] is identical
with the greatest common divisor of the polynomials P and Xp − xp in L [X]. Thus,
we can denote the greatest common divisor of the polynomials P and Xp − xp by
gcd (P, Xp − xp) without having to worry about whether it is taken in S [X] or in
L [X].

The polynomial P has no multiple roots over S. Thus, every divisor of P in S [X]
also has no multiple roots over S (because if a polynomial has no multiple roots, then
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every divisor of this polynomial must also have no multiple roots). This yields that
gcd (P, Xp − xp) has no multiple roots over S (because gcd (P, Xp − xp) is a divisor of
P in S [X]).

But gcd (P, Xp − xp) | Xp − xp = (X − x)p (since the characteristic of L is p).
Thus, the polynomial gcd (P, Xp − xp) is a divisor of the polynomial (X − x)p. Since
all divisors of the polynomial (X − x)p have the form (X − x)k with k ∈ {0, 1, ..., p}
(because L [X] is a unique factorization domain, and the linear polynomial X − x is
irreducible), this yields that the polynomial gcd (P, Xp − xp) has the form (X − x)k

with k ∈ {0, 1, ..., p}. In other words, there exists some k ∈ {0, 1, ..., p} such that
gcd (P, Xp − xp) = (X − x)k. Consider this k.

Since gcd (P, Xp − xp) has no multiple roots over S, we thus conclude that (X − x)k

has no multiple roots over S (since gcd (P, Xp − xp) = (X − x)k).
Since P (x) = 0, we have X − x | P in L [X]. Since (Xp − xp) (x) = xp − xp = 0,

we have X − x | Xp − xp in L [X].
Since X−x | P and X−x | Xp−xp, the polynomial X−x must be a common divisor

of the polynomials P and Xp − xp. Hence, X − x must divide the greatest common
divisor of the polynomials P and Xp − xp. In other words, X − x | gcd (P, Xp − xp) =
(X − x)k. Thus, (X − x)k (x) = 0. Hence, k 6= 0 (because otherwise, we would
have k = 0, so that (X − x)k (x) = (X − x)0︸ ︷︷ ︸

=1

(x) = 1 (x) = 1 6= 0 would contradict

(X − x)k (x) = 0).
If we had k ≥ 2, then the polynomial (X − x)k would have multiple roots over S

(namely, the root x would appear k times), contradicting the fact that (X − x)k has
no multiple roots over S. Thus, we cannot have k ≥ 2. In other words, we have k ≤ 1.
Combined with k 6= 0, this yields k = 1. Thus, (X − x)k = (X − x)1 = X − x. So we
have X − x = (X − x)k = gcd (P, Xp − xp) ∈ S [X] and thus x ∈ S.

Now forget that we fixed x. We thus have proven that x ∈ S for every x ∈ L. In
other words, L ⊆ S. Hence,

L ⊆ S = (set of all K-linear combinations of p-th powers of elements of L) .

Hence, every element of L is a K-linear combination of p-th powers of elements of L.
This proves Proposition 15.

We can now finally start solving the problem. Let K, L, V , W , U and h be as
defined in the problem.

By the conditions of the problem,

h (xa, xb) = x2h (a, b) for every x ∈ L, a ∈ V and b ∈ W.

Hence, Lemma 13 yields that

h (xa, yb) + h (ya, xb) = 2xyh (a, b) for every x ∈ L, y ∈ L, a ∈ V and b ∈ W.
(13)

Proposition 12 yields that

every derivation D : L → U satisfying D (K) = 0 satisfies D = 0. (14)

Since (13) and (14) hold, we can apply Lemma 14 (a), and conclude that

any x ∈ L, y ∈ L, a ∈ V and b ∈ W satisfy h (xa, yb) = h (ya, xb) . (15)

11



Now, we can easily see that

any x ∈ L, a ∈ V and b ∈ W satisfy h
(
x2a, b

)
= x2h (a, b) . (16)

6

Now, let x ∈ L, a ∈ V and b ∈ W be arbitrary. We will prove that

h (xa, b) = xh (a, b) . (17)

Proof of (17): We distinguish between two cases:
Case 1: We have char K 6= 2.
Case 2: We have char K = 2.
First, let us consider Case 1. In this case, char K 6= 2. Since L is a field extension

of K, we have char L = char K 6= 2.
Now, applying (16) to x+1 instead of x, we obtain h

(
(x + 1)2 a, b

)
= (x + 1)2 h (a, b).

Thus,

(x + 1)2 h (a, b) = h

(x + 1)2︸ ︷︷ ︸
=x2+2x+1

a, b

 = h

(x2 + 2x + 1
)
a︸ ︷︷ ︸

=x2a+2xa+a

, b

 = h
(
x2a + 2xa + a, b

)
= h

(
x2a, b

)︸ ︷︷ ︸
=x2h(a,b)
(by (16))

+2h (xa, b) + h (a, b) (since h is K-bilinear)

= x2h (a, b) + 2h (xa, b) + h (a, b) ,

so that

2h (xa, b) = (x + 1)2 h (a, b)−x2h (a, b)−h (a, b) =
(
(x + 1)2 − x2 − 1

)︸ ︷︷ ︸
=2x

h (a, b) = 2xh (a, b) .

Since 2 is invertible in L (because char L 6= 2), we can divide this equality by 2, and
obtain h (xa, b) = xh (a, b). This proves (17) in Case 1.

Now, we will consider Case 2. In this case, char K = 2. Since L is a field extension
of K, we have char L = char K = 2. Thus, L�K is a separable algebraic extension
of fields of characteristic 2. Hence, x is a K-linear combination of 2-nd powers of
elements of L (since Proposition 15 (applied to p = 2) shows that every element of L is
a K-linear combination of 2-nd powers of elements of L). In other words, there exists
an N ∈ N, some N elements λ1, λ2, ..., λN of K and some N elements α1, α2, ..., αN

of L such that x =
∑

i∈{1,2,...,N}
λiα

2
i . Consider this N , these λ1, λ2, ..., λN and these α1,

6Proof of (16): Let x ∈ L, a ∈ V and b ∈ W . Applying (15) to 1, xa and x instead of x, a and y,
we obtain h (1 · xa, xb) = h (xxa, 1 · b). Thus,

h

 x2︸︷︷︸
=xx

a, b︸︷︷︸
=1·b

 = h (xxa, 1 · b) = h

1 · xa︸ ︷︷ ︸
=xa

, xb

 = h (xa, xb) = x2h (a, b)

(by (1)). This proves (16).
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α2, ..., αN . Since x =
∑

i∈{1,2,...,N}
λiα

2
i , we have

h (xa, b) = h

 ∑
i∈{1,2,...,N}

λiα
2
i a, b

 =
∑

i∈{1,2,...,N}

λi h
(
α2

i a, b
)︸ ︷︷ ︸

=α2
i h(a,b)

(by (16), applied to
αi instead of x)

(since h is K-bilinear)

=
∑

i∈{1,2,...,N}

λiα
2
i︸ ︷︷ ︸

=x

h (a, b) = xh (a, b) .

This proves (17) in Case 2.
Thus, (17) is proven in each of the cases 1 and 2. Since these two cases cover all

possibilities, this yields that (17) always holds.
Now, forget that we fixed x, a and b. We thus have proven (17) for all x ∈ L, a ∈ V

and b ∈ W . Combined with the fact that h (a + a′, b) = h (a, b)+h (a′, b) for all a ∈ V ,
a′ ∈ V and b ∈ W (since h is K-bilinear), this yields the map h is L-linear in its first
variable. Similarly, the map h is L-linear in its second variable. Hence, the map h is
L-linear in each of its two variables, i. e., an L-bilinear map. This solves the problem.

Third solution

Third solution of the problem:
The following solution is the least elementary (it requires tensor products of bi-

modules over rings), but results in the strongest generalization of the problem. We are
going to use Lemmas 13 and 14 from the previous solution.

Let us first completely forget about the problem. In particular, let us forget about
the notations K, L, V , W , U and h.

First, we define the notion of derivations from rings to bimodules:

Definition 21. Let L be a ring. Let U be an (L, L)-bimodule (i. e., an
abelian group endowed with both a left and a right action of L which satisfy
(xa) y = x (ay) for all a ∈ U , x ∈ L and y ∈ L). A derivation from L to U
means a homomorphism δ : L → U of additive groups (not a priori required
to be L-linear) which satisfies

(δ (xy) = δ (x) · y + x · δ (y) for all x ∈ L and y ∈ L) .

Of course, when L is a commutative ring, then any L-module U canonically becomes
an (L, L)-bimodule7, and the notion of a ”derivation from L to the (L, L)-bimodule U”

7In fact, if U is an L-module, then we can interpret the action of L on U both as a left action and
as a right action, and these two actions satisfy (xa) y = x (ay) for all a ∈ U , x ∈ L and y ∈ L (because
(xa) y = y (xa) = (yx)︸︷︷︸

=xy
(since L is

commutative)

a = (xy) a = x (ya) = x (ay)), so that U becomes an (L,L)-bimodule

this way.
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as defined in Definition 21 becomes equivalent to the notion of ”derivation from L to
the L-module U” as defined in Definition 11. Hence, Definition 21 can be considered
a generalization of Definition 11.

Next, we define the notion of separable algebras. There are several equivalent defi-
nitions of this notion; we take the following one:

Definition 22. Let K be a commutative ring. Let L be a K-algebra (not
necessarily commutative). Let εK,L be the additive group homomorphism
L⊗K L → L which satisfies

(εK,L (a⊗K b) = ab for all a ∈ L and b ∈ L) .

(This εK,L is well-defined due to well-known properties of tensor products,
and is easily seen to be an (L, L)-bimodule homomorphism.) We say that
the K-algebra L is separable if there exists an element e ∈ L⊗K L satisfying
εK,L (e) = 1 and (ae = ea for all a ∈ L). (Here, ae and ea are computed in
the (K, K)-bimodule L⊗K L.)

This notion of separability is not literally a generalization of separable field exten-
sions, but is closely related due to the following theorem:

Theorem 23. Let L�K be a separable finite extension of fields. Then,
L is a separable K-algebra.

Note that Theorem 23 would not be true if we would drop the word ”finite”. Indeed,
a result by Villamayor and Zelinsky yields that every separable K-algebra over a field
K must be finite-dimensional as a K-vector space.

We don’t need the full force of Theorem 23, but only the following particular case:

Proposition 24. Let L�K be a separable algebraic extension of fields.
Let x ∈ L. Then, K [x] is a separable K-algebra.

Proposition 24 is an obvious consequence of Theorem 23. Theorem 23, however, is
also a trivial corollary of Proposition 24 using the primitive element theorem. We are
not going to elaborate on this, since we are not going to need Theorem 23. Let us give
a self-contained proof of Proposition 24 without recurrence to Theorem 23:

Alternative proof of Proposition 24. Let S = K [x]. Since x is algebraic over K
(because L is an algebraic extension of K), this S is a field.

Since L is an algebraic extension of K, the element x ∈ L has a minimal polynomial
over K. Let P ∈ K [X] be this minimal polynomial. Then, P is separable (since L
is a separable extension of K, so that x is separable over K). In other words, P has
no multiple roots over any field extension of K. In particular, P has no multiple roots
over S (since S is a field extension of K).

Since P is a minimal polynomial, it is clear that P is monic. In other words, the
leading coefficient of P is 1. Let M = deg P .

Since P is the minimal polynomial of x, we have P (x) = 0. Thus, X − x | P in

S [X]. Hence,
P

X − x
is a well-defined element of S [X]. Denote this element

P

X − x
by Q. Then, P = Q · (X − x).
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It is easy to see that Q (x) 6= 0. 8 Also, Q =
P

X − x
by the definition of Q. Thus,

deg Q = deg
P

X − x
= deg P︸ ︷︷ ︸

=M

− deg (X − x)︸ ︷︷ ︸
=1

= M − 1.

Since P ∈ K [X] is a polynomial over K with degree deg P = M , we can write P

in the form P =
M∑

n=0

anX
n for some elements a0, a1, ..., aM of K satisfying aM 6= 0.

Consider these elements a0, a1, ..., aM . Then, clearly, aM is the leading coefficient of
P , so that aM = 1 (because the leading coefficient of P is 1).

Since P =
M∑

n=0

anX
n, we have P (x) =

M∑
n=0

anx
n = aM︸︷︷︸

=1

xM +
M−1∑
n=0

anx
n = xM +

M−1∑
n=0

anx
n. Thus,

xM = P (x)︸ ︷︷ ︸
=0

−
M−1∑
n=0

anx
n︸︷︷︸

=xnan

= −
M−1∑
n=0

xnan. (18)

Since Q ∈ S [X] is a polynomial over S with degree deg Q = M − 1, we can write

Q in the form Q =
M−1∑
n=0

bnX
n for some elements b0, b1, ..., bM−1 of S. Consider these

elements b0, b1, ..., bM−1. Also, define two elements b−1 and bM of S by b−1 = 0 and
bM = 0.

Now,

M∑
n=0

anX
n = P = Q︸︷︷︸

=
M−1P
n=0

bnXn

· (X − x) =

(
M−1∑
n=0

bnX
n

)
· (X − x) =

M−1∑
n=0

bn Xn ·X︸ ︷︷ ︸
=Xn+1

−
M−1∑
n=0

bnX
n · x︸ ︷︷ ︸

=bnxXn

=
M−1∑
n=0

bnX
n+1 −

M−1∑
n=0

bnxXn =
M∑

n=1

bn−1 Xn−1+1︸ ︷︷ ︸
=Xn

−
M−1∑
n=0

bnxXn

(here, we substituted n for n + 1 in the first sum)

=
M∑

n=1

bn−1X
n −

M−1∑
n=0

bnxXn.

8Proof. Assume the opposite. Thus, Q (x) = 0, so that X − x | Q in S [X]. Hence, (X − x)2 |
Q · (X − x) = P in S [X]. The polynomial P must therefore have a multiple root over S (namely, the
root x appears at least twice). But this contradicts the fact that P has no multiple roots over S. This
contradiction shows that our assumption was wrong. Hence, Q (x) 6= 0, qed.
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Compared with

M∑
n=0

(bn−1 − bnx) Xn =
M∑

n=0

bn−1X
n

︸ ︷︷ ︸
=b−1X0+

MP
n=1

bn−1Xn

−
M∑

n=0

bnxXn

︸ ︷︷ ︸
=

M−1P
n=0

bnxXn+bMxXM

=

 b−1︸︷︷︸
=0

X0 +
M∑

n=1

bn−1X
n

−

M−1∑
n=0

bnxXn + bM︸︷︷︸
=0

xXM


=

(
0X0︸︷︷︸
=0

+
M∑

n=1

bn−1X
n

)
−

(
M−1∑
n=0

bnxXn + 0xXM︸ ︷︷ ︸
=0

)
=

M∑
n=1

bn−1X
n −

M−1∑
n=0

bnxXn,

this yields
M∑

n=0

anX
n =

M∑
n=0

(bn−1 − bnx) Xn. Comparing coefficients on both sides of

this equation, we obtain that

an = bn−1 − bnx for every n ∈ {0, 1, ...,M} . (19)

Applying (19) to n = M , we obtain aM = bM−1 − bM︸︷︷︸
=0

x = bM−1 − 0x︸︷︷︸
=0

= bM−1.

Thus, bM−1 = aM = 1.

Now, define an element f ∈ S ⊗K S by f =
M−1∑
n=0

xn ⊗K bn. Then,

εK,S (f) = εK,S

(
M−1∑
n=0

xn ⊗K bn

)
=

M−1∑
n=0

εK,S (xn ⊗K bn)︸ ︷︷ ︸
=xnbn

(by the definition of εK,S)

(since εK,S is a (K, K) -bimodule homomorphism)

=
M−1∑
n=0

xnb
n︸︷︷︸

=bnxn

=
M−1∑
n=0

bnx
n = Q (x)

(
since Q =

M−1∑
n=0

bnX
n and thus Q (x) =

M−1∑
n=0

bnx
n

)
.

(20)
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Now, since f =
M−1∑
n=0

xn ⊗K bn, we have

xf = x

M−1∑
n=0

xn ⊗K bn =
M−1∑
n=0

xxn︸︷︷︸
=xn+1

⊗Kbn =
M−1∑
n=0

xn+1 ⊗K bn

=
M∑

n=1

xn−1+1︸ ︷︷ ︸
=xn

⊗Kbn−1 (here, we substituted n− 1 for n)

=
M∑

n=1

xn ⊗K bn−1 =
M∑

n=0

xn ⊗K bn−1
since

M∑
n=0

xn ⊗K bn−1 = x0 ⊗K b−1︸︷︷︸
=0

+
M∑

n=1

xn ⊗K bn−1

= x0 ⊗K 0︸ ︷︷ ︸
=0

+
M∑

n=1

xn ⊗K bn−1 =
M∑

n=1

xn ⊗K bn−1


=

M−1∑
n=0

xn ⊗K bn−1 + xM︸︷︷︸
=−

M−1P
n=0

xnan

(by (18))

⊗K bM−1︸ ︷︷ ︸
=1

=
M−1∑
n=0

xn ⊗K bn−1 +

(
−

M−1∑
n=0

xnan

)
⊗K 1

=
M−1∑
n=0

xn ⊗K bn−1 −
M−1∑
n=0

xnan ⊗K 1︸ ︷︷ ︸
=xn⊗Kan1

(since an∈K)

=
M−1∑
n=0

xn ⊗K bn−1 −
M−1∑
n=0

xn ⊗K an1

=
M−1∑
n=0

xn ⊗K

bn−1 − an1︸︷︷︸
=an=bn−1−bnx

(by (19))

 =
M−1∑
n=0

xn ⊗K (bn−1 − (bn−1 − bnx))︸ ︷︷ ︸
=bnx

=
M−1∑
n=0

xn ⊗K bnx =

(
M−1∑
n=0

xn ⊗K bn

)
︸ ︷︷ ︸

=f

x = fx.

So we have proven that xf = fx. Using this formula, it is easy to prove that

xnf = fxn for every n ∈ N. (21)

9

Now, we have
af = fa for every a ∈ S. (22)

9Proof of (21): We will prove (21) by induction over n:
Induction base: For n = 0, we have xn = x0 = 1. Thus, for n = 0, the equation (21) is equivalent

to 1f = f1, which is trivial (since 1f = f = f1). Thus, (21) holds for n = 0. This completes the
induction base.

Induction step: Let N ∈ N. Assume that (21) holds for n = N . We must now prove that (21) holds
for n = N + 1.
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10

Now, set e =
1

Q (x)
f . (This is allowed since Q (x) 6= 0.) Since e =

1

Q (x)
f , we have

ae = a · 1

Q (x)
f =

1

Q (x)
af︸︷︷︸
=fa

(by (22))

=
1

Q (x)
f︸ ︷︷ ︸

=e

a = ea

for every a ∈ S. Also, since e =
1

Q (x)
f , we have

εK,S (e) = εK,S

(
1

Q (x)
f

)
=

1

Q (x)
εK,S (f)︸ ︷︷ ︸

=Q(x)
(by (20))

(since εK,S is an (L, L) -bimodule homomorphism)

=
1

Q (x)
Q (x) = 1.

We thus have checked that εK,S (e) = 1 and (ae = ea for all a ∈ S). Thus, there
exists an element e ∈ S ⊗K S satisfying εK,S (e) = 1 and (ae = ea for all a ∈ S). By
Definition 22, this means that the K-algebra S is separable. Since S = K [x], this
yields that the K-algebra K [x] is separable. Proposition 24 is proven.

Next, a rather famous property of separable algebras:

Theorem 25. Let K be a commutative ring. Let L be a separable K-
algebra (not necessarily commutative). Let U be an (L, L)-bimodule. Let
d : L → U be a derivation from L to U satisfying d (K) = 0. Then, there
exists an u ∈ U such that

(d (a) = au− ua for every a ∈ L) .

Since (21) holds for n = N , we have xNf = fxN . Now,

xN+1︸ ︷︷ ︸
=xxN

f = x xNf︸︷︷︸
=fxN

= xf︸︷︷︸
=fx

xN = f xxN︸︷︷︸
=xN+1

= fxN+1.

Thus, (21) holds for n = N + 1. This completes the induction step. Thus, the induction proof of (21)
is complete.

10Proof of (22): Let a ∈ S. Then, a ∈ S = K [x]. Hence, there exists a polynomial V ∈ K [X] such
that a = V (x). Consider this V .

Since V ∈ K [X] is a polynomial over K, we can write V in the form V =
N∑

n=0
vnXn for some N ∈ N

and some elements v0, v1, ..., vN of K. Consider this N and these elements v0, v1, ..., vN . Then,

a = V (x) =
N∑

n=0
vnxn (since V =

N∑
n=0

vnXn), so that

af =

(
N∑

n=0

vnxn

)
f =

N∑
n=0

vn xnf︸︷︷︸
=fxn

(by (21))

=
N∑

n=0

vnfxn = f

(
N∑

n=0

vnxn

)
︸ ︷︷ ︸

=a

= fa.

This proves (22).
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Proof of Theorem 25.11 Every x ∈ K and y ∈ L satisfy

d (xy) = d (x)︸︷︷︸
=0

(since x∈K and thus
d(x)∈d(K)=0)

·y + x · d (y) (since d is a derivation)

= 0 · y︸︷︷︸
=0

+x · d (y) = x · d (y) .

Combined with the fact that d is a homomorphism of additive groups, this yields that
d is K-linear in the first variable. Similarly, d is K-linear in the second variable. Thus,
d is K-linear in both variables. In other words, d is a (K, K)-bimodule homomorphism.
Hence, the map d⊗K idL : L⊗K L → U ⊗K L is well-defined.

The K-algebra L is separable. By Definition 22, this means that there exists an
element e ∈ L ⊗K L satisfying εK,L (e) = 1 and (ae = ea for all a ∈ L). Consider this
e.

Since e ∈ L⊗K L is a tensor, we can write it in the form e =
n∑

i=1

ti ⊗K si for some

n ∈ N, some elements t1, t2, ..., tn of L and some elements s1, s2, ..., sn of L. Consider
this n, these t1, t2, ..., tn and these s1, s2, ..., sn.

Since e =
n∑

i=1

ti ⊗K si, we have

εK,L (e) = εK,L

(
n∑

i=1

ti ⊗K si

)
=

n∑
i=1

εK,L (ti ⊗K si)︸ ︷︷ ︸
=tisi

(by the definition of εK,L)

(since εK,L is a (K, K) -bimodule homomorphism)

=
n∑

i=1

tisi.

Thus,
n∑

i=1

tisi = εK,L (e) = 1.

Let now u = −
n∑

i=1

d (ti) si.

Let a ∈ L. Then, ae = ea (by the condition that ae = ea for all a ∈ L). Since

e =
n∑

i=1

ti ⊗K si, this rewrites as

n∑
i=1

ati ⊗K si =
n∑

i=1

ti ⊗K sia.

Applying the map d⊗K idL to this equation, we get

n∑
i=1

d (ati)⊗K si =
n∑

i=1

d (ti)⊗K sia. (23)

11I have taken this proof from
http://mathoverflow.net/questions/71869/ but it actually is a well-known argument.

19



Now, U is an (L, L)-bimodule, thus (in particular) a left L-module. Hence, there
exists a well-defined Z-linear map ρ : L⊗K U → U which satisfies

(ρ (b⊗K v) = bv for every b ∈ L and v ∈ U) .

Applying this map ρ to the equation (23), we obtain

n∑
i=1

d (ati) si =
n∑

i=1

d (ti) sia.

Thus,

0 =
n∑

i=1

d (ati) si −
n∑

i=1

d (ti) sia =
n∑

i=1

 d (ati)︸ ︷︷ ︸
=d(a)ti+ad(ti) (since d is a derivation)

si − d (ti) sia


=

n∑
i=1

((d (a) ti + ad (ti)) si − d (ti) sia) =
n∑

i=1

(d (a) tisi + ad (ti) si − d (ti) sia)

= d (a)
n∑

i=1

tisi︸ ︷︷ ︸
=1

+a

n∑
i=1

d (ti) si −
n∑

i=1

d (ti) sia = d (a) + a
n∑

i=1

d (ti) si −
n∑

i=1

d (ti) sia.

Thus,

d (a) =
n∑

i=1

d (ti) sia−a
n∑

i=1

d (ti) si = a

(
−

n∑
i=1

d (ti) si

)
︸ ︷︷ ︸

=u

−

(
−

n∑
i=1

d (ti) si

)
︸ ︷︷ ︸

=u

a = au−ua.

We have thus proven that d (a) = au−ua for every u ∈ L. This establishes Theorem
25.

Theorem 25 is way too general for us to use in its full glory; all we need is the
following particular case:

Theorem 26. Let K be a commutative ring. Let L be a commutative
separable K-algebra. Let U be an L-module. Let d : L → U be a derivation
from L to U satisfying d (K) = 0. Then, d = 0.

Proof of Theorem 26. As we know, U , being an L-module, canonically becomes an
(L, L)-bimodule, and the map d : L → U , being a derivation from L to the L-module
U , canonically becomes a derivation from L to the (L, L)-bimodule U . Thus, we can
apply Theorem 25, and conclude that there exists an u ∈ U such that

(d (a) = au− ua for every a ∈ L) .

Consider this u. Then, every a ∈ L satisfies d (a) = au− ua = 0 (because our (L, L)-
bimodule was canonically constructed from the L-module U , and thus every a ∈ L and
v ∈ U satisfy av = va, so that (in particular) au = ua and thus au− ua = 0). In other
words, d = 0. Theorem 26 is proven.
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This gives us an alternative proof of Proposition 12:
Second proof of Proposition 12. Let x ∈ L. By Proposition 24, we see that K [x] is

a separable K-algebra.
On the other hand, since D is a derivation from L to U , it is clear that D |K[x] is

a derivation from K [x] to the K [x]-module U . Moreover,
(
D |K[x]

)
(K) = D (K) = 0.

Thus, Theorem 26 (applied to K [x] and D |K[x] instead of L and d) yields D |K[x]= 0.
Since x ∈ K [x], we have D (x) =

(
D |K[x]

)︸ ︷︷ ︸
=0

(x) = 0 (x) = 0.

Now forget that we fixed x. We thus have shown that every x ∈ L satisfies D (x) =
0. In other words, D = 0. Proposition 12 is proven.

Now, something really trivial before the main theorem:

Lemma 27. Let n ∈ N. Let c1, c2, ..., cn be n elements of a commutative
ring. Then, (

n∑
i=1

ci

)2

=
n∑

i=1

c2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

cicj.

The main result of this third solution is now the following:

Theorem 28. Let K be a commutative ring. Let L be a commutative
separable K-algebra. Let V , W and U be L-modules. Then, V , W and U
canonically become K-modules

Let h : V × W → U be a K-bilinear map (not necessarily an L-bilinear
map). Assume that

h (xa, xb) = x2h (a, b) for every x ∈ L, a ∈ V and b ∈ W. (24)

Then, h is L-bilinear.

Proof of Theorem 28. The K-algebra L is separable. By Definition 22, this means
that there exists an element e ∈ L⊗KL satisfying εK,L (e) = 1 and (ae = ea for all a ∈ L).
Consider this e.

Since e ∈ L⊗K L is a tensor, we can write it in the form e =
n∑

i=1

ti ⊗K si for some

n ∈ N, some elements t1, t2, ..., tn of L and some elements s1, s2, ..., sn of L. Consider
this n, these t1, t2, ..., tn and these s1, s2, ..., sn.

Just as in the proof of Theorem 25, we can show that
n∑

i=1

tisi = 1. Hence,

(
n∑

i=1

tisi

)2

=

12 = 1. Since(
n∑

i=1

tisi

)2

=
n∑

i=1

(tisi)
2︸ ︷︷ ︸

=t2i s2
i

+2
∑

(i,j)∈{1,2,...,n}2;
i<j

tisitjsj (by Lemma 27, applied to ci = tisi)

=
n∑

i=1

t2i s
2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj,
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this rewrites as
n∑

i=1

t2i s
2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj = 1. (25)

By the conditions of Theorem 28, we have

h (xa, xb) = x2h (a, b) for every x ∈ L, a ∈ V and b ∈ W.

Hence, Lemma 13 yields that

h (xa, yb) + h (ya, xb) = 2xyh (a, b) for every x ∈ L, y ∈ L, a ∈ V and b ∈ W.
(26)

Also,
every derivation D : L → U satisfying D (K) = 0 satisfies D = 0 (27)

(by Theorem 26, applied to d = D). Since (26) and (27) hold, we can apply Lemma
14.

Now, we can easily see that

any x ∈ L, a ∈ V and b ∈ W satisfy h
(
x2a, b

)
= x2h (a, b) . (28)

12

Fix any a ∈ V and b ∈ W . Define a map f : L → L by

(f (x) = h (xa, b) for all x ∈ L) .

Then, f is K-linear (since h is K-bilinear). As a consequence, f ⊗K idL is a well-
defined map L⊗K L → L⊗K L.

The definition of f yields f (1) = h

(
1a︸︷︷︸
=a

, b

)
= h (a, b).

It is easy (using Lemma 14 (c)) to show that any x ∈ L satisfies

2f (x) = 2xf (1) . (29)

13 Moreover, it is easy (using (28)) to show that any y ∈ L and z ∈ L satisfy

f
(
y2z
)

= y2f (z) . (30)

12Proof of (16): Let x ∈ L, a ∈ V and b ∈ W . Applying Lemma 14 (a) to 1, xa and x instead of
x, a and y, we obtain h (1 · xa, xb) = h (xxa, 1 · b). Thus,

h

 x2︸︷︷︸
=xx

a, b︸︷︷︸
=1·b

 = h (xxa, 1 · b) = h

1 · xa︸ ︷︷ ︸
=xa

, xb

 = h (xa, xb) = x2h (a, b)

(by (24)). This proves (28).
13Proof of (29): Lemma 14 (c) yields 2h (xa, b) = 2xh (a, b) for every x ∈ L. Thus, every x ∈ L

satisfies 2 f (x)︸ ︷︷ ︸
=h(xa,b)

= 2h (xa, b) = 2xh (a, b)︸ ︷︷ ︸
=f(1)

= 2xf (1). This proves (29).
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Let x ∈ L. Then, xe = ex (since ae = ea for all a ∈ L).
Since L is a commutative K-algebra, the tensor product L⊗K L also is a commu-

tative K-algebra. Thus, (1⊗ x) · e = e · (1⊗ x).
By the definition of the (L, L)-bimodule structure on L ⊗K L, we have xe2 =

(x⊗ 1) · e2, e2x = e2 · (1⊗ x), xe = (x⊗ 1) · e and ex = e · (1⊗ x). Thus,

xe2 = (x⊗ 1) · e2 = (x⊗ 1) · e︸ ︷︷ ︸
=xe=ex=e·(1⊗x)

·e = e · (1⊗ x) · e︸ ︷︷ ︸
=e·(1⊗x)

= e · e · (1⊗ x) = e2 · (1⊗ x) = e2x.

But since e =
n∑

i=1

ti ⊗K si, we have

e2 =

(
n∑

i=1

ti ⊗K si

)2

=
n∑

i=1

(ti ⊗K si)
2︸ ︷︷ ︸

=t2i⊗Ks2
i

+2
∑

(i,j)∈{1,2,...,n}2;
i<j

(ti ⊗K si) (tj ⊗K sj)︸ ︷︷ ︸
=titj⊗Ksisj

(by Lemma 27, applied to ci = ti ⊗K si)

=
n∑

i=1

t2i ⊗K s2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

titj ⊗K sisj. (31)

From (31), we obtain

xe2 = x

 n∑
i=1

t2i ⊗K s2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

titj ⊗K sisj

 =
n∑

i=1

xt2i⊗Ks2
i +2

∑
(i,j)∈{1,2,...,n}2;

i<j

xtitj⊗Ksisj.

14Proof of (30): Let y ∈ L and z ∈ L. By the definition of f , we have f
(
y2z
)

= h
(
y2za, b

)
and

f (z) = h (za, b). Applying (28) to y and za instead of x and a, we obtain h
(
y2za, b

)
= y2h (za, b).

Thus, f
(
y2z
)

= h
(
y2za, b

)
= y2 h (za, b)︸ ︷︷ ︸

=f(z)

= y2f (z), so that (30) is proven.
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Hence,

(f ⊗K idL)
(
xe2
)

= (f ⊗K idL)

 n∑
i=1

xt2i ⊗K s2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

xtitj ⊗K sisj


=

n∑
i=1

f

 xt2i︸︷︷︸
=t2i x

⊗K s2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

f (xtitj)⊗K sisj

=
n∑

i=1

f
(
t2i x
)︸ ︷︷ ︸

=t2i f(x)
(by (30), applied to

y=ti and z=x)

⊗Ks2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

f (xtitj)⊗K sisj

=
n∑

i=1

t2i f (x)⊗K s2
i +

∑
(i,j)∈{1,2,...,n}2;

i<j

2f (xtitj)︸ ︷︷ ︸
=2xtitjf(1)

(by (29), applied to xtitj
instead of x)

⊗Ksisj

=
n∑

i=1

t2i f (x)⊗K s2
i +

∑
(i,j)∈{1,2,...,n}2;

i<j

2xtitjf (1)⊗K sisj,
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so that

εK,L

(
(f ⊗K idL)

(
xe2
))

= εK,L

 n∑
i=1

t2i f (x)⊗K s2
i +

∑
(i,j)∈{1,2,...,n}2;

i<j

2xtitjf (1)⊗K sisj


=

n∑
i=1

t2i f (x) s2
i︸ ︷︷ ︸

=f(x)
nP

i=1
t2i s2

i

+
∑

(i,j)∈{1,2,...,n}2;
i<j

2xtitjf (1) sisj

︸ ︷︷ ︸
=2f(1)x

P
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj

(by the definition of εK,L)

= f (x)
n∑

i=1

t2i s
2
i + 2xf (1)︸ ︷︷ ︸

=2f(x)
(by (29))

∑
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj = f (x)
n∑

i=1

t2i s
2
i + 2f (x)

∑
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj

= f (x) ·

 n∑
i=1

t2i s
2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj


︸ ︷︷ ︸

=1
(by (25))

= f (x) . (32)

On the other hand, from (31), we get

e2x =

 n∑
i=1

t2i ⊗K s2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

titj ⊗K sisj

x =
n∑

i=1

t2i⊗Ks2
i x+2

∑
(i,j)∈{1,2,...,n}2;

i<j

titj⊗Ksisjx,
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so that

(f ⊗K idL)
(
e2x
)

= (f ⊗K idL)

 n∑
i=1

t2i ⊗K s2
i x + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

titj ⊗K sisjx


=

n∑
i=1

f

 t2i︸︷︷︸
=t2i ·1

⊗K s2
i x + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

f (titj)⊗K sisjx

=
n∑

i=1

f
(
t2i · 1

)︸ ︷︷ ︸
=t2i f(1)

(by (30), applied to y=ti
and z=1)

⊗Ks2
i x + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

f (titj)⊗K sisjx

=
n∑

i=1

t2i f (1)⊗K s2
i x + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

f (titj)⊗K sisjx

=
n∑

i=1

t2i f (1)⊗K s2
i x +

∑
(i,j)∈{1,2,...,n}2;

i<j

2f (titj)︸ ︷︷ ︸
=2titjf(1)

(by (29), applied to titj
instead of x)

⊗Ksisjx

=
n∑

i=1

t2i f (1)⊗K s2
i x +

∑
(i,j)∈{1,2,...,n}2;

i<j

2titjf (1)⊗K sisjx,
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so that

εK,L

(
(f ⊗K idL)

(
e2x
))

= εK,L

 n∑
i=1

t2i f (1)⊗K s2
i x +

∑
(i,j)∈{1,2,...,n}2;

i<j

2titjf (1)⊗K sisjx


=

n∑
i=1

t2i f (1) s2
i x︸ ︷︷ ︸

=xf(1)
nP

i=1
t2i s2

i

+
∑

(i,j)∈{1,2,...,n}2;
i<j

2titjf (1) sisjx

︸ ︷︷ ︸
=2xf(1)

P
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj

(by the definition of εK,L)

= xf (1)
n∑

i=1

t2i s
2
i + 2xf (1)

∑
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj

= xf (1) ·

 n∑
i=1

t2i s
2
i + 2

∑
(i,j)∈{1,2,...,n}2;

i<j

tisitjsj


︸ ︷︷ ︸

=1
(by (25))

= xf (1) . (33)

Now, by (32), we have

f (x) = εK,L

(f ⊗K idL)
(
xe2
)︸ ︷︷ ︸

=e2x

 = εK,L

(
(f ⊗K idL)

(
e2x
))

= xf (1)

(by (33)). Since f (x) = h (xa, b) and f (1) = h (a, b), this rewrites as h (xa, b) =
xh (a, b).

Forget that we fixed x ∈ L, a ∈ V and b ∈ W now. We thus have proven that
h (xa, b) = xh (a, b) for every x ∈ L, a ∈ V and b ∈ W . Combined with the fact that
h (a + a′, b) = h (a, b)+h (a′, b) for all a ∈ V , a′ ∈ V and b ∈ W (since h is K-bilinear),
this yields the map h is L-linear in its first variable. Similarly, the map h is L-linear
in its second variable. Hence, the map h is L-linear in each of its two variables, i. e.,
an L-bilinear map. This proves Theorem 28.

Theorem 28 does not immediately apply to our problem since separable algebraic
field extensions of a field K need not be separable as K-algebras (unless they are finite).
But what applies is the following slight generalization:

Corollary 29. Let K be a commutative ring. Let L be a commutative
K-algebra such that for every y ∈ L, there exists a separable K-subalgebra
of L containing y. Let V , W and U be L-modules. Then, V , W and U
canonically become K-modules
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Let h : V × W → U be a K-bilinear map (not necessarily an L-bilinear
map). Assume that

h (xa, xb) = x2h (a, b) for every x ∈ L, a ∈ V and b ∈ W. (34)

Then, h is L-bilinear.

Proof of Corollary 29. Let y ∈ L. According to the conditions of Corollary 29, there
exists a separable K-subalgebra of L containing y. Let S be such a K-subalgebra.

Clearly,

h (xa, xb) = x2h (a, b) for every x ∈ S, a ∈ V and b ∈ W

(by (34), since S ⊆ L). Hence, Theorem 28 (applied to S instead of L) yields that h is
S-bilinear. Thus, h (ya, b) = yh (a, b) (because y ∈ S).

Now, forget that we fixed y. We have thus proven that h (ya, b) = yh (a, b) for every
y ∈ L, a ∈ V and b ∈ W . Combined with the fact that h (a + a′, b) = h (a, b) + h (a′, b)
for all a ∈ V , a′ ∈ V and b ∈ W (since h is K-bilinear), this yields the map h is L-linear
in its first variable. Similarly, the map h is L-linear in its second variable. Hence, the
map h is L-linear in each of its two variables, i. e., an L-bilinear map. This proves
Corollary 29.

We can now finally start solving the problem. Let K, L, V , W , U and h be as
defined in the problem.

For every y ∈ L, the K-subalgebra K [y] of L is separable (by Proposition 24,
applied to x = y) and contains y. Thus, for every y ∈ L, there exists a separable
K-subalgebra of L containing y.

Also,

h (xa, xb) = x2h (a, b) for every x ∈ L, a ∈ V and b ∈ W

(by the condition of the problem). Thus, Corollary 29 yields that h is L-bilinear. The
problem is solved.

Remarks

Remark 1

1) In the third solution, we found a generalization of the problem (Corollary 29). But
the first solution also shows that the problem can be generalized. Namely, the problem
will still be valid if we replace ”Let L�K be a separable algebraic extension of fields”
by ”Let K and L be commutative rings with 1 such that L is a K-algebra” and add
the assumption that ”For every x ∈ L and every u ∈ U , there exists a polynomial
P ∈ K [X] such that P (x) = 0 and such that (if P ′ (x) u = 0 then u = 0)”. (This
assumption is what replaces the assumption that L�K be separable. It is used in our
proof of Lemma 2.)

This generalization of the problem seems to be neither more nor less strong than
Corollary 29 (the generalization obtained in the third solution).
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Remark 2

2) In the second solution of our problem, we used Proposition 12. But we could,
conversely, derive Proposition 12 from our problem:

Third proof of Proposition 12. Define a map h : L× L → U by

(h (a, b) = aD (b)− bD (a) for all a ∈ L and b ∈ L) .

Then, any a ∈ L, b ∈ L and b′ ∈ L satisfy

h (a, b + b′) = a D (b + b′)︸ ︷︷ ︸
=D(b)+D(b′)

(since D is a derivation and thus
a homomorphism of additive groups)

− (b + b′) D (a)︸ ︷︷ ︸
=bD(a)+b′D(a)

(by the definition of h (a, b + b′))

= a (D (b) + D (b′))− (bD (a) + b′D (a)) = aD (b) + aD (b′)− bD (a)− b′D (a)

= (aD (b)− bD (a))︸ ︷︷ ︸
=h(a,b)

(since h(a,b) was defined as aD(b)−bD(a))

+ (aD (b′)− b′D (a))︸ ︷︷ ︸
=h(a,b′)

(since h(a,b′) was defined as aD(b′)−b′D(a))

= h (a, b) + h (a, b′) . (35)

Also, any a ∈ L, b ∈ L and x ∈ K satisfy

h (a, xb) = a D (xb)︸ ︷︷ ︸
=D(x)·b+x·D(b)

(since D is a derivation)

−xbD (a) (by the definition of h (a, xb))

= a

 D (x)︸ ︷︷ ︸
=0

(since x∈K and thus D(x)∈D(K)=0)

·b + x ·D (b)

− xbD (a)

= a

(
0 · b︸︷︷︸
=0

+x ·D (b)

)
− xbD (a) = ax ·D (b)− xbD (a)

= x (aD (b)− bD (a))︸ ︷︷ ︸
=h(a,b)

= xh (a, b) . (36)

The map h is K-linear in its second variable (since any a ∈ L, b ∈ L and b′ ∈ L
satisfy (35), and since any a ∈ L, b ∈ L and x ∈ K satisfy (36)), and K-linear in its
first variable (for similar reasons). Hence, the map h is K-bilinear.

For every x ∈ L, a ∈ L and b ∈ L, we have

h (xa, xb) = xa D (xb)︸ ︷︷ ︸
=D(x)·b+x·D(b)

(since D is a derivation)

−xb D (xa)︸ ︷︷ ︸
=D(x)·a+x·D(a)

(since D is a derivation)

(by the definition of h (xa, xb))

= xa (D (x) · b + x ·D (b))− xb (D (x) · a + x ·D (a))

= xaD (x) · b︸ ︷︷ ︸
=xD(x)·ab

+ xax ·D (b)︸ ︷︷ ︸
=x2aD(b)

−xbD (x) · a︸ ︷︷ ︸
=xD(x)·ab

−xbx ·D (a)︸ ︷︷ ︸
=x2bD(a)

= xD (x) · ab + x2aD (b)− xD (x) · ab− x2bD (a)

= x2aD (b)− x2bD (a) = x2 (aD (b)− bD (a))︸ ︷︷ ︸
=h(a,b)

= x2h (a, b) .
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Hence, our problem (applied to V = L and W = L) yields that h is L-bilinear. Thus,
every x ∈ L satisfies h (x · 1, 1) = x · h (1, 1). But since

h

(
x · 1︸︷︷︸
=x

, 1

)
= h (x, 1) = x D (1)︸ ︷︷ ︸

=0
(since 1∈K and thus D(1)∈D(K)=0)

− 1D (x)︸ ︷︷ ︸
=D(x)

(by the definition of h (x, 1))

= −D (x)

and

h (1, 1) = 1D (1)− 1D (1) (by the definition of h (1, 1))

= 0,

this rewrites as −D (x) = x · 0. Thus, every x ∈ L satisfies D (x) = −x · 0 = 0. In
other words, D = 0. Proposition 12 is thus proven.

Remark 3

3) The condition that L�K be separable cannot be removed from the problem (without
a proper replacement). In fact, if we let p be any prime, and consider the algebraic field
extension K = Fp (T p) ⊆ Fp (T ) = L (the classical example of a purely inseparable
field extension) and let V = L, U = L and W = L, then we can define an Fp-bilinear
map

h : V ×W → U,
(
T a, T b

)
7→ (a− b) T a+b;

this map is K-bilinear but not L-bilinear, although it satisfies (1). 15

Note that this counterexample is not as weird as it looks like; in fact, the form
h : V ×W → U constructed in this counterexample can also be characterized as the

map L×L → L, (u, v) 7→ −u
d

dT
v + v

d

dT
u, so that it (up to sign) is an example of the

same construction that we made in the second proof of Proposition 12.
Using this construction, we can show a partial converse of the problem: If L�K is

a finitely generated but nonseparable field extension, then there exists a K-bilinear map
h : L× L → L which satisfies (1) (for V = L and W = L) without being L-bilinear. I
don’t know what can be said about non-finitely generated field extensions.

15Note that this map h is the Lie bracket of the infinite-dimensional Witt algebra over Fp.
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