Witt vectors. Part 1
 Michiel Hazewinkel

 Sidenotes by Darij Grinberg

 Sidenotes by Darij Grinberg}

Witt\#1: The Burnside Theorem

[completed, not proofread]

Theorem 1, the Burnside theorem ([1], 19.10). Let G be a finite group, and let X and Y be finite G-sets. Then, the following two assertions \mathcal{A} and \mathcal{B} are equivalent:
Assertion \mathcal{A} : We have $X \cong Y$, where \cong means isomorphism of G-sets.
Assertion \mathcal{B} : Every subgroup H of G satisfies $\left|X^{H}\right|=\left|Y^{H}\right|$.
Remark. Here and in the following, the sign \cong means isomorphism of G sets.

Remark on notation. Whenever G is a group, and U is a G-set, we use the following notations:

- If $u \in U$ is an element, then we let N_{u} denote the subgroup $\{g \in G \mid g u=u\}$ of G.
- If $u \in U$ is an element, then we let $G u$ denote the subset $\{g u \mid g \in G\}$ of U. Both $G u$ and $U \backslash G u$ are G-sets (with the G-action inherited from U), and the G-set U is the disjoint union of these G-sets $G u$ and $U \backslash G u$.
- If H is a subgroup of G, then we denote by U^{H} the subset $\{u \in U \mid H u=\{u\}\}=$ $\left\{u \in U \mid H \subseteq N_{u}\right\}$ of U (where $H u$ denotes the subset $\{h u \mid h \in H\}$ of U), and we denote by $U^{!H}$ the subset $\left\{u \in U \mid H=N_{u}\right\}$ of U. Obviously,
$U^{H}=\left\{u \in U \mid H \subseteq N_{u}\right\}=\bigcup_{\substack{L \text { subgroup of } G ; \\ H \subseteq L}} \underbrace{\left\{u \in U \mid L=N_{u}\right\}}_{=U^{!L}}=\bigcup_{\substack{L \text { subgroup of } G ; \\ H \subseteq L}} U^{!L}$.
Besides, the sets $U^{!L}$ for all subgroups L of G satisfying $H \subseteq L$ are pairwise disjoint (because for any two distinct subgroups L_{1} and L_{2} of G, the sets $U^{!L_{1}}=$ $\left\{u \in U \mid L_{1}=N_{u}\right\}$ and $U^{!L_{2}}=\left\{u \in U \mid L_{2}=N_{u}\right\}$ are disjoint $\left.{ }^{1}\right)$. Thus,

$$
\begin{equation*}
\left|U^{H}\right|=\sum_{\substack{L \text { subgroup of } G ; \\ H \subseteq L}}\left|U^{!L}\right|=\left|U^{!H}\right|+\sum_{\substack{L \text { subgroup of } G ; \\ H \subseteq L ; L \neq H}}\left|U^{!L}\right| . \tag{1}
\end{equation*}
$$

Proof of Theorem 1. The implication $\mathcal{A} \Longrightarrow \mathcal{B}$ is completely obvious, so all it remains to verify is the implication $\mathcal{B} \Longrightarrow \mathcal{A}$. In other words, it remains to prove that if two finite G-sets X and Y are such that every subgroup H of G satisfies $\left|X^{H}\right|=\left|Y^{H}\right|$, then $X \cong Y$.

[^0]We will now prove this claim by strong induction over $|X|$. So, let X and Y be finite G-sets such that every subgroup H of G satisfies $\left|X^{H}\right|=\left|Y^{H}\right|$. We must show that $X \cong Y$. Our induction assumption states that
if \widetilde{X} and \widetilde{Y} are two finite G-sets such that $|\widetilde{X}|<|X|$ and such that every subgroup H of G satisfies $\left|\widetilde{X}^{H}\right|=\left|\widetilde{Y}^{H}\right|$, then $\widetilde{X}=\widetilde{Y}$.

First, let us prove that

$$
\begin{equation*}
\left|X^{!H}\right|=\left|Y^{!H}\right| \quad \text { for every subgroup } H \text { of } G \tag{3}
\end{equation*}
$$

In fact, let us verify (3) by strong induction over $|G|-|H|$ (note that $|G|-|H|$ is always a nonnegative integer, since $H \subseteq G$). So we choose a subgroup H of G, and we want to prove that $\left|X^{!H}\right|=\left|Y^{!H}\right|$, assuming that

$$
\begin{equation*}
\left|X^{!L}\right|=\left|Y^{!L}\right| \text { holds for every subgroup } L \text { of } G \text { which satisfies }|L|>|H| \tag{4}
\end{equation*}
$$

In fact, (1) yields

$$
\left|X^{H}\right|=\left|X^{!H}\right|+\sum_{\substack{L \text { subgroup of } G ; \\ H \subseteq L ; L \neq H}}\left|X^{!L}\right| \quad \text { and } \quad\left|Y^{H}\right|=\left|Y^{!H}\right|+\sum_{\substack{L \text { subgroup of } G ; \\ H \subseteq L ; L \neq H}}\left|Y^{!L}\right|,
$$

which yields $\left|X^{!H}\right|=\left|Y^{!H}\right|$, because $\sum_{\substack{L \text { subgroup of } G ; \\ H \subseteq L ; L \neq H}}\left|X^{!L}\right|=\sum_{\substack{L \text { subgroup of } G ; \\ H \subseteq L ; L \neq H}}\left|Y^{!L}\right|$ (since every subgroup L of G such that $H \subseteq L$ and $L \neq H$ must satisfy $|L|>|H|$, and thus $\left|X^{!L}\right|=\left|Y^{!L}\right|$ due to (4)) and $\left|X^{H}\right|=\left|Y^{H}\right|$. Hence, (3) is proven.

We will now prove that
for any two elements $x \in X$ and $y \in Y$ satisfying $N_{x}=N_{y}$, we have $G x \cong G y$.

In fact, define a map $f: G x \rightarrow G y$ as follows: For every element $\alpha \in G x$, choose some $g \in G$ such that $\alpha=g x$, and define $f(\alpha)$ as $g y$. This definition is correct, because for every element $\alpha \in G x$, there exists some $g \in G$ such that $\alpha=g x$ (by the definition of $G x$), and even if different choices of $g \in G$ (for one fixed α) are possible, they all lead to one and the same value of $g y$ (in fact, if two elements $g_{1} \in G$ and $g_{2} \in G$ both satisfy $\alpha=g_{1} x$ and $\alpha=g_{2} x$ for one and the same $\alpha \in G x$, then $g_{1} y=g_{2} y$ ${ }^{2}$). Hence, for every element $\alpha \in G x$ and for every $g \in G$ such that $\alpha=g x$, we have $f(\alpha)=g y$. In other words, we have $f(g x)=g y$ for every $g \in G$ (by applying the preceding sentence to $\alpha=g x$). This map f is a morphism of G-sets (since for every $\alpha \in G x$ and every $h \in G$, we have $\left.f(h \alpha)=h f(\alpha){ }^{3}\right)$.

[^1]By interchanging x and y in the above, we can similarly define a map $f^{\prime}: G y \rightarrow G x$ which satisfies $f^{\prime}(g y)=g x$ for every $g \in G$ and which turns out to be a morphism of G-sets as well.

The two maps f and f^{\prime} are mutually inverse (because $f^{\prime} \circ f=\operatorname{id}_{G x} \quad{ }^{4}$ and similarly $f \circ f^{\prime}=\operatorname{id}_{G y}$). Hence, $f: G x \rightarrow G y$ is an isomorphism of G-sets. This proves (5).

Now, choose any $x \in X \quad{ }^{5}$. Then, $x \in\left\{u \in X \mid N_{x}=N_{u}\right\}=X^{!N_{x}}$. Thus, $X^{!N_{x}} \neq \varnothing$, so that $Y^{!N_{x}} \neq \varnothing$ (since $\left|X^{!N_{x}}\right|=\left|Y^{!N_{x}}\right|$ by (3)). So choose some $y \in Y^{!N_{x}}$. Then, $y \in Y^{!N_{x}}=\left\{u \in Y \mid N_{x}=N_{u}\right\}$, so that $N_{x}=N_{y}$. Hence, (5) yields that the G-sets $G x$ and $G y$ are isomorphic. Now, let us introduce the two G-sets $\widetilde{X}=X \backslash(G x)$ and $\widetilde{Y}=Y \backslash(G y)$. Clearly, $|\widetilde{X}|<|X|$. Besides, every subgroup H of G satisfies

$$
\left|\widetilde{X}^{H}\right|=|\underbrace{(X \backslash(G x))^{H}}_{=X^{H} \backslash(G x)^{H}}|=\left|X^{H} \backslash(G x)^{H}\right|=\left|X^{H}\right|-\left|(G x)^{H}\right| \quad\left(\text { since }(G x)^{H} \subseteq X^{H}\right)
$$

and similarly

$$
\left|\widetilde{Y}^{H}\right|=\left|Y^{H}\right|-\left|(G y)^{H}\right|
$$

and thus $\left|\widetilde{X}^{H}\right|=\left|\widetilde{Y}^{H}\right|$ (because $\left|X^{H}\right|=\left|Y^{H}\right|$ by our assumption, and $\left|(G x)^{H}\right|=$ $\left|(G y)^{H}\right|$ because of the isomorphy of the G-sets $G x$ and $G y$. Hence, (2) yields $\widetilde{X} \cong \widetilde{Y}$. Now, the G-set X is the disjoint union of the G-sets $G x$ and \widetilde{X} (since $\widetilde{X}=X \backslash(G x)$), and the G-set Y is the disjoint union of the G-sets $G y$ and \widetilde{Y} (since $\widetilde{Y}=Y \backslash(G y)$). Hence, $G x \cong G y$ and $\widetilde{X} \cong \widetilde{Y}$ yield $X \cong Y$. This proves the implication $\mathcal{B} \Longrightarrow \mathcal{A}$, and thus, the proof of Theorem 1 is complete.

Remark: It is known that G-sets are, in a certain way, analogous to representations of the group G : Every G-set U canonically defines a permutation representation of G on the vector space k^{G} (the vector space of all functions from G to k) for every field k. Actually, it seems to me that G-sets can be considered as representations of G over the field \mathbb{F}_{1}, whatever this means. From this point of view, Theorem 1 appears as a kind of \mathbb{F}_{1}-analogue of the known fact that, over \mathbb{C}, any representation of a finite group is uniquely determined by its character. (Remember that the character of a representation over \mathbb{C}, evaluated at some element g of the group G, is the dimension of the invariant space of g. Over \mathbb{C}, the set $X^{\langle g\rangle}$ becomes a replacement for the invariant space of g. However, the analogy stops here because Theorem 1 needs all subgroups H and not just the cyclic ones. In fact, if we would replace "Every subgroup H " by "Every cyclic subgroup H " in Theorem 1, we would already have counterexamples for $G=(\mathbb{Z} /(2 \mathbb{Z}))^{2}$.)

References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.

[^2]
[^0]: ${ }^{1}$ since any element $u \in U^{!L_{1}} \cap U^{!L_{2}}$ would satisfy $L_{1}=N_{u}$ and $L_{2}=N_{u}$ in contradiction to $L_{1} \neq L_{2}$

[^1]: ${ }^{2}$ In fact, $g_{1} x=\alpha=g_{2} x$ yields $g_{2}^{-1} g_{1} x=x$, thus $g_{2}^{-1} g_{1} \in N_{x}$, hence $g_{2}^{-1} g_{1} \in N_{y}$ (since $N_{x}=N_{y}$) and thus $g_{2}^{-1} g_{1} y=y$ and therefore $g_{1} y=g_{2} y$.
 ${ }^{3}$ In fact, let $g \in G$ be such that $\alpha=g x$ (such g exists, since $\alpha \in G x$); then, the definition of f yields $f(\alpha)=g y$, and thus $f(h \alpha)=f(h g x)=h \underbrace{g y}_{=f(\alpha)}=h f(\alpha)$.

[^2]: ${ }^{4}$ In fact, for every $\alpha \in G x$, there exists some $g \in G$ such that $\alpha=g x$ (by the definition of $G x$), and thus

 $$
 \left(f^{\prime} \circ f\right)(\alpha)=f^{\prime}(f(\alpha))=f^{\prime}(\underbrace{f(g x)}_{=g y})=f^{\prime}(g y)=g x=\alpha .
 $$

 ${ }^{5}$ If this is not possible (i. e., if $X=\varnothing$), then we are done anyway (since $X=\varnothing$ yields $|X|=0$, thus $|Y|=0$ since $|X|=\left|X^{\{1\}}\right|=\left|Y^{\{1\}}\right|=|Y|$ and therefore $Y=\varnothing$, yielding $X \cong Y$).

