Witt vectors. Part 1

Michiel Hazewinkel

Sidenotes by Darij Grinberg

Witt\#0: Teichmüller representatives

[not completed, not proofread]

The purpose of this note is to correct the results from section 4 of [1] and to give detailed proofs for them.

First, section 4 of [1] has four mistakes. Let us correct them:

- "The ring of power series $k((T))$ " should be "The ring of power series $k[[T]]$ ".
- The map σ is never defined. It should be defined by $\sigma=\mathbf{f}_{p}$.
- In the sentence directly following (4.1), the term $\sigma^{-1}(x)$ should be $\sigma^{-r}(x)$ instead.
- We need to suppose that A is not only complete, but also separated (i. e., Hausdorff) in the \mathfrak{m}-adic topology. (Otherwise, at least some of the results stated in section 4 of [1] become false.)

Now it is time to formulate the main results of section 4 of [1]. But first we introduce a notation:

Definition. Let A be a ring, and $p \in \mathbb{N}$ a prime. An element $a \in A$ is said to be p-ancient if and only if
(for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}}=a$).
With this definition, we can notice that for any commutative ring A with unity,
the element $0 \in A$ is p-ancient
(since $0=0^{p^{\mu}}$ for every $\mu \in \mathbb{N}$);
the element $1 \in A$ is p-ancient
(since $1=1^{p^{\mu}}$ for every $\mu \in \mathbb{N}$);
if two elements a and a^{\prime} of A are p-ancient, then their product $a a^{\prime}$ is p-ancient as well
(since for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}}=a$ (since a is p ancient), and there exists some $b^{\prime} \in A$ such that $\left(b^{\prime}\right)^{p^{\mu}}=a^{\prime}$ (since a^{\prime} is p-ancient), and hence $\left(b b^{\prime}\right)^{p^{\mu}}=b^{p^{\mu}}\left(b^{\prime}\right)^{p^{\mu}}=a a^{\prime}$, which shows that $a a^{\prime}$ is p-ancient as well);
if $p \cdot 1_{A}=0$ in A, and if two elements a and a^{\prime} of A are p-ancient, then their sum $a+a^{\prime}$ is p-ancient as well
(since for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}}=a$ (since a is p ancient), and there exists some $b^{\prime} \in A$ such that $\left(b^{\prime}\right)^{p^{\mu}}=a^{\prime}$ (since a^{\prime} is p-ancient), and hence

$$
\begin{aligned}
\left(b+b^{\prime}\right)^{p^{\mu}} & =\underbrace{b^{p^{\mu}}}_{=a}+\underbrace{\left(b^{\prime}\right)^{p^{\mu}}}_{=a^{\prime}} \quad \text { (by the Idiot's Binomial Formula, since } p \cdot 1_{A}=0 \text { in } A) \\
& =a+a^{\prime},
\end{aligned}
$$

which shows that $a+a^{\prime}$ is p-ancient as well);
Now come the (corrected) main assertions of section 4 of [1]:
Theorem 1. Let A be a commutative ring with unity, and let \mathfrak{m} be an idea ${ }^{1}$ of A. Let $p \in \mathbb{N}$ be a prime such that $p \cdot 1_{k}=0$ in the ring $k=A / \mathfrak{m}$. Assume that the ring homomorphism

$$
\sigma: k \rightarrow k \text { defined by } \sigma(x)=x^{p} \text { for every } x \in k
$$

is bijective ${ }^{2}$. Suppose, further, that the ring A is complete and separated in the \mathfrak{m}-adic topology.
For every element u of A, we let \bar{u} denote the canonical projection of u onto the factor ring A / \mathfrak{m}.
(a) For every $x \in k$, there exists one and only one p-ancient element a of A such that $\bar{a}=x$.
We will denote this element a by $t(x)$. Clearly, $\overline{t(x)}=x$ for every $x \in k$.
Thus, we have defined a map $t: k \rightarrow A$.
(b) We have $t(0)=0, t(1)=1$ and $t\left(x x^{\prime}\right)=t(x) t\left(x^{\prime}\right)$ for any two elements x and x^{\prime} of k.
(c) If $p \cdot 1_{A}=0$ in A, then $t\left(x+x^{\prime}\right)=t(x)+t\left(x^{\prime}\right)$ for any two elements x and x^{\prime} of k.
(d) If $t^{\prime}: k \rightarrow A$ is a map such that

$$
\begin{equation*}
\left(t^{\prime}\left(x x^{\prime}\right)=t^{\prime}(x) t^{\prime}\left(x^{\prime}\right) \text { for any two elements of } x \text { and } x^{\prime} \text { of } k\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\overline{t^{\prime}(x)}=x \text { for every } x \in k\right) \tag{4}
\end{equation*}
$$

then $t^{\prime}=t$.

[^0](e) If $t^{\prime}: k \rightarrow A$ is a map such that
\[

$$
\begin{equation*}
\left(t^{\prime}\left(x^{p}\right)=\left(t^{\prime}(x)\right)^{p} \text { for any } x \in k\right) \tag{5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\left(\overline{t^{\prime}(x)}=x \text { for every } x \in k\right) \tag{6}
\end{equation*}
$$

then $t^{\prime}=t$.
Note that for every $x \in k$, the element $t(x)$ is called the Teichmüller representative of x in A. Theorem 1 (a) characterizes this Teichmüller representative $t(x)$ as the only p-ancient element of A whose residue class modulo \mathfrak{m} is x. Theorem 1 (b) shows that the Teichmüller system of representatives is multiplicative and respects 0 and 1 . Roughly speaking, Theorem 1 (d) says that it is actually the only multiplicative system of representatives, and Theorem 1 (e) says that it is the only system of representatives that commutes with taking the p-th power.

Before we start proving Theorem 1, a lemma (generalizing Lemma 3 in [2]):
Lemma 2. Let A be a commutative ring with unity, and $p \in \mathbb{N}$ be a nonnegative integer ${ }^{3}$, Let $\mathfrak{m} \subseteq A$ be an ideal such that $p \cdot 1_{A} \in \mathfrak{m}$. Let $k \in \mathbb{N}$ and $\ell \in \mathbb{N}$ be such that $k>0$. Let $a \in A$ and $b \in A$. If $a \equiv b \bmod \mathfrak{m}^{k}$, then $a^{p^{\ell}} \equiv b^{p^{\ell}} \bmod \mathfrak{m}^{k+\ell}$.

Proof of Lemma 2. Assume that $a \equiv b \bmod \mathfrak{m}^{k}$. We need to show that every $\ell \in \mathbb{N}$ satisfies $a^{p^{\ell}} \equiv b^{p^{\ell}} \bmod \mathfrak{m}^{k+\ell}$.

We will show this by induction over ℓ. For $\ell=0$, the claim that $a^{p^{\ell}} \equiv b^{p^{\ell}} \bmod \mathfrak{m}^{k+\ell}$ is true (because it is equivalent to $a \equiv b \bmod \mathfrak{m}^{k}$). Now, for the induction step, we assume that $a^{p^{\ell}} \equiv b^{p^{\ell}} \bmod \mathfrak{m}^{k+\ell}$ for some $\ell \in \mathbb{N}$, and we want to show that $a^{p^{p^{\ell+1}}} \equiv$ $b^{p^{\ell+1}} \bmod \mathfrak{m}^{k+\ell+1}$. In fact, we have $a \equiv b \bmod \mathfrak{m}$ (because $a \equiv b \bmod \mathfrak{m}^{k}$ yields $a-b \in$ $\mathfrak{m}^{k} \subseteq \mathfrak{m}($ since $k>0)$) and thus

$$
\sum_{k=0}^{p-1}\left(a^{p^{\ell}}\right)^{k}\left(b^{p^{\ell}}\right)^{p-1-k} \equiv \sum_{k=0}^{p-1} \underbrace{\left(b^{p^{\ell}}\right)^{k}\left(b^{p^{\ell}}\right)^{p-1-k}}_{=\left(b^{p^{\ell}}\right)^{p-1}}=\sum_{k=0}^{p-1}\left(b^{p^{\ell}}\right)^{p-1}=p\left(b^{p^{\ell}}\right)^{p-1} \equiv 0 \bmod \mathfrak{m}
$$

(since $p \cdot 1_{A} \in \mathfrak{m}$ yields $\left.p \cdot 1_{A} \equiv 0 \bmod \mathfrak{m}\right)$, so that $\sum_{k=0}^{p-1}\left(a^{p^{\ell}}\right)^{k}\left(b^{p^{\ell}}\right)^{p-1-k} \in \mathfrak{m}$. Hence,

$$
\begin{aligned}
& a^{p^{\ell+1}}-b^{p^{\ell+1}}=\left(a^{p^{\ell}}\right)^{p}-\left(b^{p^{\ell}}\right)^{p}=\underbrace{\left(a^{p^{\ell}}-b^{p^{\ell}}\right)}_{\substack{\in \mathfrak{m}^{k+\ell} \text { since } \\
a^{p^{\ell}} \equiv b^{p^{\ell}} \bmod \mathfrak{m}^{k+\ell}}} \cdot \underbrace{\sum_{k=0}^{p-1}\left(a^{p^{\ell}}\right)^{k}\left(b^{p^{\ell}}\right)^{p-1-k}}_{\in \mathfrak{m}} \\
&\left(\text { since } x^{q}-y^{q}=(x-y) \cdot \sum_{k=0}^{q-1} x^{k} y^{q-1-k} \text { for any } q \in \mathbb{N}, \text { any } x \in A \text { and any } y \in A\right) \\
& \in \mathfrak{m}^{k+\ell} \cdot \mathfrak{m}=\mathfrak{m}^{k+\ell+1},
\end{aligned}
$$

[^1]so that $a^{p^{\ell+1}} \equiv b^{p^{\ell+1}} \bmod \mathfrak{m}^{k+\ell+1}$, and the induction step is complete. Thus, Lemma 2 is proven.

Proof of Theorem 1. Before we start proving Theorem 1, we notice three trivial things: First,

$$
\overline{0}=0, \quad \overline{1}=1, \quad \overline{x y}=\bar{x} \cdot \bar{y}, \quad \overline{x+y}=\bar{x}+\bar{y}, \quad \overline{x^{n}}=\bar{x}^{n}
$$

for any $x \in A, y \in A$ and $n \in \mathbb{N}$. This is all because the canonical projection $A \rightarrow A / \mathfrak{m}$ is a ring homomorphism.

Besides,

$$
\begin{equation*}
y^{p^{s}}=\sigma^{s}(y) \quad \text { for every } y \in k \text { and } s \in \mathbb{N} \tag{7}
\end{equation*}
$$

(This follows by induction over s from the fact that $x^{p}=\sigma(x)$ for every $x \in k$).
Finally, since the canonical projection $A \rightarrow A / \mathfrak{m}$ is a ring homomorphism, we have $\overline{p \cdot 1_{A}}=p \cdot 1_{k}=0$. Thus, $p \cdot 1_{A} \in \mathfrak{m}$.
(a) In order to prove Theorem 1 (a), we have two prove two assertions:

Assertion 1: For every $x \in k$, there exists at least one p-ancient element a of A such that $\bar{a}=x$.

Assertion 2: For every $x \in k$, there exists at most one p-ancient element a of A such that $\bar{a}=x$.

Once these two Assertions are proven, Theorem 1 (a) will immediately follow.
Proof of Assertion 1. Let $x \in k$. For every $r \in \mathbb{N}$, let y_{r} be an element of A satisfying $\overline{y_{r}}=\sigma^{-r}(x)$. (Such a y_{r} clearly exists.) First, we are going to prove that

$$
\begin{equation*}
\text { for every } \mu \in \mathbb{N} \text {, the sequence }\left(y_{r+\mu}^{p^{r}}\right)_{r \in \mathbb{N}} \text { is a Cauchy sequence } \tag{8}
\end{equation*}
$$

with respect to the \mathfrak{m}-adic topology.
In fact, this requires proving that for every $\nu \in \mathbb{N}$, there exists some $N \in \mathbb{N}$ such that $y_{i+\mu}^{p^{i}} \equiv y_{j+\mu}^{p^{j}} \bmod \mathfrak{m}^{\nu}$ for every $i \geq N$ and every $j \geq N$. We will prove this for $N=\max \{\nu-1,0\}$. Namely, if $i \geq \max \{\nu-1,0\}$ and $j \geq \max \{\nu-1,0\}$, then $i-(\nu-1) \geq 0$ (since $i \geq \max \{\nu-1,0\} \geq \nu-1)$ and $j-(\nu-1) \geq 0$ (similarly), so that

$$
\left.\begin{array}{rl}
\overline{y_{i+\mu}^{p^{i-(\nu-1)}}=}{\overline{y_{i+\mu}}}^{p^{i-(\nu-1)}}=\underbrace{\left(\sigma^{-(i+\mu)}(x)\right)^{p^{i-(\nu-1)}}}_{=\sigma^{i-(v-1)}\left(\sigma^{-(i+\mu)}(x)\right)} \\
\text { by } \mathbb{7}
\end{array}\right)
$$

and

$$
\begin{aligned}
\overline{y_{j+\mu}^{p^{j-(\nu-1)}}=}{\overline{y_{j+\mu}}}^{p^{j-(\nu-1)}}=\underbrace{\left(\sigma^{-(j+\mu)}(x)\right)^{p^{j-(\nu-1)}}}_{=\sigma^{j-(v-1)}\left(\sigma^{-(j+\mu)}(x)\right)} \\
\text { by }{ }_{7}
\end{aligned}
$$

so that $\overline{y_{i+\mu}^{p^{i-(\nu-1)}}}=\overline{y_{j+\mu}^{p^{j-(\nu-1)}}}$ and thus $y_{i+\mu}^{p^{i-(\nu-1)}} \equiv y_{j+\mu}^{p^{j-(\nu-1)}} \bmod \mathfrak{m}$, so that Lemma 2 (applied to $a=y_{i+\mu}^{p^{i-(\nu-1)}}, b=y_{j+\mu}^{p^{j-(\nu-1)}}, k=1$ and $\ell=\nu-1$) yields $\left(y_{i+\mu}^{p^{i-(\nu-1)}}\right)^{p^{\nu-1}} \equiv$ $\left(y_{j+\mu}^{p_{j-(\nu-1)}}\right)^{p^{\nu-1}} \bmod \mathfrak{m}^{\nu}$, what rewrites as $y_{i+\mu}^{p^{i}} \equiv y_{j+\mu}^{p^{j}} \bmod \mathfrak{m}^{\nu}\left(\right.$ since $\left(y_{i+\mu}^{p^{i-(\nu-1)}}\right)^{p^{\nu-1}}=$ $y_{i+\mu}^{p^{i}}$ and $\left.\left(y_{j+\mu}^{p^{j-(\nu-1)}}\right)^{p^{\nu-1}}=y_{j+\mu}^{p^{j}}\right)$. Thus, the sequence $\left(y_{r+\mu}^{p^{r}}\right)_{r \in \mathbb{N}}$ is a Cauchy sequence with respect to the \mathfrak{m}-adic topology. This proves (8).

Since the ring A is complete in the \mathfrak{m}-adic topology, every Cauchy sequence with respect to the \mathfrak{m}-adic topology has a limit in A. Thus, by (8), for every $\mu \in \mathbb{N}$, the sequence $\left(y_{r+\mu}^{p^{r}}\right)_{r \in \mathbb{N}}$ has a limit $\lim _{r \rightarrow \infty} y_{r+\mu}^{p^{r}} \in A$. In particular, for $\mu=0$, this means that the sequence $\left(y_{r}^{p^{r}}\right)_{r \in \mathbb{N}}$ has a limit $\lim _{r \rightarrow \infty} y_{r}^{p^{r}} \in A$. We denote this limit by a; thus, $a=\lim _{r \rightarrow \infty} y_{r}^{p^{r}}$.

Now, we are going to prove that the element $a \in A$ is p-ancient and satisfies $\bar{a}=x$. Once this is proven, Assertion 1 will immediately follow.

The element a is p-ancient, since for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}}=a$ (in fact, take $b=\lim _{r \rightarrow \infty} y_{r+\mu}^{p^{r}}$; then,

$$
\begin{aligned}
b^{p^{\mu}} & =\left(\lim _{r \rightarrow \infty} y_{r+\mu}^{p^{r}}\right)^{p^{\mu}}=\lim _{r \rightarrow \infty}(\underbrace{\left(y_{r+\mu}^{p^{r}}\right)^{p^{\mu}}}_{=y_{r+\mu}^{p^{r} \mu^{\mu}}=y_{r+\mu}^{p^{r+\mu}}}) \quad \text { (since the map } A \rightarrow A, u \mapsto u^{p^{\mu}} \text { is continuous) } \\
& =\lim _{r \rightarrow \infty} y_{r+\mu}^{p^{r+\mu}}=\lim _{r \rightarrow \infty} y_{r}^{p^{r}} \quad \text { (here we substituted } r \text { for } r+\mu \text { in the limit) } \\
& =a
\end{aligned}
$$

). Besides, the canonical projection from A to A / \mathfrak{m} is continuous (where the ring A is given the \mathfrak{m}-adic topology, and the ring A / \mathfrak{m} is given the discrete topology), so that

$$
\begin{gathered}
\varlimsup_{r \rightarrow \infty} y_{r}^{p^{r}}=\lim _{r \rightarrow \infty} \underbrace{}_{\begin{array}{c}
=\overline{y_{r} r^{r}} \\
\overline{y_{r}^{p^{r}}}
\end{array}=\lim _{r \rightarrow \infty} \underbrace{\left(\sigma^{-r}(x)\right)^{p^{r}}}_{=\sigma^{r}\left(\sigma^{-r}(x)\right)}=\lim _{r \rightarrow \infty} \sigma^{r}\left(\sigma^{-r}(x)\right)=\lim _{r \rightarrow \infty} x=x .}=\left(\sigma^{-r}(x)\right)^{p^{r}}
\end{gathered}
$$

Since $\lim _{r \rightarrow \infty} y_{r}^{p^{r}}=a$, this rewrites as $\bar{a}=x$. Hence, we have shown that a is p-ancient and satisfies $\bar{a}=x$. This proves Assertion 1 .

Proof of Assertion 2. Let a_{1} and a_{2} be two p-ancient elements of A such that $\overline{a_{1}}=x$ and $\overline{a_{2}}=x$. We are going to prove that $a_{1}=a_{2}$.

We will first prove that $a_{1}-a_{2} \in \mathfrak{m}^{s}$ for every $s \in \mathbb{N}$.
In fact, for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}}=a_{1}$ (since a_{1} is p-ancient). Applied to $\mu=s$, this yields that there exists some $b \in A$ such that $b^{p^{s}}=a_{1}$. Denote this b by b_{1}; thus we have found some $b_{1} \in A$ such that $b_{1}^{p^{s}}=a_{1}$.

Similarly, we can find some $b_{2} \in A$ such that $b_{2}^{p^{s}}=a_{2}$. Now,

$$
\begin{aligned}
\sigma^{s}\left(\overline{b_{1}-b_{2}}\right) & =\sigma^{s}\left(\overline{b_{1}}-\overline{b_{2}}\right)=\underbrace{\sigma^{s}\left(\overline{b_{1}}\right)}_{\substack{\overline{b_{1}}}}-\underbrace{\sigma^{s}\left(\overline{b_{2}}\right)}_{\begin{array}{c}
=\overline{b_{p}} \\
\text { by } \\
b^{p^{s}}
\end{array}} \quad \text { (since } \sigma^{s} \text { is a ring homomorphism) } \\
& ={\overline{b_{1}}}^{p^{s}}-{\overline{b_{2}}}^{p^{s}}=\underbrace{\overline{b_{1}^{p_{1}^{s}}}}_{=\overline{a_{1}}=x}-\underbrace{\overline{b_{2}^{p^{s}}}}_{=\overline{a_{2}}=x}=0,
\end{aligned}
$$

so that $\overline{b_{1}-b_{2}}=0$ (since $\sigma: k \rightarrow k$ is bijective, and thus $\sigma^{s}: k \rightarrow k$ is bijective as well). Therefore, $b_{1}-b_{2} \in \mathfrak{m}$ and thus $b_{1} \equiv b_{2} \bmod \mathfrak{m}$. Consequently, Lemma 2 (applied to $b_{1}, b_{2}, 1$ and s instead of a, b, k and ℓ) yields $b_{1}^{p^{s}} \equiv b_{2}^{p^{s}} \bmod \mathfrak{m}^{s+1}$ for every $s \in \mathbb{N}$. Thus, for every $s \in \mathbb{N}$, we have $b_{1}^{p^{s}}-b_{2}^{p^{s}} \in \mathfrak{m}^{s+1}=\mathfrak{m} \cdot \mathfrak{m}^{s} \subseteq \mathfrak{m}^{s}$ (since \mathfrak{m}^{s} is an ideal). Since $b_{1}^{p^{s}}=a_{1}$ and $b_{2}^{p^{s}}=a_{2}$, this rewrites as follows: For every $s \in \mathbb{N}$, we have $a_{1}-a_{2} \in \mathfrak{m}^{s}$. Hence, $a_{1}-a_{2} \in \bigcap_{s \in \mathbb{N}} \mathfrak{m}^{s}$. But $\bigcap_{s \in \mathbb{N}} \mathfrak{m}^{s}=0$, since the ring A is separated in the \mathfrak{m}-adic topology. Thus, $a_{1}-a_{2} \in 0$. In other words, $a_{1}-a_{2}=0$, so that $a_{1}=a_{2}$.

Hence, for any two p-ancient elements a_{1} and a_{2} of A such that $\overline{a_{1}}=x$ and $\overline{a_{2}}=x$, we have proven that $a_{1}=a_{2}$. In other words, we have shown that any two p-ancient elements a of A such that $\bar{a}=x$ must be equal. Thus, Assertion 2 is proven.

Now that both Assertions 1 and 2 are proven, Theorem 1 (a) becomes obvious.
(b) The element $t(0)$ is defined as the only p-ancient element a of A such that $\bar{a}=0$. Hence, $t(0)=0$ (because 0 is a p-ancient element of A and satisfies $\overline{0}=0$).

The element $t(1)$ is defined as the only p-ancient element a of A such that $\bar{a}=1$. Hence, $t(1)=1$ (because 1 is a p-ancient element of A and satisfies $\overline{1}=1$).

Now, let x and x^{\prime} be two elements of k. We want to prove that $t\left(x x^{\prime}\right)=t(x) t\left(x^{\prime}\right)$. We know that $t(x)$ is a p-ancient element of A and that $\overline{t(x)}=x$. We also know that $t\left(x^{\prime}\right)$ is a p-ancient element of A and that $\overline{t\left(x^{\prime}\right)}=x^{\prime}$. Now, the element $t\left(x x^{\prime}\right)$ is defined as the only p-ancient element a of A such that $\bar{a}=x x^{\prime}$. Hence, $t\left(x x^{\prime}\right)=$ $t(x) t\left(x^{\prime}\right)$ (because $t(x) t\left(x^{\prime}\right)$ is a p-ancient element of $A \quad{ }_{4}^{4}$ and satisfies $\overline{t(x) t\left(x^{\prime}\right)}=$ $\underbrace{\overline{t(x)}}_{=x} \underbrace{\overline{t\left(x^{\prime}\right)}}_{=x^{\prime}}=x x^{\prime})$.

Thus, Theorem 1 (b) is completely proven.
(c) Assume (for the duration of the proof of Theorem 1 (c)) that $p \cdot 1_{A}=0$ in A. Let x and x^{\prime} be two elements of k. We want to prove that $t\left(x+x^{\prime}\right)=t(x)+t\left(x^{\prime}\right)$. We know that $t(x)$ is a p-ancient element of A and that $\overline{t(x)}=x$. We also know that $t\left(x^{\prime}\right)$ is a p-ancient element of A and that $\overline{t\left(x^{\prime}\right)}=x^{\prime}$. Now, the element $t\left(x+x^{\prime}\right)$ is defined as the only p-ancient element a of A such that $\bar{a}=x+x^{\prime}$. Hence, $t\left(x+x^{\prime}\right)=t(x)+t\left(x^{\prime}\right)$ (because $t \underline{t(x)}+t\left(x^{\prime}\right)$ is a p-ancient element of $A \quad 5$ and satisfies $\overline{t(x)+t\left(x^{\prime}\right)}=$ $\underbrace{\overline{t(x)}}_{=x}+\underbrace{\overline{t\left(x^{\prime}\right)}}_{=x^{\prime}}=x+x^{\prime})$. This proves Theorem 1 (c).
(e) We can easily see that

$$
\begin{equation*}
t^{\prime}\left(y^{p^{\mu}}\right)=\left(t^{\prime}(y)\right)^{p^{\mu}} \text { for any } y \in k \text { and any } \mu \in \mathbb{N} \tag{9}
\end{equation*}
$$

[^2]${ }^{6}$. Hence,
\[

$$
\begin{equation*}
t^{\prime}(x)=\left(t^{\prime}\left(\sigma^{-\mu}(x)\right)\right)^{p^{\mu}} \text { for any } y \in k \text { and any } \mu \in \mathbb{N} \tag{10}
\end{equation*}
$$

\]

7. Thus, for every $x \in k$, the element $t^{\prime}(x) \in A$ is p-ancient (in fact, for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}}=t^{\prime}(x)$, namely $\left.b=t^{\prime}\left(\sigma^{-\mu}(x)\right)\right)$. Besides, this element $t^{\prime}(x)$ satisfies $\overline{t^{\prime}(x)}=x$ (by (6)). On the other hand, we know that the only p-ancient element $a \in A$ that satisfies $\bar{a}=x$ is $t(x)$. Thus, $t^{\prime}(x)=t(x)$. We have proven this for every $x \in k$; hence, $t^{\prime}=t$. Thus, Theorem 1 (e) is proven.
(d) By induction, (3) yields (5). Also, clearly, (4) is equivalent to (6). Thus, (5) and (6) hold, and therefore, Theorem 1 (e) yields that $t^{\prime}=t$. This proves Theorem 1 (d).

Now, the proof of Theorem 1 is complete.

References

[1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.
[2] Darij Grinberg, Witt\#3: Ghost component computations.

[^3]$$
t^{\prime}\left(y^{p^{\mu}}\right)=\left(t^{\prime}(y)\right)^{p^{\mu}} \quad \text { for any } y \in k
$$

Then,

$$
t^{\prime}\left(y^{p^{\mu+1}}\right)=\left(t^{\prime}(y)\right)^{p^{\mu+1}} \quad \text { for any } y \in k
$$

because

$$
\begin{aligned}
t^{\prime}\left(y^{p^{\mu+1}}\right) & =t^{\prime}\left(y^{p^{\mu} p}\right)=t^{\prime}\left(\left(y^{p^{\mu}}\right)^{p}\right)=\left(t^{\prime}\left(y^{p^{\mu}}\right)\right)^{p} \quad\left(\text { by (5), applied to } x=y^{p^{\mu}}\right) \\
& =\left(\left(t^{\prime}(y)\right)^{p^{\mu}}\right)^{p} \quad \text { (by the induction assumption) } \\
& =\left(t^{\prime}(y)\right)^{p^{\mu} p}=\left(t^{\prime}(y)\right)^{p^{\mu+1}},
\end{aligned}
$$

and the induction step is complete. Thus, 9 is proven.
${ }^{7}$ since

$$
t^{\prime}(x)=t^{\prime}(\underbrace{\sigma^{\mu}\left(\sigma^{-\mu}(x)\right)}_{\begin{array}{c}
\left(\sigma^{-\mu}(x)\right)^{p^{\mu}} \\
\text { by } 77
\end{array}})=t^{\prime}\left(\left(\sigma^{-\mu}(x)\right)^{p^{\mu}}\right)=\left(t^{\prime}\left(\sigma^{-\mu}(x)\right)\right)^{p^{\mu}}
$$

(by (9), applied to $y=\sigma^{-\mu}(x)$)

[^0]: ${ }^{1}$ not necessarily a maximal ideal, despite the label \mathfrak{m} being mostly used for maximal ideals in literature
 ${ }^{2}$ This map $\sigma: k \rightarrow k$ is indeed a ring homomorphism, since $p \cdot 1_{k}=0$ in the ring k. It is the so-called Frobenius endomorphism of the ring k.

[^1]: ${ }^{3}$ Though we call it p, we do not require it to be a prime!

[^2]: ${ }^{4}$ by (1), since $t(x)$ and $t\left(x^{\prime}\right)$ are p-ancient
 ${ }^{5}$ by (2 , since $t(x)$ and $t\left(x^{\prime}\right)$ are p-ancient

[^3]: ${ }^{6}$ Proof of (9) by induction over μ :
 Induction base: For $\mu=0$, the equation (9) is trivially true.
 Induction step: Assume that some given $\mu \in \mathbb{N}$ satisfies

