Witt vectors. Part 1

Michiel Hazewinkel
Sidenotes by Darij Grinberg

Witt\#5a: Polynomials that can be written as big w_{n}
 [completed, not proofread]

The point of this note is to generalize the property of p-adic Witt polynomials that appeared as Theorem 1 in [2] to big Witt polynomials.

First, let us introduce the notation that we are going to use.
Definition 1. Let \mathbb{P} denote the set of all primes. (A prime means an integer $n>1$ such that the only divisors of n are n and 1 . The word "divisor" means "positive divisor".)
Definition 2. We denote the set $\{0,1,2, \ldots\}$ by \mathbb{N}, and we denote the set $\{1,2,3, \ldots\}$ by \mathbb{N}_{+}. (Note that our notations conflict with the notations used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter \mathbb{N} for the set $\{1,2,3, \ldots\}$, which we denote by \mathbb{N}_{+}.)
Definition 3. Let Ξ be a family of symbols. We consider the polynomial ring $\mathbb{Q}[\Xi]$ (this is the polynomial ring over \mathbb{Q} in the indeterminates Ξ; in other words, we use the symbols from Ξ as variables for the polynomials) and its subring $\mathbb{Z}[\Xi]$ (this is the polynomial ring over \mathbb{Z} in the indeterminates $\Xi)$. ${ }^{\mathrm{T}}$. For any $n \in \mathbb{N}$, let Ξ^{n} mean the family of the n-th powers of all elements of our family Ξ (considered as elements of $\mathbb{Z}[\Xi]$) ${ }^{2}$. (Therefore, whenever $P \in \mathbb{Q}[\Xi]$ is a polynomial, then $P\left(\Xi^{n}\right)$ is the polynomial obtained from P after replacing every indeterminate by its n-th power.$\left.^{3}\right)$
Note that if Ξ is the empty family, then $\mathbb{Q}[\Xi]$ simply is the ring \mathbb{Q}, and $\mathbb{Z}[\Xi]$ simply is the ring \mathbb{Z}.
Definition 4. For any integer m, the set $\left\{n \in \mathbb{N}_{+} \mid(n \mid m)\right\}$ will be denoted by $\mathbb{N}_{\mid m}$. This set $\mathbb{N}_{\mid m}$ is the set of all divisors of m.
Definition 5. If N is a set, we shall denote by X_{N} the family $\left(X_{n}\right)_{n \in N}$ of distinct symbols. Hence, $\mathbb{Z}\left[X_{N}\right]$ is the ring $\mathbb{Z}\left[\left(X_{n}\right)_{n \in N}\right]$ (this is the polynomial ring over \mathbb{Z} in $|N|$ indeterminates, where the indeterminates are labelled X_{n}, where n runs through the elements of the set N). For instance, $\mathbb{Z}\left[X_{\mathbb{N}_{+}}\right]$is the polynomial ring $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}, \ldots\right]$ (since $\mathbb{N}_{+}=\{1,2,3, \ldots\}$), and $\mathbb{Z}\left[X_{\{1,2,3,5,6,10\}}\right]$ is the polynomial ring $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}, X_{5}, X_{6}, X_{10}\right]$.
If A is a commutative ring with unity, if N is a set, if $\left(x_{d}\right)_{d \in N} \in A^{N}$ is a family of elements of A indexed by elements of N, and if $P \in \mathbb{Z}\left[X_{N}\right]$, then

[^0]we denote by $P\left(\left(x_{d}\right)_{d \in N}\right)$ the element of A that we obtain if we substitute x_{d} for X_{d} for every $d \in N$ into the polynomial P. (For instance, if $N=\{1,2,5\}$ and $P=X_{1}^{2}+X_{2} X_{5}-X_{5}$, and if $x_{1}=13, x_{2}=37$ and $x_{5}=666$, then $\left.P\left(\left(x_{d}\right)_{d \in N}\right)=13^{2}+37 \cdot 666-666.\right)$
Definition 6. For any $n \in \mathbb{N}_{+}$, we define a polynomial $w_{n} \in \mathbb{Z}\left[X_{\mathbb{N}_{\mid n}}\right]$ by
$$
w_{n}=\sum_{d \mid n} d X_{d}^{n / d}
$$

Hence, for every commutative ring A with unity, and for any family $\left(x_{k}\right)_{k \in \mathbb{N}_{\mid n}} \in$ $A^{\mathbb{N} \mid n}$ of elements of A, we have

$$
w_{n}\left(\left(x_{k}\right)_{k \in \mathbb{N}_{\mid n}}\right)=\sum_{d \mid n} d x_{d}^{n / d}
$$

The polynomials $w_{1}, w_{2}, w_{3}, \ldots$ are called the big Witt polynomials or, simply, the Witt polynomials.
Caution: These polynomials $w_{1}, w_{2}, w_{3}, \ldots$ are referred to as $w_{1}, w_{2}, w_{3}, \ldots$ most of the time in [1] (beginning with Section 9). However, in Sections 5-8 of [1], Hazewinkel uses the notations $w_{1}, w_{2}, w_{3}, \ldots$ for some different polynomials (the so-called p-adic Witt polynomials, defined by formula (5.1) in [1]), which are not the same as our polynomials $w_{1}, w_{2}, w_{3}, \ldots$ (though they are related to them: namely, the polynomial denoted by w_{k} in Sections 5-8 of [1] is the polynomial that we are denoting by $w_{p^{k}}$ here after a renaming of variables; on the other hand, the polynomial that we call w_{k} here is something completely different).
Definition 7. Let $n \in \mathbb{Z} \backslash\{0\}$. Let $p \in \mathbb{P}$. We denote by $v_{p}(n)$ the largest nonnegative integer m satisfying $p^{m} \mid n$. Clearly, $p^{v_{p}(n)} \mid n$ and $v_{p}(n) \geq 0$. Besides, $v_{p}(n)=0$ if and only if $p \nmid n$.
We also set $v_{p}(0)=\infty$; this way, our definition of $v_{p}(n)$ extends to all $n \in \mathbb{Z}$ (and not only to $n \in \mathbb{Z} \backslash\{0\}$).
Definition 8. Let $n \in \mathbb{N}_{+}$. We denote by PF n the set of all prime divisors of n. By the unique factorization theorem, the set $\mathrm{PF} n$ is finite and satisfies $n=\prod_{p \in \operatorname{PF} n} p^{v_{p}(n)}$.

Let us now formulate our main result:
Theorem 1. Let Ξ be a family of symbols. Let $\tau \in \mathbb{Z}[\Xi]$ be a polynomial. Let $m \in \mathbb{N}$. Then, the following two assertions \mathcal{A} and \mathcal{B} are equivalent:
Assertion \mathcal{A} : There exists a family $\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}} \in(\mathbb{Z}[\Xi])^{\mathbb{N}_{\mid m}}$ such that $\tau=$ $w_{m}\left(\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}}\right)$.
Assertion \mathcal{B} : We have $\frac{\partial}{\partial \xi} \tau \in m \mathbb{Z}[\Xi]$ for every $\xi \in \Xi$.

Remarks: 1) Here, $\frac{\partial}{\partial \xi} \tau$ means the derivative of the polynomial $\tau \in \mathbb{Z}[\Xi]$ with respect to the variable ξ.
2) Theorem 1 makes sense even in the case when Ξ is the empty family (in this case, the Assertion \mathcal{B} is vacuously true (since no $\xi \in \Xi$ exists), and therefore Theorem 1 claims that in this case Assertion \mathcal{A} is true as well; see Corollary 3 for details).

Before we come to proving this theorem, let us remark why exactly this Theorem 1 generalizes the Theorem 1 of [2]. In fact, if p is a prime and $n \in \mathbb{N}$, then the big Witt polynomial $w_{p^{n}}$ (the one that we have defined above, not the one called $w_{p^{n}}$ in [2]) is

$$
\begin{array}{rlr}
w_{p^{n}} & =\sum_{d \mid p^{n}} d X_{d}^{p^{n} / d}=\sum_{d \in \mathbb{N}_{\mid p^{n}}} d X_{d}^{p^{n} / d} \\
& =\sum_{k=0}^{n} p^{k} X_{p^{k}}^{p^{n} / p^{k}} \quad & \left(\text { since } \mathbb{N}_{\mid p^{n}}=\left\{p^{0}, p^{1}, \ldots, p^{n}\right\} \quad(\text { because } p \text { is a prime })\right. \text {) } \\
& =\sum_{k=0}^{n} p^{k} X_{p^{k}}^{p^{n-k}} \quad\left(\text { since } p^{n} / p^{k}=p^{n-k}\right),
\end{array}
$$

and therefore this polynomial $w_{p^{n}}$ is equal to the polynomial denoted by w_{n} in [2] up to a renaming of variables (in fact, if we rename the variable $X_{p^{k}}$ as X_{k} for every $k \in \mathbb{N}$, then $w_{p^{n}}=\sum_{k=0}^{n} p^{k} X_{p^{k}}^{p^{n-k}}$ becomes $w_{p^{n}}=\sum_{k=0}^{n} p^{k} X_{k}^{p^{n-k}}$, which is exactly the formula defining w_{n} in [2]). Hence, in the case when $m=p^{n}$ for a prime p and an integer $n \in \mathbb{N}$, and when $\Xi=\left(X_{0}, X_{1}, X_{2}, \ldots\right)$, the Assertions \mathcal{A} and \mathcal{B} of our Theorem 1 are identical with the Assertions \mathcal{A} and \mathcal{B} of the Theorem 1 in [2], and therefore our Theorem 1 yields the Theorem 1 in [2].

Before we come to the proof of Theorem 1, let us state a simple fact: If Ξ is a family of symbols, then

$$
\begin{equation*}
\frac{\partial}{\partial \xi} P^{g}=g P^{g-1} \cdot\left(\frac{\partial}{\partial \xi} g\right) \tag{1}
\end{equation*}
$$

for every $\xi \in \Xi$, every $P \in \mathbb{Z}[\Xi]$ and every positive integer g. (This can be proven either using the chain rule for differentiation, or by induction on g using the Leibniz rule.)

Proof of Theorem 1. Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{B}$: Assume that the Assertion \mathcal{A} holds. Then, there exists a family $\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}} \in(\mathbb{Z}[\Xi])^{\mathbb{N}_{l m}}$ such that $\tau=$ $w_{m}\left(\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}}\right)$. Hence,

$$
\tau=w_{m}\left(\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}}\right)=\sum_{d \mid m} d \tau_{d}^{m / d}
$$

[^1]and thus every $\xi \in \Xi$ satisfies
\[

$$
\begin{aligned}
\frac{\partial}{\partial \xi} \tau & =\frac{\partial}{\partial \xi} \sum_{d \mid m} d \tau_{d}^{m / d}=\sum_{d \mid m} d \underbrace{\frac{\partial}{\partial \xi} \tau_{d}^{m / d}}_{=(m / d) \tau_{d}^{m / d-1} \cdot\left(\frac{\partial}{\partial \xi} \tau_{d}\right)}=\sum_{d \mid m} \underbrace{d(m / d)}_{=m} \tau_{d}^{m / d-1} \cdot\left(\frac{\partial}{\partial \xi} \tau_{d}\right) \\
& =m \underbrace{\sum_{d \mid m} \tau_{d}^{m / d-1} \cdot\left(\frac{\partial}{\partial \xi} \tau_{d}\right)}_{\in \mathbb{Z}[\Xi]} \in m \mathbb{Z}[\Xi],
\end{aligned}
$$
\]

so that Assertion \mathcal{B} holds. Thus, we have shown that whenever Assertion \mathcal{A} holds, Assertion \mathcal{B} must hold as well. This proves the implication $\mathcal{A} \Longrightarrow \mathcal{B}$.

Proof of the implication $\mathcal{B} \Longrightarrow \mathcal{A}$: Let us assume that Assertion \mathcal{B} holds. Thus, we have $\frac{\partial}{\partial \xi} \tau \in m \mathbb{Z}[\Xi]$ for every $\xi \in \Xi$. If we rename ξ as η here, this rewrites as follows: We have $\frac{\partial}{\partial \eta} \tau \in m \mathbb{Z}[\Xi]$ for every $\eta \in \Xi$.

Let us introduce some notation:
For every family $j \in \mathbb{N}^{\Xi}$ and every $\xi \in \Xi$, let us denote by j_{ξ} the ξ-th member of the family j. Then, every family $j \in \mathbb{N}^{\Xi}$ satisfies $j=\left(j_{\xi}\right)_{\xi \in \Xi}$.

Let $\mathbb{N}_{\mathrm{fin}}^{\Xi}$ denote the set $\left\{j \in \mathbb{N}^{\Xi} \mid\right.$ only finitely many $\xi \in \Xi$ satisfy $\left.j_{\xi} \neq 0\right\}$. For every $j \in \mathbb{N}_{\text {fin }}^{\Xi}$, let Ξ^{j} denote the monomial $\prod_{\xi \in \Xi} \xi^{j \xi}$. For every polynomial $P \in \mathbb{Z}[\Xi]$, let coeff ${ }_{j} P$ denote the coefficient of P before this monomial Ξ^{j}. Then, every polynomial $P \in \mathbb{Z}[\Xi]$ satisfies

$$
\begin{equation*}
P=\sum_{j \in \mathbb{N}_{\text {fin }}^{\Xi}} \operatorname{coeff}_{j} P \cdot \Xi^{j} . \tag{2}
\end{equation*}
$$

(This sum $\sum_{j \in \mathbb{N}_{\mathrm{fin}}} \operatorname{coeff}_{j} P \cdot \Xi^{j}$ has only finitely many nonzero summands, since every polynomial has only finitely many nonzero coefficients.)

For every $n \in \mathbb{N}$ and every $j \in \mathbb{N}_{\text {fin }}^{\Xi}$, let us denote by $n j \in \mathbb{N}_{\text {fin }}^{\Xi}$ the family $\left(n j_{\xi}\right)_{\xi \in \Xi}$. Clearly, $1 j=\left(1 j_{\xi}\right)_{\xi \in \Xi}=\left(j_{\xi}\right)_{\xi \in \Xi}=j$.

If $k \in \mathbb{N}_{\text {fin }}^{\Xi}$ and $n \in \mathbb{N}$, then we write $n \mid k$ if and only if $\left(n \mid k_{\xi}\right.$ for every $\left.\xi \in \Xi\right)$. If $k \in \mathbb{N}_{\text {fin }}^{\Xi}$ and $n \in \mathbb{N}$ are such that $n \mid k$, then we can define a family $k / n \in \mathbb{N}_{\text {fin }}^{\Xi}$ by $k / n=\left(\frac{k_{\xi}}{n}\right)_{\xi \in \Xi}$ (indeed, $\frac{k_{\xi}}{n} \in \mathbb{N}$ for every $\xi \in \Xi$, since $n \mid k$ yields $n \mid k_{\xi}$). This family k / n clearly satisfies $n(k / n)=\left(n \frac{k_{\xi}}{n}\right)_{\xi \in \Xi}=\left(k_{\xi}\right)_{\xi \in \Xi}=k$. Also, it is obvious that $k / 1=\left(\frac{k_{\xi}}{1}\right)_{\xi \in \Xi}=\left(k_{\xi}\right)_{\xi \in \Xi}=k$.

Now, according to $\sqrt{22}$, our polynomial τ satisfies $\tau=\sum_{j \in \mathbb{N} \overline{\mathrm{Fin}}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j}$. Thus, for
every $\eta \in \Xi$, we have

$$
\begin{aligned}
& \frac{\partial}{\partial \eta} \tau=\frac{\partial}{\partial \eta} \sum_{j \in \mathbb{N} \overline{\mathrm{Fin}}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j}=\sum_{j \in \mathbb{N} \overline{\mathrm{fin}}} \operatorname{coeff}_{j} \tau \cdot \frac{\partial}{\partial \eta} \Xi^{j}=\sum_{j \in \mathbb{N} \overline{\mathrm{Fin}}} \operatorname{coeff}_{j} \tau \cdot \frac{\partial}{\partial \eta}\left(\eta^{j_{\eta}} \prod_{\xi \in \Xi \backslash\{\eta\}} \xi^{j_{\xi}}\right) \\
& \left(\text { since } \Xi^{j}=\prod_{\xi \in \Xi} \xi^{j_{\xi}}=\eta^{j_{\eta}} \prod_{\xi \in \Xi \backslash\{\eta\}} \xi^{j_{\xi}}\right) \\
& =\sum_{j \in \mathbb{N} \overline{\mathrm{fin}}} \operatorname{coeff}_{j} \tau \cdot \underbrace{\left(\frac{\partial}{\partial \eta} \eta^{j_{\eta}}\right)} \quad \prod_{\xi \in \Xi \backslash\{\eta\}} \xi^{j_{\xi}}=\sum_{j \in \mathbb{N} \overline{\mathrm{fin}}^{\text {In }}} \operatorname{coeff}_{j} \tau \cdot\left\{\begin{array}{c}
j_{\eta} \eta^{j_{\eta}-1}, \text { if } j_{\eta}>0 ; \\
0, \text { if } j_{\eta}=0
\end{array} \prod_{\xi \in \Xi \backslash\{\eta\}} \xi^{j_{\xi}}\right. \\
& =\left\{\begin{array}{c}
j_{\eta} \eta^{j_{\eta}-1}, \text { if } j_{\eta}>0 ; \\
0, \text { if } j_{\eta}=0
\end{array}\right.
\end{aligned}
$$

Now, define a map

$$
\begin{aligned}
F:\left\{j \in \mathbb{N}_{\text {fin }}^{\Xi} \mid j_{\eta}>0\right\} & \rightarrow \mathbb{N}_{\text {fin }}^{\Xi} \quad \text { defined by } \\
F(j) & =\left(\left\{\begin{array}{c}
j_{\xi}, \text { if } \xi \neq \eta ; \\
j_{\eta}-1, \text { if } \xi=\eta
\end{array}\right)_{\xi \in \Xi} \quad \text { for every } j \in \mathbb{N}_{\text {fin }}^{\Xi} \text { satisfying } j_{\eta}>0 .\right.
\end{aligned}
$$

This map F is a bijection (in fact, this map leaves all members of the family j fixed, except of the η-th member, which is reduced by 1). By the definition of F, every $j \in \mathbb{N}_{\text {fin }}^{\Xi}$ satisfying $j_{\eta}>0$ is mapped to $F(j)=\left(\left\{\begin{array}{c}j_{\xi}, \text { if } \xi \neq \eta ; \\ j_{\eta}-1, \text { if } \xi=\eta\end{array}\right)_{\xi \in \Xi}\right.$. Hence, for every $\xi \in \Xi$, we have $(F(j))_{\xi}=\left\{\begin{array}{c}j_{\xi}, \text { if } \xi \neq \eta ; \\ j_{\eta}-1, \text { if } \xi=\eta\end{array}\right.$. In other words, $(F(j))_{\xi}=j_{\xi}$ if
$\xi \neq \eta$, and $(F(j))_{\eta}=j_{\eta}-1$ (since $\left.\eta=\eta\right)$. Using these two equations, (3) becomes

$$
\begin{aligned}
& =\sum_{\substack{j \in \mathbb{N}_{\mathrm{A}}^{\overline{\mathrm{F}}} \\
j_{\eta}>0}} \operatorname{coeff}_{F^{-1}(F(j))} \tau \cdot\left((F(j))_{\eta}+1\right) \eta^{(F(j))_{\eta}} \prod_{\xi \in \Xi \backslash\{\eta\}} \xi^{(F(j))_{\xi}} \\
& =\sum_{j \in \mathbb{N}_{\text {fin }}^{\bar{\Xi}}} \operatorname{coeff}_{F^{-1}(j)} \tau \cdot\left(j_{\eta}+1\right) \underbrace{\eta^{j_{\eta}} \prod_{\xi \in \Xi \backslash\{\eta\}} \xi^{j_{\xi}}}_{=\prod_{\xi \in \Xi} \xi^{j \xi}=\xi^{j}} \quad \quad\binom{\text { here we substituted } F(j) \text { for } j \text { in the sum, }}{\text { since the map } F \text { is a bijection }} \\
& =\sum_{j \in \mathbb{N}_{\mathrm{fin}}^{\overline{\mathrm{n}}}} \operatorname{coeff}_{F^{-1}(j)} \tau \cdot\left(j_{\eta}+1\right) \xi^{j} .
\end{aligned}
$$

Hence, for every $j \in \mathbb{N}_{\mathrm{fin}}^{\Xi}$, we have $\operatorname{coeff}_{j}\left(\frac{\partial}{\partial \eta} \tau\right)=\operatorname{coeff}_{F^{-1}(j)} \tau \cdot\left(j_{\eta}+1\right)$. But we must have coeff ${ }_{j}\left(\frac{\partial}{\partial \eta} \tau\right) \in m \mathbb{Z}$ (since $\frac{\partial}{\partial \eta} \tau \in m \mathbb{Z}[\Xi]$). Thus,

$$
\begin{equation*}
\operatorname{coeff}_{F^{-1}(j)} \tau \cdot\left(j_{\eta}+1\right) \in m \mathbb{Z} \quad \text { for every } j \in \mathbb{N}_{\text {fin }}^{\Xi} \tag{4}
\end{equation*}
$$

Thus, every $j \in \mathbb{N}_{\mathrm{fin}}^{\Xi}$ and every $\eta \in \Xi$ satisfy

$$
\begin{equation*}
\operatorname{coeff}_{j} \tau \cdot j_{\eta} \in m \mathbb{Z} \tag{5}
\end{equation*}
$$

(since (4), applied to $F(j)$ instead of j, yields coeff $F^{-1}(F(j)) \tau \cdot\left((F(j))_{\eta}+1\right) \in m \mathbb{Z}$, which simplifies to coeff ${ }_{j} \tau \cdot j_{\eta} \in m \mathbb{Z}$ because $F^{-1}(F(j))$ and because $\underbrace{(F(j))_{\eta}}_{=j_{\eta}-1}+1=$ $\left.\left(j_{\eta}-1\right)+1=j_{\eta}\right)$.

Now we recall the following result from [4]:
Theorem 2. Let Ξ be a family of symbols. Let N be a nest ${ }^{5}$, and let $\left(b_{n}\right)_{n \in N} \in(\mathbb{Z}[\Xi])^{N}$ be a family of polynomials in the indeterminates Ξ. Then, the two following assertions \mathcal{C}_{Ξ} and \mathcal{D}_{Ξ} are equivalent:
Assertion \mathcal{C}_{Ξ} : Every $n \in N$ and every $p \in \operatorname{PF} n$ satisfies

$$
b_{n / p}\left(\Xi^{p}\right) \equiv b_{n} \bmod p^{v_{p}(n)} \mathbb{Z}[\Xi] .
$$

Assertion \mathcal{D}_{Ξ} : There exists a family $\left(x_{n}\right)_{n \in N} \in(\mathbb{Z}[\Xi])^{N}$ of elements of $\mathbb{Z}[\Xi]$ such that

$$
\left(b_{n}=w_{n}\left(\left(x_{k}\right)_{k \in N}\right) \text { for every } n \in N\right) .
$$

[^2]This Theorem 2 is part of Theorem 13 in [4] (which claims that the assertions \mathcal{C}_{Ξ}, $\mathcal{D}_{\Xi}, \mathcal{D}_{\Xi}^{\prime}, \mathcal{E}_{\Xi}, \mathcal{E}_{\Xi}^{\prime}, \mathcal{F}_{\Xi}, \mathcal{G}_{\Xi}$ and \mathcal{H}_{Ξ} are equivalent, where \mathcal{C}_{Ξ} and \mathcal{D}_{Ξ} are our assertions \mathcal{C}_{Ξ} and \mathcal{D}_{Ξ}, while $\mathcal{D}_{\Xi}^{\prime}, \mathcal{E}_{\Xi}, \mathcal{E}_{\Xi}^{\prime}, \mathcal{F}_{\Xi}, \mathcal{G}_{\Xi}$ and \mathcal{H}_{Ξ} are some other assertions). Hence, for the proof of Theorem 2, we refer the reader to [4].

Now, let us continue with the proof of Theorem 1:
Let $N=\mathbb{N}_{\mid m}$. Then, every element n of N is a divisor of m, and hence $m / n \in \mathbb{N}$ for every $n \in N$.

We are going to apply Theorem 2 to the family $\left(b_{n}\right)_{n \in N} \in(\mathbb{Z}[\Xi])^{N}$ defined by

$$
b_{n}=\sum_{\substack{j \in \mathbb{N}_{\text {fin }}^{\equiv} ; \\(m / n) \mid j}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j /(m / n)} \quad \text { for every } n \in N
$$

Let $n \in N$ and every $p \in \operatorname{PF} n$. The polynomial $b_{n / p}\left(\Xi^{p}\right)$ is the polynomial obtained from $b_{n / p}$ after replacing every indeterminate by its n-th power. Since

$$
b_{n / p}=\sum_{\substack{j \in \mathbb{N}_{\mathrm{Hn}} ; \\(m /(n / p)) \mid j}} \operatorname{coeff}_{j} \tau \cdot \underbrace{\Xi^{j /(m /(n / p))}}_{=\prod_{\xi \in \Xi}^{\xi^{(j /(m /(n / p)))} \xi}}=\sum_{\substack{j \in \mathbb{N}_{\mathrm{H}}^{\boldsymbol{\xi}} ; \\(m /(n / p)) \mid j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{(j /(m /(n / p)))_{\xi}},
$$

it must therefore be

$$
\begin{align*}
& \left(\operatorname{since}(j /(m /(n / p)))_{\xi}=\frac{j_{\xi}}{(m / n) / p}=j_{\xi} n /(m p)\right) \\
& =\sum_{\substack{j \in \mathbb{N}_{\mathrm{F}}^{\overline{\mathrm{F}}} \\
(m /(n / p)) \mid j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{j \xi n / m}=\sum_{\substack{j \in \mathbb{N}_{\mathrm{F}}^{\Xi} ; \\
(p m / n) \mid j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{j \xi n / m} \tag{6}
\end{align*}
$$

(since $m /(n / p)=p m / n)$. Now, let us prove that
every $j \in \mathbb{N}_{\text {fin }}^{\Xi}$ which satisfies $(m / n) \mid j$ and $(p m / n) \nmid j$ must satisfy $\operatorname{coeff}_{j} \tau \equiv 0 \bmod p^{v_{p}(n)} \mathbb{Z}[\Xi]$.
In fact, let $j \in \mathbb{N}_{\text {fin }}^{\Xi}$ be such that $(m / n) \mid j$ and $(p m / n) \nmid j$. We have to prove that $\operatorname{coeff}_{j} \tau \equiv 0 \bmod p^{v_{p}(n)} \mathbb{Z}[\Xi]$. Assume, for the sake of contradiction, that the opposite holds, i. e. that coeff ${ }_{j} \tau \not \equiv 0 \bmod p^{v_{p}(n)} \mathbb{Z}[\Xi]$. Then, $p^{v_{p}(n)} \nmid \operatorname{coeff}_{j} \tau$, so that $v_{p}\left(\operatorname{coeff}_{j} \tau\right)<v_{p}(n)$. Hence, $v_{p}\left(\operatorname{coeff}_{j} \tau\right) \leq v_{p}(n)-1\left(\right.$ since $v_{p}\left(\operatorname{coeff}_{j} \tau\right)$ and $v_{p}(n)$ are integers). But for every $\eta \in \Xi$, the relation (5) yields $m \mid \operatorname{coeff}_{j} \tau \cdot j_{\eta}$ and thus

$$
v_{p}(m) \leq v_{p}\left(\operatorname{coeff}_{j} \tau \cdot j_{\eta}\right)=\underbrace{v_{p}\left(\operatorname{coeff}_{j} \tau\right)}_{\leq v_{p}(n)-1}+v_{p}\left(j_{\eta}\right) \leq\left(v_{p}(n)-1\right)+v_{p}\left(j_{\eta}\right),
$$

[^3]so that
$$
v_{p}\left(j_{\eta}\right) \geq \underbrace{v_{p}(m)}_{\substack{=v_{p}((m / n) \cdot n) \\ \\=v_{p}(m / n)+v_{p}(n)}}-\left(v_{p}(n)-1\right)=v_{p}(m / n)+1,
$$
and thus $p^{v_{p}(m / n)+1} \mid j_{\eta}$. On the other hand, $m / n \mid j_{\eta}$ (since $m / n \mid j$). Thus, $\operatorname{lcm}\left(p^{v_{p}(m / n)+1}, m / n\right) \mid j_{\eta}$. But lcm $\left(p^{v_{p}(m / n)+1}, m / n\right)=p m / n\left(\right.$ in fact, $\operatorname{gcd}\left(p^{v_{p}(m / n)+1}, m / n\right)=$ $p^{v_{p}(m / n)} \quad{ }^{7}$. and thus the formula $\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$ (which holds for any two positive integers a and b) yields $\left.\operatorname{lcm}\left(p^{v_{p}(m / n)+1}, m / n\right)=\frac{p^{v_{p}(m / n)+1} \cdot m / n}{p^{v_{p}(m / n)}}=p m / n\right)$. Hence, $(p m / n) \mid j_{\eta}$. Since this holds for any $\eta \in \Xi$, we have thus shown that $(p m / n) \mid j$, contradicting our assumption that $(p m / n) \nmid j$. This contradiction shows that our assumption that coeff ${ }_{j} \tau \not \equiv 0 \bmod p^{v_{p}(n)} \mathbb{Z}[\Xi]$ was wrong. Thus, (7) is proven.

Now, every $n \in N$ and every $p \in \operatorname{PF} n$ satisfy

$$
\begin{aligned}
& =\sum_{\substack{j \in \mathbb{N} \overline{\mathrm{~F}} \mathrm{~F} ; \\
(p m / n) \mid j}} \operatorname{coeff}_{j} \tau \cdot \underbrace{\Xi^{j /(m / n)}}_{\prod_{\xi \in \Xi} \xi^{(j /(m / n)) \xi}} \\
& \text { (since for every } \left.j \in \mathbb{N}_{\text {fin }}^{\Xi} \text {, the conditions }((m / n) \mid j \text { and }(p m / n) \mid j) \text { are }\right) \\
& =\sum_{\substack{j \in \mathbb{N}_{\text {In }}^{\equiv} ; \\
(p m / n) \mid j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{(j /(m / n))_{\xi}} \\
& =\sum_{\substack{j \in \mathbb{N} \overline{\bar{F}_{n}} ; \\
(p m / n) \mid j}} \operatorname{coeff}_{j} \tau \cdot \prod_{\xi \in \Xi} \xi^{j \xi n / m} \\
& =b_{n / p}\left(\Xi^{p}\right) \bmod p^{v_{p}(n)} \mathbb{Z}[\Xi] \quad \text { (by (6)). }
\end{aligned}
$$

Hence, we have shown that every $n \in N$ and every $p \in \operatorname{PF} n$ satisfies $b_{n / p}\left(\Xi^{p}\right) \equiv$ $b_{n} \bmod p^{v_{p}(n)} \mathbb{Z}[\Xi]$. Thus, Assertion \mathcal{C}_{Ξ} of Theorem 2 holds for our family $\left(b_{n}\right)_{n \in N} \in$ $(\mathbb{Z}[\Xi])^{N}$. Consequently, Assertion \mathcal{D}_{Ξ} of Theorem 2 also holds for this family (since

[^4]Theorem 2 states that assertions \mathcal{C}_{Ξ} and \mathcal{D}_{Ξ} are equivalent). In other words, there exists a family $\left(x_{n}\right)_{n \in N} \in(\mathbb{Z}[\Xi])^{N}$ of elements of $\mathbb{Z}[\Xi]$ such that

$$
\left(b_{n}=w_{n}\left(\left(x_{k}\right)_{k \in N}\right) \text { for every } n \in N\right) .
$$

Applying this to $n=m$, we obtain $b_{m}=w_{m}\left(\left(x_{k}\right)_{k \in N}\right)=w_{m}\left(\left(x_{k}\right)_{k \in \mathbb{N}_{l m}}\right)$. Renaming the family $\left(x_{k}\right)_{k \in \mathbb{N}_{\mid m}}$ as $\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}}$, we can rewrite this as $b_{m}=w_{m}\left(\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}}\right)$. Since

$$
\begin{aligned}
& b_{m}=\sum_{\substack{j \in \mathbb{N}_{\mathrm{F}}^{\mathrm{F}} ; \\
(m / m) \mid j}} \operatorname{coeff}_{j} \tau \cdot \underbrace{\Xi^{j /(m / m)}}_{=\Xi^{j / 1}=\Xi^{j}}=\sum_{\substack{j \in \mathbb{N}_{\mathrm{f}}^{\Xi} ; \\
(m / m) \mid j}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j}=\sum_{j \in \mathbb{N}_{\text {fin }}^{\Xi}} \operatorname{coeff}_{j} \tau \cdot \Xi^{j} \\
&=\tau \quad\left(\text { since every } j \in \mathbb{N}_{\text {fin }}^{\Xi} \text { satisfies }(m / m) \mid j, \text { because } m / m=1\right) \\
&\quad \quad \text { (by (2) }),
\end{aligned}
$$

this rewrites as $\tau=w_{m}\left(\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}}\right)$. Thus, Assertion \mathcal{A} holds. Hence, we have derived Assertion \mathcal{A} from Assertion \mathcal{B}. This proves the implication $\mathcal{B} \Longrightarrow \mathcal{A}$.

Altogether we have now proven the implications $\mathcal{A} \Longrightarrow \mathcal{B}$ and $\mathcal{B} \Longrightarrow \mathcal{A}$. We can thus conclude that the assertions \mathcal{A} and \mathcal{B} are equivalent. This proves Theorem 1.

We notice a trivial corollary from Theorem 1 :
Corollary 3. Let $\tau \in \mathbb{Z}$ be an integer. Let $m \in \mathbb{N}$. Then, there exists a family $\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}} \in \mathbb{Z}^{\mathbb{N} \mid m}$ of integers such that $\tau=w_{m}\left(\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}}\right)$.

Proof of Corollary 3. Let Ξ be the empty family. Then, $\mathbb{Z}[\Xi]=\mathbb{Z}$ (in fact, $\mathbb{Z}[\Xi]$ is the ring of all polynomials in the indeterminates Ξ over \mathbb{Z}, but Ξ is the empty family, and polynomials in an empty family of indeterminates over \mathbb{Z} are the same as integers). Clearly, our "polynomial" $\tau \in \mathbb{Z}[\Xi]$ satisfies Assertion \mathcal{B} of Theorem 1 (in fact, Ξ is the empty family, so that there exists no $\xi \in \Xi$, and thus Assertion \mathcal{B} of Theorem 1 is vacuously true). Hence, it also satisfies Assertion \mathcal{A} of Theorem 1 (because Theorem 1 states that assertions \mathcal{A} and \mathcal{B} are equivalent). In other words, there exists a family $\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}} \in(\mathbb{Z}[\Xi])^{\mathbb{N}_{\mid m}}$ such that $\tau=w_{m}\left(\left(\tau_{d}\right)_{d \in \mathbb{N}_{\mid m}}\right)$. Since $\mathbb{Z}[\Xi]=\mathbb{Z}$, this yields the assertion of Corollary 3. Thus, Corollary 3 is proven.

References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.
[2] Darij Grinberg, Witt\#2: Polynomials that can be written as w_{n}. http://www.cip.ifi.lmu.de/~grinberg/algebra/witt2.pdf
[3] Darij Grinberg, Witt\#3: Ghost component computations.
http://www.cip.ifi.lmu.de/~grinberg/algebra/witt3.pdf
[4] Darij Grinberg, Witt\#5: Around the integrality criterion 9.93. http://www.cip.ifi.lmu.de/~grinberg/algebra/witt5.pdf

[^0]: ${ }^{1}$ For instance, Ξ can be $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$, in which case $\mathbb{Z}[\Xi]$ means $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$. Or, Ξ can be $\left(X_{0}, X_{1}, X_{2}, \ldots ; Y_{0}, Y_{1}, Y_{2}, \ldots ; Z_{0}, Z_{1}, Z_{2}, \ldots\right)$, in which case $\mathbb{Z}[\Xi]$ means $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots ; Y_{0}, Y_{1}, Y_{2}, \ldots ; Z_{0}, Z_{1}, Z_{2}, \ldots\right]$.
 ${ }^{2}$ In other words, if $\Xi=\left(\xi_{i}\right)_{i \in I}$, then we define Ξ^{n} as $\left(\xi_{i}^{n}\right)_{i \in I}$. For instance, if $\Xi=\left(X_{0}, X_{1}, X_{2}, \ldots\right)$, then $\Xi^{n}=\left(X_{0}^{n}, X_{1}^{n}, X_{2}^{n}, \ldots\right)$. If $\Xi=\left(X_{0}, X_{1}, X_{2}, \ldots ; Y_{0}, Y_{1}, Y_{2}, \ldots ; Z_{0}, Z_{1}, Z_{2}, \ldots\right)$, then $\Xi^{n}=$ $\left(X_{0}^{n}, X_{1}^{n}, X_{2}^{n}, \ldots ; Y_{0}^{n}, Y_{1}^{n}, Y_{2}^{n}, \ldots ; Z_{0}^{n}, Z_{1}^{n}, Z_{2}^{n}, \ldots\right)$.
 ${ }^{3}$ For instance, if $\Xi=\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ and $P(\Xi)=\left(X_{0}+X_{1}\right)^{2}-2 X_{3}+1$, then $P\left(\Xi^{n}\right)=$ $\left(X_{0}^{n}+X_{1}^{n}\right)^{2}-2 X_{3}^{n}+1$.

[^1]: ${ }^{4}$ Let us remind ourselves once again that this is not the polynomial that we call w_{n} in this present note.

[^2]: ${ }^{5}$ We refer to [4] (Definition 5) for the definition of a nest. For our aims, it is only important to know that $\mathbb{N}_{\mid m}$ is a nest.

[^3]: ${ }^{6}$ Here, $w_{n}\left(\left(x_{k}\right)_{k \in N}\right)$ means $w_{n}\left(\left(x_{k}\right)_{k \in \mathbb{N}_{\mid n}}\right)$ (because $\mathbb{N}_{\mid n}$ is a subset of N, since $n \in N$ and since n is a nest).

[^4]: ${ }^{7}$ In fact, the number $\operatorname{gcd}\left(p^{v_{p}(m / n)+1}, m / n\right)$ must be a power of p (since it is a divisor of $p^{v_{p}(m / n)+1}$, and p is a prime) and a divisor of m / n, so it must be a power of p which divides m / n, and thus it must be p^{κ} for some integer κ satisfying $0 \leq \kappa \leq v_{p}(m / n)$. Thus, $\operatorname{gcd}\left(p^{v_{p}(m / n)+1}, m / n\right)=$ $p^{\kappa} \mid p^{v_{p}(m / n)}\left(\right.$ since $\left.\kappa \leq v_{p}(m / n)\right)$. On the other hand, $p^{v_{p}(m / n)} \mid \operatorname{gcd}\left(p^{v_{p}(m / n)+1}, m / n\right)$ (since $p^{v_{p}(m / n)}$ is a common divisor of $p^{v_{p}(m / n)+1}$ and $\left.m / n\right)$. Hence, $\operatorname{gcd}\left(p^{v_{p}(m / n)+1}, m / n\right)=p^{v_{p}(m / n)}$, qed.

