# Witt vectors. Part 1 

Michiel Hazewinkel

## Sidenotes by Darij Grinberg

## Witt\#4a: Equigraded power series

[not completed, not proofread]

This little note is there to prove an easy lemma used in [1]. This lemma is about equigraded power series. First, let us define this notion:

Definition 1. Let $A$ be a graded commutative ring with unity ${ }^{1}$. A power series $\alpha \in A[[T]]$ is said to be equigraded if and only if
(for every $n \in \mathbb{N}$, the coefficient of $\alpha$ before $T^{n}$ lies in the $n$-th graded component of $A$ ).
Here and in the following, the symbol $\mathbb{N}$ stands for the set $\{0,1,2, \ldots\}$ (and not for the set $\{1,2,3, \ldots\}$, as it does in various other literature).

We now claim that:
Theorem 1. Let $A$ be a graded commutative ring with unity.
(a) The set

$$
\{\alpha \in A[[T]] \mid \text { the power series } \alpha \text { is equigraded }\}
$$

is a sub- $A_{0}$-algebra of $A[[T]]$. In particular, the sum, the difference and the product of finitely many equigraded power series are equigraded as well, and the two power series 0 and 1 are both equigraded.
(b) This set $\{\alpha \in A[[T]] \mid$ the power series $\alpha$ is equigraded $\}$ is closed with respect to the $(T)$-adic topology on the ring $A[[T]]$.
(c) If an equigraded power series $\alpha \in A[[T]]$ has a multiplicative inverse $\alpha^{-1} \in A[[T]]$, then $\alpha^{-1}$ is equigraded as well.
(d) If an equigraded power series $\alpha \in A[[T]]$ has a multiplicative inverse $\alpha^{-1} \in A[[T]]$, then $\alpha^{k}$ is equigraded for every $k \in \mathbb{Z}$.

Proof of Theorem 1. For every $n \in \mathbb{N}$, we denote by $A_{n}$ the $n$-th graded component of $A$. Thus, a power series $\alpha$ is equigraded if and only if
(for every $n \in \mathbb{N}$, the coefficient of $\alpha$ before $T^{n}$ lies in $A_{n}$ ).

[^0]We denote the coefficient of $\alpha$ before $T^{n}$ by $\operatorname{coeff}_{n} \alpha$. Thus, a power series $\alpha$ is equigraded if and only if

$$
\begin{equation*}
\text { (for every } n \in \mathbb{N} \text {, we have } \operatorname{coeff}_{n} \alpha \in A_{n} \text { ). } \tag{1}
\end{equation*}
$$

We denote the set

$$
\{\alpha \in A[[T]] \mid \text { the power series } \alpha \text { is equigraded }\}
$$

by $E$.
(a) In order to prove that the set

$$
\{\alpha \in A[[T]] \mid \text { the power series } \alpha \text { is equigraded }\}
$$

is a sub- $A_{0}$-algebra of $A[[T]]$, we must show the following assertions:
Assertion 1: The power series 0 and 1 are both equigraded.
Assertion 2: If $\alpha \in A[[T]]$ is an equigraded power series, then $-\alpha$ is equigraded as well.

Assertion 3: If $\alpha \in A[[T]]$ and $\beta \in A[[T]]$ are two equigraded power series, then $\alpha+\beta$ and $\alpha \beta$ are equigraded as well.

Assertion 4: If $\alpha \in A[[T]]$ is an equigraded power series, and $u \in A_{0}$, then $u \alpha$ is equigraded as well.

However, Assertions 1 and 2 are completely obvious, so it will suffice to prove Assertions 3 and 4 only.

Proof of Assertion 3. Let $\alpha \in A[[T]]$ and $\beta \in A[[T]]$ be two equigraded power series.

For every $n \in \mathbb{N}$, we have

$$
\operatorname{coeff}_{n}(\alpha+\beta)=\underbrace{\operatorname{coeff}_{n} \alpha}_{\substack{\in A_{n}(\text { since } \alpha \\ \text { is equigraded) })}}+\underbrace{\operatorname{coeff}_{n} \beta}_{\substack{\in A_{n} \text { (since } \beta \\ \text { is equigraded) }}} \in A_{n}+A_{n} \subseteq A_{n} .
$$

Thus, the power series $\alpha+\beta$ is equigraded.
Besides, for every $n \in \mathbb{N}$, we have

Thus, the power series $\alpha \beta$ is equigraded. Thus, Assertion 3 is proven.
Proof of Assertion 4. Let $\alpha \in A[[T]]$ be an equigraded power series. Let $u \in A_{0}$. For every $n \in \mathbb{N}$, we have

$$
\operatorname{coeff}_{n}(u \alpha)=\underbrace{u}_{\in A_{0}} \underbrace{\operatorname{coeff}_{n}(\alpha)}_{\substack{\in A_{n} \text { since } \alpha \\ \text { is equigraded) }}} \subseteq A_{0} A_{n} \subseteq A_{n}
$$

(since $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a grading of the ring $\left.A\right)$.

In other words, the power series $u \alpha$ is equigraded. Thus, Assertion 4 is proven.
Now, all four Assertions 1, 2, 3 and 4 are proven. Therefore, the set

$$
\{\alpha \in A[[T]] \mid \text { the power series } \alpha \text { is equigraded }\}
$$

is a sub- $A_{0}$-algebra of $A[[T]]$. This completes the proof of Theorem 1 (a).
(b) In order to prove Theorem 1 (b), we have to prove that the set $E$ is closed with respect to the $(T)$-adic topology on the ring $A[[T]]$. This is equivalent to showing that every limit point of the set $E$ lies in $E$. So let us prove that every limit point of the set $E$ lies in $E$.

Let $\alpha$ be a limit point of the set $E$; then, for every neighbourhood $U$ of $\alpha$, there exists some $\alpha_{U} \in U \cap E$. We want to show that $\alpha \in E$.

Let $n \in \mathbb{N}$. Let $U$ be the neighbourhood

$$
\left\{\beta \in A[[T]] \mid \operatorname{coeff}_{n} \beta=\operatorname{coeff}_{n} \alpha\right\}
$$

of $\alpha$. Then, $\alpha_{U} \in U$ (since $\alpha_{U} \in U \cap E$ ) yields that $\operatorname{coeff}_{n}\left(\alpha_{U}\right)=\operatorname{coeff}_{n} \alpha$, while $\alpha_{U} \in E$ (since $\alpha_{U} \in U \cap E$ ) yields that $\alpha_{U}$ is equigraded and thus coeff $n\left(\alpha_{U}\right) \in A_{n}$. Hence, $\operatorname{coeff}_{n} \alpha=\operatorname{coeff}_{n}\left(\alpha_{U}\right) \in A_{n}$. Since this holds for every $n \in \mathbb{N}$, we can conclude that $\alpha$ is equigraded. In other words, $\alpha \in E$. So we have shown that every limit point $\alpha$ of the set $E$ lies in $E$. This completes the proof of Theorem 1 (b).
(c) Let $\alpha \in A[[T]]$ be an equigraded power series that has a multiplicative inverse $\alpha^{-1} \in A[[T]]$. Thus, $\alpha \cdot \alpha^{-1}=1$. Hence,

$$
\begin{aligned}
1 & =\operatorname{coeff}_{0} 1=\operatorname{coeff}_{0}\left(\alpha \cdot \alpha^{-1}\right) \quad\left(\text { since } 1=\alpha \cdot \alpha^{-1}\right) \\
& =\operatorname{coeff}_{0} \alpha \cdot \operatorname{coeff}_{0}\left(\alpha^{-1}\right)
\end{aligned}
$$

(because coeff $(\alpha \cdot \beta)=\operatorname{coeff}_{0} \alpha \cdot \operatorname{coeff}_{0} \beta$ for any two power series $\alpha$ and $\beta$ ). Hence, the element coeff ${ }_{0} \alpha \in A$ is invertible, and coeff ${ }_{0}\left(\alpha^{-1}\right)$ is its inverse.

Now, for every element $u \in A$ and for every $n \in \mathbb{N}$, let us denote by $u_{n}$ the $n$-th graded component of $u$. Of course, $u_{n} \in A_{n}$ for every $u \in A$ and every $n \in \mathbb{N}$.

Note that $(u v)_{0}=u_{0} v_{0}$ for any $u \in A$ and any $v \in A$ (because the map $A \rightarrow A_{0}, x \mapsto$ $x_{0}$ is a ring homomorphism). Applied to $u=\operatorname{coeff}_{0} \alpha$ and $v=\operatorname{coeff}_{0}\left(\alpha^{-1}\right)$, this yields $\left(\operatorname{coeff}_{0} \alpha \cdot \operatorname{coeff}_{0}\left(\alpha^{-1}\right)\right)_{0}=\left(\operatorname{coeff}_{0} \alpha\right)_{0} \cdot\left(\operatorname{coeff}_{0}\left(\alpha^{-1}\right)\right)_{0}$. But since $(\underbrace{\operatorname{coeff}_{0} \alpha \cdot \operatorname{coeff}_{0}\left(\alpha^{-1}\right)}_{=1})_{0}=$ $1_{0}=1$ and $\left(\operatorname{coeff}_{0} \alpha\right)_{0}=\operatorname{coeff}_{0} \alpha\left(\right.$ since coeff ${ }_{0} \alpha \in A_{0}$, because $\alpha$ is equigraded), this becomes $1=\operatorname{coeff}_{0} \alpha \cdot\left(\operatorname{coeff}_{0}\left(\alpha^{-1}\right)\right)_{0}$. Thus, $\left(\operatorname{coeff}_{0}\left(\alpha^{-1}\right)\right)_{0}$ is the inverse of the element coeff $\alpha$ of $A$. But on the other hand, we know that coeff ${ }_{0}\left(\alpha^{-1}\right)$ is the inverse of the element coeff ${ }_{0} \alpha$ of $A$. Thus, coeff ${ }_{0}\left(\alpha^{-1}\right)=\left(\operatorname{coeff}_{0}\left(\alpha^{-1}\right)\right)_{0}$ (since the inverse of an element of a ring is unique). Since $\left(\operatorname{coeff}_{0}\left(\alpha^{-1}\right)\right)_{0} \in A_{0}$, this yields coeff ${ }_{0}\left(\alpha^{-1}\right) \in A_{0}$.

Now, we are going to prove that $\operatorname{coeff}_{n}\left(\alpha^{-1}\right) \in A_{n}$ for every $n \in \mathbb{N}$. In fact, we are going to prove this by strong induction over $n \in \mathbb{N}$ : We fix some $n \in \mathbb{N}$, and assume that

$$
\begin{equation*}
\operatorname{coeff}_{k}\left(\alpha^{-1}\right) \in A_{k} \text { for every } k \in \mathbb{N} \text { satisfying } k<n \tag{2}
\end{equation*}
$$

Our goal is to prove that $\operatorname{coeff}_{n}\left(\alpha^{-1}\right) \in A_{n}$ for our fixed value of $n$.
If $n=0$, then this means proving that $\operatorname{coeff}_{0}\left(\alpha^{-1}\right) \in A_{0}$, which we have already shown. Hence, if $n=0$, then we are done. So we can now WLOG assume that $n>0$.

By the definition of the product of two power series, we have

$$
\operatorname{coeff}_{n}(\widetilde{\alpha} \cdot \widetilde{\beta})=\sum_{k=0}^{n} \operatorname{coeff}_{k} \widetilde{\alpha} \cdot \operatorname{coeff}_{n-k} \widetilde{\beta}
$$

for any two power series $\widetilde{\alpha}$ and $\widetilde{\beta}$. Applying this to $\widetilde{\alpha}=\alpha^{-1}$ and $\widetilde{\beta}=\alpha$, we obtain

$$
\operatorname{coeff}_{n}\left(\alpha^{-1} \cdot \alpha\right)=\sum_{k=0}^{n} \operatorname{coeff}_{k}\left(\alpha^{-1}\right) \cdot \operatorname{coeff}_{n-k} \alpha
$$

But $\operatorname{coeff}_{n}\left(\alpha^{-1} \cdot \alpha\right)=\operatorname{coeff}_{n} 1=0($ since $n>0)$. Thus,

$$
\begin{aligned}
0 & =\operatorname{coeff}_{n}\left(\alpha^{-1} \cdot \alpha\right)=\sum_{k=0}^{n} \operatorname{coeff}_{k}\left(\alpha^{-1}\right) \cdot \operatorname{coeff}_{n-k} \alpha \\
& =\sum_{k=0}^{n-1} \operatorname{coeff}_{k}\left(\alpha^{-1}\right) \cdot \operatorname{coeff}_{n-k} \alpha+\operatorname{coeff}_{n}\left(\alpha^{-1}\right) \cdot \operatorname{coeff}_{0} \alpha
\end{aligned}
$$

so that

$$
\begin{align*}
\operatorname{coeff}_{n}\left(\alpha^{-1}\right) \cdot \operatorname{coeff}_{0} \alpha & =-\sum_{k=0}^{n-1} \underbrace{\operatorname{coeff}_{k}\left(\alpha^{-1}\right)}_{\left.\in A_{k} \text { (by }(2)\right)} \cdot \underbrace{\operatorname{coefff}_{n-k} \alpha}_{\substack{\in A_{n-k} \text {, since } \alpha \\
\text { is equigraded }}} \in-\sum_{k=0}^{\substack{\subseteq A_{n}, \\
\text { a grading of the ring } A \\
A_{n}}} \underbrace{A_{k} \cdot A_{n-k}}_{n \in \mathbb{N}} \\
& \subseteq-\sum_{k=0}^{n-1} A_{n} \subseteq A_{n} . \tag{3}
\end{align*}
$$

But

$$
\begin{aligned}
& \operatorname{coeff}_{n}\left(\alpha^{-1}\right)=\operatorname{coeff}_{n}\left(\alpha^{-1}\right) \cdot \operatorname{coeff}_{0} \alpha \cdot \operatorname{coeff}_{0}\left(\alpha^{-1}\right) \quad\left(\text { since } 1=\operatorname{coeff}_{0} \alpha \cdot \operatorname{coeff}_{0}\left(\alpha^{-1}\right)\right) \\
& \in A_{n} \cdot \underbrace{\operatorname{coeff}_{0}\left(\alpha^{-1}\right)}_{\in A_{0}} \quad \text { (by }(3)) \\
& \subseteq A_{n} \cdot A_{0} \subseteq A_{n} \quad\left(\text { since }\left(A_{n}\right)_{n \in \mathbb{N}} \text { is a grading of the ring } A\right) .
\end{aligned}
$$

This completes our induction step. Thus, we have proven that coeff $n\left(\alpha^{-1}\right) \in A_{n}$ for every $n \in \mathbb{N}$. Consequently, the power series $\alpha^{-1}$ is equigraded. This proves Theorem 1 (c).
(d) Let $\alpha \in A[[T]]$ be an equigraded power series that has a multiplicative inverse $\alpha^{-1} \in A[[T]]$. Let $k \in \mathbb{Z}$. Then, three cases are possible: Either $k>0$ or $k=0$ or $k<0$. We will now show that in each of these cases, $\alpha^{k}$ is equigraded.

- If $k>0$, then $\alpha^{k}=\underbrace{\alpha \cdot \alpha \cdot \ldots \cdot \alpha}_{k \text { times }}$ is equigraded (since $\alpha$ is equigraded, and since the product of finitely many equigraded power series is equigraded).
- If $k=0$, then $\alpha^{k}=1$ is equigraded (as we know from Assertion 1).
- If $k<0$, then $-k>0$, and thus $\alpha^{k}=\left(\alpha^{-1}\right)^{-k}=\underbrace{\alpha^{-1} \cdot \alpha^{-1} \cdot \ldots \cdot \alpha^{-1}}_{-k \text { times }}$ is equigraded (since $\alpha^{-1}$ is equigraded (by Theorem 1 (c)), and since the product of finitely many equigraded power series is equigraded).

Hence, in each of the three possible cases, $\alpha^{k}$ is equigraded. This proves Theorem 1 (d).

## References

[1] Darij Grinberg: Witt\#4: Some computations in Symm.


[^0]:    ${ }^{1}$ Remark. Different authors sometimes use different (and non-equivalent!) notions of a "graded ring with unity". The one that we are using here is defined as follows:

    Definition. A "graded ring with unity" means a ring $A$ with unity equipped with a family $\left(A_{n}\right)_{n \in \mathbb{N}}$ of subgroups of the additive group $A$ satisfying $A=\bigoplus_{n \in \mathbb{N}} A_{n}$ (as abelian groups), $1 \in A_{0}$ and

    $$
    \left(A_{n} A_{m} \subseteq A_{n+m} \text { for every } n \in \mathbb{N} \text { and } m \in \mathbb{N}\right)
    $$

    Also, we use the following notation:
    Definition. If a ring $A$, equipped with a family $\left(A_{n}\right)_{n \in \mathbb{N}}$, is a graded ring, then the family $\left(A_{n}\right)_{n \in \mathbb{N}}$ is said to be the grading of this graded ring $A$.

    Definition. If a ring $A$, equipped with a family $\left(A_{n}\right)_{n \in \mathbb{N}}$, is a graded ring, then, for each $n \in \mathbb{N}$, the group $A_{n}$ is called the $n$-th graded component of the graded ring $A$.

