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Young diagrams

@ A partition is a weakly decreasing sequence
A= (A1 > A2 > A3 >...) of nonnegative integers with only
finitely many positive entries.
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Young diagrams

@ A partition is a weakly decreasing sequence
A= (A1 > A2 > A3 >...) of nonnegative integers with only
finitely many positive entries.

@ The Young diagram of this partition A is a left-aligned table
with \; cells in row i (indexed from the top). We call it
Y (A). Formally:

Y(\) ={(i,j)|i>0and 0<j<\}.
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Young diagrams

@ A partition is a weakly decreasing sequence
A= (A1 > A2 > A3 >...) of nonnegative integers with only

finitely many positive entries.

@ The Young diagram of this partition A is a left-aligned table
with \; cells in row i (indexed from the top). We call it

Y (A). Formally:

Y(AN)=A{(i,j)|i>0and 0 <j < \;}.
e Example: If A =(4,2,2,0,0,0,...) = (4,2,2) (we omit

zeroes), then

Y (\) =
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Young diagrams

@ A partition is a weakly decreasing sequence
A= (A1 > A2 > A3 >...) of nonnegative integers with only
finitely many positive entries.

@ The Young diagram of this partition A is a left-aligned table
with \; cells in row i (indexed from the top). We call it
Y (A). Formally:

Y(\) ={(i,j)|i>0and 0<j<\}.

@ Two partitions p and A satisfy ¢ C X if Y (1) C Y (A). In this
case, the skew diagram Y (\/ ) is defined to be Y (A)\ Y (w).
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Young diagrams

@ A partition is a weakly decreasing sequence
A= (A1 > A2 > A3 >...) of nonnegative integers with only
finitely many positive entries.

@ The Young diagram of this partition A is a left-aligned table
with \; cells in row i (indexed from the top). We call it
Y (A). Formally:

Y(\) ={(i,j)|i>0and 0<j<\}.

@ Two partitions p and A satisfy ¢ C X if Y (1) C Y (A). In this
case, the skew diagram Y (\/ ) is defined to be Y (A)\ Y (w).
o Example: If A = (5,2,2) and = (1,1), then

Y () = [ 1]
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Young diagrams

@ A partition is a weakly decreasing sequence
A= (A1 > A2 > A3 >...) of nonnegative integers with only
finitely many positive entries.

@ The Young diagram of this partition A is a left-aligned table
with \; cells in row i (indexed from the top). We call it
Y (A). Formally:

Y(A)={(i,j)|i>0and 0 <j < \}.
@ Two partitions p and A satisfy ¢ C X if Y (1) C Y (A). In this
case, the skew diagram Y (\/ ) is defined to be Y (A)\ Y (w).

@ More generally, any set of (square) cells is called a diagram.
o Example:
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Standard tableaux

@ Given a diagram D, we can fill it with the numbers 1,2,..., n.
Such a filling is called a standard tableau (of shape D) if
o each of the numbers 1,2,..., n appears exactly once;

e the numbers increase along each row;
e the numbers increase down each column.
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Such a filling is called a standard tableau (of shape D) if
o each of the numbers 1,2,..., n appears exactly once;

e the numbers increase along each row;
o the numbers increase down each column.
o If D= Y (X), we let SYT ()\) be the set of all standard
tableaux of shape Y (A).
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Standard tableaux

@ Given a diagram D, we can fill it with the numbers 1,2,..., n.
Such a filling is called a standard tableau (of shape D) if
o each of the numbers 1,2,..., n appears exactly once;

e the numbers increase along each row;
o the numbers increase down each column.
o If D= Y (X), we let SYT ()\) be the set of all standard
tableaux of shape Y (A).
o Likewise SYT (A/p).
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Standard tableaux

@ Given a diagram D, we can fill it with the numbers 1,2,..., n.
Such a filling is called a standard tableau (of shape D) if
o each of the numbers 1,2,..., n appears exactly once;
e the numbers increase along each row;
o the numbers increase down each column.
o If D= Y (X), we let SYT ()\) be the set of all standard
tableaux of shape Y (A).
o Likewise SYT (A/p).
e Example: If A =(5,4,3,3) and = (2,1,1), then

L13[9] covrom.
410
6

7181t
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Standard tableaux

@ Given a diagram D, we can fill it with the numbers 1,2,..., n.
Such a filling is called a standard tableau (of shape D) if
o each of the numbers 1,2,..., n appears exactly once;
e the numbers increase along each row;
o the numbers increase down each column.
o If D= Y (X), we let SYT ()\) be the set of all standard
tableaux of shape Y (A).
o Likewise SYT (A/p).
e Example: If A =(5,4,3,3) and = (2,1,1), then

L13[9] covrom.
10

6
71811

@ Question: Given a diagram D, how many standard tableaux

of shape D exist?
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@ For D = Y (), the classical hook length formula of Frame,
Robinson and Thrall (1953) gives a beautiful answer in terms
of the hooks of .
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o If c = (i,j) is a cell of a Young diagram Y (), we let the
hook H) (c) be

{all cells of Y (\) lying due east of c}
U {all cells of Y () lying due south of c} U{c}
={(,K)eYN) [ kzjyu{lk)eY(N) | k=i}.
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o If c = (i,j) is a cell of a Young diagram Y (), we let the
hook H) (c) be

{all cells of Y (\) lying due east of c}
U {all cells of Y () lying due south of c} U{c}
={(,K)eYN) [ kzjyu{lk)eY(N) | k=i}.

@ The hook length hy(c) is defined to be |H) (c)|, that is, the
number of all cells in the hook of c.

4/23



o If c = (i,j) is a cell of a Young diagram Y (), we let the
hook H) (c) be

{all cells of Y (\) lying due east of c}
U {all cells of Y () lying due south of c} U{c}
={(,K)eYN) [ kzjyu{lk)eY(N) | k=i}.

@ The hook length hy(c) is defined to be |H) (c)|, that is, the
number of all cells in the hook of c.

e Example: If A = (4,3,3,2), then

H)\(2,2) = | and h)\(2,2) =4
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The hook length formula

@ The original hook length formula says that
nl

DYG)

ceY(N)

ISYT (V)| =

where n is the number of cells in Y ().
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The hook length formula

@ The original hook length formula says that
n!

I[I m(c)

ceY(N)

ISYT (M) =

where n is the number of cells in Y ().
e Example: If A = (3,2), then

51
YT =—— =05,
[SYT (V)| 1-3-4.1-2 >
Here are the hooks of all five cells:
k k
* % | *
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The hook length formula

@ The original hook length formula says that

ISYT (M) =

ceY(N)

n!

[I

h)\ (C)’

where n is the number of cells in Y ().

e Example: If A = (3,2), then

51
TN =15, 75=5
Here is SYT(A):
123|7124|7125|7
415 3|5 3|4
1]3 4|’ 1[3]5]
2|5 2|4
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The hook length formula: example

e Example: The number of Dyck paths from (0,0) to (2n,0) is
(2n)!

nl(n+ 1)V

This follows from the hook length formula, applied to

A = (n, n), and a simple bijection {Dyck paths} — SYT (\):

the n-th Catalan number C, =

— 112]5)
31416

— 2
3156
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o Naruse's skew hook length formula (Naruse, 2014) expresses
ISYT (A\/u)] in terms of excitations.
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@ An excited move for a cell ¢ = (i,j) € D means moving this
cell from (i,j) to (i + 1,5+ 1).
This is allowed only if the three cells marked x (that is,
(i+1,j), (i,j+1), (i+1,j41))are notin D.

>< X X
><><_>><
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@ An excited move for a cell ¢ = (i,j) € D means moving this
cell from (i,j) to (i + 1,5+ 1).
This is allowed only if the three cells marked x (that is,
(i+1,j), (i,j+1), (i+1,j41))are notin D.

Le ],
<€)

o Example:

| 1]
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This is allowed only if the three cells marked x (that is,
(i+1,j), (i,j+1), (i+1,j41))are notin D.
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@ An excited move for a cell ¢ = (i,j) € D means moving this
cell from (i,j) to (i + 1,5+ 1).
This is allowed only if the three cells marked x (that is,
(i+1,j), (i,j+1), (i+1,j41))are notin D.

Le ],
<€)

However,

FREEE

[<]
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@ An excited move for a cell ¢ = (i,j) € D means moving this

cell from (i,j) to (i +1,j +1).

This is allowed only if the three cells marked x (that is,

(i+14), (j+1), (+1j+1

[c]x
X X

However,

)) are not in D.

X X

x [e]

s

BN
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@ An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.
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@ An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

e Example: Original diagram D:
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@ An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: After a single excited move:

]
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@ An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: After two excited moves:
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@ An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: After three excited moves:
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@ An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: After four excited moves:

A O

L] L
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@ An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

to be the

@ Now, for two partitions A and p, we define £ (\/p)
CY ().

set of all excitations E of Y (u) that satisfy E
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Naruse’s skew hook length formula

@ Naruse's skew hook length formula says that

ST/l =n Y H ﬁ

EcE(Mp) cEY(A

if A and p are two partitions with 1 C A with | Y (A/p)| = n.
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Naruse’s skew hook length formula

@ Naruse's skew hook length formula says that
1
sromi=a 2T g
E h)\ (C)
€€\ /p) ceY(A

if X and pu are two partitions with ;1 C A W|th lY (A p)| =
e Example: If A\ =(2,2,2) and p = (1,1), then

ENp) =" il

Thus,

1 1 1
SYT (Ap)| = 4! - _3
ISYT (/) <3-2-1.2+3-2-3.2+3-2-3-4>
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Naruse’s skew hook length formula

@ Naruse's skew hook length formula says that

YT/l =nt Y H ,ul(c)

EcE(\/u) ceY(X

if A and p are two partitions with 1 C A with | Y (A/p)| = n.
e Example: If A =(2,2,2) and o = (1,1), then

SYT (M p) =

W »—t‘
NN
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Naruse’s skew hook length formula

@ Naruse's skew hook length formula says that

YT/l =nt Y H ,ul(c)

EcE(\/u) ceY(X

if A and p are two partitions with 1 C A with | Y (A/p)| = n.
e Example: If A =(2,2,2) and o = (1,1), then

SYT (M p) =

W »—t‘
NN

[2]+] [3]4] [

@ Known proofs use algebraic geometry (Naruse) or complicated
combinatorics (Morales/Pak/Panova and Konvalinka).
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The Pak—Postnikov generalization

@ In 2001, Pak and Postnikov generalized the classical hook
length formula in a different direction.
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The Pak—Postnikov generalization

e If T is a standard tableau (of any shape), and if k is a
positive integer, then ct (k) shall denote the difference j — i,
where (7,j) is the cell of T that contains the entry k.

o Example: If T = 1]3 4|then
2|5
cr(l)=1-1=0,
cr(2)=1-2=-1,
cr(3)=2-1=1,
cr(4)=3-1=2,
cr(5)=2-2=
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The Pak—Postnikov generalization

e If T is a standard tableau (of any shape), and if k is a
positive integer, then ct (k) shall denote the difference j — i,
where (7,j) is the cell of T that contains the entry k.

1)3 4|then
215

o Example: If T =

cr(l)=1-1=0,
cr(2) =1-2=-1,
cr@3) =2-1=1,
(4)=3-1=2,
(5)=2-2=0.

cT

cT
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The Pak—Postnikov generalization

e If T is a standard tableau (of any shape), and if k is a
positive integer, then ct (k) shall denote the difference j — i,
where (7,j) is the cell of T that contains the entry k.

o Example: If T =

1

3

4 | then

2

5

cr(1)=1-1=0,
cr@)=1-2=-1,
cr(3)=2-1=1,
cr(4)=3-1=2,
cr(5) =2-2=0.
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The Pak—Postnikov generalization

e If T is a standard tableau (of any shape), and if k is a
positive integer, then ct (k) shall denote the difference j — i,
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o Example: If T =

1

3
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2

5
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cr@)=1-2=-1,
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The Pak—Postnikov generalization

e If T is a standard tableau (of any shape), and if k is a
positive integer, then ct (k) shall denote the difference j — i,
where (7,j) is the cell of T that contains the entry k.

o Let...;z 5,7z 1,2,21,2,... be commuting indeterminates.
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e If T is a standard tableau (of any shape), and if k is a
positive integer, then ct (k) shall denote the difference j — i,
where (7,j) is the cell of T that contains the entry k.

o Let...;z 5,7z 1,2,21,2,... be commuting indeterminates.

@ For any cell ¢ = (i,j) of Y (), we define the algebraic hook
length hy (c; z) by

hx(c; z) := Z zi_j.
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The Pak—Postnikov generalization

e If T is a standard tableau (of any shape), and if k is a
positive integer, then ct (k) shall denote the difference j — i,
where (7,j) is the cell of T that contains the entry k.

o Let...;z 5,7z 1,2,21,2,... be commuting indeterminates.

@ For any cell ¢ = (i,j) of Y (), we define the algebraic hook
length hy (c; z) by

hx(c; z) := Z zi_j.

(iJ)EHA(c)
@ For any standard tableau T with n cells, we define the fraction
1

ZT ‘= —

I (Zer(k) + Zep(krr) + 7+ F Zer(n)
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Pak—Postnikov generalization

If T is a standard tableau (of any shape), and if k is a
positive integer, then ct (k) shall denote the difference j — i,
where (7,j) is the cell of T that contains the entry k.
Let ...,z 5,2z 1,20, 21, 22, ... be commuting indeterminates.
For any cell ¢ = (i,j) of Y (\), we define the algebraic hook
length hy (c; z) by
hx(c; z) := Z zi_j.
(i/)eHx(c)
For any standard tableau T with n cells, we define the fraction
1

n
I (Zer(k) + Zep(krr) + 7+ F Zer(n)

ZT =

The Pak-Postnikov generalization of the hook length formula

states that 1
>, zr= ]I hy(c;z)

TeSYT(N) ceY(N)
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The Pak—Postnikov generalization: example

e Example: For A = (2,1), we have

SYT() = {1

2]

9

1

3 | , so the formula becomes

3

2

1

1
_|_
za(zzi+za)(zz1+z+2) zn(zi+zo1) (2 +z-1 + 20)

1

(21 +z_ 1+ Zo) Z1Z_1 '
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The Pak—Postnikov generalization: example

e Example: For A = (2,1), we have

SYT() = {1

2]

1

3 | , so the formula becomes

3

9

2

1

1
_|_
za(zzi+za)(zz1+z+2) zn(zi+zo1) (2 +z-1 + 20)

1

(z1+ 21+ 20) 121 '

@ Known proofs involve polytopes (Pak/Postnikov) or
P-partitions and tropical RSK (Hopkins).
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Merging the streams: skew Pak—Postnikov

@ We propose a generalization of the Pak—Postnikov formula to
skew diagrams, thus extending Naruse's hook length formula
as well.
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Merging the streams: skew Pak—Postnikov

@ Main theorem. Let X\ and p be two partitions with y C A
such that the skew diagram Y (\/u) has n cells.
Define zy for T € SYT (A\/u) as before.
Define hy (c; z) for ¢ € Y (\) as before (this does not depend

on ul!).

13/23



Merging the streams: skew Pak—Postnikov

@ Main theorem. Let A and p be two partitions with p C A
such that the skew diagram Y (\/u) has n cells. Then,

1
Z T = Z H hy (ciz)

TeSYT(\/u) EcE(N\/p) ceY(M\E
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Merging the streams: skew Pak—Postnikov

@ Main theorem. Let A and p be two partitions with p C A
such that the skew diagram Y (\/u) has n cells. Then,

1
Z T = Z H hy (ciz)

TeSYT(\/u) EcE(N\/p) ceY(M\E

@ Example: For A = (2,2) and pu = (1), we have

SYT(A/M)—{’2 ; B 2} and 5(>\/u)—{ * }

so the formula becomes

1 1
_l’_ =
20 (z0+2z-1) (20+2z-14+2) 20 (20+21) (20+21+2-1)
1 1

+ :
(z14+20) 20 (z-1+2) (21 +2)- (20 +2-1+21) - (z-1 + 20)
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Merging the streams: skew Pak—Postnikov

@ Main theorem. Let A and p be two partitions with p C A
such that the skew diagram Y (\/u) has n cells. Then,

1
Z T = Z H hy (ciz)

TeSYT(\/u) EcE(N\/p) ceY(M\E

@ Example: For A = (2,2) and pu = (1), we have

smw—{’Q ; B 2} and 5(>\/u)—{ * }

so the formula becomes

1 1
_l’_ =
20 (20+2z-1) (20 +z-1+21) 20 (20+2) (20+2+2-1)
1 " 1
(a+20) 20 (z21+20) (n+2) (20+z1+2) (z1+2)

@ This was first observed by Grinberg. An intricate
combinatorial proof was sketched by Konvalinka in 2019.
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Proof idea: the Konvalinka recursion, 1

@ We propose a new, elementary proof of this generalized
formula.
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Proof idea: the Konvalinka recursion, 1

@ We propose a new, elementary proof of this generalized
formula.

@ Induct on |Y (A\/u)
step.

, increasing p by one cell in the induction
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Proof idea: the Konvalinka recursion, 1

o Let f(\/u)= > zr.
TESYT())
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Proof idea: the Konvalinka recursion, 1

o Let f(\/pu)= > zr.

TESYT(N)
@ We easily obtain the recurrence
1
T = CZT7,

(i)eY (A1)

where T’ is the same tableau as T, with the entry 1 removed
and all other entries decreased by 1.
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Proof idea: the Konvalinka recursion, 1

o Let f(\/pu)= > zr.

TESYT(N)
@ We easily obtain the recurrence
1

T = CZT7,

(i)eY (A1)

where T’ is the same tableau as T, with the entry 1 removed
and all other entries decreased by 1.

e Example: Let A =(3,3,2) and u = (2,1).

If Tis ... then T’ is ...
2
1|3]esYT(\/p) € SYT(\/v)
BE

1
for v =1(2,2). Thus, zr = ;=0 27"

14/23



Proof idea: the Konvalinka recursion, 2

@ Thus we get a recurrence for f(\/p):
1
F(Mu) = Y > F(\/Y).
j—i
HEZCVA I

@ Here, ;1 < v means that the partition v is obtained by adding
1 to some entry of p.
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Proof idea: the Konvalinka recursion, 2

@ Thus we get a recurrence for f(\/p):

1
FOVp) = ——— S FV).
2 A= e
(eYWm) M=
@ Here, 1 < v means that the partition v is obtained by adding
1 to some entry of p.
@ The induction step thus reduces to the following claim:

e Konvalinka recursion. Let \/u be any skew partition, and
let x1,x2,x3,...and y1, ¥, y3, ... be two infinite families of
commuting indeterminates. Then,

Yoot > ] > I Giw)

Bi: A—k=pi—i Bj: ANo—p=pt—j Deg(N/p) (ij)eD
=2 2 I &+w
u<vCX De&(N/v) (ij)eD
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Proof ingredient 1: Flagged SSYTs, 1

@ Let D be a diagram. A semistandard tableau (of shape D)
means a filling of the cells of D with positive integers such
that

e the numbers weakly increase along each row,
e the numbers strictly increase down each column.
e Example: Here is a semistandard tableau for p = (4,3,1):

11112
313

2
4
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Proof ingredient 1: Flagged SSYTs, 1

@ Let D be a diagram. A semistandard tableau (of shape D)
means a filling of the cells of D with positive integers such
that

e the numbers weakly increase along each row,
e the numbers strictly increase down each column.

o A flagging means a sequence b := (b, by, b3, ...) of positive
integers.
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@ Let D be a diagram. A semistandard tableau (of shape D)
means a filling of the cells of D with positive integers such
that

e the numbers weakly increase along each row,
e the numbers strictly increase down each column.

o A flagging means a sequence b := (b, by, b3, ...) of positive
integers.

o A flagged semistandard tableau of shape (u,b) is a
semistandard tableau of shape Y (u) in which all entries in
row i are < b;. < by

< by
< b3
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Proof ingredient 1: Flagged SSYTs, 1

@ Let D be a diagram. A semistandard tableau (of shape D)
means a filling of the cells of D with positive integers such
that

e the numbers weakly increase along each row,
e the numbers strictly increase down each column.

o A flagging means a sequence b := (b, by, b3, ...) of positive
integers.

o A flagged semistandard tableau of shape (u,b) is a
semistandard tableau of shape Y (u) in which all entries in
row i are < b;. < by

< by
< b3

@ For two partitions A\ and i, we define F(\/u) to be the set of
flagged semistandard tableaux of shape (u,b), where
b:= (bl, by, b3, .. ) with
bi :=max{k >i| A\ — k> pj—i} for all i > 1.
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Proof ingredient 1: Flagged semistandard tableaux, 2

@ Now, there is a bijection from £(A/u) to F(A\/p), defined as
follows: Each excitation D € £(A/p) is sent to the flagged
semistandard tableau T of shape (u,b), where

T(i,j) = i + (# of excited moves that cell (i,j) makes in D).

Here T(/,j) means the entry of T in cell (i,J).
@ Example: For A =(3,3,3,1) and p = (2,1):

* | % * E S
% 11‘* ¥ 12‘ 1)1
—— — <——>
2 2 X 3
*
* 1]2 * | x 212
<—— ——
* 3 * 3
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Proof ingredient 1: Flagged semistandard tableaux, 2

@ Now, there is a bijection from £(A/u) to F(A\/p), defined as
follows: Each excitation D € £(A/p) is sent to the flagged
semistandard tableau T of shape (u,b), where

T(i,j) = i + (# of excited moves that cell (i,j) makes in D).

Here T(/,j) means the entry of T in cell (i,J).
@ Example: For A =(3,3,3,1) and p = (2,1):

* | ok * X | ok
% 11‘ % ¥ 12‘ 1)1
—— — <——>
B = -G
*
* 12‘ * | x 22‘
<—— ——
7R O7E

@ Thus, we can work with flagged semistandard tableaux instead

of excited diagrams.
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Proof ingredient 2: a general Jacobi—Trudi formula, 1

@ Theorem (generalized Jacobi-Trudi formula). Let
A=A >X>--->XN)and p= (1 > po > -+ > ) be
two partitions. Let a3 < a» < --- < a, and
by < by < --- < by be positive integers. Let u;j be a variable
for each pair (i, j) € Z2.

Then,

Z H Yj—i, T(iJ)

T is a semistandard tableau (i j)eY(A
of shape Y(A\/u); ()Y (M)

a;<T(ij)<b; for all (i)

Aj
= det Z H Uc—j, t.

3i <ty 1St 2SSty <bj - c=pitl el

@ This is implicit in a preprint of Gessel and Viennot 1989.
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Proof ingredient 2: a general Jacobi—Trudi formula, 2

e If £ =(0,0,...,0) and all a; are 0 as well, and if
ujj = Xj + yiyj, and if we rename X as p, then the left hand
side here becomes

Z H (XT(ig) + YT(ij)+i—i)>

T is a flagged semistandard  (i,j)eY(u)
tableau of shape (u,b)
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Proof ingredient 2: a general Jacobi—Trudi formula, 2

e If £ =(0,0,...,0) and all a; are 0 as well, and if
ujj = Xj + yiyj, and if we rename X as p, then the left hand
side here becomes

> 1T Grap+yrape-:
T is a flagged semistandard  (i,j)eY(u)
tableau of shape (u,b)

which equals the

> II Gi+x)

DeE(Mp) (id)eD

in the Konvalinka recursion.
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Proof ingredient 3: a determinantal identity

@ Jacobi—Trudi transforms both sides of the Konvalinka
recursion into sums of determinants.

@ After some nontrivial work, it becomes an easy determinantal
identity:
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Proof ingredient 3: a determinantal identity

@ Theorem. Let M and N be two n x n-matrices. Then,
n
> det(M with its k-th row replaced

k=1
by the k-th row of )
= > det(M with its k-th column replaced
k=1

by the k-th column of N).

@ Example:

A B C a b ¢ a b c
det|a b | +det|A B C'|+det| a b (¢
a// b// C// a/l b// C// A// B// C//

A b ¢ a B ¢ a b C
=det| A b | +det|a B | +det|ad b C].
A// bl/ C/l a/l B// C// a/l bl/ C//
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Proof ingredient 4: Combinatorial lemmas

@ Two of the lemmas used along the way:

e Lemma 1. Let \ be a partition. Let ! be its conjugate (i.e.,
Young diagram flipped across the main diagonal).
Then, the sets

{(ANi—ilieN} and {j-X-1]|jeN}

are disjoint and their union is Z.

Lemma 2. Let b = (b1, by, b3, ...) be the flagging of \/p.
Let t' be the partition obtained from p by increasing the
i-th entry by 1.

Let b* = (bi‘i, b;i, bg"', .. ) be the flagging induced by \/u*'.
Then:

—1< b — b <0, and b} = by forall k # i.
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