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This is an addendum to section 5 of [1]. We are going to explicitly state and prove
the general principle on which the proofs of 5.2, 5.25, 5.27 and 5.40 of [1] are based -
the ”method of ghost component equations”.

We recall the definition of the p-adic Witt polynomials:

Definitions. (a) Let p be a prime. For every n ∈ N (where N means
{0, 1, 2, ...}), we define a polynomial wn ∈ Z [X0, X1, X2, ..., Xn] by

wn (X0, X1, ..., Xn) = Xpn

0 +pXpn−1

1 +p2Xpn−2

2 +...+pn−1Xp
n−1+pnXn =

n∑
k=0

pkXpn−k

k .

Since Z [X0, X1, X2, ..., Xn] is a subring of the ring Z [X0, X1, X2, ...] (this
is the polynomial ring over Z in the countably many indeterminates X0,
X1, X2, ...), this polynomial wn can also be considered as an element of
Z [X0, X1, X2, ...]. Regarding wn this way, we have

wn (X0, X1, X2, ...) =
n∑
k=0

pkXpn−k

k .

We will often write X for the family (X0, X1, X2, ...). Thus, wn (X) =
n∑
k=0

pkXpn−k

k .

These polynomials w0 (X) , w1 (X) , w2 (X) , ... are called the p-adic Witt
polynomials.1

Remark. It is sometimes useful to additionally define a Witt polynomial
w−1 ∈ Z (that’s right, a polynomial in 0 indeterminates) by w−1 = 0.

This agrees with the definition of wn by wn (X0, X1, ..., Xn) =
n∑
k=0

pkXpn−k

k ,

because for n = −1, the sum
n∑
k=0

pkXpn−k

k is an empty sum and thus to be

1Caution: These polynomials are referred to as w0, w1, w2, ... in Sections 5-8 of [1]. However,
beginning with Section 9 of [1], Hazewinkel uses the notations w1, w2, w3, ... for some different
polynomials (the so-called big Witt polynomials, defined by formula (9.25) in [1]), which are not the
same as our polynomials w1, w2, w3, ... (though they are related to them: in fact, the polynomial wk

that we have just defined here is the same as the polynomial which is called wpk in [1] from Section 9
on, up to a change of variables; however, the polynomial which is called wk from in [1] from Section
9 on is totally different and has nothing to do with our wk).
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understood as 0. While this polynomial w−1 does not store any interesting
information, it sometimes helps to have it defined2.

(b) Let Ξ be a family of symbols. We consider the polynomial ring Q [Ξ]
(this is the polynomial ring over Q in the indeterminates Ξ; in other words,
we use the symbols from Ξ as variables for the polynomials) and its subring
Z [Ξ] (this is the polynomial ring over Z in the indeterminates Ξ) 3.
Let Ξp mean the family of the p-th powers of all elements of our family Ξ
(considered as elements of Z [Ξ]) 4. (Therefore, whenever P ∈ Q [Ξ] is a
polynomial, P (Ξp) is the polynomial obtained from P after replacing every
indeterminate by its p-th power.5)

We will now show two theorems:

Theorem 1 (Working with ghost components I).

(a) Let (f0, f1, f2, ...) ∈ (Q [Ξ])N and (g0, g1, g2, ...) ∈ (Q [Ξ])N be two fami-
lies of polynomials. Then,

(fn = gn for every n ∈ N) (1)

if and only if

(wn (f0, f1, ..., fn) = wn (g0, g1, ..., gn) for every n ∈ N) . (2)

(b) Let (f0, f1, f2, ...) ∈ (Q [Ξ])N be a family of polynomials. Then,

(fn ∈ Z [Ξ] for every n ∈ N) (3)

if and only if

(wn (f0, f1, ..., fn)− wn−1 (f0 (Ξp) , f1 (Ξp) , ..., fn−1 (Ξp)) ∈ pnZ [Ξ] for every n ∈ N) .
(4)

Theorem 2 (Working with ghost components II).

Let (p0, p1, p2, ...) ∈ (Q [Ξ])N be a family of polynomials.

(a) Then, there exists one and only one family (f0, f1, f2, ...) ∈ (Q [Ξ])N of
polynomials such that

(wn (f0, f1, ..., fn) = pn for every n ∈ N) . (5)

2For instance, the formula (5.26) of [1] simplifies to

wn (Vp) = pwn−1 for all n ∈ N

when we use the convention w−1 = 0.
3For instance, Ξ can be (X0, X1, X2, ...), in which case Z [Ξ] means Z [X0, X1, X2, ...].

Or, Ξ can be (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), in which case Z [Ξ] means
Z [X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...].

4In other words, if Ξ = (ξi)i∈I , then we define Ξp as (ξpi )i∈I . For instance, if Ξ = (X0, X1, X2, ...),
then Ξp = (Xp

0 , X
p
1 , X

p
2 , ...). If Ξ = (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), then Ξp =

(Xp
0 , X

p
1 , X

p
2 , ...;Y

p
0 , Y

p
1 , Y

p
2 , ...;Z

p
0 , Z

p
1 , Z

p
2 , ...).

5For instance, if Ξ = (X0, X1, X2, ...) and P (Ξ) = (X0 +X1)
2 − 2X3 + 1, then P (Ξp) =

(Xp
0 +Xp

1 )
2 − 2Xp

3 + 1.
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(b) The family (f0, f1, ..., fn) defined in Theorem 2 (a) satisfies fn ∈
Q [p0, p1, ..., pn] (where Q [p0, p1, ..., pn] means the sub-Q-algebra of Q [Ξ]
generated by the polynomials p0, p1, ..., pn) for every n ∈ N.

(c) This family (f0, f1, ..., fn) defined in Theorem 2 (a) satisfies (f0, f1, f2, ...) ∈
(Z [Ξ])N if and only if

(pn − pn−1 (Ξp) ∈ pnZ [Ξ] for every n ∈ N) . (6)

Here, p−1 denotes the zero polynomial.

Before we prove these theorems, let us explain their use: Theorem 2 (a) says that
we can define a family (f0, f1, f2, ...) ∈ (Q [Ξ])N of polynomials uniquely using ”ghost
component equations” (i. e., by defining wn (f0, f1, ..., fn) for every n ∈ N instead of
directly defining fn for every n ∈ N). These polynomials need not necessarily come
out integral when defined this way, but Theorem 2 (c) yields a handy way to check
whether they are. Moreover, Theorem 2 (b) shows that the polynomial fn lies - at
least, over Q - in the subalgebra generated by p0, p1, ..., pn, so it cannot have variables
that don’t occur in any of p0, p1, ..., pn. Theorem 1 is more or less a reformulation of
Theorem 2 that makes it easier for us to prove it.

We are now going to prove Theorems 1 and 2. First, a lemma:

Lemma 3. Let A be a commutative ring with unity, and p ∈ N be a
nonnegative integer6. Let k ∈ N and ` ∈ N be such that k > 0. Let a ∈ A
and b ∈ A. If a ≡ bmod pkA, then ap

` ≡ bp
`
mod pk+`A.

Proof of Lemma 3. We will show Lemma 3 by induction over `. For ` = 0, the
assertion of Lemma 3 is trivial. Now, for the induction step, we assume that ap

` ≡
bp
`
mod pk+`A for some ` ∈ N, and we want to show that ap

`+1 ≡ bp
`+1

mod pk+`+1A. In
fact, we have a ≡ bmod pA (because a ≡ bmod pkA yields a − b ∈ pkA ⊆ pA, since
k > 0) and thus

p−1∑
i=0

(
ap

`
)i (

bp
`
)p−1−i

≡
p−1∑
i=0

(
bp
`
)i (

bp
`
)p−1−i

=

p−1∑
i=0

(
bp
`
)p−1

= p
(
bp
`
)p−1

≡ 0 mod pA,

so that
p−1∑
i=0

(
ap

`
)i (

bp
`
)p−1−i

∈ pA. Hence,

ap
`+1 − bp`+1

=
(
ap

`
)p
−
(
bp
`
)p

=
(
ap

` − bp`
)

︸ ︷︷ ︸
∈pk+`A, since

ap
`≡bp` mod pk+`A

·
p−1∑
i=0

(
ap

`
)i (

bp
`
)p−1−i

︸ ︷︷ ︸
∈pA

∈ pk+`+1A,

so that ap
`+1 ≡ bp

`+1
mod pk+`+1A, and the induction step is complete. Thus, Lemma 3

is proven.
As a consequence of Lemma 3, we can establish the following fact (which is Lemma

5.4 in [1]):

6Though we call it p, we do not require it to be a prime!
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Lemma 4. Let ψ ∈ Z [Ξ] be a polynomial. Let p be a prime.

(a) Then,
ψ (Ξp) ≡ ψp mod pZ [Ξ] .

(b) For every ` ∈ N, we have

(ψ (Ξp))p
`

≡ ψp
`+1

mod p`+1Z [Ξ] .

Proof of Lemma 4. (a) Every element n ∈ NΞ is a family of elements of N indexed
by elements of Ξ. For every ξ ∈ Ξ, we will denote by nξ the ξ-th component of this
family n. (Thus, every n ∈ NΞ satisfies n = (nξ)ξ∈Ξ.)

Let NΞ
fin denote the set{

n ∈ NΞ | only finitely many ξ ∈ Ξ satisfy nξ 6= 0
}
.

Then, the polynomial ψ has (like any polynomial in Z [Ξ]) a representation in the
form ψ =

∑
n∈NΞ

fin

an
∏
ξ∈Ξ

ξnξ , where an is an element of Z for every n ∈ NΞ
fin. Obviously,

ψ (Ξp) =
∑

n∈NΞ
fin

an
∏
ξ∈Ξ

(ξp)nξ . But

ψp =

∑
n∈NΞ

fin

an
∏
ξ∈Ξ

ξnξ

p

≡
∑

n∈NΞ
fin

(
an
∏
ξ∈Ξ

ξnξ

)p

(
since

(∑
s∈S

as

)p

≡
∑
s∈S

aps mod pA for any family (as)s∈S of elements of a commutative ring A

)
=
∑

n∈NΞ
fin

apn︸︷︷︸
≡an mod pZ[Ξ],

because apn≡an mod p in Z
(by Fermat’s Little Theorem)

∏
ξ∈Ξ

(ξnξ)p︸ ︷︷ ︸
=(ξp)

nξ

≡
∑

n∈NΞ
fin

an
∏
ξ∈Ξ

(ξp)nξ = ψ (Ξp) mod pZ [Ξ] .

This proves Lemma 4 (a).
(b) Lemma 4 (b) follows from Lemma 4 (a) using Lemma 3 (applied to A = Z [Ξ],

k = 1, a = ψ (Ξp) and b = ψp).
This completes the proof of Lemma 4.
Proof of Theorem 1. (a) We have to prove that (1) is equivalent to (2). In fact, it

is clear that (1) yields (2), so it only remains to prove that (2) yields (1). So, let us
assume that (2) holds. We want to prove that (1) holds as well. In other words, we
have to prove that fn = gn for every n ∈ N. We will prove this by strong induction over
n; this means that we fix some n ∈ N, and our goal is to show that fn = gn assuming
that fk = gk is already proven for each k ∈ N satisfying k < n. Now,

wn (f0, f1, ..., fn) =
n∑
k=0

pkfp
n−k

k =
n−1∑
k=0

pkfp
n−k

k + pn fp
n−n

n︸ ︷︷ ︸
=fp

0
n =fn

=
n−1∑
k=0

pkfp
n−k

k + pnfn and similarly

wn (g0, g1, ..., gn) =
n−1∑
k=0

pkgp
n−k

k + pngn.
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Thus, (2) yields
n−1∑
k=0

pkfp
n−k

k + pnfn =
n−1∑
k=0

pkgp
n−k

k + pngn.

Subtracting
n−1∑
k=0

pkfp
n−k

k =
n−1∑
k=0

pkgp
n−k

k (which is because fk = gk for each k ∈ N satis-

fying k < n, by the induction assumption) from this equation, we obtain pnfn = pngn.
Hence, fn = gn (because pn is not a zero divisor in the ring (Q [Ξ])N). This completes
the induction, and thus (1) is proven. This completes the proof of Theorem 1 (a).

(b) Obviously,

wn (f0, f1, ..., fn) =
n∑
k=0

pkfp
n−k

k = pnfp
n−n

n +
n−1∑
k=0

pkfp
n−k

k (7)

and

wn−1 (f0 (Ξp) , f1 (Ξp) , ..., fn−1 (Ξp)) =
n−1∑
k=0

pk (fk (Ξp))p
(n−1)−k

. (8)

Now, we have to prove that (3) is equivalent to (4). We will do this in two steps: First,
we will show that (3) implies (4), and then we will establish the converse.

Step 1: Proof that (3) implies (4): Assume that (3) holds. We have to prove (4)
then, i. e., we have to prove that

wn (f0, f1, ..., fn)−wn−1 (f0 (Ξp) , f1 (Ξp) , ..., fn−1 (Ξp)) ∈ pnZ [Ξ] for every n ∈ N.

In fact, let us first notice that fk ∈ Z [Ξ] for every k ∈ N (since (3) was assumed to
hold). Thus, in particular, fk ∈ Z [Ξ] for every k ∈ N satisfying k < n. Hence, for
every k ∈ N satisfying k < n, Lemma 4 (b) (applied to ψ = fk) yields that

(fk (Ξp))p
`

≡ fp
`+1

k mod p`+1Z [Ξ] for every ` ∈ N. (9)

Now,

n−1∑
k=0

pkfp
n−k

k −
n−1∑
k=0

pk (fk (Ξp))p
(n−1)−k

=
n−1∑
k=0

pk
(
fp

n−k

k − (fk (Ξp))p
(n−1)−k

)
︸ ︷︷ ︸

∈pn−kZ[Ξ], because

(fk(Ξp))p
(n−1)−k

≡fp
n−k
k mod pn−kZ[Ξ]

(by (9), applied to `=(n−1)−k)

∈
n−1∑
k=0

pkpn−kZ [Ξ]︸ ︷︷ ︸
=pnZ[Ξ]

⊆ pnZ [Ξ] . (10)
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Hence,

wn (f0, f1, ..., fn)− wn−1 (f0 (Ξp) , f1 (Ξp) , ..., fn−1 (Ξp))

=

(
pnfp

n−n

n +
n−1∑
k=0

pkfp
n−k

k

)
−

n−1∑
k=0

pk (fk (Ξp))p
(n−1)−k

(by (7) and (8))

= pnfp
n−n

n +

(
n−1∑
k=0

pkfp
n−k

k −
n−1∑
k=0

pk (fk (Ξp))p
(n−1)−k

)
︸ ︷︷ ︸

∈pnZ[Ξ] by (10)

∈ pn fpn−nn︸ ︷︷ ︸
∈Z[Ξ]

+pnZ [Ξ] (11)

⊆ pnZ [Ξ] + pnZ [Ξ] ⊆ pnZ [Ξ] (since Z [Ξ] is a Z-module) .

Thus, (4) is proven, i. e., we have shown that (3) implies (4).
Step 2: Proof that (4) implies (3): Assume that (4) holds. We have to prove (3)

then, i. e., we have to prove that fn ∈ Z [Ξ] for every n ∈ N. We will prove this by
strong induction over n; this means that we fix some n ∈ N, and our goal is to show
that fn ∈ Z [Ξ], assuming that fk ∈ Z [Ξ] is already proven for each k ∈ N satisfying
k < n.

As in Step 1, we can prove (11) (because our proof of (11) in Step 1 only used that
fk ∈ Z [Ξ] for every k ∈ N satisfying k < n; it did not use that fk ∈ Z [Ξ] for all k ∈ N).
Hence,

wn (f0, f1, ..., fn)−wn−1 (f0 (Ξp) , f1 (Ξp) , ..., fn−1 (Ξp)) ∈ pn fp
n−n

n︸ ︷︷ ︸
=fp

0
n =fn

+pnZ [Ξ] = pnfn+pnZ [Ξ] ,

so that

pnfn ∈ (wn (f0, f1, ..., fn)− wn−1 (f0 (Ξp) , f1 (Ξp) , ..., fn−1 (Ξp)))︸ ︷︷ ︸
∈pnZ[Ξ] by (4)

−pnZ [Ξ]

⊆ pnZ [Ξ]− pnZ [Ξ] = pnZ [Ξ] .

Hence, fn =
1

pn
pnfn ∈

1

pn
pnZ [Ξ] = Z [Ξ]. This completes our induction step. There-

fore, (3) is proven, i. e., we have shown that (4) implies (3).
Altogether, we now know that (3) implies (4) and that (4) implies (3). This proves

that (3) and (4) are equivalent. Theorem 1 (b) is now proven.
Proof of Theorem 2. (a) The uniqueness of the family (f0, f1, f2, ...) ∈ (Q [Ξ])N

satisfying (5) immediately follows from Theorem 1 (a), so it only remains to prove
the existence of a family (f0, f1, f2, ...) ∈ (Q [Ξ])N satisfying (5). We will do this by
constructing it recursively: Let N ∈ N. Assume that the polynomials f0, f1, ..., fN−1

are already constructed, and that (5) holds for all n < N . Then, we define a polynomial
fN ∈ Q [Ξ] by

fN =
1

pN

(
pN −

N−1∑
k=0

pkfp
N−k

k

)
. (12)

6



Then, (5) holds for n = N as well, since

wN (f0, f1, ..., fN) =
N∑
k=0

pkfp
N−k

k =
N−1∑
k=0

pkfp
N−k

k + pN fp
N−N

N︸ ︷︷ ︸
=fp

0

N =fN

=
N−1∑
k=0

pkfp
N−k

k + pNfN

=
N−1∑
k=0

pkfp
N−k

k + pN · 1

pN

(
pN −

N−1∑
k=0

pkfp
N−k

k

)
(by (12))

=
N−1∑
k=0

pkfp
N−k

k +

(
pN −

N−1∑
k=0

pkfp
N−k

k

)
= pN .

Thus, the family (f0, f1, f2, ...) ∈ (Q [Ξ])N that we recursively construct this way will
satisfy (5) for all n ∈ N. This proves the existence of such a family (f0, f1, f2, ...) ∈
(Q [Ξ])N. Thus, the proof of Theorem 2 (a) is complete.

(b) We have to prove that fn ∈ Q [p0, p1, ..., pn] for all n ∈ N. We will prove this
by strong induction over n; this means that we fix some N ∈ N, and our goal is to
show that fN ∈ Q [p0, p1, ..., pN ], assuming that fk ∈ Q [p0, p1, ..., pk] is already proven
for each k ∈ N satisfying k < N .

Looking back at our construction of the family (f0, f1, f2, ...) ∈ (Q [Ξ])N (during
the proof of Theorem 2 (a)), we see that fN ∈ Q [pN , f0, f1, ..., fN−1] (because of
(12)). But Q [pN , f0, f1, ..., fN−1] ⊆ Q [p0, p1, ..., pN ] (because pN ∈ Q [p0, p1, ..., pN ] and
because our induction assumption yields fk ∈ Q [p0, p1, ..., pk] ⊆ Q [p0, p1, ..., pN ] for
each k < N). Hence, fN ∈ Q [p0, p1, ..., pN ]. This concludes our induction, and thus,
Theorem 2 (b) is proven.

(c) For each n ∈ N, we have

wn−1 (f0, f1, ..., fn−1) = pn−1 (13)

7, and thus
wn−1 (f0 (Ξp) , f1 (Ξp) , ..., fn−1 (Ξp)) = pn−1 (Ξp) (14)

8.
We have to prove that (f0, f1, f2, ...) ∈ (Z [Ξ])N if and only if (6). But clearly,

(f0, f1, f2, ...) ∈ (Z [Ξ])N is equivalent to (3), while (6) is equivalent to (4) (because
(5) yields wn (f0, f1, ..., fn) = pn, and (14) yields wn−1 (f0 (Ξp) , f1 (Ξp) , ..., fn−1 (Ξp)) =
pn−1 (Ξp)). Hence, it remains to show that (3) is equivalent to (4). But this follows
from Theorem 1 (b). Thus, Theorem 2 (c) is proven.

Now, both Theorems 1 and 2 are completely proven, and we can come to their
applications.

Our first application will be a proof of the following fact, which is Theorem 5.2 in
[1]:

Theorem 5. Let Ξ denote the family (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...)
of symbols. We abbreviate its subfamilies (X0, X1, X2, ...) , (Y0, Y1, Y2, ...) ,

7Proof of (13): Let n ∈ N. If n = 0, then (13) follows from wn−1 = w−1 = 0 and pn−1 = p−1 = 0.
Thus, we WLOG assume that n 6= 0. Hence, n ≥ 1, so that n − 1 ∈ N. Therefore, (13) follows from
(5) (applied to n− 1 instead of n).

8This follows by evaluating the identity (13) at Ξp.
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(Z0, Z1, Z2, ...) byX, Y, Z, respectively. (Thus, as usual, if P ∈ Z [X0, X1, X2, ...]
is a polynomial, then P (X) will mean P (X0, X1, X2, ...) (which is the
same as P ), while P (Y ) will mean P (Y0, Y1, Y2, ...) , and P (Z) will mean
P (Z0, Z1, Z2, ...).)

Let f ∈ Z [α; β; γ] be a polynomial in three variables.

(a) Then, there exists one and only one family (f0, f1, f2, ...) ∈ (Q [Ξ])N of
polynomials such that

(wn (f0, f1, ..., fn) = f (wn (X) ;wn (Y ) ;wn (Z)) for every n ∈ N) .
(15)

(b) This family (f0, f1, f2, ...) ∈ (Q [Ξ])N satisfies fn ∈ Z [X0, X1, ..., Xn;Y0, Y1, ..., Yn;Z0, Z1, ..., Zn]
for every n ∈ N.

Before we prove this theorem, an easy lemma:

Lemma 6. Every n ≥ 1 satisfies

wn (X)− wn−1 (Xp) = pnXn.

(Here, X means the family of indeterminates (X0, X1, X2, ...), and Xp

means the family of the p-th powers of all indeterminates from the fam-
ily X; in other words, Xp = (Xp

0 , X
p
1 , X

p
2 , ...).)

Proof of Lemma 6. Subtracting the equality

wn−1 (Xp) =
n−1∑
k=0

pk (Xp
k)p

(n−1)−k
=

n−1∑
k=0

pkXp·p(n−1)−k

k =
n−1∑
k=0

pkXpn−k

k

from the equality

wn (X) =
n∑
k=0

pkXpn−k

k =
n−1∑
k=0

pkXpn−k

k + pnXpn−n

n ,

we obtain
wn (X)− wn−1 (Xp) = pn Xpn−n

n︸ ︷︷ ︸
=Xp0

n =Xn

= pnXn.

Lemma 6 is proven.
Proof of Theorem 5. Define a family (p0, p1, p2, ...) ∈ (Q [Ξ])N by pk = f (wk (X) ;wk (Y ) ;wk (Z))

for every k ∈ N. Then, Theorem 5 (a) immediately results from Theorem 2 (a). It now
remains to prove Theorem 5 (b), i. e. to prove that fn ∈ Z [X0, X1, ..., Xn;Y0, Y1, ..., Yn;Z0, Z1, ..., Zn]
for every n ∈ N.

Theorem 2 (b) yields that fn ∈ Q [p0, p1, ..., pn]. But all the polynomials p0, p1, ...,
pn lie in

Q [w0 (X) , w1 (X) , ..., wn (X) ;w0 (Y ) , w1 (Y ) , ..., wn (Y ) ;w0 (Z) , w1 (Z) , ..., wn (Z)]
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(because pk = f (wk (X) ;wk (Y ) ;wk (Z)) for every k ∈ N, with f being a polynomial).
Hence,

Q [p0, p1, ..., pn] ⊆ Q [w0 (X) , w1 (X) , ..., wn (X) ;w0 (Y ) , w1 (Y ) , ..., wn (Y ) ;w0 (Z) , w1 (Z) , ..., wn (Z)] .

Besides, for every k ∈ {0, 1, ..., n}, the polynomials wk (X) , wk (Y ) , and wk (Z) all lie
in Q [X0, X1, ..., Xn;Y0, Y1, ..., Yn;Z0, Z1, ..., Zn] (because

wk (X) = wk (X0, X1, ..., Xk) ∈ Q [X0, X1, ..., Xk] ⊆ Q [X0, X1, ..., Xn]

⊆ Q [X0, X1, ..., Xn;Y0, Y1, ..., Yn;Z0, Z1, ..., Zn]

and similarly for wk (Y ) and wk (Z)). Hence,

Q [w0 (X) , w1 (X) , ..., wn (X) ;w0 (Y ) , w1 (Y ) , ..., wn (Y ) ;w0 (Z) , w1 (Z) , ..., wn (Z)]

⊆ Q [X0, X1, ..., Xn;Y0, Y1, ..., Yn;Z0, Z1, ..., Zn] .

Combining these results, we see that

fn ∈ Q [p0, p1, ..., pn]

⊆ Q [w0 (X) , w1 (X) , ..., wn (X) ;w0 (Y ) , w1 (Y ) , ..., wn (Y ) ;w0 (Z) , w1 (Z) , ..., wn (Z)]

⊆ Q [X0, X1, ..., Xn;Y0, Y1, ..., Yn;Z0, Z1, ..., Zn] . (16)

On the other hand, Lemma 6 yields wn (X)−wn−1 (Xp) = pnXn ∈ pnZ [Ξ], so that
wn (X) ≡ wn−1 (Xp) mod pnZ [Ξ], and similarly wn (Y ) ≡ wn−1 (Y p) mod pnZ [Ξ] and
wn (Z) ≡ wn−1 (Zp) mod pnZ [Ξ]. Thus,

pn = f (wn (X) ;wn (Y ) ;wn (Z)) ≡ f (wn−1 (Xp) ;wn−1 (Y p) ;wn−1 (Zp)) mod pnZ [Ξ] .

On the other hand, evaluating the polynomial identity pn−1 = f (wn−1 (X) ;wn−1 (Y ) ;wn−1 (Z))
at Ξp yields

pn−1 (Ξp) = f (wn−1 (Xp) ;wn−1 (Y p) ;wn−1 (Zp)) .

Hence,

pn ≡ f (wn−1 (Xp) ;wn−1 (Y p) ;wn−1 (Zp)) = pn−1 (Ξp) mod pnZ [Ξ] ,

so that
pn − pn−1 (Ξp) ∈ pnZ [Ξ] for every n ∈ N.

Therefore, Theorem 2 (c) yields that (f0, f1, f2, ...) ∈ (Z [Ξ])N. In other words, fn ∈
Z [Ξ] for every n ∈ N. Combining this with (16), we see that

fn ∈ Z [Ξ] ∩Q [X0, X1, ..., Xn;Y0, Y1, ..., Yn;Z0, Z1, ..., Zn]

= Z [X0, X1, ..., Xn;Y0, Y1, ..., Yn;Z0, Z1, ..., Zn] .

This proves Theorem 5 (b). Thus, the proof of Theorem 5 is complete.
As another application of Theorems 1 and 2, we can prove the main result of [1],

5.25, namely that the map Vp defined in [1], 5.25 is a functorial group endomorphism
of the Witt vectors. This will follow from the following result:
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Theorem 7. Define the polynomials s0, s1, s2, ... and the polynomials
m0, m1, m2, ... as in [1], 5.9. Define the family (v0, v1, v2, ...) ∈ (Z [X])N by
v0 (X) = 0 and vn (X) = Xn−1 for every n ≥ 1 (where X means the family
(X0, X1, X2, ...)).

Then,

vn (s0 (X;Y ) , s1 (X;Y ) , s2 (X;Y ) , ...)

= sn (v0 (X) , v1 (X) , v2 (X) , ...; v0 (Y ) , v1 (Y ) , v2 (Y ) , ...)

for every n ∈ N.

Proof of Theorem 7. Let Ξ denote the family (X0, X1, X2, ...;Y0, Y1, Y2, ...) of sym-
bols. Define two families (f0, f1, f2, ...) ∈ (Q [Ξ])N and (g0, g1, g2, ...) ∈ (Q [Ξ])N by

fk = vk (s0 (X;Y ) , s1 (X;Y ) , s2 (X;Y ) , ...) and

gk = sk (v0 (X) , v1 (X) , v2 (X) , ...; v0 (Y ) , v1 (Y ) , v2 (Y ) , ...)

for every n ∈ N. Then, we wish to prove that

(fn = gn for every n ∈ N) .

According to Theorem 1 (a), this will immediately follow once we can show that

(wn (f0, f1, ..., fn) = wn (g0, g1, ..., gn) for every n ∈ N) . (17)

So it remains to prove (17).
We have

wn (f0, f1, ..., fn) =
n∑
k=0

pkfp
n−k

k =
n∑
k=0

pk (vk (s0 (X;Y ) , s1 (X;Y ) , s2 (X;Y ) , ...))p
n−k

(since fk = vk (s0 (X;Y ) , s1 (X;Y ) , s2 (X;Y ) , ...))

= p0 (v0 (s0 (X;Y ) , s1 (X;Y ) , s2 (X;Y ) , ...))p
n−0︸ ︷︷ ︸

=0
(since v0=0 and pn−0>0)

+
n∑
k=1

pk︸︷︷︸
=ppk−1

vk (s0 (X;Y ) , s1 (X;Y ) , s2 (X;Y ) , ...)︸ ︷︷ ︸
=sk−1(X;Y ), since
vk(X)=Xk−1


pn−k

= p00︸︷︷︸
=0

+
n∑
k=1

ppk−1 (sk−1 (X;Y ))p
n−k

= p
n∑
k=1

pk−1 (sk−1 (X;Y ))p
n−k

= p

n−1∑
k=0

pk (sk (X;Y ))p
(n−1)−k

︸ ︷︷ ︸
=wn−1(s0(X;Y ),s1(X;Y ),...,sn−1(X;Y ))

(here we substituted k for k − 1 in the sum)

= pwn−1 (s0 (X;Y ) , s1 (X;Y ) , ..., sn−1 (X;Y ))︸ ︷︷ ︸
=wn−1(X)+wn−1(Y )

(by [1], (5.10), applied to n−1 instead of n)

= pwn−1 (X) + pwn−1 (Y ) .
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On the other hand,

wn (v0 (X) , v1 (X) , v2 (X) , ...)

=
n∑
k=0

pk (vk (X))p
n−k

= p0 (v0 (X))p
n−0︸ ︷︷ ︸

=0
(since v0=0 and pn−0>0)

+
n∑
k=1

pk︸︷︷︸
=ppk−1

(vk (X))p
n−k

= p00︸︷︷︸
=0

+
n∑
k=1

ppk−1 (vk (X))p
n−k

= p

n∑
k=1

pk−1

vk (X)︸ ︷︷ ︸
=Xk−1


pn−k

= p
n∑
k=1

pk−1 Xpn−k

k−1︸ ︷︷ ︸
=Xp(n−1)−(k−1)

k−1

= p
n∑
k=1

pk−1Xp(n−1)−(k−1)

k−1

= p
n−1∑
k=0

pkXp(n−1)−k

k︸ ︷︷ ︸
=wn−1(X0,X1,...,Xn−1)

=wn−1(X)

(here we substituted k for k − 1 in the sum)

= pwn−1 (X)

and similarly wn (v0 (Y ) , v1 (Y ) , v2 (Y ) , ...) = pwn−1 (Y ). Thus,

wn (g0, g1, ..., gn) = wn (s0 (v0 (X) , v1 (X) , v2 (X) , ...; v0 (Y ) , v1 (Y ) , v2 (Y ) , ...) ,

s1 (v0 (X) , v1 (X) , v2 (X) , ...; v0 (Y ) , v1 (Y ) , v2 (Y ) , ...) ,

s2 (v0 (X) , v1 (X) , v2 (X) , ...; v0 (Y ) , v1 (Y ) , v2 (Y ) , ...) ,

...)

= wn (v0 (X) , v1 (X) , v2 (X) , ...)︸ ︷︷ ︸
=pwn−1(X)

+wn (v0 (Y ) , v1 (Y ) , v2 (Y ) , ...)︸ ︷︷ ︸
=pwn−1(Y )

this follows from the polynomial identity
wn (s0 (X;Y ) , s1 (X;Y ) , s2 (X;Y ) , ...) = wn (X) + wn (Y )

upon substitution of
(v0 (X) , v1 (X) , v2 (X) , ...; v0 (Y ) , v1 (Y ) , v2 (Y ) , ...) for (X;Y )


= pwn−1 (X) + pwn−1 (Y ) = wn (f0, f1, ..., fn) ,

so that (17) is proven (this argument even makes sense for n = 0 if we define the

polynomial w−1 by w−1 (X) = 0, which agrees with the formula wn (X) =
n∑
k=0

pkXpn−k

k

because empty sums are understood to have the value 0). This completes the proof of
Theorem 7.

Now, using Theorem 7, it is easy to verify the main claim of [1], 5.25 - namely, the
claim that the map Vp defined in [1], 5.25 is a functorial group endomorphism of the
Witt vectors. In fact, this follows from the following fact:

Corollary 8. For every commutative ring A with unity, the map Vp :
Wp∞ (A)→ Wp∞ (A) defined by

Vpa = (v0 (a) , v1 (a) , v2 (a) , ...) for every a ∈ Wp∞ (A)
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is a group endomorphism of the additive group of Wp∞ (A).

Proof of Corollary 8. Any a ∈ Wp∞ (A) and b ∈ Wp∞ (A) satisfy

Vp (a+W b) = (v0 (a+W b) , v1 (a+W b) , v2 (a+W b) , ...)

and
Vpa+W Vpb = (s0 (Vpa; Vpb) , s1 (Vpa; Vpb) , s2 (Vpa; Vpb) , ...) .

But for any n ∈ N, we have

vn (a+W b) = vn (s0 (a; b) , s1 (a; b) , s2 (a; b) , ...)

= sn (v0 (a) , v1 (a) , v2 (a) , ...; v0 (b) , v1 (b) , v2 (b) , ...) (by Theorem 7)

= sn (Vpa; Vpb) . (18)

Hence,

Vp (a+W b) = (v0 (a+W b) , v1 (a+W b) , v2 (a+W b) , ...)

= (s0 (Vpa; Vpb) , s1 (Vpa; Vpb) , s2 (Vpa; Vpb) , ...) (by (18))

= Vpa+W Vpb.

Thus, Vp (a+W b) = Vpa +W Vpb holds for any a ∈ Wp∞ (A) and b ∈ Wp∞ (A). This
yields that Vp is a group endomorphism of the additive group of Wp∞ (A). Corollary
8 is proven.

Our next application is a proof of part of [1], 5.27 (namely, of the integrality of fn
and of (5.30)). This comes down to showing the following fact:

Theorem 9. (a) There exists one and only one family (f0, f1, f2, ...) ∈
(Q [X])N of polynomials such that

(wn (f0, f1, ..., fn) = wn+1 for every n ∈ N) . (19)

(b) This family (f0, f1, f2, ...) ∈ (Q [X])N satisfies fn ∈ Z [X0, X1, ..., Xn+1]
for every n ∈ N.

(c) This family (f0, f1, f2, ...) ∈ (Q [X])N satisfies fn ≡ Xp
n mod pZ [X0, X1, ..., Xn+1]

for every n ∈ N.

Proof of Theorem 9. Define a family (p0, p1, p2, ...) ∈ (Q [X])N by pk = wk+1 for all
k ∈ N. Then, Theorem 2 (a) (applied to Ξ = X) yields that there exists one and only
one family (f0, f1, f2, ...) ∈ (Q [Ξ])N of polynomials such that

(wn (f0, f1, ..., fn) = pn for every n ∈ N) .

This is exactly the statement of Theorem 9 (a) (because pn = wn+1). Thus, Theorem
9 (a) is proven.

Theorem 2 (b) (applied to Ξ = X) yields that this family (f0, f1, f2, ...) ∈ (Q [X])N

satisfies fn ∈ Q [p0, p1, ..., pn] for every n ∈ N. But recall that pk = wk+1 for all k ∈ N.
Thus,

Q [p0, p1, ..., pn] = Q [w1, w2, ..., wn+1] ⊆ Q [X0, X1, ..., Xn+1]
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(since the Witt polynomials w1, w2, ..., wn+1 all lie in Q [X0, X1, ..., Xn+1]). Hence,
fn ∈ Q [p0, p1, ..., pn] = Q [X0, X1, ..., Xn+1] for every n ∈ N.

Theorem 2 (c) (applied to Ξ = X) yields that our family (f0, f1, f2, ...) ∈ (Q [X])N

satisfies (f0, f1, f2, ...) ∈ (Z [X])N if and only if

(pn − pn−1 (Xp) ∈ pnZ [X] for every n ∈ N) . (20)

But (20) does hold, since

pn − pn−1 (Xp) = wn+1 − wn (Xp) (since pk = wk+1 for all k ∈ N)

= wn+1 (X)− wn (Xp)

= pn+1Xn+1 (by Lemma 6, applied to n+ 1 instead of n)

∈ pnZ [X]

for every n ∈ N. Thus, (f0, f1, f2, ...) ∈ (Z [X])N. In other words, fn ∈ Z [X] for every
n ∈ N.

Altogether, we now know that fn ∈ Q [X0, X1, ..., Xn+1] and fn ∈ Z [X] for every
n ∈ N. Hence,

fn ∈ Q [X0, X1, ..., Xn+1] ∩ Z [X] = Z [X0, X1, ..., Xn+1]

for every n ∈ N. This proves Theorem 9 (b).
It remains to verify Theorem 9 (c). This will be done by strong induction over n:

We let n be some nonnegative integer, and we wish to prove that

fn ≡ Xp
n mod pZ [X0, X1, ..., Xn+1] ,

assuming that we have already shown that

fk ≡ Xp
k mod pZ [X0, X1, ..., Xk+1] for all k < n. (21)

On the one hand,

wn+1 = wn (f0, f1, ..., fn) (by (19))

=
n∑
k=0

pkfp
n−k

k =
n−1∑
k=0

pkfp
n−k

k + pn fp
n−n

n︸ ︷︷ ︸
=fp

0
n =fn

=
n−1∑
k=0

pkfp
n−k

k + pnfn,

but on the other hand

wn+1 =
n+1∑
k=0

pkXp(n+1)−k

k =
n−1∑
k=0

pkXp(n+1)−k

k + pnXp(n+1)−n

n︸ ︷︷ ︸
=Xp1

n =Xp
n

+pn+1Xp(n+1)−(n+1)

n+1︸ ︷︷ ︸
=Xp0

n+1=Xn+1

=
n−1∑
k=0

pkXp(n+1)−k

k + pnXp
n + pn+1Xn+1.

Thus,
n−1∑
k=0

pkfp
n−k

k + pnfn =
n−1∑
k=0

pkXp(n+1)−k

k + pnXp
n + pn+1Xn+1. (22)
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Now, for every k < n, we have fk ≡ Xp
k mod pZ [X0, X1, ..., Xn+1] (this follows from

(21) since pZ [X0, X1, ..., Xk+1] ⊆ pZ [X0, X1, ..., Xn+1]) and thus

fp
n−k

k ≡ (Xp
k)p

n−k
mod p1+n−kZ [X0, X1, ..., Xn+1]

(by Lemma 3, applied to Z [X0, X1, ..., Xn+1], fk, X
p
k , 1 and n− k instead of A, a, b, k

and `, respectively), and multiplication by pk yields

pkfp
n−k

k ≡ pk (Xp
k)p

n−k
mod p(1+n−k)pk︸ ︷︷ ︸

=p(1+n−k)+k=p1+n=pn+1

Z [X0, X1, ..., Xn+1] . (23)

Thus,

n−1∑
k=0

pkfp
n−k

k ≡
n−1∑
k=0

pk (Xp
k)p

n−k︸ ︷︷ ︸
=Xppn−k

k =Xpn−k+1

k =Xp(n+1)−k
k

=
n−1∑
k=0

pkXp(n+1)−k

k mod pn+1Z [X0, X1, ..., Xn+1] .

Subtracting this congruence from the equation (22), we obtain

pnfn ≡ pnXp
n + pn+1Xn+1 mod pn+1Z [X0, X1, ..., Xn+1] .

Since pn+1Xn+1 ≡ 0 mod pn+1Z [X0, X1, ..., Xn+1], this simplifies to

pnfn ≡ pnXp
n mod pn+1Z [X0, X1, ..., Xn+1] .

Dividing this congruence by pn, we obtain

fn ≡ Xp
n mod pZ [X0, X1, ..., Xn+1] ,

and this completes our induction step. Thus, Theorem 9 (c) is proven.
Thus, two of the statements in [1], 5.27 are proven. Proving the remaining state-

ments is left to the reader (hint: [1], (5.31) follows from Theorem 9 (c), and the
statement that fp is an endomorphism of the unital ring Wp∞ (A) is proven similarly
to our proof of Corollary 8).9

As a final application of Theorem 1, we will prove the main claim of [1], 5.40. This
claim says that:

Theorem 10. LetA be a commutative ring with unity. Let a = (a0, a1, a2, ...) ∈
Wp∞ (A) and b = (b0, b1, b2, ...) ∈ Wp∞ (A) be such that for every n ∈ N, at
least one of an and bn is zero. Then, a+W b = (a0 + b0, a1 + b1, a2 + b2, ...).

9As a side-note to [1], 5.27, let me remark that there seems to be some confusion in literature
regarding the name ”Frobenius”. While [1] denotes the map

fp : Wp∞ (A)→Wp∞ (A) ,

a 7→ (f0 (a) , f1 (a) , f2 (a) , ...)

as ”Frobenius”, some other sources (like [2]) denote the map

Wp∞ (A)→Wp∞ (A) ,

(a0, a1, a2, ...) 7→ (ap0, a
p
1, a

p
2, ...)

as ”Frobenius”. These two maps are, in general, different (though they are equal if p · 1A = 0 in A).
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We will derive this fact from the following lemma:

Lemma 11. Let f : N→ {0, 1} and g : N→ {0, 1} be two functions such
that for every n ∈ N, at least one of f (n) and g (n) is zero. Then,

sn (f (0)X0, f (1)X1, f (2)X2, ...; g (0)X0, g (1)X1, g (2)X2, ...) = (f (n) + g (n))Xn

for every n ∈ N.

Proof of Lemma 11. Let us first notice that

(f (k))j + (g (k))j = (f (k) + g (k))j (24)

for every positive integer j and every k ∈ N 10.
Define two families (f0, f1, f2, ...) ∈ (Q [X])N and (g0, g1, g2, ...) ∈ (Q [X])N by

fn = sn (f (0)X0, f (1)X1, f (2)X2, ...; g (0)X0, g (1)X1, g (2)X2, ...) for every n ∈ N, and

gn = (f (n) + g (n))Xn for every n ∈ N.

Theorem 1 (a) (applied to Ξ = X) yields that (1) if and only if (2). But (2) holds,
since for every n ∈ N, we have

wn (f0, f1, ..., fn) = wn (s0 (f (0)X0, f (1)X1, f (2)X2, ...; g (0)X0, g (1)X1, g (2)X2, ...) ,

s1 (f (0)X0, f (1)X1, f (2)X2, ...; g (0)X0, g (1)X1, g (2)X2, ...) ,

s2 (f (0)X0, f (1)X1, f (2)X2, ...; g (0)X0, g (1)X1, g (2)X2, ...) ,

...)

= wn (f (0)X0, f (1)X1, f (2)X2, ...) + wn (g (0)X0, g (1)X1, g (2)X2, ...)
this follows from the polynomial identity

wn (s0 (X;Y ) , s1 (X;Y ) , s2 (X;Y ) , ...) = wn (X) + wn (Y )
upon substitution of

(f (0)X0, f (1)X1, f (2)X2, ...; g (0)X0, g (1)X1, g (2)X2, ...) for (X;Y )


=

n∑
k=0

pk (f (k)Xk)
pn−k +

n∑
k=0

pk (g (k)Xk)
pn−k (by the definition of wn)

=
n∑
k=0

pk
(

(f (k))p
n−k

+ (g (k))p
n−k
)

︸ ︷︷ ︸
=(f(k)+g(k))p

n−k

(by (24), applied to j=pn−k)

Xpn−k

k

=
n∑
k=0

pk (f (k) + g (k))p
n−k

Xpn−k

k =
n∑
k=0

pk

(f (k) + g (k))Xk︸ ︷︷ ︸
=gk

pn−k

=
n∑
k=0

pkgp
n−k

k = wn (g0, g1, ..., gn) .

10Proof of (24): Let j be a positive integer, and let k ∈ N.
We know that f (k) ∈ {0, 1} (since f is a map N→ {0, 1}) and g (k) ∈ {0, 1} (for similar reasons).

Furthermore, we know that at least one of f (k) and g (k) is zero. Hence, we are in one of the following
three cases:

Case 1: We have f (k) = 0 and g (k) = 0.
Case 2: We have f (k) = 0 and g (k) = 1.
Case 3: We have f (k) = 1 and g (k) = 0.
But (24) can be straightforwardly verified in each of these three cases.
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Thus, (1) holds as well, so that fn = gn for every n ∈ N. But recalling the definitions
of fn and gn, we notice that this is exactly the claim of Lemma 11. Thus, Lemma 11
is proven.

Proof of Theorem 10. Define two functions f : N → {0, 1} and g : N → {0, 1} by

f (n) =

{
1, if an 6= 0;
0, if an = 0

and g (n) =

{
1, if bn 6= 0;
0, if bn = 0

for every n ∈ N. Then, for every

n ∈ N, at least one of f (n) and g (n) is zero (since at least one of an and bn is zero).
Hence, Lemma 11 yields

sn (f (0)X0, f (1)X1, f (2)X2, ...; g (0)X0, g (1)X1, g (2)X2, ...) = (f (n) + g (n))Xn

for every n ∈ N. Evaluating this polynomial identity at (X0, X1, X2, ...) = (a0 + b0, a1 + b1, a2 + b2, ...),
we get

sn (f (0) (a0 + b0) , f (1) (a1 + b1) , f (2) (a2 + b2) , ...; g (0) (a0 + b0) , g (1) (a1 + b1) , g (2) (a2 + b2) , ...)

= (f (n) + g (n)) (an + bn) (25)

for every n ∈ N.
Besides, for every n ∈ N, we have

f (n) an =

{
1, if an 6= 0;
0, if an = 0

· an =

{
an, if an 6= 0;
0, if an = 0

= an;

f (n) bn =

{
1, if an 6= 0;
0, if an = 0

· bn =

{
bn, if an 6= 0;
0, if an = 0

= 0

(
since bn = 0 if an 6= 0,

because at least one of an and bn is zero

)
;

g (n) an =

{
1, if bn 6= 0;
0, if bn = 0

· an =

{
an, if bn 6= 0;
0, if bn = 0

= 0

(
since an = 0 if bn 6= 0,

because at least one of an and bn is zero

)
;

g (n) bn =

{
1, if bn 6= 0;
0, if bn = 0

· bn =

{
bn, if bn 6= 0;
0, if bn = 0

= bn,

and therefore

f (n) (an + bn) = f (n) an + f (n) bn = an + 0 = an;

g (n) (an + bn) = g (n) an + g (n) bn = 0 + bn = bn,

so that

(f (n) + g (n)) (an + bn) = f (n) (an + bn) + g (n) (an + bn) = an + bn.

Now, f (n) (an + bn) = an for every n ∈ N, and therefore

(f (0) (a0 + b0) , f (1) (a1 + b1) , f (2) (a2 + b2) , ...)

= (a0, a1, a2, ...) = a. (26)

Similarly,
(g (0) (a0 + b0) , g (1) (a1 + b1) , g (2) (a2 + b2) , ...) = b. (27)

Now,

a+W b = (s0 (a; b) , s1 (a; b) , s2 (a; b) , ...) = (a0 + b0, a1 + b1, a2 + b2, ...) ,
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because every n ∈ N satisfies

sn (a; b)

= sn (f (0) (a0 + b0) , f (1) (a1 + b1) , f (2) (a2 + b2) , ...; g (0) (a0 + b0) , g (1) (a1 + b1) , g (2) (a2 + b2) , ...)(
since a = (f (0) (a0 + b0) , f (1) (a1 + b1) , f (2) (a2 + b2) , ...) by (26)
and b = (g (0) (a0 + b0) , g (1) (a1 + b1) , g (2) (a2 + b2) , ...) by (27)

)
= (f (n) + g (n)) (an + bn) (by (25))

= f (n) (an + bn)︸ ︷︷ ︸
=an

+ g (n) (an + bn)︸ ︷︷ ︸
=bn

= an + bn.

This proves Theorem 10.
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