Witt vectors. Part 1

Michiel Hazewinkel

Sidenotes by Darij Grinberg

Witt\#4b: A combinatorial identity proven using symmetric functions identities

[absolutely not completed (proof of Thm 2 is very sloppy), not proofread]

The point of this note is to use the results of [2] (more precisely, its Theorem 5 (b)) in order to verify a combinatorial identity from [3]:

Theorem 1. Let $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then,

$$
\sum_{\sigma \in S_{n}} \operatorname{sign} \sigma \cdot x^{\text {cycle } \sigma}=n!\binom{x}{n}
$$

Here, for every permutation $\sigma \in S_{n}$, we let cycle σ denote the number of all cycles (including cycles of length 1) in the cycle decomposition of the permutation σ.

Note that x has been called k in [2].
In order to prove Theorem 1, we are going to use some of the notations of [2]; namely, we will use the Definitions 1, 2, 3, 4, 5, 10, 11, 12, 13 of [2].

First, let us find an alternative formula for the number z_{λ} defined in Definition 13 of [2]. In fact, let us recall that in Definition 13 of [2], the number z_{λ} was defined by

$$
z_{\lambda}=\prod_{n=1}^{\infty} n^{m_{n}(\lambda)}\left(m_{n}(\lambda)\right)!\quad \text { for every } \lambda \in \operatorname{Par}
$$

Thus,

$$
\begin{equation*}
z_{\lambda}=\prod_{n=1}^{\infty} n^{m_{n}(\lambda)}\left(m_{n}(\lambda)\right)!=\prod_{n=1}^{\infty} n^{m_{n}(\lambda)} \prod_{n=1}^{\infty}\left(m_{n}(\lambda)\right)!. \tag{1}
\end{equation*}
$$

But if we write the partition λ in the form $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{u}\right)$ for some $u \in \mathbb{N}$ such that $\lambda_{u} \neq 0$ (clearly we can write the partition λ in this way, because every partition has only finitely many nonzero terms), then

$$
\prod_{i=1}^{u} \lambda_{i}=\prod_{i \in\{1,2, \ldots, u\}} \lambda_{i}=\prod_{n=1}^{\infty} \underbrace{}_{=n} \prod_{\substack{i \in\left\{1,\{1,2, \ldots, u\} \\ \lambda_{i}, \ldots, u\right.}} n ; \lambda_{i=n} n \mid=n^{m_{n}(\lambda)}, ~=\prod_{n=1}^{\infty} n^{m_{n}(\lambda)}
$$

so that (1) becomes

$$
\begin{equation*}
z_{\lambda}=\underbrace{\prod_{n=1}^{\infty} n^{m_{n}(\lambda)}}_{=\prod_{i=1}^{u} \lambda_{i}} \prod_{n=1}^{\infty}\left(m_{n}(\lambda)\right)!=\prod_{i=1}^{u} \lambda_{i} \cdot \prod_{n=1}^{\infty}\left(m_{n}(\lambda)\right)!=\prod_{i=1}^{u} \lambda_{i} \cdot \prod_{k=1}^{\infty}\left(m_{k}(\lambda)\right)! \tag{2}
\end{equation*}
$$

(here, we substituted k for n in the second product).
Next, let us define the cycle type of a permutation:
Definition 1. Let $\sigma \in S_{n}$ be a permutation. For every $i \in\{1,2,3, \ldots\}$, let us denote by cycle $i \sigma$ the number of all cycles of length i in the cycle decomposition of the permutation σ. Clearly, $\left(\operatorname{cycle}_{1} \sigma, \operatorname{cycle}_{2} \sigma, \operatorname{cycle}_{3} \sigma, \ldots\right) \in \mathbb{N}_{\text {fin }}^{\{1,2,3, \ldots\}}$ and
$\sum_{i=1}^{\infty} \underbrace{\operatorname{cycle}_{i} \sigma}_{=(\text {the number of all cycles of length } i \text { in the cycle decomposition of the permutation } \sigma \text {) }}$
$=\sum_{i=1}^{\infty}$ (the number of all cycles of length i in the cycle decomposition of the permutation σ)
$=($ the number of all cycles in the cycle decomposition of the permutation $\sigma)=$ cycle σ
1.

Now, the cycle type cyc $\sigma \in \operatorname{Par}$ of the permutation σ is defined as the partition

$$
m^{-1}\left(\operatorname{cycle}_{1} \sigma, \operatorname{cycle}_{2} \sigma, \operatorname{cycle}_{3} \sigma, \ldots\right),
$$

where $m: \operatorname{Par} \rightarrow \mathbb{N}_{\text {fin }}^{\{1,2,3, \ldots\}}$ is the bijection defined by

$$
m(\lambda)=\left(m_{1}(\lambda), m_{2}(\lambda), m_{3}(\lambda), \ldots\right) \quad \text { for all } \lambda \in \operatorname{Par}
$$

Hence,

$$
\left(\operatorname{cycle}_{1} \sigma, \operatorname{cycle}_{2} \sigma, \operatorname{cycle}_{3} \sigma, \ldots\right)=m(\operatorname{cyc} \sigma)=\left(m_{1}(\operatorname{cyc} \sigma), m_{2}(\operatorname{cyc} \sigma), m_{3}(\operatorname{cyc} \sigma), \ldots\right) .
$$

Thus, $\operatorname{cycle}_{i} \sigma=m_{i}(\operatorname{cyc} \sigma)$ for every $i \in\{1,2,3, \ldots\}$.
It is clear that

$$
\begin{aligned}
\mathrm{wt}(\operatorname{cyc} \sigma)= & \sum_{k=1}^{\infty} k \underbrace{m_{k}(\operatorname{cyc} \sigma)}_{=\operatorname{cycle}_{k} \sigma} \\
& \left(\text { by the formula } \mathrm{wt} \lambda=\sum_{k=1}^{\infty} k m_{k}(\lambda), \text { which holds for every partition } \lambda\right) \\
= & \sum_{k=1}^{\infty} k \operatorname{cycle}_{k} \sigma
\end{aligned}
$$

[^0] (since $\left.\left(\operatorname{cycle}_{1} \sigma, \operatorname{cycle}_{2} \sigma, \operatorname{cycle}_{3} \sigma, \ldots\right) \in \mathbb{N}_{\text {fin }}^{\{1,2,3, \ldots\}}\right)$, and thus has a well-defined value.
and
\[

$$
\begin{aligned}
& n=\sum_{k \in\{1,2, \ldots, n\}} 1=\sum_{\begin{array}{c}
Z \text { is a cycle } \\
\text { in the cycle } \\
\text { decomposition of } \\
\text { the permutation } \sigma \\
\begin{array}{c}
\sigma \text { (length of the cycle } Z) \cdot 1 \\
\text { (length of the cycle } Z)
\end{array}
\end{array} \sum_{\begin{array}{c}
k \in\{1,2, \ldots, n\} ; \\
k Z Z
\end{array}} 1} \\
& \binom{\text { since every element of }\{1,2, \ldots, n\} \text { lies in one and only one }}{\text { cycle in the cycle decomposition of the permutation } \sigma} \\
& \left.=\sum_{\begin{array}{c}
Z \text { is a cycle } \\
\text { in the cycle } \\
\text { decomposition of } \\
\text { the permutation } \sigma
\end{array}} \text { (length of the cycle } Z\right)=\sum_{k=1}^{\infty} \sum_{\begin{array}{c}
Z \text { is a cycle of } \\
\text { lenth } k \text { in the cycle } \\
\text { decomposition of } \\
\text { the permutation } \sigma
\end{array}} \underbrace{(\text { length of the cycle } Z)}_{=k} \\
& =\sum_{k=1}^{\infty} \sum_{\begin{array}{c}
Z \text { is a cycle of } \\
\end{array}}=\sum_{k=1}^{\infty} k \operatorname{cycle}_{k} \sigma, \\
& \text { length } k \text { in the cycle } \\
& \text { decomposition of } \\
& \text { the permutation } \sigma \\
& =(\text { the number of all cycles of length } k \text { in the cycle decomposition of the permutation } \sigma) \cdot k \\
& =\operatorname{cycle}_{k} \sigma \cdot k=k \text { cycle }_{k} \sigma
\end{aligned}
$$
\]

and therefore

$$
\text { wt }(\operatorname{cyc} \sigma)=n \quad \text { for every permutation } \sigma \in S_{n}
$$

The following simple property connects this notion of cycle types with the numbers z_{λ} defined above:

Theorem 2. Let $\lambda \in$ Par and let $n=\mathrm{wt} \lambda$. Then,

$$
\left|\left\{\sigma \in S_{n} \quad \mid \operatorname{cyc} \sigma=\lambda\right\}\right|=\frac{n!}{z_{\lambda}}
$$

Proof of Theorem 2. We write the partition λ in the form $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{u}\right)$ for some $u \in \mathbb{N}$ such that $\lambda_{u} \neq 0$ (clearly we can write the partition λ in this way, because every partition has only finitely many nonzero terms). Clearly, $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{u}=$ $\sum_{i \in\{1,2, \ldots, u\}} \lambda_{i}=$ wt $\lambda=n$.

Let us introduce a notation: A λ-partition will mean a family $\left(I_{1}, I_{2}, \ldots, I_{u}\right) \in$ $(\mathcal{P}(\{1,2, \ldots, n\}))^{u}$ of pairwise disjoint subsets of $\{1,2, \ldots, n\}$ satisfying $\left(\left|I_{k}\right|=\lambda_{k}\right.$ for every $\left.k \in\{1,2, \ldots, u\}\right)$. The number of all λ-partitions is the multinomial coefficient $\binom{n}{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{u}}=\frac{n!}{\prod_{i=1}^{u} \lambda_{i}!}\left(\right.$ since $\left.\lambda_{1}+\lambda_{2}+\ldots+\lambda_{u}=n\right)$.

For every finite set U, let S_{U} denote the set of all permutations of the set U. A permutation π of a nonempty finite set U is said to be cyclic if and only if there exists a bijection $\nu:\{1,2, \ldots,|U|\} \rightarrow U$ such that $\pi=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{|U|}\right)$. In other words, a permutation π of a nonempty finite set U is said to be cyclic if and only if its cycle decomposition consists only of one cycle of length $|U|$. In other words, a permutation
π of a nonempty finite set U is said to be cyclic if and only if the cycle type of π is $(|U|)$. Clearly, for every nonempty finite set U, the number of cyclic permutations of U is $(|U|-1)$! ${ }^{2}$, In other words, $\left|S_{U}^{C}\right|=(|U|-1)$!, where S_{U}^{C} denotes the set of all cyclic permutations of the set U.

If U is a subset of a finite set V, then we consider S_{U} as a subset of S_{V} (in fact, we identify every element π of S_{U} with the element π^{\prime} of S_{V} defined by

$$
\left(\pi^{\prime}(v)=\left\{\begin{array}{cl}
\pi(v), \text { if } v \in U ; & \text { for all } v \in V) \\
v, \text { if } v \notin U
\end{array} \quad\right.\right.
$$

). In particular, if U is a subset of $\{1,2, \ldots, n\}$, then S_{U} is thus considered as a subset of $S_{\{1,2, \ldots, n\}}=S_{n}$.

For every λ-partition $\left(I_{1}, I_{2}, \ldots, I_{u}\right)$ and every family $\left(\pi_{i}\right)_{i \in\{1,2, \ldots, u\}} \in \prod_{i=1}^{u} S_{I_{i}}^{C}$ of cyclic permutations of the sets I_{i}, we can define a permutation $\sigma \in S_{n}$ by $\sigma=\prod_{i=1}^{u} \pi_{i}$ (note that order doesn't matter in this product $\prod_{i=1}^{u} \pi_{i}$, because the permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{u}$ are disjoint cycles and therefore commute). This permutation σ has cycle decomposition $\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{u}$, and thus for every $i \in\{1,2,3, \ldots\}$, we have
$m_{i}(\operatorname{cyc} \sigma)$
$=\operatorname{cycle}_{i}(\sigma)$
$=($ the number of all cycles of length i in the cycle decomposition of the permutation $\sigma)$
$=($ the number of all $k \in\{1,2, \ldots, u\}$ such that $\underbrace{\text { the length of the cycle } \pi_{k}}_{=\left|I_{k}\right|=\lambda_{k}}$ is $i)$
(since the cycle decomposition of the permutation σ is $\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{u}$)
$=\left(\right.$ the number of all $k \in\{1,2, \ldots, u\}$ such that $\left.\lambda_{k}=i\right)=\left|\left\{k \in\{1,2, \ldots, u\} \mid \lambda_{k}=i\right\}\right|$ $=m_{i}(\lambda)$.

Consequently, $\left(m_{1}(\operatorname{cyc} \sigma), m_{2}(\operatorname{cyc} \sigma), m_{3}(\operatorname{cyc} \sigma), \ldots\right)=\left(m_{1}(\lambda), m_{2}(\lambda), m_{3}(\lambda), \ldots\right)$. This rewrites as $m(\operatorname{cyc} \sigma)=m(\lambda)$. Hence, cyc $\sigma=\lambda$ (since m is a bijection).

Thus, for every λ-partition $\left(I_{1}, I_{2}, \ldots, I_{u}\right)$ and every family $\left(\pi_{i}\right)_{i \in\{1,2, \ldots, u\}} \in \prod_{i=1}^{u} S_{I_{i}}^{C}$, we have defined a permutation $\sigma \in S_{n}$ by $\sigma=\prod_{i=1}^{u} \pi_{i}$, and this permutation σ satisfies cyc $\sigma=\lambda$. Conversely, for every permutation $\sigma \in S_{n}$ satisfying cyc $\sigma=\lambda$,

[^1]\[

$$
\begin{aligned}
& \text { (the number of all cyclic permutations of } U) \\
& =\frac{1}{|U|} \cdot \underbrace{(\text { the number of all bijections } \nu:\{1,2, \ldots,|U|\} \rightarrow U)}_{=|U|!} \\
& =\frac{1}{|U|} \cdot|U|!=(|U|-1)!.
\end{aligned}
$$
\]

we can find a λ-partition $\left(I_{1}, I_{2}, \ldots, I_{u}\right)$ and a family $\left(\pi_{i}\right)_{i \in\{1,2, \ldots, u\}} \in \prod_{i=1}^{u} S_{I_{i}}^{C}$ such that $\sigma=\prod_{i=1}^{u} \pi_{i}$: In fact, the permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{u}$ must be chosen as the cycles in the cycle decomposition of σ (ordered by decreasing length), and the sets I_{1}, I_{2}, \ldots, I_{u} are the respective subsets of $\{1,2, \ldots, n\}$ on which these cycles operate. The choice of the permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{u}$ involves an actual choice: For each $k \in\{1,2, \ldots, n\}$, the order of the cycle k σ cycles of length k can be chosen in (cycle ${ }_{k} \sigma$)! different ways, each of them leading to a different λ-partition $\left(I_{1}, I_{2}, \ldots, I_{u}\right)$ and a different family $\left(\pi_{i}\right)_{i \in\{1,2, \ldots, u\}} \in \prod_{i=1}^{u} S_{I_{i}}^{C}$ (though they only differ in their order). Hence, for every permutation $\sigma \in S_{n}$ satisfying cyc $\sigma=\lambda$, we can choose a λ-partition $\left(I_{1}, I_{2}, \ldots, I_{u}\right)$ and a family $\left(\pi_{i}\right)_{i \in\{1,2, \ldots, u\}} \in \prod_{i=1}^{u} S_{I_{i}}^{C}$ such that $\sigma=\prod_{i=1}^{u} \pi_{i}$ in $\prod_{k=1}^{\infty}\left(\operatorname{cycle}_{k} \sigma\right)$! different ways. Since $\prod_{k=1}^{\infty}\left(\operatorname{cycle}_{k} \sigma\right)!=\prod_{k=1}^{\infty} m_{k}(\lambda)!\left(\operatorname{since}^{\operatorname{cycle}_{i}}(\sigma)=m_{i}(\lambda)\right.$ for every $i \in\{1,2,3, \ldots\}$ as shown above), this rewrites as follows: For every permutation $\sigma \in S_{n}$ satisfying cyc $\sigma=\lambda$, we can choose a λ-partition $\left(I_{1}, I_{2}, \ldots, I_{u}\right)$ and a family $\left(\pi_{i}\right)_{i \in\{1,2, \ldots, u\}} \in \prod_{i=1}^{u} S_{I_{i}}^{C}$ such that $\sigma=\prod_{i=1}^{u} \pi_{i}$ in $\prod_{k=1}^{\infty} m_{k}(\lambda)!$ different ways.

Thus,
(the number of all permutations $\sigma \in S_{n}$ satisfying cyc $\sigma=\lambda$)

$$
=\frac{1}{\prod_{k=1}^{\infty} m_{k}(\lambda)!} \text { (number of all possible choices of a } \lambda \text {-partition }\left(I_{1}, I_{2}, \ldots, I_{u}\right)
$$

$$
\text { and a family } \left.\left(\pi_{i}\right)_{i \in\{1,2, \ldots, u\}} \in \prod_{i=1}^{u} S_{I_{i}}^{C}\right)
$$

$$
=\frac{1}{\prod_{k=1}^{\infty} m_{k}(\lambda)!} \underbrace{\sum_{\left(I_{1}, I_{2}, \ldots, I_{u}\right) \text { is a }}^{\lambda \text {-partition }} 1}_{=(\text {number of all } \lambda \text {-partitions }) \cdot \prod_{i=1}^{u}\left(\lambda_{i}-1\right)!} \prod_{i=1}^{u}\left(\lambda_{i}-1\right)!
$$

$$
=\frac{1}{\prod_{k=1}^{\infty} m_{k}(\lambda)!} \underbrace{\text { (number of all } \lambda \text {-partitions) }}_{=\frac{n!}{\prod_{i=1}^{u} \lambda_{i}!}} \cdot \prod_{i=1}^{u}\left(\lambda_{i}-1\right)!
$$

$$
=\frac{1}{\prod_{k=1}^{\infty} m_{k}(\lambda)!} \cdot \frac{n!}{\prod_{i=1}^{u} \lambda_{i}!} \cdot \prod_{i=1}^{u}\left(\lambda_{i}-1\right)!=\frac{n!}{\prod_{k=1}^{\infty} m_{k}(\lambda)!} / \quad \begin{gathered}
\underbrace{\left(\lambda_{i}-1\right)!}_{\prod_{i=1}^{u}\left(\frac{\prod_{i=1}^{u} \lambda_{i}!}{\prod_{i=1}^{u}\left(\lambda_{i}-1\right)!}\right.})=\prod_{i=1}^{u} \lambda_{i}
\end{gathered}
$$

$$
=\frac{n!}{\prod_{i=1}^{u} \lambda_{i} \cdot \prod_{k=1}^{\infty} m_{k}(\lambda)!}=\frac{n!}{z_{\lambda}}
$$

(by (2)). This proves Theorem 2.
Now, we quote Theorem 5 (b) from [2]:
Theorem 3. Let I and J be two countable sets. In the ring $\left(\left(\left(\mathbb{Q}\left[\xi_{i} \mid i \in I\right]_{\infty}\right)\left[\eta_{j} \mid j \in J\right]_{\infty}\right)[[T]]\right)[[S]]$, we have

$$
\begin{equation*}
\sum_{\lambda \in \operatorname{Par}} z_{\lambda}^{-1} S^{\operatorname{msum} \lambda} p_{\lambda}(\xi) p_{\lambda}(\eta) T^{\mathrm{wt} \lambda}=\prod_{(i, j) \in I \times J}\left(\frac{1}{1-\xi_{i} \eta_{j} T}\right)^{S} \tag{3}
\end{equation*}
$$

where the function msum : Par $\rightarrow \mathbb{N}$ is defined by
$\operatorname{msum} \lambda=m_{1}(\lambda)+m_{2}(\lambda)+m_{3}(\lambda)+\ldots=\sum_{k=1}^{\infty} m_{k}(\lambda) \quad$ for every partition λ.
Here, for any power series $P \in\left(\left(\left(\mathbb{Q}\left[\xi_{i} \mid i \in I\right]_{\infty}\right)\left[\eta_{j} \mid j \in J\right]_{\infty}\right)[[T]]\right)[[S]]$
with constant term 1 , the power series $P^{S} \in\left(\left(\left(\mathbb{Q}\left[\xi_{i} \mid i \in I\right]_{\infty}\right)\left[\eta_{j} \mid j \in J\right]_{\infty}\right)[[T]]\right)[[S]]$ is defined by $P^{S}=\exp (S \log P)$ (where $\log P$ is computed using the $\log (1+X)=$ $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} X^{k}$ formula).

We are going to apply this theorem to the case when $I=J=\{1\}$. In this case,

$$
\begin{aligned}
& \left(\mathbb{Q}\left[\xi_{i} \mid i \in I\right]_{\infty}\right)\left[\eta_{j} \mid j \in J\right]_{\infty} \\
& =\left(\mathbb{Q}\left[\xi_{i} \mid i \in I\right]\right)\left[\eta_{j} \mid j \in J\right] \quad \text { (since the sets } I \text { and } J \text { are both finite) } \\
& =\left(\mathbb{Q}\left[\xi_{1}\right]\right)\left[\eta_{1}\right] \quad(\text { since } I=\{1\} \text { and } J=\{1\}) .
\end{aligned}
$$

Besides, every $n \in\{1,2,3, \ldots\}$ satisfies $p_{n}=\sum_{i \in I} \xi_{i}^{n}=\xi_{1}^{n}$ (since we are in the case $I=\{1\}$), and thus

$$
p_{\lambda}(\xi)=p_{\lambda}=\prod_{n=1}^{\infty}(\underbrace{p_{n}}_{=\xi_{1}^{n}})^{m_{n}(\lambda)}=\prod_{n=1}^{\infty}\left(\xi_{1}^{n}\right)^{m_{n}(\lambda)}=\prod_{n=1}^{\infty} \xi_{1}^{n m_{n}(\lambda)}=\xi_{1}^{\sum_{n=1}^{\infty} n m_{n}(\lambda)}=\xi_{1}^{\mathrm{wt} \lambda} .
$$

If we replace ξ_{1} by η_{1} in this equation, it becomes $p_{\lambda}(\eta)=\eta_{1}^{\text {wt } \lambda}$. Thus,

$$
\begin{align*}
\sum_{\lambda \in \operatorname{Par}} z_{\lambda}^{-1} S^{\mathrm{msum} \lambda} \underbrace{p_{\lambda}(\xi)}_{=\xi_{1}^{\mathrm{wt} \lambda}} \underbrace{p_{\lambda}(\eta)}_{=\eta_{1}^{\mathrm{wt} \lambda}} T^{\mathrm{wt} \lambda} & =\sum_{\lambda \in \operatorname{Par}} z_{\lambda}^{-1} S^{\mathrm{msum} \lambda} \xi_{1}^{\mathrm{wt} \lambda} \eta_{1}^{\mathrm{wt} \lambda} T^{\mathrm{wt} \lambda} \\
& =\sum_{\ell=0}^{\infty} \sum_{\substack{\lambda \in \operatorname{Par} ; \\
\mathrm{wt} \lambda=\ell}} z_{\lambda}^{-1} S^{\mathrm{msum} \lambda} \xi_{1}^{\ell} \eta_{1}^{\ell} T^{\ell} \tag{4}
\end{align*}
$$

Finally, $I=J=\{1\}$ yields $I \times J=\{1\} \times\{1\}=\{(1,1)\}$ and thus

$$
\begin{aligned}
\prod_{(i, j) \in I \times J}\left(\frac{1}{1-\xi_{i} \eta_{j} T}\right)^{S} & =\left(\frac{1}{1-\xi_{1} \eta_{1} T}\right)^{S}=\left(1-\xi_{1} \eta_{1} T\right)^{-S} \\
& =\sum_{\ell=0}^{\infty}\binom{-S}{\ell}\left(-\xi_{1} \eta_{1} T\right)^{\ell} \quad \text { (by the binomial formula) } \\
& =\sum_{\ell=0}^{\infty}\binom{-S}{\ell}\left(-\xi_{1} \eta_{1}\right)^{\ell} T^{\ell}
\end{aligned}
$$

Using this and using (4), we can rewrite the identity (3) as

$$
\begin{equation*}
\sum_{\substack{\ell=0}}^{\infty} \sum_{\substack{\lambda \in \operatorname{Par} ; \\ \text { wt } \lambda=\ell}} z_{\lambda}^{-1} S^{\operatorname{msum} \lambda} \xi_{1}^{\ell} \eta_{1}^{\ell} T^{\ell}=\sum_{\ell=0}^{\infty}\binom{-S}{\ell}\left(-\xi_{1} \eta_{1}\right)^{\ell} T^{\ell} \tag{5}
\end{equation*}
$$

This is an identity in the ring

$$
\left(\left(\left(\mathbb{Q}\left[\xi_{i} \mid i \in I\right]_{\infty}\right)\left[\eta_{j} \mid j \in J\right]_{\infty}\right)[[T]]\right)[[S]]=\left(\left(\left(\mathbb{Q}\left[\xi_{1}\right]\right)\left[\eta_{1}\right]\right)[[T]]\right)[[S]]
$$

but it can also be considered an identity in the subring $\left(\left(\left(\mathbb{Q}\left[\xi_{1}\right]\right)\left[\eta_{1}\right]\right)[S]\right)[[T]]$ (since both sides of the identity (5) lie in this subring), i. e. as an identity between two power series in the indeterminate T over the ring $\left(\left(\mathbb{Q}\left[\xi_{1}\right]\right)\left[\eta_{1}\right]\right)[S]$. Hence, comparing coefficients before T^{n} in this identity, we obtain

$$
\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \text { wt } \lambda=n}} z_{\lambda}^{-1} S^{\operatorname{msum} \lambda} \xi_{1}^{n} \eta_{1}^{n}=\binom{-S}{n}\left(-\xi_{1} \eta_{1}\right)^{n}
$$

This is an identity in the polynomial ring $\left(\left(\mathbb{Q}\left[\xi_{1}\right]\right)\left[\eta_{1}\right]\right)[S] \cong \mathbb{Q}\left[\xi_{1}, \eta_{1}, S\right]$. Evaluating both sides at $\xi_{1}=1, \eta_{1}=1$ and $S=-x$, we obtain

$$
\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \text { wt } \lambda=n}} z_{\lambda}^{-1}(-x)^{\operatorname{msum} \lambda} 1^{n} 1^{n}=\binom{-(-x)}{n}(-1 \cdot 1)^{n}
$$

This simplifies to

$$
\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \text { wt } \lambda=n}} z_{\lambda}^{-1}(-x)^{\operatorname{msum} \lambda}=\binom{x}{n}(-1)^{n} .
$$

Multiplying this by n ! yields

$$
n!\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \text { wt } \lambda=n}} z_{\lambda}^{-1}(-x)^{\text {msum } \lambda}=n!\binom{x}{n}(-1)^{n} .
$$

Since

$$
\begin{aligned}
& n!\sum_{\substack{\lambda \in \operatorname{Par} ; \\
\text { wt } \lambda=n}} z_{\lambda}^{-1}(-x)^{\text {msum } \lambda}=\sum_{\substack{\lambda \in \text { Par; } \\
\text { wt } \lambda=n \\
=\mid\left\{\sigma \in S_{n} \mid \text { cyc } \sigma=\lambda\right\} \mid \\
\text { (by Theorem 2) }}} \underbrace{\frac{n!}{z_{\lambda}}}(-x)^{\text {msum } \lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{\lambda \in \operatorname{Par} ; \\
\text { wt } \lambda=n \text { cyc } \sigma=\lambda}} \sum_{\substack{\sigma \in S_{n} ;\\
}}(-x)^{\operatorname{msum}(\operatorname{cyc} \sigma)}=\sum_{\sigma \in S_{n}}(-x)^{\operatorname{msum}(\operatorname{cyc} \sigma)}
\end{aligned}
$$

(because for every $\sigma \in S_{n}$, there exists one and only one $\lambda \in$ Par such that wt $\lambda=n$ and $\operatorname{cyc} \sigma=\lambda$ (because $\mathrm{wt}(\operatorname{cyc} \sigma)=n)$), this rewrites as

$$
\sum_{\sigma \in S_{n}}(-x)^{\operatorname{msum}(\operatorname{cyc} \sigma)}=n!\binom{x}{n}(-1)^{n}
$$

Now, every permutation $\sigma \in S_{n}$ satisfies

$$
\begin{aligned}
\operatorname{msum}(\operatorname{cyc} \sigma) & =\sum_{k=1}^{\infty} m_{k}(\operatorname{cyc} \sigma)=\sum_{i=1}^{\infty} \underbrace{m_{i}(\operatorname{cyc} \sigma)}_{=\operatorname{cycle}_{i} \sigma} \quad \text { (here, we substituted } i \text { for } k \text { in the sum) } \\
& =\sum_{i=1}^{\infty} \operatorname{cycle}_{i} \sigma=\operatorname{cycle} \sigma
\end{aligned}
$$

and thus this becomes

$$
\begin{equation*}
\sum_{\sigma \in S_{n}}(-x)^{\text {cycle } \sigma}=n!\binom{x}{n}(-1)^{n} \tag{6}
\end{equation*}
$$

Now,
(the number of all even cycles in the cycle decomposition of the permutation σ)

$$
\begin{aligned}
& =\sum_{\substack{i \in\{1,2,3, \ldots\} ; \\
i \text { is even }}} \text { (the number of all cycles of length } i \text { in the cycle decomposition of the permutation } \sigma \text {) } \\
& =\sum_{\substack{i \in\{1,2,3, \ldots\} ; \\
i \text { is even }}}^{\operatorname{cycle}_{i} \sigma=\underbrace{\sum_{-\{1,2,3, \ldots\}} \operatorname{cycle}_{i} \sigma}_{-\infty}-\sum_{\substack{i \in\{1,2,3, \ldots\} ; \\
i \text { is odd }}} \operatorname{cycle}_{i} \sigma=\operatorname{cycle} \sigma-\sum_{\substack{i \in\{1,2,3, \ldots\} ; \\
i \text { is odd }}} \operatorname{cycle}_{i} \sigma,}
\end{aligned}
$$

which, in view of

$$
\begin{aligned}
& n=\sum_{k=1}^{\infty} k \operatorname{cycle}_{k} \sigma=\sum_{i=1}^{\infty} i \text { cycle }_{i} \sigma \quad \text { (here, we substituted } i \text { for } k \text { in the sum) } \\
& =\sum_{\substack{i \in\{1,2,3, \ldots\}}} i \text { cycle }_{i} \sigma=\sum_{\substack{i \in\{1,2,3, \ldots\} ; \\
i \text { is even }}} \underbrace{i}_{\substack{\text { (since } i \text { mod } 2 \\
\text { is even })}} \operatorname{cycle}_{i} \sigma+\sum_{\substack{i \in\{1,2,3, \ldots\} ; \\
i \text { is odd } \\
\text { (since } i \text { is odd })}}^{i} \operatorname{cycle}_{i} \sigma
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{i \in\{1,2,3, \ldots\} ; \\
i \text { is odd }}} \operatorname{cycle}_{i} \sigma \bmod 2,
\end{aligned}
$$

becomes
(the number of all even cycles in the cycle decomposition of the permutation σ)

$$
=\operatorname{cycle} \sigma-\underbrace{\sum_{\substack{i \in\{1,2,3, \ldots\} ; \\ i \text { is odd }}} \operatorname{cycle}_{i} \sigma}_{\equiv n \bmod 2} \equiv \operatorname{cycle} \sigma-n \bmod 2,
$$

so that

$$
(-1)^{\text {(the number of all even cycles in the cycle decomposition of the permutation } \sigma)}=(-1)^{\text {cycle } \sigma-n} .
$$

Hence, the signum $\operatorname{sign} \sigma$ of the permutation σ satisfies
$\operatorname{sign} \sigma=(-1)^{\text {(the number of all even cycles in the cycle decomposition of the permutation } \sigma)}=(-1)^{\text {cycle } \sigma-n}$.
Thus,

$$
\begin{aligned}
\sum_{\sigma \in S_{n}} \operatorname{sign} \sigma \cdot x^{\text {cycle } \sigma} & =\sum_{\sigma \in S_{n}}(-1)^{\text {cycle } \sigma-n} \cdot x^{\text {cycle } \sigma}=(-1)^{-n} \sum_{\sigma \in S_{n}} \underbrace{(-1)^{\text {cycle } \sigma} \cdot x^{\text {cycle } \sigma}}_{=(-x)^{\text {cycle } \sigma}} \\
& =(-1)^{-n} \sum_{\sigma \in S_{n}}(-x)^{\text {cycle } \sigma} \\
& =(-1)^{-n} n!\binom{x}{n}(-1)^{n} \quad(\text { by (6) }) \\
& =n!\binom{x}{n} .
\end{aligned}
$$

This proves Theorem 1.

References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008. https://arxiv.org/abs/0804.3888v1
[2] Darij Grinberg, Witt\#4: Some computations with symmetric functions. http://www.cip.ifi.lmu.de/~grinberg/algebra/witt4.pdf
[3] Alekk, MathLinks topic \#334033 ("sum and permutation"). http://www.mathlinks.ro/viewtopic.php?t=334033

[^0]: ${ }^{1}$ This sum $\sum_{i=1}^{\infty}$ cycle $_{i} \sigma$ is an infinite sum, but it contains only finitely many nonzero summands

[^1]: ${ }^{2}$ Proof. Every bijection $\nu:\{1,2, \ldots,|U|\} \rightarrow U$ induces a cyclic permutation $\left(\nu_{1}, \nu_{2}, \ldots, \nu_{|U|}\right)$ of U, and conversely, every cyclic permutation of U can be written in the form $\pi=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{|U|}\right)$ for exactly $|U|$ different choices of a bijection $\nu:\{1,2, \ldots,|U|\} \rightarrow U$. Hence,

