Witt vectors. Part 1

Michiel Hazewinkel
Sidenotes by Darij Grinberg
Witt\#5c: The Chinese Remainder Theorem for Modules
[not completed, not proofread]

This is an auxiliary note; its goal is to prove a form of the Chinese Remainder Theorem that will be used in [2].

Definition 1. Let \mathbb{P} denote the set of all primes. (A prime means an integer $n>1$ such that the only divisors of n are n and 1 . The word "divisor" means "positive divisor".)
Definition 2. We denote the set $\{0,1,2, \ldots\}$ by \mathbb{N}, and we denote the set $\{1,2,3, \ldots\}$ by \mathbb{N}_{+}. (Note that our notations conflict with the notations used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter \mathbb{N} for the set $\{1,2,3, \ldots\}$, which we denote by \mathbb{N}_{+}.)

Now, here is the Chinese Remainder Theorem in one of its most general forms:
Theorem 1. Let A be a commutative ring with unity. Let M be an A module. Let $N \in \mathbb{N}$. Let $I_{1}, I_{2}, \ldots, I_{N}$ be N ideals of A such that $I_{i}+I_{j}=A$ for any two elements i and j of $\{1,2, \ldots, N\}$ satisfying $i<j$.
(a) Then, $I_{1} I_{2} \ldots I_{N} \cdot M=I_{1} M \cap I_{2} M \cap \ldots \cap I_{N} M$.
(b) Also, the map

$$
\Phi: M /\left(I_{1} I_{2} \ldots I_{N} \cdot M\right) \rightarrow \prod_{k=1}^{N}\left(M / I_{k} M\right)
$$

defined by

$$
\Phi\left(m+I_{1} I_{2} \ldots I_{N} \cdot M\right)=\left(m+I_{k} M\right)_{k \in\{1,2, \ldots, N\}} \quad \text { for every } m \in M
$$

is a well-defined isomorphism of A-modules.
(c) Let $\left(m_{k}\right)_{k \in\{1,2, \ldots, N\}} \in M^{N}$ be a family of elements of M. Then, there exists an element m of M such that

$$
\begin{equation*}
\left(m_{k} \equiv m \bmod I_{k} M \text { for every } k \in\{1,2, \ldots, N\}\right) \tag{1}
\end{equation*}
$$

Proof of Theorem 1. (a) Theorem 1 (a) occurred as Theorem 1 in [1], and we won't repeat the proof given there.
(b) Let us first forget the definition of Φ made in Theorem 1 (b) (until we have shown that it is indeed well-defined).

For any integers $i \in\{1,2, \ldots, N\}$ and $j \in\{1,2, \ldots, N\}$ satisfying $i<j$, we can find an element $a_{i, j}$ of I_{i} and an element $a_{j, i}$ of I_{j} such that $a_{i, j}+a_{j, i}=1$ (since
$1 \in A=I_{i}+I_{j}$). Fix such elements $a_{i, j}$ and $a_{j, i}$ for all pairs of integers $i \in\{1,2, \ldots, N\}$ and $j \in\{1,2, \ldots, N\}$ satisfying $i<j$. Then,

$$
\begin{equation*}
\binom{a_{i, j} \in I_{i}, a_{j, i} \in I_{j} \text { and } a_{i, j}+a_{j, i}=1 \text { for any }}{\text { integers } i \in\{1,2, \ldots, N\} \text { and } j \in\{1,2, \ldots, N\} \text { satisfying } i<j} . \tag{2}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
\binom{a_{i, j} \in I_{i}, a_{j, i} \in I_{j} \text { and } a_{i, j}+a_{j, i}=1 \text { for any }}{\text { integers } i \in\{1,2, \ldots, N\} \text { and } j \in\{1,2, \ldots, N\} \text { satisfying } i \neq j} \tag{3}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell} \in I_{k} \text { for any } \ell \in\{1,2, \ldots, N\} \text { and } k \in\{1,2, \ldots, N\} \text { satisfying } \ell \neq k . \tag{4}
\end{equation*}
$$

${ }^{2}$ Also,

$$
\begin{equation*}
\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq k}} a_{i, k} \in 1+I_{k} \quad \text { for every } k \in\{1,2, \ldots, N\} . \tag{5}
\end{equation*}
$$

3
Now, define a map

$$
\begin{array}{rlrl}
\varphi: M & \rightarrow \prod_{k=1}^{N}\left(M / I_{k} M\right) & \text { by } & \\
\varphi(m) & =\left(m+I_{k} M\right)_{k \in\{1,2, \ldots, N\}} & \text { for every } m \in M .
\end{array}
$$

Clearly, φ is a homomorphism of A-modules. We have $I_{1} I_{2} \ldots I_{N} \cdot M \subseteq \operatorname{Ker} \varphi$ (since

[^0]every $m \in I_{1} I_{2} \ldots I_{N} \cdot M$ satisfies
\[

\varphi(m)=(\underbrace{m+I_{k} M}_{$$
\begin{array}{c}
=I_{k} M \text { (since } \\
\left.m \in I_{1} I_{2} \ldots I_{N} \cdot M \subseteq I_{k} M\right)
\end{array}
$$}=(\underbrace{I_{k} M}_{\substack{this is the zero

of the A-module

M / I_{k} M}})_{\substack{

k \in\{1,2, ···, N\}}}=(0)_{k \in\{1,2, ···, N\}}=0
\]

and thus $m \in \operatorname{Ker} \varphi$). Hence, φ induces a homomorphism

$$
\Phi: M /\left(I_{1} I_{2} \ldots I_{N} \cdot M\right) \rightarrow \prod_{k=1}^{N}\left(M / I_{k} M\right)
$$

of A-modules satisfying

$$
\Phi\left(m+I_{1} I_{2} \ldots I_{N} \cdot M\right)=\left(m+I_{k} M\right)_{k \in\{1,2, \ldots, N\}} \quad \text { for every } m \in M
$$

This proves that the map Φ of Theorem 1 (b) is well-defined and a homomorphism of A-modules. We have yet to show that this Φ is an isomorphism.

Define a map

$$
\Psi: \prod_{k=1}^{N}\left(M / I_{k} M\right) \rightarrow M /\left(I_{1} I_{2} \ldots I_{N} \cdot M\right)
$$

by

$$
\begin{aligned}
\Psi\left(\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}\right)= & \sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq \ell}} a_{i, \ell}\right) m_{\ell}+I_{1} I_{2} \ldots I_{N} \cdot M \\
& \text { for every }\left(m_{k}\right)_{k \in\{1,2, \ldots, N\}} \in M^{N} .
\end{aligned}
$$

This map Ψ is indeed well-defined, since the residue class $\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}\right) m_{\ell}+$ $I_{1} I_{2} \ldots I_{N} \cdot M$ depends only on $\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}$ and not on $\left(m_{k}\right)_{k \in\{1,2, \ldots, N\}}$ (because if $\left(m_{k}\right)_{k \in\{1,2, \ldots, N\}} \in M^{N}$ and $\left(m_{k}^{\prime}\right)_{k \in\{1,2, \ldots, N\}} \in M^{N}$ are two families satisfying $\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}=\left(m_{k}^{\prime}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}$ in $\prod_{k=1}^{N}\left(M / I_{k} M\right)$, then

$$
\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}\right) m_{\ell}+I_{1} I_{2} \ldots I_{N} \cdot M=\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}\right) m_{\ell}^{\prime}+I_{1} I_{2} \ldots I_{N} \cdot M
$$

${ }^{4}$).
${ }^{4}$ Proof. In fact, $\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}=\left(m_{k}^{\prime}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}$ yields $m_{k}+I_{k} M=m_{k}^{\prime}+I_{k} M$

Every family $\left(m_{k}\right)_{k \in\{1,2, \ldots, N\}} \in M^{N}$ satisfies

$$
\begin{align*}
& (\Phi \circ \Psi)\left(\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}\right)=\Phi\left(\Psi\left(\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}\right)\right) \\
& =\Phi\left(\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq \ell}} a_{i, \ell}\right) m_{\ell}+I_{1} I_{2} \ldots I_{N} \cdot M\right) \\
& =\left(\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq \ell}} a_{i, \ell}\right) m_{\ell}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}
\end{align*}
$$

(by the definition of Φ).
for each $k \in\{1,2, \ldots, N\}$, and thus $m_{k}-m_{k}^{\prime} \in I_{k} M$ for each $k \in\{1,2, \ldots, N\}$. In other words, $m_{\ell}-m_{\ell}^{\prime} \in I_{\ell} M$ for each $\ell \in\{1,2, \ldots, N\}$. Now,

$$
\begin{aligned}
& \sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq \ell}} a_{i, \ell}\right) m_{\ell}-\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq \ell}} a_{i, \ell}\right) m_{\ell}^{\prime} \\
& =\sum_{\ell=1}^{N}(\prod_{\substack{i \in\{1,2, \ldots, N\} \\
i \neq \ell}} \underbrace{a_{i}}_{\substack{ \\
a_{i, \ell}}}) \underbrace{\left(m_{\ell}-m_{\ell}^{\prime}\right)}_{\in I_{\ell} M} \in \sum_{\ell=1}^{N} \underbrace{\left(\prod_{\substack{i \in\{1,2, \ldots, N\} \\
i \neq \ell}}^{\left(I_{i}\right.}\right)}_{\substack{=_{i \in\{1} \prod_{2,2, \ldots, N\}} \\
=I_{1} I_{2} \ldots, I_{N}}} I_{\ell} M=\sum_{\ell=1}^{N} I_{1} I_{2} \ldots I_{N} \cdot M
\end{aligned}
$$

$$
\subseteq I_{1} I_{2} \ldots I_{N} \cdot M \quad\left(\text { since } I_{1} I_{2} \ldots I_{N} \cdot M \text { is an } A \text {-module }\right),
$$

so that

$$
\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}\right) m_{\ell}+I_{1} I_{2} \ldots I_{N} \cdot M=\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}\right) m_{\ell}^{\prime}+I_{1} I_{2} \ldots I_{N} \cdot M
$$

qed.

Since every $k \in\{1,2, \ldots, N\}$ satisfies

$$
=\underbrace{\sum_{\substack{\ell=1}}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}\right) m_{\ell} .}_{\sum_{\ell \in\{1,2, \ldots, N\}}}
$$

$$
=\sum_{\ell \in\{1,2, \ldots, N\}}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}\right) m_{\ell}
$$

$$
\begin{aligned}
=\sum_{\substack{\ell \in\{1,2, \ldots, N\} \\
\ell \neq k}} \prod_{\substack{\in I_{k} \\
(\text { by 亗 })}}^{\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq \ell}} a_{i, \ell}\right)} m_{\ell}+\sum_{\substack{\ell \in\{1,2, \ldots, N\} ; \\
\ell=k}} \prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq \ell}} a_{i, \ell} m_{\ell} \\
=\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq k}} a_{i, k}\right) m_{k}
\end{aligned}
$$

$$
\in \sum_{\substack{\ell \in\{1,2, \ldots, N\} ; \\ \ell \neq k}} I_{k} m_{\ell}+\underbrace{\left.\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq k}} a_{i, k}\right)}_{\substack{\in 1+I_{k} \\(\text { by }(5))}} m_{k}
$$

$$
\subseteq \sum_{\substack{\ell \in\{1,2, \ldots, N\} ; \\ \ell \neq k}} I_{k} m_{\ell}+\underbrace{\left(1+I_{k}\right) m_{k}}_{=m_{k}+I_{k} m_{k}}=\sum_{\substack{\ell \in\{1,2, \ldots, N\} ; \subseteq I_{k} M \\ \ell \neq k}} \underbrace{I_{k} m_{\ell}}_{\subseteq I_{k} M}+m_{k}+\underbrace{I_{k} m_{k}}_{\substack{\subseteq I_{k} M}}
$$

$$
\subseteq I_{k} M+m_{k}+I_{k} M=\underbrace{I_{k} M+I_{k} M}_{=I_{k} M\left(\text { since } I_{k} M \text { is an } A\right. \text {-module) }}+m_{k}=m_{k}+I_{k} M
$$

and thus

$$
\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}\right) m_{\ell}+I_{k} M=m_{k}+I_{k} M
$$

the equation (6) becomes

$$
\begin{aligned}
(\Phi \circ \Psi)\left(\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}\right) & =(\underbrace{\sum_{\ell=1}^{N}\left(\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\
i \neq \ell}} a_{i, \ell}\right) m_{\ell}+I_{k} M}_{=m_{k}+I_{k} M})_{k \in\{1,2, \ldots, N\}} \\
& =\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}} .
\end{aligned}
$$

Since this holds for every $\left(m_{k}\right)_{k \in\{1,2, \ldots, N\}} \in M^{N}$, this yields $\Phi \circ \Psi=$ id (because every element of $\prod_{k=1}^{N}\left(M / I_{k} M\right)$ can be written in the form $\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}$ for some $\left.\left(m_{k}\right)_{k \in\{1,2, \ldots, N\}} \in M^{N}\right)$.

Now we are going to prove that the A-module homomorphism Φ is injective. In fact, let $m \in M$ be such that $\Phi\left(m+I_{1} I_{2} \ldots I_{N} \cdot M\right)=0$. Then,

$$
0=\Phi\left(m+I_{1} I_{2} \ldots I_{N} \cdot M\right)=\left(m+I_{k} M\right)_{k \in\{1,2, \ldots, N\}},
$$

so that $0=m+I_{k} M$ in $M / I_{k} M$ for every $k \in\{1,2, \ldots, N\}$. This yields $m \in I_{k} M$ for every $k \in\{1,2, \ldots, N\}$ (because $0=m+I_{k} M$ rewrites as $m \in I_{k} M$), and thus $m \in I_{1} M \cap I_{2} M \cap \ldots \cap I_{N} M$. Using Theorem 1 (a), this rewrites as $m \in I_{1} I_{2} \ldots I_{N} \cdot M$.

Thus, we have proven that
every $m \in M$ such that $\Phi\left(m+I_{1} I_{2} \ldots I_{N} \cdot M\right)=0$ must satisfy $m \in I_{1} I_{2} \ldots I_{N} \cdot M$.
Now, if $\alpha \in M /\left(I_{1} I_{2} \ldots I_{N} \cdot M\right)$ satisfies $\Phi(\alpha)=0$, then $\alpha=0 .{ }^{5}$ Thus, the homomorphism Φ is injective. Consequently, Φ is left cancellable, so that $\Phi \circ(\Psi \circ \Phi)=$ $\underbrace{\Phi \circ \Psi}_{=\text {id }} \circ \Phi=\Phi=\Phi \circ$ id yields $\Psi \circ \Phi=\mathrm{id}$.

Since $\Phi \circ \Psi=\mathrm{id}$ and $\Psi \circ \Phi=\mathrm{id}$, the map Ψ must be an inverse map of the map Φ. Hence, Φ is bijective. Since Φ is an A-module homomorphism, this yields that Φ is an A-module isomorphism, and thus Theorem 1 (b) is proven.
(c) Let

$$
\alpha=\Phi^{-1}\left(\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}\right)
$$

(where Φ^{-1} is a well-defined map, since Φ is an isomorphism). Then, $\alpha \in M /\left(I_{1} I_{2} \ldots I_{N} \cdot M\right)$, and therefore $\alpha=m+I_{1} I_{2} \ldots I_{N} \cdot M$ for some $m \in M$. Consequently,

$$
\Phi^{-1}\left(\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}\right)=\alpha=m+I_{1} I_{2} \ldots I_{N} \cdot M
$$

so that

$$
\left(m_{k}+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}=\Phi\left(m+I_{1} I_{2} \ldots I_{N} \cdot M\right)=\left(m+I_{k} M\right)_{k \in\{1,2, \ldots, N\}}
$$

(by the definition of Φ). Hence, we have $m_{k}+I_{k} M=m+I_{k} M$ for every $k \in\{1,2, \ldots, N\}$. This yields (1) (since $m_{k}+I_{k} M=m+I_{k} M$ is equivalent to $m_{k} \equiv m \bmod I_{k} M$). Thus, Theorem 1 (c) is proven.

Here is a trivial corollary of Theorem 1 which is used in [2]:
Corollary 2. Let M be an Abelian group (written additively). Let P be a finite set of positive integers such that any two distinct elements of P are coprime. Let $\left(c_{p}\right)_{p \in P} \in M^{P}$ be a family of elements of M. Then, there exists an element m of M such that

$$
\left(c_{p} \equiv m \bmod p M \text { for every } p \in P\right)
$$

[^1]Proof of Corollary 2. Since P is a finite set of positive integers, it can be written in the form $P=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$, where $p_{1}, p_{2}, \ldots, p_{N}$ are pairwise distinct positive integers and $N=|P|$. Define a family $\left(m_{k}\right)_{k \in\{1,2, \ldots, N\}} \in M^{N}$ of elements of M by $m_{k}=c_{p_{k}}$ for every $k \in\{1,2, \ldots, N\}$.

Now, let A be the ring \mathbb{Z}. Then, M is a \mathbb{Z}-module. For every $k \in\{1,2, \ldots, N\}$, define an ideal I_{k} of \mathbb{Z} by $I_{k}=p_{k} \mathbb{Z}$. Then, for any two elements i and j of $\{1,2, \ldots, N\}$ satisfying $i<j$, we have $I_{i}+I_{j}=A \quad{ }^{6}$. Hence, Theorem 1 (c) yields that there exists an element m of M such that

$$
\begin{equation*}
\left(m_{k} \equiv m \bmod I_{k} M \text { for every } k \in\{1,2, \ldots, N\}\right) \tag{8}
\end{equation*}
$$

Hence, $c_{p} \equiv m \bmod p M$ for every $p \in P \quad 7$. This proves Corollary 2 .
A yet more trivial consequence of Corollary 2:
Corollary 3. Let M be an Abelian group (written additively). Let $P \subseteq \mathbb{P}$ be a finite set of primes. Let $\left(c_{p}\right)_{p \in P} \in M^{P}$ be a family of elements of M.
Then, there exists an element m of M such that

$$
\left(c_{p} \equiv m \bmod p M \text { for every } p \in P\right)
$$

Proof of Corollary 3. Corollary 3 directly follows from Corollary 2, because any two distinct elements of P are coprime (in fact, any two distinct elements of P are two distinct primes, and two distinct primes are always coprime).

References

[1] Darij Grinberg, Witt\#5: Around the integrality criterion 9.93.
http://www.cip.ifi.lmu.de/~grinberg/algebra/witt5.pdf
[2] Darij Grinberg, Witt\#5b: Some divisibilities for big Witt polynomials. http://www.cip.ifi.lmu.de/~grinberg/algebra/witt5b.pdf

[^2]
[^0]: ${ }^{1}$ Proof of (3): Let $i \in\{1,2, \ldots, N\}$ and $j \in\{1,2, \ldots, N\}$ be two integers satisfying $i \neq j$. Since $i \neq j$, we must have either $i<j$ and $i>j$. But in both of these cases, (3) can be derived from (2) (in fact, if $i<j$, then (3) directly follows from (2), and if $i>j$, then (3) follows from (2) (applied to j and i instead of i and $j)$). Hence, (3) is proven.
 ${ }^{2}$ Proof of (4): Let $\ell \in\{1,2, \ldots, N\}$ and $k \in\{1,2, \ldots, N\}$ satisfy $\ell \neq k$. Then, (3) (applied to $i=k$ and $j=\ell$) yields $a_{k, \ell} \in I_{k}, a_{\ell, k} \in I_{\ell}$ and $a_{k, \ell}+a_{\ell, k}=1$. But the product $\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq \ell}} a_{i, \ell}$ contains the factor $a_{k, \ell}$ (because $k \neq \ell$), and thus lies in I_{k} (since $a_{k, \ell} \in I_{k}$, and since I_{k} is an ideal of A). This proves (4).
 ${ }^{3}$ Proof of (5): Let $k \in\{1,2, \ldots, N\}$. Applying (3) to $j=k$, we obtain the following:

 $$
 a_{i, k} \in I_{i}, a_{k, i} \in I_{k} \text { and } a_{i, k}+a_{k, i}=1 \text { for any integer } i \in\{1,2, \ldots, N\} \text { satisfying } i \neq k
 $$

 Thus, for any integer $i \in\{1,2, \ldots, N\}$ satisying $i \neq k$, we have $1=a_{i, k}+\underbrace{a_{k, i}} \equiv a_{i, k} \bmod I_{k}$. $\underbrace{a_{k}}_{\begin{array}{c}\equiv 0 \bmod I_{k} \\ \left(\text { since } a_{k, i} I I_{k}\right)\end{array}}$
 Hence, $\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq k}} 1 \equiv \prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq k}} a_{i, k} \bmod I_{k}$. In other words, $\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq k}} a_{i, k} \equiv \prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq k}} 1=$ $1 \bmod I_{k}$, so that $\prod_{\substack{i \in\{1,2, \ldots, N\} ; \\ i \neq k}} a_{i, k} \in 1+I_{k}$. This proves (5).

[^1]: ${ }^{5}$ In fact, we can find some $m \in M$ such that $\alpha=m+I_{1} I_{2} \ldots I_{N} \cdot M$ (by the definition of the factor module $M /\left(I_{1} I_{2} \ldots I_{N} \cdot M\right)$, and thus $\Phi(\alpha)=0$ becomes $\Phi\left(m+I_{1} I_{2} \ldots I_{N} \cdot M\right)=0$, so that (7) yields $m \in I_{1} I_{2} \ldots I_{N} \cdot M$. In other words, $m+I_{1} I_{2} \ldots I_{N} \cdot M=0$ in $M /\left(I_{1} I_{2} \ldots I_{N} \cdot M\right)$. Since $\alpha=m+I_{1} I_{2} \ldots I_{N} \cdot M$, this rewrites as $\alpha=0$, qed.

[^2]: ${ }^{6}$ In fact, let i and j be two elements of $\{1,2, \ldots, N\}$ satisfying $i<j$. Then, p_{i} and p_{j} are distinct elements of P (since $i<j$ yields $i \neq j$, and since $p_{1}, p_{2}, \ldots, p_{N}$ are pairwise distinct). Hence, p_{i} and p_{j} are coprime (because any two distinct elements of P are coprime). Thus, Bezout's Theorem yields that there exist $u \in \mathbb{Z}$ and $v \in \mathbb{Z}$ satisfying $p_{i} u+p_{j} v=1$. Hence, $1=\underbrace{p_{i} u}_{\in p_{i} \mathbb{Z}=I_{i}}+\underbrace{p_{j} v}_{\in p_{j} \mathbb{Z}=I_{j}} \in I_{i}+I_{j}$ and thus $I_{i}+I_{j}=\mathbb{Z}=A$.
 ${ }^{7}$ Proof. Let $p \in P$. Then, there exists $k \in\{1,2, \ldots, N\}$ such that $p=p_{k}$ (since $\left.P=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}\right)$. Hence, (8) yields $m_{k} \equiv m \bmod I_{k} M$. Since $m_{k}=c_{p_{k}}=c_{p}$ and $I_{k} M=p_{k} \mathbb{Z} \cdot M=p_{k} M=p M$, this rewrites as $c_{p} \equiv m \bmod p M$, qed.

