Witt vectors. Part 1 Michiel Hazewinkel Sidenotes by Darij Grinberg

Witt#2: Polynomials that can be written as w_n [version 1.0 (15 April 2013), completed, sloppily proofread]

This is an addendum to section 5 of [1]. We recall the definition of the p-adic Witt polynomials:

Definition. Let p be a prime. For every $n \in \mathbb{N}$ (where \mathbb{N} means $\{0, 1, 2, ...\}$), we define a polynomial $w_n \in \mathbb{Z}[X_0, X_1, X_2, ..., X_n]$ by

$$w_n(X_0, X_1, ..., X_n) = X_0^{p^n} + pX_1^{p^{n-1}} + p^2X_2^{p^{n-2}} + ... + p^{n-1}X_{n-1}^p + p^nX_n = \sum_{k=0}^n p^kX_k^{p^{n-k}}$$

Since $\mathbb{Z}[X_0, X_1, X_2, ..., X_n]$ is a subring of the ring $\mathbb{Z}[X_0, X_1, X_2, ...]$ (this is the polynomial ring over \mathbb{Z} in the countably many indeterminates X_0 , $X_1, X_2, ...$), this polynomial w_n can also be considered as an element of $\mathbb{Z}[X_0, X_1, X_2, ...]$. Regarding w_n this way, we have

$$w_n(X_0, X_1, X_2, ...) = \sum_{k=0}^n p^k X_k^{p^{n-k}}.$$

We will often write X for the sequence $(X_0, X_1, X_2, ...)$. Thus, $w_n(X) = \sum_{k=0}^{n} p^k X_k^{p^{n-k}}$.

These polynomials $w_0(X)$, $w_1(X)$, $w_2(X)$, ... are called the *p*-adic Witt polynomials.¹

A property of these polynomials has not been recorded in the text:

Theorem 1. Let $\tau \in \mathbb{Z}[X_0, X_1, X_2, ...]$ be a polynomial. Let $n \in \mathbb{N}$. Then, the following two assertions \mathcal{A} and \mathcal{B} are equivalent:

Assertion \mathcal{A} : There exist polynomials $\tau_0, \tau_1, ..., \tau_n$ in $\mathbb{Z}[X_0, X_1, X_2, ...]$ such that

$$\tau\left(X\right) = w_{n}\left(\tau_{0}\left(X\right), \tau_{1}\left(X\right), ..., \tau_{n}\left(X\right)\right).$$

Assertion \mathcal{B} : We have $\frac{\partial}{\partial X_i} (\tau(X)) \in p^n \mathbb{Z} [X_0, X_1, X_2, \ldots]$ for every $i \in \mathbb{N}$.

¹Caution: These polynomials are referred to as w_0 , w_1 , w_2 , ... in Sections 5-8 of [1]. However, beginning with Section 9 of [1], Hazewinkel uses the notations w_1 , w_2 , w_3 , ... for some different polynomials (the so-called big Witt polynomials, defined by formula (9.25) in [1]), which are not the same as our polynomials w_1 , w_2 , w_3 , ... (though they are related to them: in fact, the polynomial w_k that we have just defined here is the same as the polynomial which is called w_{p^k} in [1] from Section 9 on, up to a change of variables; however, the polynomial which is called w_k from in [1] from Section 9 on is totally different and has nothing to do with our w_k).

Proof of Theorem 1. Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{B}$: Assume that Assertion \mathcal{A} holds, i. e., that there exist polynomials $\tau_0, \tau_1, ..., \tau_n$ in $\mathbb{Z}[X_0, X_1, X_2, ...]$ such that

$$\tau\left(X\right) = w_{n}\left(\tau_{0}\left(X\right), \tau_{1}\left(X\right), ..., \tau_{n}\left(X\right)\right).$$

Then,

$$\tau(X) = w_n(\tau_0(X), \tau_1(X), ..., \tau_n(X)) = \sum_{k=0}^n p^k(\tau_k(X))^{p^{n-k}},$$

so that every $i \in \mathbb{N}$ satisfies

$$\frac{\partial}{\partial X_{i}} \left(\tau \left(X \right) \right) = \frac{\partial}{\partial X_{i}} \sum_{k=0}^{n} p^{k} \left(\tau_{k} \left(X \right) \right)^{p^{n-k}} = \sum_{k=0}^{n} p^{k} \underbrace{\frac{\partial}{\partial X_{i}} \left(\tau_{k} \left(X \right) \right)^{p^{n-k}}}_{=p^{n-k} \left(\tau_{k} \left(X \right) \right)^{p^{n-k} - 1} \cdot \underbrace{\frac{\partial}{\partial X_{i}} \left(\tau_{k} \left(X \right) \right)}_{(by the chain rule, since} \\ \frac{\partial}{\partial Y} \left(Y^{p^{n-k}} \right) = p^{n-k} Y^{p^{n-k} - 1} \right)$$
$$= \sum_{k=0}^{n} \underbrace{p^{k} p^{n-k}}_{=p^{n}} \left(\tau_{k} \left(X \right) \right)^{p^{n-k} - 1} \cdot \underbrace{\frac{\partial}{\partial X_{i}} \left(\tau_{k} \left(X \right) \right)}_{\in \mathbb{Z}[X_{0}, X_{1}, X_{2}, \ldots]} \right)$$

and thus Assertion \mathcal{B} holds. This proves the implication $\mathcal{A} \Longrightarrow \mathcal{B}$.

Proof of the implication $\mathcal{B} \Longrightarrow \mathcal{A}$: Proving the implication $\mathcal{B} \Longrightarrow \mathcal{A}$ is equivalent to proving the following fact:

Lemma: Let $\tau \in \mathbb{Z}[X_0, X_1, X_2, ...]$ be a polynomial. Let $n \in \mathbb{N}$. If $\frac{\partial}{\partial X_i}(\tau(X)) \in p^n \mathbb{Z}[X_0, X_1, X_2, ...]$ for every $i \in \mathbb{N}$, then there exist polynomials $\tau_0, \tau_1, ..., \tau_n$ in $\mathbb{Z}[X_0, X_1, X_2, ...]$ such that

$$\tau (X) = w_n \left(\tau_0 (X), \tau_1 (X), ..., \tau_n (X) \right).$$

Proof of the Lemma: We will prove the Lemma by induction over n. For n = 0, the Lemma is trivial (just set $\tau_0 = \tau$ and use $w_0(X) = X_0$). Now to the induction step: Given some $n \in \mathbb{N}$ such that $n \geq 1$, we want to prove the Lemma for this n, and we assume that it is already proven for n-1 instead of n. So let $\tau \in \mathbb{Z}[X_0, X_1, X_2, ...]$ be a polynomial such that $\frac{\partial}{\partial X_i}(\tau(X)) \in p^n \mathbb{Z}[X_0, X_1, X_2, ...]$ for every $i \in \mathbb{N}$. We must find polynomials $\tau_0, \tau_1, ..., \tau_n$ in $\mathbb{Z}[X_0, X_1, X_2, ...]$ such that

$$\tau\left(X\right) = w_{n}\left(\tau_{0}\left(X\right), \tau_{1}\left(X\right), ..., \tau_{n}\left(X\right)\right).$$

Let $\mathbb{N}_{\text{fin}}^{\mathbb{N}}$ denote the set $\{(j_0, j_1, j_2, ...) \in \mathbb{N}^{\mathbb{N}} \mid \text{only finitely many } k \in \mathbb{N} \text{ satisfy } j_k \neq 0\}$. Then, τ has a unique representation in the form $\tau(X) = \sum_{(j_0, j_1, j_2, ...) \in \mathbb{N}_{\text{fin}}^{\mathbb{N}}} t_{(j_0, j_1, j_2, ...)} X_0^{j_0} X_1^{j_1} X_2^{j_2} ...$ with $t_{(j_0, j_1, j_2, ...)} \in \mathbb{Z}$ for every $(j_0, j_1, j_2, ...) \in \mathbb{N}_{\text{fin}}^{\mathbb{N}}$ (in fact, every polynomial in $\mathbb{Z}[X_0, X_1, X_2, ...]$ has a unique representation of this kind). Every $i \in \mathbb{N}$ satisfies

$$\begin{split} \frac{\partial}{\partial X_{i}}\left(\tau\left(X\right)\right) &= \frac{\partial}{\partial X_{i}} \left(\sum_{(j_{0},j_{1},j_{2},\ldots)\in\mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}} t_{(j_{0},j_{1},j_{2},\ldots)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots\right) \\ &= \sum_{(j_{0},j_{1},j_{2},\ldots)\in\mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}} t_{(j_{0},j_{1},j_{2},\ldots)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{i-1}^{j_{i-1}} \left(\frac{\partial}{\partial X_{i}} X_{i}^{j_{i}}\right) X_{i+1}^{j_{i+1}} \ldots \\ &= \sum_{(j_{0},j_{1},j_{2},\ldots)\in\mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}} t_{(j_{0},j_{1},j_{2},\ldots)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{i-1}^{j_{i-1}} \left(j_{i} X_{i}^{j_{i-1}}\right) X_{i+1}^{j_{i+1}} \ldots \\ &= \sum_{(j_{0},j_{1},j_{2},\ldots)\in\mathbb{N}_{\mathrm{fin}}^{\mathbb{N}}} j_{i} t_{(j_{0},j_{1},j_{2},\ldots)} X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{i-1}^{j_{i-1}} X_{i}^{j_{i-1}} X_{i+1}^{j_{i+1}} \ldots \end{split}$$

Hence, for every $(j_0, j_1, j_2, ...) \in \mathbb{N}_{\text{fin}}^{\mathbb{N}}$, the coefficient of the polynomial $\frac{\partial}{\partial X_i} (\tau (X))$ before the monomial $X_0^{j_0} X_1^{j_1} X_2^{j_2} ... X_{i-1}^{j_{i-1}} X_i^{j_{i-1}} X_{i+1}^{j_{i+1}} ...$ is $j_i t_{(j_0, j_1, j_2, ...)}$. Therefore, $\frac{\partial}{\partial X_i} (\tau (X)) \in$ $p^n \mathbb{Z} [X_0, X_1, X_2, ...]$ rewrites as $j_i t_{(j_0, j_1, j_2, ...)} \in p^n \mathbb{Z}$ for every $(j_0, j_1, j_2, ...) \in \mathbb{N}_{\text{fin}}^{\mathbb{N}}$ (because a polynomial in $\mathbb{Z} [X_0, X_1, X_2, ...]$ lies in $p^n \mathbb{Z} [X_0, X_1, X_2, ...]$ if and only if each of its coefficients lies in $p^n \mathbb{Z}$). In particular, this yields that

for every $(j_0, j_1, j_2, ...) \in \mathbb{N}_{\text{fin}}^{\mathbb{N}}$ satisfying $p \nmid t_{(j_0, j_1, j_2, ...)}$, we have $j_i \swarrow p^n \in \mathbb{Z}$ for every $i \in \mathbb{N}$ (1) (because $j_i t_{(j_0, j_1, j_2, ...)} \in p^n \mathbb{Z}$ and $p \nmid t_{(j_0, j_1, j_2, ...)}$ lead to $j_i \in p^n \mathbb{Z}$, since p is a prime).

We also notice that

$$a \equiv a^{p^n} \mod p$$
 for every $a \in \mathbb{Z}$ (2)

(since Fermat's Little Theorem yields $a^{p^k} \equiv (a^{p^k})^p = a^{p^{k+1}} \mod p$ for every $k \in \mathbb{N}$, and thus by induction we get $a^{p^0} \equiv a^{p^n} \mod p$).

Now, define a polynomial $\rho \in \mathbb{Z}[X_0, X_1, X_2, ...]$ by

$$\rho\left(X\right) = \sum_{\substack{(j_0, j_1, j_2, \dots) \in \mathbb{N}_{\text{fin}}^{\mathbb{N}}; \\ p \nmid t_{(j_0, j_1, j_2, \dots)}}} t_{(j_0, j_1, j_2, \dots)} X_0^{j_0 \swarrow p^n} X_1^{j_1 \swarrow p^n} X_2^{j_2 \measuredangle p^n} \dots$$

(this is actually a polynomial because of (1)). Then,

$$\begin{split} \tau\left(X\right) &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}}}} t_{(j_0,j_1,j_2,\ldots)} X_0^{j_0} X_1^{j_1} X_2^{j_2} \ldots \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ = 0} \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ &= 0} \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} = 0} \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \times X_0^{j_0 \wedge p^n} X_1^{j_1 \wedge p^n} X_2^{j_2 \wedge p^n} \ldots \end{pmatrix} p^n \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \times X_0^{j_0 \wedge p^n} X_1^{j_1 \wedge p^n} X_2^{j_2 \wedge p^n} \ldots \end{pmatrix} p^n \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \times X_0^{j_0 \wedge p^n} X_1^{j_1 \wedge p^n} X_2^{j_2 \wedge p^n} \ldots \end{pmatrix} p^n \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \times X_0^{j_0 \wedge p^n} X_1^{j_1 \wedge p^n} X_2^{j_2 \wedge p^n} \ldots \end{pmatrix} p^n \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ &= \sum_{\substack{(j_0,j_1,j_2,\ldots) \in \mathbb{N}_{\mathrm{fin}}^{\mathrm{R}} \\ p \mid t_{(j_0,j_1,j_2,\ldots)} \times X_0^{j_0 \wedge p^n} X_1^{j_1 \wedge p^n} X_2^{j_2 \wedge p^n} \ldots \end{pmatrix} p^$$

(where "mod p" is shorthand for "mod $p\mathbb{Z}[X_0, X_1, X_2, ...]$ "). Hence, $\tau(X) - (\rho(X))^{p^n} \in p\mathbb{Z}[X_0, X_1, X_2, ...]$. Therefore, we can define a polynomial $\widetilde{\tau} \in \mathbb{Z}[X_0, X_1, X_2, ...]$ by

$$\tau\left(X\right) - \left(\rho\left(X\right)\right)^{p^{n}} = p\widetilde{\tau}\left(X\right).$$

For every $i \in \mathbb{N}$, we have

$$\begin{split} p \frac{\partial}{\partial X_i} \left(\widetilde{\tau} \left(X \right) \right) &= \frac{\partial}{\partial X_i} \left(\underbrace{p \widetilde{\tau} \left(X \right)}_{=\tau(X) - (\rho(X))^{p^n}} \right) = \frac{\partial}{\partial X_i} \left(\tau \left(X \right) - \left(\rho \left(X \right) \right)^{p^n} \right) \\ &= \frac{\partial}{\partial X_i} \left(\tau \left(X \right) \right) - \underbrace{\frac{\partial}{\partial X_i} \left(\left(\rho \left(X \right) \right)^{p^n} \right)}_{(by \text{ the chain rule, since } \frac{\partial}{\partial Y} \left(Y^{p^n} \right) = p^n Y^{p^n - 1})} \\ &= \underbrace{\frac{\partial}{\partial X_i} \left(\tau \left(X \right) \right)}_{\in p^n \mathbb{Z} [X_0, X_1, X_2, \ldots]} - p^n \underbrace{\left(\rho \left(X \right) \right)^{p^n - 1} \frac{\partial}{\partial X_i} \left(\rho \left(X \right) \right)}_{\in \mathbb{Z} [X_0, X_1, X_2, \ldots]} \\ &\in p^n \mathbb{Z} \left[X_0, X_1, X_2, \ldots \right] - p^n \mathbb{Z} \left[X_0, X_1, X_2, \ldots \right] \\ &\subseteq p^n \mathbb{Z} \left[X_0, X_1, X_2, \ldots \right] \quad (\text{since } p^n \mathbb{Z} \left[X_0, X_1, X_2, \ldots \right] \text{ is a } \mathbb{Z}\text{-module}) \,, \end{split}$$

so that

$$\frac{\partial}{\partial X_i} \left(\widetilde{\tau} \left(X \right) \right) \in \frac{1}{p} p^n \mathbb{Z} \left[X_0, X_1, X_2, \ldots \right] = p^{n-1} \mathbb{Z} \left[X_0, X_1, X_2, \ldots \right].$$

Therefore, we can apply the Lemma with n-1 instead of n and with $\tilde{\tau}$ instead of τ (in fact, the Lemma with n-1 instead of n is guaranteed to hold by our induction assumption), and we obtain that there exist polynomials $\tilde{\tau}_0$, $\tilde{\tau}_1$, ..., $\tilde{\tau}_{n-1}$ in $\mathbb{Z}[X_0, X_1, X_2, ...]$ such that

$$\widetilde{\tau}(X) = w_{n-1}\left(\widetilde{\tau}_0(X), \widetilde{\tau}_1(X), ..., \widetilde{\tau}_{n-1}(X)\right).$$

In other words,

$$\widetilde{\tau}(X) = w_{n-1}\left(\widetilde{\tau}_0(X), \widetilde{\tau}_1(X), ..., \widetilde{\tau}_{n-1}(X)\right) = \sum_{k=0}^{n-1} p^k \left(\widetilde{\tau}_k(X)\right)^{p^{(n-1)-k}}$$

Now, define polynomials $\tau_0, \tau_1, ..., \tau_n$ in $\mathbb{Z}[X_0, X_1, X_2, ...]$ by

$$\left(\tau_k = \left\{ \begin{array}{ll} \rho, \text{ if } k = 0;\\ \widetilde{\tau}_{k-1}, \text{ if } k > 0 \end{array} \right. \text{ for every } k \in \{0, 1, ..., n\} \right)$$

Then,

$$w_{n}(\tau_{0}(X),\tau_{1}(X),...,\tau_{n}(X))$$

$$=\sum_{k=0}^{n}p^{k}(\tau_{k}(X))^{p^{n-k}} =\underbrace{p^{0}}_{=1}\left(\underbrace{\tau_{0}}_{=\rho}(X)\right)^{p^{n-0}} + \sum_{k=1}^{n}\underbrace{p^{k}}_{=pp^{k-1}}\left(\underbrace{\tau_{k}}_{=\tilde{\tau}_{k-1}}(X)\right)^{p^{n-k}}$$

$$=(\rho(X))^{p^{n-0}} + \sum_{k=1}^{n}pp^{k-1}\underbrace{(\tilde{\tau}_{k-1}(X))^{p^{(n-1)-(k-1)}}}_{=(\tilde{\tau}_{k-1}(X))^{p^{(n-1)-(k-1)}}}$$

$$=(\rho(X))^{p^{n-0}} + \sum_{k=0}^{n}pp^{k}(\tilde{\tau}_{k}(X))^{p^{(n-1)-k}} \quad \text{(here we substituted } k \text{ for } k-1 \text{ in the sum})$$

$$=(\rho(X))^{p^{n}} + p\underbrace{\sum_{k=0}^{n-1}p^{k}(\tilde{\tau}_{k}(X))^{p^{(n-1)-k}}}_{=\tilde{\tau}(X)} =(\rho(X))^{p^{n}} + \underbrace{p\tilde{\tau}(X)}_{=\tau(X)-(\rho(X))^{p^{n}}} = \tau(X).$$

This proves our Lemma (i. e., the induction is complete), and thus, the implication $\mathcal{B} \Longrightarrow \mathcal{A}$ is established.

Altogether, we have proven the implications $\mathcal{A} \Longrightarrow \mathcal{B}$ and $\mathcal{B} \Longrightarrow \mathcal{A}$. Consequently, Assertions \mathcal{A} and \mathcal{B} are equivalent. Theorem 1 is now proven.

Remark: While it is tempting to believe that our Theorem 1 yields Theorem 5.2 from [1], this doesn't seem to be the case.²

References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.

$$w_n\left(\varphi_0\left(X;Y;Z\right),...,\varphi_n\left(X;Y;Z\right)\right) = \varphi\left(w_n\left(X\right),w_n\left(Y\right),w_n\left(Z\right)\right)$$

²In fact, our Theorem 1 yields that for every $n \in \mathbb{N}$ and every polynomial φ , there exist polynomials $\varphi_0, \varphi_1, ..., \varphi_n$ satisfying

⁽see Theorem 5.2 in [1] for details), but Theorem 5.2 from [1] additionally claims that each of these polynomials is independent of n, which does not follow from our Theorem 1.