Witt vectors. Part 1
 Michiel Hazewinkel
 Sidenotes by Darij Grinberg

Witt\#2: Polynomials that can be written as w_{n}

 [version 1.0 (15 April 2013), completed, sloppily proofread]This is an addendum to section 5 of [1]. We recall the definition of the p-adic Witt polynomials:

Definition. Let p be a prime. For every $n \in \mathbb{N}$ (where \mathbb{N} means $\{0,1,2, \ldots\}$), we define a polynomial $w_{n} \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots, X_{n}\right]$ by
$w_{n}\left(X_{0}, X_{1}, \ldots, X_{n}\right)=X_{0}^{p^{n}}+p X_{1}^{p^{n-1}}+p^{2} X_{2}^{p^{n-2}}+\ldots+p^{n-1} X_{n-1}^{p}+p^{n} X_{n}=\sum_{k=0}^{n} p^{k} X_{k}^{p^{n-k}}$.
Since $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots, X_{n}\right]$ is a subring of the ring $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ (this is the polynomial ring over \mathbb{Z} in the countably many indeterminates X_{0}, $\left.X_{1}, X_{2}, \ldots\right)$, this polynomial w_{n} can also be considered as an element of $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$. Regarding w_{n} this way, we have

$$
w_{n}\left(X_{0}, X_{1}, X_{2}, \ldots\right)=\sum_{k=0}^{n} p^{k} X_{k}^{p^{n-k}}
$$

We will often write X for the sequence $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$. Thus, $w_{n}(X)=$ $\sum_{k=0}^{n} p^{k} X_{k}^{p^{n-k}}$.
These polynomials $w_{0}(X), w_{1}(X), w_{2}(X), \ldots$ are called the p-adic Witt polynomials. 1

A property of these polynomials has not been recorded in the text:
Theorem 1. Let $\tau \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ be a polynomial. Let $n \in \mathbb{N}$. Then, the following two assertions \mathcal{A} and \mathcal{B} are equivalent:
Assertion \mathcal{A} : There exist polynomials $\tau_{0}, \tau_{1}, \ldots, \tau_{n}$ in $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ such that

$$
\tau(X)=w_{n}\left(\tau_{0}(X), \tau_{1}(X), \ldots, \tau_{n}(X)\right)
$$

Assertion \mathcal{B} : We have $\frac{\partial}{\partial X_{i}}(\tau(X)) \in p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ for every $i \in \mathbb{N}$.

[^0]Proof of Theorem 1. Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{B}$: Assume that Assertion \mathcal{A} holds, i. e., that there exist polynomials $\tau_{0}, \tau_{1}, \ldots, \tau_{n}$ in $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ such that

$$
\tau(X)=w_{n}\left(\tau_{0}(X), \tau_{1}(X), \ldots, \tau_{n}(X)\right)
$$

Then,

$$
\tau(X)=w_{n}\left(\tau_{0}(X), \tau_{1}(X), \ldots, \tau_{n}(X)\right)=\sum_{k=0}^{n} p^{k}\left(\tau_{k}(X)\right)^{p^{n-k}}
$$

so that every $i \in \mathbb{N}$ satisfies

$$
\begin{aligned}
& \frac{\partial}{\partial X_{i}}(\tau(X))=\frac{\partial}{\partial X_{i}} \sum_{k=0}^{n} p^{k}\left(\tau_{k}(X)\right)^{p^{n-k}}=\sum_{k=0}^{n} p^{k} \underbrace{\frac{\partial}{\partial X_{i}}\left(\tau_{k}(X)\right)^{p^{n-k}}}_{=p^{n-k}\left(\tau_{k}(X)\right)^{p^{n-k}-1} \cdot \frac{\partial}{\partial X_{i}}\left(\tau_{k}(X)\right)} \\
& \left.\frac{\partial}{\partial Y}\left(Y^{(\text {by the chain rule, since }} \times{ }^{n-k}\right)=p^{n-k} Y^{p^{n-k}-1}\right) \\
& =\sum_{k=0}^{n} \underbrace{p^{k} p^{n-k}}_{=p^{n}}\left(\tau_{k}(X)\right)^{p^{n-k}-1} \cdot \frac{\partial}{\partial X_{i}}\left(\tau_{k}(X)\right)=p^{n} \underbrace{\sum_{k=0}^{n}\left(\tau_{k}(X)\right)^{p^{n-k}-1} \cdot \frac{\partial}{\partial X_{i}}\left(\tau_{k}(X)\right)}_{\in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]} \\
& \in p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right],
\end{aligned}
$$

and thus Assertion \mathcal{B} holds. This proves the implication $\mathcal{A} \Longrightarrow \mathcal{B}$.
Proof of the implication $\mathcal{B} \Longrightarrow \mathcal{A}$: Proving the implication $\mathcal{B} \Longrightarrow \mathcal{A}$ is equivalent to proving the following fact:

Lemma: Let $\tau \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ be a polynomial. Let $n \in \mathbb{N}$. If $\frac{\partial}{\partial X_{i}}(\tau(X)) \in$ $p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ for every $i \in \mathbb{N}$, then there exist polynomials $\tau_{0}, \tau_{1}, \ldots, \tau_{n}$ in $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ such that

$$
\tau(X)=w_{n}\left(\tau_{0}(X), \tau_{1}(X), \ldots, \tau_{n}(X)\right)
$$

Proof of the Lemma: We will prove the Lemma by induction over n. For $n=0$, the Lemma is trivial (just set $\tau_{0}=\tau$ and use $w_{0}(X)=X_{0}$). Now to the induction step: Given some $n \in \mathbb{N}$ such that $n \geq 1$, we want to prove the Lemma for this n, and we assume that it is already proven for $n-1$ instead of n. So let $\tau \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ be a polynomial such that $\frac{\partial}{\partial X_{i}}(\tau(X)) \in p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ for every $i \in \mathbb{N}$. We must find polynomials $\tau_{0}, \tau_{1}, \ldots, \tau_{n}$ in $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ such that

$$
\tau(X)=w_{n}\left(\tau_{0}(X), \tau_{1}(X), \ldots, \tau_{n}(X)\right)
$$

Let $\mathbb{N}_{\text {fin }}^{\mathbb{N}}$ denote the set $\left\{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}^{\mathbb{N}} \mid\right.$ only finitely many $k \in \mathbb{N}$ satisfy $\left.j_{k} \neq 0\right\}$. Then, τ has a unique representation in the form $\tau(X)=\sum_{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{\mathbb{N}}} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots$ with $t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} \in \mathbb{Z}$ for every $\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{\mathbb{N}}$ (in fact, every polynomial in $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$
has a unique representation of this kind). Every $i \in \mathbb{N}$ satisfies

$$
\begin{aligned}
\frac{\partial}{\partial X_{i}}(\tau(X)) & =\frac{\partial}{\partial X_{i}}\left(\sum_{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{N}} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots\right) \\
& =\sum_{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{N}} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{i-1}^{j_{i-1}}\left(\frac{\partial}{\partial X_{i}} X_{i}^{j_{i}}\right) X_{i+1}^{j_{i+1} \ldots} \\
& =\sum_{\left(j_{0}, j_{1}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{N}} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{i-1}^{j_{i-1}}\left(j_{i} X_{i}^{j_{i}-1}\right) X_{i+1}^{j_{i+1}} \ldots \\
& =\sum_{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{N}} j_{i} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{i-1}^{j_{i-1}} X_{i}^{j_{i}-1} X_{i+1}^{j_{i+1} \ldots}
\end{aligned}
$$

Hence, for every $\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{\mathbb{N}}$, the coefficient of the polynomial $\frac{\partial}{\partial X_{i}}(\tau(X))$ before the monomial $X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{i-1}^{j_{i-1}} X_{i}^{j_{i}-1} X_{i+1}^{j_{i+1}} \ldots$ is $j_{i} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}$. Therefore, $\frac{\partial}{\partial X_{i}}(\tau(X)) \in$ $p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ rewrites as $j_{i} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} \in p^{n} \mathbb{Z}$ for every $\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{\mathbb{N}}$ (because a polynomial in $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ lies in $p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ if and only if each of its coefficients lies in $\left.p^{n} \mathbb{Z}\right)$. In particular, this yields that
for every $\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{\mathbb{N}}$ satisfying $p \nmid t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}$, we have $j_{i} / p^{n} \in \mathbb{Z}$ for every $i \in \mathbb{N}$ (because $j_{i} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} \in p^{n} \mathbb{Z}$ and $p \nmid t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}$ lead to $j_{i} \in p^{n} \mathbb{Z}$, since p is a prime).

We also notice that

$$
\begin{equation*}
a \equiv a^{p^{n}} \bmod p \quad \text { for every } a \in \mathbb{Z} \tag{2}
\end{equation*}
$$

(since Fermat's Little Theorem yields $a^{p^{k}} \equiv\left(a^{p^{k}}\right)^{p}=a^{p^{k+1}} \bmod p$ for every $k \in \mathbb{N}$, and thus by induction we get $a^{p^{0}} \equiv a^{p^{n}} \bmod p$).

Now, define a polynomial $\rho \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ by

$$
\rho(X)=\sum_{\substack{\left.\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{N}} ; \\ p \nmid t j_{0}, j_{1}, j_{2}, \ldots\right)}} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0} / p^{n}} X_{1}^{j_{1} / p^{n}} X_{2}^{j_{2} / p^{n}} \ldots
$$

(this is actually a polynomial because of (1)). Then,

$$
\begin{aligned}
& \tau(X)=\sum_{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{N}} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots \\
& =\sum_{\substack{\left.\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{N} ; \\
p \mid t_{\left(j_{0}, j_{1}, j_{2}\right.}, \ldots\right)}} \underbrace{t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}}_{\substack{=0 \bmod p, \text { since } \\
p \mid t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)},}} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots+\sum_{\substack{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{N} ; \\
p t t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}}} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots \\
& \equiv \sum_{\substack{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{N}} ;}} 0 X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots+\sum_{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{N}} ;} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots \\
& \underbrace{p \mid t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}}{ }^{\left.p \nmid t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (this makes sense because } j_{i} / p^{n} \in \mathbb{Z} \text { for every } i \in \mathbb{N} \\
& \text { (by } \left.\sqrt[11]{ } \text {, since } p \not t_{\left.j_{0}, j_{1}, j_{2}, \ldots . .\right)}\right) \text {) } \\
& \equiv \sum_{\substack{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\mathrm{fn}}^{\mathbb{N}} ; \\
p \nmid\left(j_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}\right.}} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)}^{p^{n}}\left(X_{0}^{j_{0} / p^{n}} X_{1}^{j_{1} / p^{n}} X_{2}^{j_{2} / p^{n}} \ldots\right)^{p^{n}} \\
& =\sum_{\substack{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{\mathbb{N}} ; \\
p \nmid\left(j_{0}, j_{1}, j_{2}, \ldots\right)}}\left(t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0} / p^{n}} X_{1}^{j_{1} / p^{n}} X_{2}^{j_{2} / p^{n}} \ldots\right)^{p^{n}} \\
& \equiv(\underbrace{\sum_{\substack{\left(j_{0}, j_{1}, j_{2}, \ldots\right) \in \mathbb{N}_{\text {fin }}^{N} ; \\
p \not t\left(j_{0}, j_{1}, j_{2}, \ldots\right)}} t_{\left(j_{0}, j_{1}, j_{2}, \ldots\right)} X_{0}^{j_{0} / p^{n}} X_{1}^{j_{1} / p^{n}} X_{2}^{j_{2} / p^{n}} \ldots}_{=\rho(X)})^{p^{n}} \\
& \binom{\text { since } \sum_{s \in S} a_{s}^{p^{n}} \equiv\left(\sum_{s \in S} a_{s}\right)^{p^{n}} \bmod p \text { for any family }}{\left(a_{s}\right)_{s \in S} \text { of elements of any commutative ring }} \\
& =(\rho(X))^{p^{n}} \bmod p
\end{aligned}
$$

(where $" \bmod p "$ is shorthand for $" \bmod p \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right] "$). Hence, $\tau(X)-(\rho(X))^{p^{n}} \in$ $p \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$. Therefore, we can define a polynomial $\widetilde{\tau} \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ by

$$
\tau(X)-(\rho(X))^{p^{n}}=p \widetilde{\tau}(X) .
$$

For every $i \in \mathbb{N}$, we have

$$
\begin{aligned}
p \frac{\partial}{\partial X_{i}}(\widetilde{\tau}(X)) & =\frac{\partial}{\partial X_{i}}(\underbrace{p \widetilde{\tau}(X)}_{=\tau(X)-(\rho(X))^{p^{n}}})=\frac{\partial}{\partial X_{i}}\left(\tau(X)-(\rho(X))^{p^{n}}\right) \\
& =\frac{\partial}{\partial X_{i}}(\tau(X))-\underbrace{\frac{\partial}{\partial X_{i}}\left((\rho(X))^{p^{n}}\right)}_{=p^{n}(\rho(X))^{p^{n}-1} \frac{\partial}{\partial X_{i}}(\rho(X))} \\
& =\underbrace{\frac{\partial}{\partial X_{i}}(\tau(X))}_{\text {(by the chain rule, since } \left.\frac{\partial}{\partial Y}\left(Y^{p^{n}}\right)=p^{n} Y^{p^{n}-1}\right)}-p^{n} \underbrace{(\rho(X))^{p^{n}-1} \frac{\partial}{\partial X_{i}}(\rho(X))}_{\in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]} \\
& \in \underbrace{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]-p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right] \\
& \subseteq p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right] \quad\left(\operatorname{since} p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right] \text { is a } \mathbb{Z}\right. \text {-module), }
\end{aligned}
$$

so that

$$
\frac{\partial}{\partial X_{i}}(\widetilde{\tau}(X)) \in \frac{1}{p} p^{n} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]=p^{n-1} \mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]
$$

Therefore, we can apply the Lemma with $n-1$ instead of n and with $\widetilde{\tau}$ instead of τ (in fact, the Lemma with $n-1$ instead of n is guaranteed to hold by our induction assumption), and we obtain that there exist polynomials $\widetilde{\tau}_{0}, \widetilde{\tau}_{1}, \ldots, \widetilde{\tau}_{n-1}$ in $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ such that

$$
\widetilde{\tau}(X)=w_{n-1}\left(\widetilde{\tau}_{0}(X), \widetilde{\tau}_{1}(X), \ldots, \widetilde{\tau}_{n-1}(X)\right)
$$

In other words,

$$
\widetilde{\tau}(X)=w_{n-1}\left(\widetilde{\tau}_{0}(X), \widetilde{\tau}_{1}(X), \ldots, \widetilde{\tau}_{n-1}(X)\right)=\sum_{k=0}^{n-1} p^{k}\left(\widetilde{\tau}_{k}(X)\right)^{p^{(n-1)-k}}
$$

Now, define polynomials $\tau_{0}, \tau_{1}, \ldots, \tau_{n}$ in $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ by

$$
\left(\tau_{k}=\left\{\begin{array}{c}
\rho, \text { if } k=0 ; \\
\widetilde{\tau}_{k-1}, \text { if } k>0
\end{array} \quad \text { for every } k \in\{0,1, \ldots, n\}\right)\right.
$$

Then,

$$
\begin{aligned}
& w_{n}\left(\tau_{0}(X), \tau_{1}(X), \ldots, \tau_{n}(X)\right) \\
& =\sum_{k=0}^{n} p^{k}\left(\tau_{k}(X)\right)^{p^{n-k}}=\underbrace{p^{0}}_{=1}(\underbrace{\tau_{0}}_{=\rho}(X))^{p^{n-0}}+\sum_{k=1}^{n} \underbrace{p^{k}}_{=p p^{k-1}}(\underbrace{\tau_{k}}_{=\widetilde{\tau}_{k-1}}(X))^{p^{n-k}} \\
& =(\rho(X))^{p^{n-0}}+\sum_{k=1}^{n} p p^{k-1} \underbrace{\left(\widetilde{\tau}_{k-1}(X)\right)^{p^{n-k}}}_{=\left(\widetilde{\tau}_{k-1}(X)\right)^{p^{(n-1)-(k-1)}}} \\
& =(\rho(X))^{p^{n-0}}+\sum_{k=1}^{n} p p^{k-1}\left(\widetilde{\tau}_{k-1}(X)\right)^{p^{(n-1)-(k-1)}} \\
& =(\rho(X))^{p^{n-0}}+\sum_{k=0}^{n-1} p p^{k}\left(\widetilde{\tau}_{k}(X)\right)^{p^{(n-1)-k}} \quad(\text { here we substituted } k \text { for } k-1 \text { in the sum) } \\
& =(\rho(X))^{p^{n}}+p \underbrace{\sum_{k=0}^{n-1} p^{k}\left(\widetilde{\tau}_{k}(X)\right)^{p^{(n-1)-k}}=(\rho(X))^{p^{n}}+\underbrace{p \widetilde{\tau}(X)}_{=\tau(X)-(\rho(X))^{p^{n}}}=\tau(X) .}_{=\widetilde{\tau}(X)}
\end{aligned}
$$

This proves our Lemma (i. e., the induction is complete), and thus, the implication $\mathcal{B} \Longrightarrow \mathcal{A}$ is established.

Altogether, we have proven the implications $\mathcal{A} \Longrightarrow \mathcal{B}$ and $\mathcal{B} \Longrightarrow \mathcal{A}$. Consequently, Assertions \mathcal{A} and \mathcal{B} are equivalent. Theorem 1 is now proven.

Remark: While it is tempting to believe that our Theorem 1 yields Theorem 5.2 from [1], this doesn't seem to be the case.2

References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.

[^1]
[^0]: ${ }^{1}$ Caution: These polynomials are referred to as $w_{0}, w_{1}, w_{2}, \ldots$ in Sections 5-8 of [1]. However, beginning with Section 9 of [1], Hazewinkel uses the notations w_{1}, w_{2}, w_{3}, ... for some different polynomials (the so-called big Witt polynomials, defined by formula (9.25) in [1]), which are not the same as our polynomials $w_{1}, w_{2}, w_{3}, \ldots$ (though they are related to them: in fact, the polynomial w_{k} that we have just defined here is the same as the polynomial which is called $w_{p^{k}}$ in [1] from Section 9 on, up to a change of variables; however, the polynomial which is called w_{k} from in [1] from Section 9 on is totally different and has nothing to do with our w_{k}).

[^1]: ${ }^{2}$ In fact, our Theorem 1 yields that for every $n \in \mathbb{N}$ and every polynomial φ, there exist polynomials $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}$ satisfying

 $$
 w_{n}\left(\varphi_{0}(X ; Y ; Z), \ldots, \varphi_{n}(X ; Y ; Z)\right)=\varphi\left(w_{n}(X), w_{n}(Y), w_{n}(Z)\right)
 $$

 (see Theorem 5.2 in [1] for details), but Theorem 5.2 from [1] additionally claims that each of these polynomials is independent of n, which does not follow from our Theorem 1.

