Witt vectors. Part 1 Michiel Hazewinkel Sidenotes by Darij Grinberg

Witt#1: The Burnside Theorem

[completed, not proofread]

Theorem 1, the Burnside theorem ([1], 19.10). Let G be a finite group, and let X and Y be finite G-sets. Then, the following two assertions \mathcal{A} and \mathcal{B} are equivalent:

Assertion \mathcal{A} : We have $X \cong Y$, where \cong means isomorphism of G-sets.

Assertion \mathcal{B} : Every subgroup H of G satisfies $|X^H| = |Y^H|$.

Remark. Here and in the following, the sign \cong means isomorphism of *G*-sets.

Remark on notation. Whenever G is a group, and U is a G-set, we use the following notations:

- If $u \in U$ is an element, then we let N_u denote the subgroup $\{g \in G \mid gu = u\}$ of G.
- If $u \in U$ is an element, then we let Gu denote the subset $\{gu \mid g \in G\}$ of U. Both Gu and $U \setminus Gu$ are G-sets (with the G-action inherited from U), and the G-set U is the disjoint union of these G-sets Gu and $U \setminus Gu$.
- If *H* is a subgroup of *G*, then we denote by U^H the subset $\{u \in U \mid Hu = \{u\}\} = \{u \in U \mid H \subseteq N_u\}$ of *U* (where *Hu* denotes the subset $\{hu \mid h \in H\}$ of *U*), and we denote by $U^{!H}$ the subset $\{u \in U \mid H = N_u\}$ of *U*. Obviously,

$$U^{H} = \{ u \in U \mid H \subseteq N_{u} \} = \bigcup_{\substack{L \text{ subgroup of } G;\\ H \subseteq L}} \{ \underbrace{u \in U \mid L = N_{u} }_{=U^{!L}} \} = \bigcup_{\substack{L \text{ subgroup of } G;\\ H \subseteq L}} U^{!L}$$

Besides, the sets $U^{!L}$ for all subgroups L of G satisfying $H \subseteq L$ are pairwise disjoint (because for any two distinct subgroups L_1 and L_2 of G, the sets $U^{!L_1} = \{u \in U \mid L_1 = N_u\}$ and $U^{!L_2} = \{u \in U \mid L_2 = N_u\}$ are disjoint¹). Thus,

$$\left| U^{H} \right| = \sum_{\substack{L \text{ subgroup of } G;\\ H \subseteq L}} \left| U^{!L} \right| = \left| U^{!H} \right| + \sum_{\substack{L \text{ subgroup of } G;\\ H \subseteq L; \ L \neq H}} \left| U^{!L} \right|.$$
(1)

Proof of Theorem 1. The implication $\mathcal{A} \Longrightarrow \mathcal{B}$ is completely obvious, so all it remains to verify is the implication $\mathcal{B} \Longrightarrow \mathcal{A}$. In other words, it remains to prove that if two finite G-sets X and Y are such that every subgroup H of G satisfies $|X^H| = |Y^H|$, then $X \cong Y$.

¹since any element $u \in U^{!L_1} \cap U^{!L_2}$ would satisfy $L_1 = N_u$ and $L_2 = N_u$ in contradiction to $L_1 \neq L_2$

We will now prove this claim by strong induction over |X|. So, let X and Y be finite G-sets such that every subgroup H of G satisfies $|X^H| = |Y^H|$. We must show that $X \cong Y$. Our induction assumption states that

if
$$\widetilde{X}$$
 and \widetilde{Y} are two finite *G*-sets such that $\left|\widetilde{X}\right| < |X|$ and such that
every subgroup *H* of *G* satisfies $\left|\widetilde{X}^{H}\right| = \left|\widetilde{Y}^{H}\right|$, then $\widetilde{X} = \widetilde{Y}$. (2)

First, let us prove that

$$|X^{!H}| = |Y^{!H}| \qquad \text{for every subgroup } H \text{ of } G. \tag{3}$$

In fact, let us verify (3) by strong induction over |G| - |H| (note that |G| - |H| is always a nonnegative integer, since $H \subseteq G$). So we choose a subgroup H of G, and we want to prove that $|X^{!H}| = |Y^{!H}|$, assuming that

$$|X^{!L}| = |Y^{!L}|$$
 holds for every subgroup L of G which satisfies $|L| > |H|$. (4)

In fact, (1) yields

$$\left|X^{H}\right| = \left|X^{!H}\right| + \sum_{\substack{L \text{ subgroup of } G;\\ H \subseteq L; \ L \neq H}} \left|X^{!L}\right| \qquad \text{and} \qquad \left|Y^{H}\right| = \left|Y^{!H}\right| + \sum_{\substack{L \text{ subgroup of } G;\\ H \subseteq L; \ L \neq H}} \left|Y^{!L}\right|,$$

which yields $|X^{!H}| = |Y^{!H}|$, because $\sum_{\substack{L \text{ subgroup of } G;\\ H \subseteq L; \ L \neq H}} |X^{!L}| = \sum_{\substack{L \text{ subgroup of } G;\\ H \subseteq L; \ L \neq H}} |Y^{!L}|$ (since

every subgroup L of G such that $H \subseteq L$ and $L \neq H$ must satisfy |L| > |H|, and thus $|X^{!L}| = |Y^{!L}|$ due to (4)) and $|X^{H}| = |Y^{H}|$. Hence, (3) is proven.

We will now prove that

for any two elements
$$x \in X$$
 and $y \in Y$ satisfying $N_x = N_y$,
we have $Gx \cong Gy$. (5)

In fact, define a map $f: Gx \to Gy$ as follows: For every element $\alpha \in Gx$, choose some $g \in G$ such that $\alpha = gx$, and define $f(\alpha)$ as gy. This definition is correct, because for every element $\alpha \in Gx$, there exists some $q \in G$ such that $\alpha = qx$ (by the definition of Gx), and even if different choices of $g \in G$ (for one fixed α) are possible, they all lead to one and the same value of gy (in fact, if two elements $g_1 \in G$ and $g_2 \in G$ both satisfy $\alpha = g_1 x$ and $\alpha = g_2 x$ for one and the same $\alpha \in G x$, then $g_1 y = g_2 y$ ²). Hence, for every element $\alpha \in Gx$ and for every $g \in G$ such that $\alpha = gx$, we have $f(\alpha) = gy$. In other words, we have f(gx) = gy for every $g \in G$ (by applying the preceding sentence to $\alpha = gx$). This map f is a morphism of G-sets (since for every $\alpha \in Gx$ and every $h \in G$, we have $f(h\alpha) = hf(\alpha)$ $^{3}).$

²In fact, $g_1x = \alpha = g_2x$ yields $g_2^{-1}g_1x = x$, thus $g_2^{-1}g_1 \in N_x$, hence $g_2^{-1}g_1 \in N_y$ (since $N_x = N_y$) and thus $g_2^{-1}g_1y = y$ and therefore $g_1y = g_2y$.

³In fact, let $g \in G$ be such that $\alpha = gx$ (such g exists, since $\alpha \in Gx$); then, the definition of f yields $f(\alpha) = g\overline{y}$, and thus $f(h\alpha) = f(hgx) = h \underbrace{gy}_{} = hf(\alpha)$. $=f(\alpha)$

By interchanging x and y in the above, we can similarly define a map $f': Gy \to Gx$ which satisfies f'(qy) = qx for every $q \in G$ and which turns out to be a morphism of G-sets as well.

The two maps f and f' are mutually inverse (because $f' \circ f = id_{Gx}$ ⁴ and similarly

 $f \circ f' = \mathrm{id}_{Gy}$). Hence, $f : Gx \to Gy$ is an isomorphism of G-sets. This proves (5). Now, choose any $x \in X$ ⁵. Then, $x \in \{u \in X \mid N_x = N_u\} = X^{!N_x}$. Thus, $X^{!N_x} \neq \emptyset$, so that $Y^{!N_x} \neq \emptyset$ (since $|X^{!N_x}| = |Y^{!N_x}|$ by (3)). So choose some $y \in Y^{!N_x}$. Then, $y \in Y^{!N_x} = \{u \in Y \mid N_x = N_u\}$, so that $N_x = N_y$. Hence, (5) yields that the G-sets Gx and Gy are isomorphic. Now, let us introduce the two G-sets $\widetilde{X} = X \setminus (Gx)$ and $\widetilde{Y} = Y \setminus (Gy)$. Clearly, $|\widetilde{X}| < |X|$. Besides, every subgroup H of G satisfies

$$\left|\widetilde{X}^{H}\right| = \left|\underbrace{(X \setminus (Gx))^{H}}_{=X^{H} \setminus (Gx)^{H}}\right| = \left|X^{H} \setminus (Gx)^{H}\right| = \left|X^{H}\right| - \left|(Gx)^{H}\right| \qquad \left(\text{since } (Gx)^{H} \subseteq X^{H}\right)$$

and similarly

$$\left| \widetilde{Y}^{H} \right| = \left| Y^{H} \right| - \left| \left(Gy \right)^{H} \right|$$

and thus $\left| \widetilde{X}^{H} \right| = \left| \widetilde{Y}^{H} \right|$ (because $\left| X^{H} \right| = \left| Y^{H} \right|$ by our assumption, and $\left| (Gx)^{H} \right| =$ $|(Gy)^H|$ because of the isomorphy of the *G*-sets Gx and Gy). Hence, (2) yields $\widetilde{X} \cong \widetilde{Y}$. Now, the G-set X is the disjoint union of the G-sets Gx and \widetilde{X} (since $\widetilde{X} = X \setminus (Gx)$), and the G-set Y is the disjoint union of the G-sets Gy and \widetilde{Y} (since $\widetilde{Y} = Y \setminus (Gy)$). Hence, $Gx \cong Gy$ and $\widetilde{X} \cong \widetilde{Y}$ yield $X \cong Y$. This proves the implication $\mathcal{B} \Longrightarrow \mathcal{A}$, and thus, the proof of Theorem 1 is complete.

Remark: It is known that G-sets are, in a certain way, analogous to representations of the group G: Every G-set U canonically defines a permutation representation of G on the vector space k^G (the vector space of all functions from G to k) for every field k. Actually, it seems to me that G-sets can be considered as representations of G over the field \mathbb{F}_1 , whatever this means. From this point of view, Theorem 1 appears as a kind of \mathbb{F}_1 -analogue of the known fact that, over \mathbb{C} , any representation of a finite group is uniquely determined by its character. (Remember that the character of a representation over \mathbb{C} , evaluated at some element q of the group G, is the dimension of the invariant space of q. Over \mathbb{C} , the set $X^{\langle g \rangle}$ becomes a replacement for the invariant space of g. However, the analogy stops here because Theorem 1 needs all subgroups H and not just the cyclic ones. In fact, if we would replace "Every subgroup H" by "Every cyclic subgroup H" in Theorem 1, we would already have counterexamples for $G = (\mathbb{Z} \swarrow (2\mathbb{Z}))^2$.)

References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.

⁴In fact, for every $\alpha \in Gx$, there exists some $g \in G$ such that $\alpha = gx$ (by the definition of Gx), and thus

$$(f' \circ f)(\alpha) = f'(f(\alpha)) = f'\left(\underbrace{f(gx)}_{=gy}\right) = f'(gy) = gx = \alpha.$$

⁵If this is not possible (i. e., if $X = \emptyset$), then we are done anyway (since $X = \emptyset$ yields |X| = 0, thus |Y| = 0 since $|X| = |X^{\{1\}}| = |Y^{\{1\}}| = |Y|$ and therefore $Y = \emptyset$, yielding $X \cong Y$.