The order of birational rowmotion

Darij Grinberg (MIT)
joint work with Tom Roby (UConn)

17 June 2014
Arbeitsgemeinschaft Diskrete Mathematik, Vienna
slides:
http://mit.edu/~darij/www/algebra/vienna2014.pdf
paper: http://mit.edu/~darij/www/algebra/skeletal.pdf or arXiv:1402.6178v3

- A poset ($=$ partially ordered set) is a set P with a reflexive, transitive and antisymmetric relation.
- We use the symbols $<, \leq,>$ and \geq accordingly.
- We draw posets as Hasse diagrams:

- We only care about finite posets here.
- We say that $u \in P$ is covered by $v \in P$ (written $u \lessdot v$) if we have $u<v$ and there is no $w \in P$ satisfying $u<w<v$.
- We say that $u \in P$ covers $v \in P$ (written $u \gtrdot v$) if we have $u>v$ and there is no $w \in P$ satisfying $u>w>v$.
- An order ideal of a poset P is a subset S of P such that if $v \in S$ and $w \leq v$, then $w \in S$.
- Examples (the elements of the order ideal are marked in red):

- We let $J(P)$ denote the set of all order ideals of P.
- Classical rowmotion is the rowmotion studied by Striker-Williams (arXiv:1108.1172). It has appeared many times before, under different guises:
- Brouwer-Schrijver (1974) (as a permutation of the antichains),
- Fon-der-Flaass (1993) (as a permutation of the antichains),
- Cameron-Fon-der-Flaass (1995) (as a permutation of the monotone Boolean functions),
- Panyushev (2008), Armstrong-Stump-Thomas (2011) (as a permutation of the antichains or "nonnesting partitions", with relations to Lie theory).
- Let P be a finite poset.

Classical rowmotion is the map $\mathbf{r}: J(P) \rightarrow J(P)$ which sends every order ideal S to the order ideal obtained as follows:
Let M be the set of minimal elements of the complement $P \backslash S$.
Then, $\mathbf{r}(S)$ shall be the order ideal generated by these elements (i.e., the set of all $w \in P$ such that there exists an $m \in M$ such that $w \leq m$).

Example:

Let S be the following order ideal (\boldsymbol{O} inside order ideal):

- Let P be a finite poset.

Classical rowmotion is the map $\mathbf{r}: J(P) \rightarrow J(P)$ which sends every order ideal S to the order ideal obtained as follows:
Let M be the set of minimal elements of the complement
$P \backslash S$.
Then, $\mathbf{r}(S)$ shall be the order ideal generated by these elements (i.e., the set of all $w \in P$ such that there exists an $m \in M$ such that $w \leq m$).
Example:
Mark M (= minimal elements of complement) blue.

- Let P be a finite poset.

Classical rowmotion is the map $\mathbf{r}: J(P) \rightarrow J(P)$ which sends every order ideal S to the order ideal obtained as follows:
Let M be the set of minimal elements of the complement
$P \backslash S$.
Then, $\mathbf{r}(S)$ shall be the order ideal generated by these elements (i.e., the set of all $w \in P$ such that there exists an $m \in M$ such that $w \leq m$).

Example:

Forget about the old order ideal:

- Let P be a finite poset.

Classical rowmotion is the map $\mathbf{r}: J(P) \rightarrow J(P)$ which sends every order ideal S to the order ideal obtained as follows:
Let M be the set of minimal elements of the complement $P \backslash S$.
Then, $\mathbf{r}(S)$ shall be the order ideal generated by these elements (i.e., the set of all $w \in P$ such that there exists an $m \in M$ such that $w \leq m$).

Example:

$\mathbf{r}(S)$ is the order ideal generated by M ("everything below M "):

Classical rowmotion: properties

Classical rowmotion is a permutation of $J(P)$, hence has finite order. This order can be fairly large.

Classical rowmotion: properties

Classical rowmotion is a permutation of $J(P)$, hence has finite order. This order can be fairly large.
However, for some types of P, the order can be explicitly
computed or bounded from above.
See Striker-Williams for an exposition of known results.

- If P is a $p \times q$-rectangle:

(shown here for $p=2$ and $q=3$), then $\operatorname{ord}(\mathbf{r})=p+q$.

Classical rowmotion: properties

Example:

Let S be the order ideal of the 2×3-rectangle given by:

Classical rowmotion: properties

Example:

 $\mathbf{r}(S)$ is

Classical rowmotion: properties

Example:
$\mathbf{r}^{2}(S)$ is

Classical rowmotion: properties

Example:

$r^{3}(S)$ is

Classical rowmotion: properties

Example:

$\mathbf{r}^{4}(S)$ is

Classical rowmotion: properties

Example:

$r^{5}(S)$ is

which is precisely the S we started with.
$\operatorname{ord}(\mathbf{r})=p+q=2+3=5$.

Classical rowmotion: properties

Further posets for which classical rowmotion has small order:
(Still see Striker-Williams for references.)

- If P is a Δ-shaped triangle with sidelength $p-1$:

(shown here for $p=4$), then $\operatorname{ord}(\mathbf{r})=2 p$ (if $p>2$).
- In this case, \mathbf{r}^{p} is "reflection in the y-axis" (i.e., the central vertical axis).

Classical rowmotion: properties

Yet further posets for which classical rowmotion has small order:
(Still see Striker-Williams for references.)

- If P is the poset of all positive roots of a finite Weyl group W, then $\mathbf{r}^{2 h}=\mathrm{id}$, where h is the Coxeter number of W. (Armstrong-Stump-Thomas, arXiv:1101.1277v2.)
- This includes the triangles from previous slide, but also these kind of beasts:

(for B_{3}).

Classical rowmotion: the toggling definition

There is an alternative definition of classical rowmotion, which splits it into many little steps.

- If P is a poset and $v \in P$, then the v-toggle is the map
$\mathbf{t}_{v}: J(P) \rightarrow J(P)$ which takes every order ideal S to:
- $S \cup\{v\}$, if v is not in S but all elements of P covered by v are in S already;
- $S \backslash\{v\}$, if v is in S but none of the elements of P covering v is in S;
- S otherwise.
- Simpler way to state this: $\mathbf{t}_{v}(S)$ is:
- $S \triangle\{v\}$ (symmetric difference) if this is an order ideal;
- S otherwise.
("Try to add or remove v from S; if this breaks the order ideal axiom, leave S fixed.")

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{v_{1}} \circ \mathbf{t}_{v_{2}} \circ \ldots \circ \mathbf{t}_{v_{n}}
$$

Example:

Start with this order ideal S :

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{\mathrm{v}_{1}} \circ \mathbf{t}_{\mathrm{v}_{2}} \circ \ldots \circ \mathbf{t}_{\mathrm{v}_{n}}
$$

Example:

First apply $\mathbf{t}_{(2,2)}$, which changes nothing:

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{\mathrm{v}_{1}} \circ \mathbf{t}_{\mathrm{v}_{2}} \circ \ldots \circ \mathbf{t}_{\mathrm{v}_{n}}
$$

Example:

Then apply $\mathbf{t}_{(1,2)}$, which adds $(1,2)$ to the order ideal:

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{\mathrm{v}_{1}} \circ \mathbf{t}_{\mathrm{v}_{2}} \circ \ldots \circ \mathbf{t}_{\mathrm{v}_{n}}
$$

Example:

Then apply $\mathbf{t}_{(2,1)}$, which removes $(2,1)$ from the order ideal:

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{\mathrm{v}_{1}} \circ \mathbf{t}_{\mathrm{v}_{2}} \circ \ldots \circ \mathbf{t}_{\mathrm{v}_{n}}
$$

Example:

Finally apply $\mathbf{t}_{(1,1)}$, which changes nothing:

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{v_{1}} \circ \mathbf{t}_{v_{2}} \circ \ldots \circ \mathbf{t}_{v_{n}} .
$$

Example:

So this is $\mathbf{r}(S)$:

- define birational rowmotion (a generalization of classical rowmotion introduced by David Einstein and James Propp, based on ideas of Anatol Kirillov and Arkady Berenstein).
- show how some properties of classical rowmotion generalize to birational rowmotion.
- ask some questions and state some conjectures.
- Let P be a finite poset. We define \widehat{P} to be the poset obtained by adjoining two new elements 0 and 1 to P and forcing
- 0 to be less than every other element, and
- 1 to be greater than every other element.

Example:

- Let \mathbb{K} be a semifield (i.e., a field minus "minus").
- A \mathbb{K}-labelling of P will mean a function $\widehat{P} \rightarrow \mathbb{K}$.
- The values of such a function will be called the labels of the labelling.
- We will represent labellings by drawing the labels on the vertices of the Hasse diagram of \widehat{P}.
Example: This is a \mathbb{Q}-labelling of the 2×2-rectangle:

- For any $v \in P$, define the birational v-toggle as the rational $\operatorname{map} T_{v}: \mathbb{K}^{\widehat{P}} \longrightarrow \mathbb{K}^{\widehat{P}}$ defined by

$$
\left(T_{v} f\right)(w)=\left\{\begin{aligned}
& f(w), \text { if } w \neq v ; \\
& \frac{1}{f(v)} \cdot \frac{\sum_{\substack{u \in \widehat{P}_{;} \\
u<v}}^{\sum_{\substack{u \in \widehat{P}_{;} \\
u \gtrdot v}} \frac{1}{f(u)}},}{} \quad \text { if } w=v
\end{aligned}\right.
$$

for all $w \in \widehat{P}$.

- That is,
- invert the label at v,
- multiply it with the sum of the labels at vertices covered by v,
- multiply it with the harmonic sum of the labels at vertices covering v.
- For any $v \in P$, define the birational v-toggle as the rational $\operatorname{map} T_{v}: \mathbb{K}^{\widehat{P}} \longrightarrow \mathbb{K}^{\widehat{P}}$ defined by

$$
\left(T_{v} f\right)(w)=\left\{\begin{aligned}
& f(w), \text { if } w \neq v ; \\
& \frac{1}{f(v)} \cdot \frac{\sum_{\substack{u \in \widehat{P}_{;} \\
u<v}}^{\sum_{\substack{u \in \widehat{P}_{;} \\
u \gtrdot v}} \frac{1}{f(u)}},}{} \quad \text { if } w=v
\end{aligned}\right.
$$

for all $w \in \widehat{P}$.

- Notice that this is a local change to the label at v; all other labels stay the same.
- We have $T_{v}^{2}=$ id (on the range of T_{v}), and T_{v} is a birational map.
- We define birational rowmotion as the rational map

$$
R:=T_{v_{1}} \circ T_{v_{2}} \circ \ldots \circ T_{v_{n}}: \mathbb{K}^{\widehat{P}} \rightarrow \mathbb{K}^{\widehat{P}}
$$

where $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a linear extension of P.

- This is indeed independent on the linear extension, because:
- We define birational rowmotion as the rational map

$$
R:=T_{v_{1}} \circ T_{v_{2}} \circ \ldots \circ T_{v_{n}}: \mathbb{K}^{\widehat{P}} \rightarrow \mathbb{K}^{\widehat{P}}
$$

where $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a linear extension of P.

- This is indeed independent on the linear extension, because:
- T_{v} and T_{w} commute whenever v and w are incomparable (or just don't cover each other);
- we can get from any linear extension to any other by switching incomparable adjacent elements.

Birational rowmotion: example
Example:
Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We have $R=T_{(1,1)} \circ T_{(1,2)} \circ T_{(2,1)} \circ T_{(2,2)}$ (using the linear extension $((1,1),(1,2),(2,1),(2,2)))$.
That is, toggle in the order "top, left, right, bottom".

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We are using $R=T_{(1,1)} \circ T_{(1,2)} \circ T_{(2,1)} \circ T_{(2,2)}$.

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We are using $R=T_{(1,1)} \circ T_{(1,2)} \circ T_{(2,1)} \circ T_{(2,2)}$.

Birational rowmotion: example

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We are using $R=T_{(1,1)} \circ T_{(1,2)} \circ T_{(2,1)} \circ T_{(2,2)}$.

Birational rowmotion: example

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We are using $R=T_{(1,1)} \circ T_{(1,2)} \circ T_{(2,1)} \circ T_{(2,2)}$.

- Why is this called birational rowmotion?
- Indeed, it generalizes classical rowmotion:
- Let $\operatorname{Trop} \mathbb{Z}$ be the tropical semiring over \mathbb{Z}. This is the set $\mathbb{Z} \cup\{-\infty\}$ with "addition" $(a, b) \mapsto \max \{a, b\}$ and "multiplication" $(a, b) \mapsto a+b$. This is a semifield.
- Why is this called birational rowmotion?
- Indeed, it generalizes classical rowmotion:
- Let $\operatorname{Trop} \mathbb{Z}$ be the tropical semiring over \mathbb{Z}. This is the set $\mathbb{Z} \cup\{-\infty\}$ with "addition" $(a, b) \mapsto \max \{a, b\}$ and "multiplication" $(a, b) \mapsto a+b$. This is a semifield.
- To every order ideal $S \in J(P)$, assign a Trop \mathbb{Z}-labelling tlab S defined by

$$
(\text { tlab } S)(v)= \begin{cases}1, & \text { if } v \notin S \cup\{0\} ; \\ 0, & \text { if } v \in S \cup\{0\}\end{cases}
$$

- Easy to see:

$$
T_{v} \circ \mathrm{tlab}={\text { tlab } \circ \mathbf{t}_{v}, \quad R \circ \mathrm{tlab}=\text { tlab } \circ \mathbf{r} . . . ~}_{\text {. }}
$$

(And tlab is injective.)

- Why is this called birational rowmotion?
- Indeed, it generalizes classical rowmotion:
- Let $\operatorname{Trop} \mathbb{Z}$ be the tropical semiring over \mathbb{Z}. This is the set $\mathbb{Z} \cup\{-\infty\}$ with "addition" $(a, b) \mapsto \max \{a, b\}$ and "multiplication" $(a, b) \mapsto a+b$. This is a semifield.
- To every order ideal $S \in J(P)$, assign a Trop \mathbb{Z}-labelling tlab S defined by

$$
(\text { tlab } S)(v)= \begin{cases}1, & \text { if } v \notin S \cup\{0\} ; \\ 0, & \text { if } v \in S \cup\{0\}\end{cases}
$$

- Easy to see:

$$
T_{v} \circ \mathrm{tlab}={\text { tlab } \circ \mathbf{t}_{v}, \quad R \circ \mathrm{tlab}=\text { tlab } \circ \mathbf{r} . . . ~}_{\text {. }}
$$

(And tlab is injective.)

- If you don't like semifields, use \mathbb{Q} and take the "tropical limit".
- Let ord ϕ denote the order of a map or rational map ϕ. This is the smallest positive integer k such that $\phi^{k}=\mathrm{id}$ (on the range of ϕ^{k}), or ∞ if no such k exists.
- The above shows that $\operatorname{ord}(\mathbf{r}) \mid \operatorname{ord}(R)$ for every finite poset P.
- Do we have equality?
- Let ord ϕ denote the order of a map or rational map ϕ. This is the smallest positive integer k such that $\phi^{k}=\mathrm{id}$ (on the range of ϕ^{k}), or ∞ if no such k exists.
- The above shows that $\operatorname{ord}(\mathbf{r}) \mid \operatorname{ord}(R)$ for every finite poset P.
- Do we have equality?

No! Here are two posets with $\operatorname{ord}(R)=\infty$:

- Let ord ϕ denote the order of a map or rational map ϕ. This is the smallest positive integer k such that $\phi^{k}=$ id (on the range of ϕ^{k}), or ∞ if no such k exists.
- The above shows that $\operatorname{ord}(\mathbf{r}) \mid \operatorname{ord}(R)$ for every finite poset P.
- Do we have equality?

No! Here are two posets with $\operatorname{ord}(R)=\infty$:

- Nevertheless, equality holds for many special types of P.

Birational rowmotion: example of finite order

Example:

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{0} f=$

Birational rowmotion: example of finite order

Example:

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{1} f=$

Birational rowmotion: example of finite order

Example:

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{2} f=$

Birational rowmotion: example of finite order

Example:

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{3} f=$

Birational rowmotion: example of finite order

Example:

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{4} f=$

Birational rowmotion: example of finite order

Example:

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{4} f=$

So we are back where we started.

$$
\operatorname{ord}(R)=4
$$

- Theorem. Assume that $n \in \mathbb{N}$, and P is a poset which is a forest (made into a poset using the "descendant" relation) having all leaves on the same level n (i.e., each maximal chain of P has n vertices). Then,

$$
\operatorname{ord}(R)=\operatorname{ord}(\mathbf{r}) \mid \operatorname{Icm}(1,2, \ldots, n+1)
$$

Example:

This poset

has $\operatorname{ord}(R)=\operatorname{ord}(\mathbf{r}) \mid \operatorname{Icm}(1,2,3,4)=12$.

- Even the $\operatorname{ord}(\mathbf{r}) \mid \operatorname{lcm}(1,2, \ldots, n+1)$ part of this result seems to be new.
- We will very roughly sketch a proof of $\operatorname{ord}(R) \mid \operatorname{lcm}(1,2, \ldots, n+1)$. Details are in the "Skeletal posets" section of our paper, where we also generalize the result to a wider class of posets we call "skeletal posets". (These can be regarded as a generalization of forests where we are allowed to graft existing forests on roots on the top and on the bottom, and to use antichains instead of roots. An example is the 2×2-rectangle.)

Birational rowmotion: n-graded posets

- Consider any n-graded finite poset P. This means that P is partitioned into nonempty subsets $P_{1}, P_{2}, \ldots, P_{n}$ such that:
- If $u \in P_{i}$ and $u \lessdot v$, then $v \in P_{i+1}$.
- All minimal elements of P are in P_{1}.
- All maximal elements of P are in P_{n}.

Example: The 2×2-rectangle is a 3 -graded poset:

- Two \mathbb{K}-labellings f and g of P are said to be homogeneously equivalent if there is a $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in(\mathbb{K} \backslash 0)^{n}$ such that

$$
g(v)=\lambda_{i} f(v) \quad \text { for all } i \text { and all } v \in P_{i}
$$

Example: These two labellings:

are homogeneously equivalent if and only if $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}$.

- Let $\overline{\mathbb{K}^{\hat{P}}}$ denote the set of all \mathbb{K}-labellings of P (with no zero labels) modulo homogeneous equivalence.
Let $\pi: \mathbb{K}^{\widehat{P}} \longrightarrow \overline{\mathbb{K}^{\hat{P}}}$ be the canonical projection.
- There exists a rational map $\bar{R}: \overline{\mathbb{K}^{\widehat{P}}} \rightarrow \overline{\mathbb{K}^{\widehat{P}}}$ such that the diagram

$$
\begin{aligned}
& \mathbb{K}^{\widehat{P}}---\frac{R}{1}-->\mathbb{K}^{\widehat{P}} \\
& \pi \mid \\
& \frac{1}{1} \\
& \frac{\gamma}{\mathbb{K}^{\widehat{P}}}---\frac{1}{\bar{R}}-->\frac{\gamma}{\mathbb{K}^{\widehat{P}}}
\end{aligned}
$$

commutes.

- Hence ord $(\bar{R}) \mid \operatorname{ord}(R)$.

Birational rowmotion: interplay between R and \bar{R}

- But in fact, any n-graded poset P satisfies

$$
\operatorname{ord}(R)=\operatorname{lcm}(n+1, \operatorname{ord}(\bar{R})) .
$$

- But in fact, any n-graded poset P satisfies

$$
\operatorname{ord}(R)=\operatorname{lcm}(n+1, \operatorname{ord}(\bar{R})) .
$$

- Furthermore, if P and Q are both n-graded, then the disjoint union $P Q$ of P and Q satisfies

$$
\operatorname{ord}\left(R_{P Q}\right)=\operatorname{ord}\left(\bar{R}_{P Q}\right)=\operatorname{lcm}\left(\operatorname{ord}\left(R_{P}\right), \operatorname{ord}\left(R_{Q}\right)\right)
$$

(where R_{S} means the R defined for a poset S).

- But in fact, any n-graded poset P satisfies

$$
\operatorname{ord}(R)=\operatorname{lcm}(n+1, \operatorname{ord}(\bar{R})) .
$$

- Furthermore, if P and Q are both n-graded, then the disjoint union $P Q$ of P and Q satisfies

$$
\operatorname{ord}\left(R_{P Q}\right)=\operatorname{ord}\left(\bar{R}_{P Q}\right)=\operatorname{lcm}\left(\operatorname{ord}\left(R_{P}\right), \operatorname{ord}\left(R_{Q}\right)\right)
$$

(where R_{S} means the R defined for a poset S).

- Finally, if P is n-graded, and $B_{1}^{\prime} P$ denotes the ($n+1$)-graded poset obtained by adding a new element on top of P (such that it is greater than all existing elements of P), then

$$
\operatorname{ord}\left(\bar{R}_{B_{1}^{\prime} P}\right)=\operatorname{ord}\left(\bar{R}_{P}\right) .
$$

- But in fact, any n-graded poset P satisfies

$$
\operatorname{ord}(R)=\operatorname{lcm}(n+1, \operatorname{ord}(\bar{R})) .
$$

- Furthermore, if P and Q are both n-graded, then the disjoint union $P Q$ of P and Q satisfies

$$
\operatorname{ord}\left(R_{P Q}\right)=\operatorname{ord}\left(\bar{R}_{P Q}\right)=\operatorname{lcm}\left(\operatorname{ord}\left(R_{P}\right), \operatorname{ord}\left(R_{Q}\right)\right)
$$

(where R_{S} means the R defined for a poset S).

- Finally, if P is n-graded, and $B_{1}^{\prime} P$ denotes the ($n+1$)-graded poset obtained by adding a new element on top of P (such that it is greater than all existing elements of P), then

$$
\operatorname{ord}\left(\bar{R}_{B_{1}^{\prime} P}\right)=\operatorname{ord}\left(\bar{R}_{P}\right) .
$$

- Combining these, we can inductively compute ord $\left(R_{P}\right)$ and ord $\left(\bar{R}_{P}\right)$ for any n-graded forest P, and prove $\operatorname{ord}(R) \mid \operatorname{lcm}(1,2, \ldots, n+1)$.

Birational rowmotion: an example of the induction

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

Birational rowmotion: an example of the induction

Example:

Here is how we can get our forest poset using the $P Q$ and $B_{1}^{\prime} P$ constructions from \varnothing :

$$
B_{1}^{\prime}\left(B_{1}^{\prime}\left(\left(B_{1}^{\prime} \varnothing\right) \cdot\left(B_{1}^{\prime} \varnothing\right)\right)\right) \cdot B_{1}^{\prime}\left(B_{1}^{\prime}\left(\left(B_{1}^{\prime} \varnothing\right)\left(B_{1}^{\prime} \varnothing\right)\right) \cdot B_{1}^{\prime}\left(B_{1}^{\prime} \varnothing\right)\right)
$$

Classical rowmotion: the graded forest case

- It remains to show $\operatorname{ord}(\mathbf{r}) \mid \operatorname{lcm}(1,2, \ldots, n+1)$.
- It remains to show $\operatorname{ord}(\mathbf{r}) \mid \operatorname{Icm}(1,2, \ldots, n+1)$.
- This can be done by "tropicalizing" the notions of homogeneous equivalence, π and \bar{R}. Details in the "Interlude" section of our paper.
- It remains to show $\operatorname{ord}(\mathbf{r}) \mid \operatorname{Icm}(1,2, \ldots, n+1)$.
- This can be done by "tropicalizing" the notions of homogeneous equivalence, π and \bar{R}. Details in the "Interlude" section of our paper.
- Actually, not as much tropicalizing as booleanizing: we only use the boolean semiring $\{0,1\}$ to get classical rowmotion. With the full force of the tropical semiring we get more (see later)!
- Theorem. Assume that $n \in \mathbb{N}$, and P is a poset which is a forest (made into a poset using the "descendant" relation) having all leaves on the same level n (i.e., each maximal chain of P has n vertices). Then,

$$
\begin{aligned}
\operatorname{ord}(\bar{R}) & =\operatorname{ord}(\overline{\mathbf{r}}) \\
& =\operatorname{lcm}\left\{n-i\left|i \in\{0,1, \ldots, n-1\} ;\left|\widehat{P}_{i}\right|<\left|\widehat{P}_{i+1}\right|\right\},\right.
\end{aligned}
$$

where \widehat{P}_{k} denotes the set of elements of \widehat{P} which are a distance of k away from 0 .

Birational rowmotion: the rectangle case

- Theorem (periodicity): If P is the $p \times q$-rectangle (i.e., the poset $\{1,2, \ldots, p\} \times\{1,2, \ldots, q\}$ with coordinatewise order), then

$$
\operatorname{ord}(R)=p+q
$$

Example: For the 2×2-rectangle, this claims ord $(R)=2+2=4$, which we have already seen.

- Theorem (periodicity): If P is the $p \times q$-rectangle (i.e., the poset $\{1,2, \ldots, p\} \times\{1,2, \ldots, q\}$ with coordinatewise order), then

$$
\operatorname{ord}(R)=p+q
$$

Example: For the 2×2-rectangle, this claims ord $(R)=2+2=4$, which we have already seen.

- Theorem (reciprocity): If P is the $p \times q$-rectangle, and $(i, k) \in P$ and $f \in \mathbb{K}^{\widehat{P}}$, then

$$
f(\underbrace{(p+1-i, q+1-k)}_{\begin{array}{c}
\text { antipode of }(i, k) \\
\text { in the rectangle }
\end{array}})=\frac{f(0) f(1)}{\left(R^{i+k-1} f\right)((i, k))} .
$$

- These were conjectured by James Propp and Tom Roby.

Birational rowmotion: the rectangle case, example

Example: Here is the generic R-orbit on the 2×2-rectangle again:

Birational rowmotion: the rectangle case, example

Example: Here is the generic R-orbit on the 2×2-rectangle again:

Birational rowmotion: the rectangle case, example

Example: Here is the generic R-orbit on the 2×2-rectangle again:

- Inspiration: Alexandre Yu. Volkov, On Zamolodchikov's Periodicity Conjecture, arXiv:hep-th/0606094.
- We will give only a very vague idea of the proof.
- We WLOG assume that \mathbb{K} is a field. (Everything is polynomial identities.)
- Let $A \in \mathbb{K}^{p \times(p+q)}$ be a matrix with p rows and $p+q$ columns.
- Let A_{i} be the i-th column of A. Extend to all $i \in \mathbb{Z}$ by setting

$$
A_{p+q+i}=(-1)^{p-1} A_{i} \quad \text { for all } i
$$

- Let $A[a: b \mid c: d]$ be the matrix whose columns are $A_{a}, A_{a+1}, \ldots, A_{b-1}, A_{c}, A_{c+1}, \ldots, A_{d-1}$ from left to right.
- Let $A \in \mathbb{K}^{p \times(p+q)}$ be a matrix with p rows and $p+q$ columns.
- Let A_{i} be the i-th column of A. Extend to all $i \in \mathbb{Z}$ by setting

$$
A_{p+q+i}=(-1)^{p-1} A_{i} \quad \text { for all } i
$$

- Let $A[a: b \mid c: d]$ be the matrix whose columns are $A_{a}, A_{a+1}, \ldots, A_{b-1}, A_{c}, A_{c+1}, \ldots, A_{d-1}$ from left to right.
- For every $j \in \mathbb{Z}$, we define a \mathbb{K}-labelling $\operatorname{Grasp}_{j} A \in \mathbb{K}^{\widehat{P}}$ by

$$
\begin{aligned}
& \left(\operatorname{Grasp}_{j} A\right)((i, k)) \\
& =\frac{\operatorname{det}(A[j+1: j+i \mid j+i+k-1: j+p+k])}{\operatorname{det}(A[j: j+i \mid j+i+k: j+p+k])}
\end{aligned}
$$

for every $(i, k) \in P$ (this is well-defined for a Zariski-generic A) and $\left(\operatorname{Grasp}_{j} A\right)(0)=\left(\operatorname{Grasp}_{j} A\right)(1)=1$.

- The proof of $\operatorname{ord}(R)=p+q$ now rests on four claims:
- Claim 1: $\operatorname{Grasp}_{j} A=\operatorname{Grasp}_{p+q+j} A$ for all j and A.
- Claim 2: $R\left(\operatorname{Grasp}_{j} A\right)=\operatorname{Grasp}_{j-1} A$ for all j and A.
- Claim 3: For almost every $f \in \mathbb{K}^{\widehat{P}}$ satisfying $f(0)=f(1)=1$, there exists a matrix $A \in \mathbb{K}^{p \times(p+q)}$ such that $\mathrm{Grasp}_{0} A=f$.
- Claim 4: In proving $\operatorname{ord}(R)=p+q$ we can WLOG assume that $f(0)=f(1)=1$.
- Claim 1 is immediate from the definitions.
- The proof of $\operatorname{ord}(R)=p+q$ now rests on four claims:
- Claim 1: $\operatorname{Grasp}_{j} A=\operatorname{Grasp}_{p+q+j} A$ for all j and A.
- Claim 2: $R\left(\operatorname{Grasp}_{j} A\right)=\operatorname{Grasp}_{j-1} A$ for all j and A.
- Claim 3: For almost every $f \in \mathbb{K}^{\widehat{P}}$ satisfying $f(0)=f(1)=1$, there exists a matrix $A \in \mathbb{K}^{p \times(p+q)}$ such that $\mathrm{Grasp}_{0} A=f$.
- Claim 4: In proving $\operatorname{ord}(R)=p+q$ we can WLOG assume that $f(0)=f(1)=1$.
- Claim 2 is a computation with determinants, which boils down to the three-term Plücker identities:

$$
\begin{aligned}
& \operatorname{det}(A[a-1: b \mid c: d+1]) \cdot \operatorname{det}(A[a: b+1 \mid c-1: d]) \\
& +\operatorname{det}(A[a: b \mid c-1: d+1]) \cdot \operatorname{det}(A[a-1: b+1 \mid c: d]) \\
& =\operatorname{det}(A[a-1: b \mid c-1: d]) \cdot \operatorname{det}(A[a: b+1 \mid c: d+1]) .
\end{aligned}
$$

for $A \in \mathbb{K}^{u \times v}$ and $a \leq b$ and $c \leq d$ and $b-a+d-c=u-2$.

- The proof of $\operatorname{ord}(R)=p+q$ now rests on four claims:
- Claim 1: $\operatorname{Grasp}_{j} A=\operatorname{Grasp}_{p+q+j} A$ for all j and A.
- Claim 2: $R\left(\operatorname{Grasp}_{j} A\right)=\operatorname{Grasp}_{j-1} A$ for all j and A.
- Claim 3: For almost every $f \in \mathbb{K}^{\widehat{P}}$ satisfying $f(0)=f(1)=1$, there exists a matrix $A \in \mathbb{K}^{p \times(p+q)}$ such that $\mathrm{Grasp}_{0} A=f$.
- Claim 4: In proving ord $(R)=p+q$ we can WLOG assume that $f(0)=f(1)=1$.
- Claim 3 is an annoying (nonlinear) triangularity argument: With the ansatz $A=\left(I_{p} \mid B\right)$ for $B \in \mathbb{K}^{p \times q}$, the equation $\operatorname{Grasp}_{0} A=f$ translates into a system of equations in the entries of B which can be solved by elimination.
- The proof of $\operatorname{ord}(R)=p+q$ now rests on four claims:
- Claim 1: $\operatorname{Grasp}_{j} A=\operatorname{Grasp}_{p+q+j} A$ for all j and A.
- Claim 2: $R\left(\operatorname{Grasp}_{j} A\right)=\operatorname{Grasp}_{j-1} A$ for all j and A.
- Claim 3: For almost every $f \in \mathbb{K}^{\widehat{P}}$ satisfying $f(0)=f(1)=1$, there exists a matrix $A \in \mathbb{K}^{p \times(p+q)}$ such that $\mathrm{Grasp}_{0} A=f$.
- Claim 4: In proving $\operatorname{ord}(R)=p+q$ we can WLOG assume that $f(0)=f(1)=1$.
- Claim 4 follows by recalling $\operatorname{ord}(R)=\operatorname{Icm}(n+1, \operatorname{ord}(\bar{R}))$.
- The proof of $\operatorname{ord}(R)=p+q$ now rests on four claims:
- Claim 1: $\operatorname{Grasp}_{j} A=\operatorname{Grasp}_{p+q+j} A$ for all j and A.
- Claim 2: $R\left(\operatorname{Grasp}_{j} A\right)=\operatorname{Grasp}_{j-1} A$ for all j and A.
- Claim 3: For almost every $f \in \mathbb{K}^{\widehat{P}}$ satisfying $f(0)=f(1)=1$, there exists a matrix $A \in \mathbb{K}^{p \times(p+q)}$ such that $\mathrm{Grasp}_{0} A=f$.
- Claim 4: In proving ord $(R)=p+q$ we can WLOG assume that $f(0)=f(1)=1$.
- The reciprocity statement can be proven in a similar vein.

Birational rowmotion: the Δ-triangle case

- Theorem (periodicity): If P is the triangle
$\Delta(p)=\{(i, k) \in\{1,2, \ldots, p\} \times\{1,2, \ldots, p\} \mid i+k>p+1\}$ with $p>2$, then

$$
\operatorname{ord}(R)=2 p
$$

Example: The triangle $\Delta(4)$:

Birational rowmotion: the Δ-triangle case

- Theorem (periodicity): If P is the triangle
$\Delta(p)=\{(i, k) \in\{1,2, \ldots, p\} \times\{1,2, \ldots, p\} \mid i+k>p+1\}$ with $p>2$, then

$$
\operatorname{ord}(R)=2 p
$$

Example: The triangle $\Delta(4)$:

- Theorem (reciprocity): R^{p} reflects any \mathbb{K}-labelling across the vertical axis.
- These are precisely the same results as for classical rowmotion.
- Theorem (periodicity): If P is the triangle
$\Delta(p)=\{(i, k) \in\{1,2, \ldots, p\} \times\{1,2, \ldots, p\} \mid i+k>p+1\}$ with $p>2$, then

$$
\operatorname{ord}(R)=2 p
$$

Example: The triangle $\Delta(4)$:

- Theorem (reciprocity): R^{p} reflects any \mathbb{K}-labelling across the vertical axis.
- These are precisely the same results as for classical rowmotion.
- The proofs use a "folding"-style argument to reduce this to the rectangle case.

Birational rowmotion: the \triangleright-triangle case

- Theorem (periodicity): If P is the triangle $\{(i, k) \in\{1,2, \ldots, p\} \times\{1,2, \ldots, p\} \mid i \leq k\}$, then

$$
\operatorname{ord}(R)=2 p
$$

Example: For $p=4$, this P has the form:

Birational rowmotion: the \triangleright-triangle case

- Theorem (periodicity): If P is the triangle $\{(i, k) \in\{1,2, \ldots, p\} \times\{1,2, \ldots, p\} \mid i \leq k\}$, then

$$
\operatorname{ord}(R)=2 p
$$

Example: For $p=4$, this P has the form:

- Again this is reduced to the rectangle case.
- Conjecture (periodicity): If P is the triangle $\{(i, k) \in\{1,2, \ldots, p\} \times\{1,2, \ldots, p\} \mid i \leq k ; i+k>p+1\}$, then

$$
\operatorname{ord}(R)=p
$$

Example: For $p=4$, this P has the form:

- Conjecture (periodicity): If P is the triangle $\{(i, k) \in\{1,2, \ldots, p\} \times\{1,2, \ldots, p\} \mid i \leq k ; i+k>p+1\}$, then

$$
\operatorname{ord}(R)=p
$$

Example: For $p=4$, this P has the form:

- We proved this for p odd.
- Note that for p even, this is a type-B positive root poset. Armstrong-Stump-Thomas did this for classical rowmotion.
- Conjecture (periodicity): If P is the trapezoid $\{(i, k) \in\{1,2, \ldots, p\} \times\{1,2, \ldots, p\} \mid i \leq k ; i+k>p+1 ; k \geq s\}$ for some $0 \leq s \leq p$, then

$$
\operatorname{ord}(R)=p
$$

Example: For $p=6$ and $s=5$, this P has the form:

- This was observed by Nathan Williams and verified for $p \leq 7$.
- Motivation comes from Williams's "Cataland" philosophy.

Birational rowmotion: the root system connection (Nathan Williams)

- For what P is $\operatorname{ord}(R)<\infty$? This seems too hard to answer in general.

Birational rowmotion: the root system connection (Nathan Williams)

- For what P is $\operatorname{ord}(R)<\infty$? This seems too hard to answer in general.
- Not true: for all those P that have nice and small ord(r)'s.

Birational rowmotion: the root system connection (Nathan Williams)

- For what P is $\operatorname{ord}(R)<\infty$? This seems too hard to answer in general.
- Not true: for all those P that have nice and small ord (\mathbf{r}) 's.
- However it seems that ord $(R)<\infty$ holds if P is the positive root poset of a coincidental-type root system (A_{n}, B_{n}, H_{3}), or a minuscule heap (see Rush-Shi, section 6).
- But the positive root system of D_{4} has $\operatorname{ord}(R)=\infty$.
- The following is an application of our result on rectangle-shaped posets.
- It is well known (see Striker-Williams) that classical rowmotion (= birational rowmotion over the boolean semiring $\{0,1\}$) is related to promotion on two-rowed semistandard Young tableaux.
- Similarly, birational rowmotion over the tropical semiring Trop \mathbb{Z} relates to arbitrary semistandard Young tableaux.
- As an application of the periodicity theorem, we obtain the classical result that promotion done n times on a rectangular semistandard Young tableau with "ceiling" n does nothing.
- This is new and unproven, and inspired by lyudu/Shkarin, arXiv:1305.1965v3 (Kontsevich's periodicity conjecture).
- Work in a skew field. Write \bar{m} for m^{-1}.
- Define the v-toggle by
$\left(T_{v} f\right)(w)=\left\{\begin{array}{cl}f(w), & \text { if } w \neq v ; \\ \left(\sum_{\substack{u \in \widehat{P}_{;} \\ u<v}} f(u)\right) \cdot \overline{f(v)} \cdot \overline{\sum_{\substack{u \in \widehat{P}_{;} \\ u \gtrdot v}} \overline{\overline{f(u)}},} & \text { if } w=v\end{array}\right.$
(there are other options as well - so far unexplored).

Birational rowmotion: noncommutative generalization?

- This is new and unproven, and inspired by lyudu/Shkarin, arXiv:1305.1965v3 (Kontsevich's periodicity conjecture).
- Work in a skew field. Write \bar{m} for m^{-1}.

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{0} f=$

Birational rowmotion: noncommutative generalization?

- This is new and unproven, and inspired by lyudu/Shkarin, arXiv: 1305.1965 v 3 (Kontsevich's periodicity conjecture).
- Work in a skew field. Write \bar{m} for m^{-1}.

Iteratively apply R to a labelling of the 2×2-rectangle.
$R^{1} f=$

Birational rowmotion: noncommutative generalization?

- This is new and unproven, and inspired by lyudu/Shkarin, arXiv:1305.1965v3 (Kontsevich's periodicity conjecture).
- Work in a skew field. Write \bar{m} for m^{-1}.

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{2} f=$

Birational rowmotion: noncommutative generalization?

- This is new and unproven, and inspired by lyudu/Shkarin, arXiv: 1305.1965 v 3 (Kontsevich's periodicity conjecture).
- Work in a skew field. Write \bar{m} for m^{-1}.

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{3} f=$

Birational rowmotion: noncommutative generalization?

- This is new and unproven, and inspired by lyudu/Shkarin, arXiv: 1305.1965 v 3 (Kontsevich's periodicity conjecture).
- Work in a skew field. Write \bar{m} for m^{-1}.

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{4} f=$

Birational rowmotion: noncommutative generalization?

- This is new and unproven, and inspired by lyudu/Shkarin, arXiv: 1305.1965 v 3 (Kontsevich's periodicity conjecture).
- Work in a skew field. Write \bar{m} for m^{-1}.

Iteratively apply R to a labelling of the 2×2-rectangle. $R^{4} f=$

(after nontrivial simplifications).

- This is new and unproven, and inspired by lyudu/Shkarin, arXiv:1305.1965v3 (Kontsevich's periodicity conjecture).
- Work in a skew field. Write \bar{m} for m^{-1}.

Iteratively apply R to a labelling of the 2×2-rectangle.
$R^{4} f=$

That is, all of our labels got conjugated by $a \bar{b}$. Is R^{p+q} always conjugation by $f(0) \cdot(f(1))^{-1}$ on a $p \times q$-rectangle? This is similar to Kontsevich's periodicity. (Noncommutative determinants?)

There will be a workshop on Dynamical Algebraic
Combinatorics at the American Institute of Mathematics the week of March 23-27, 2015, organized by Propp, Roby, Striker and Williams.
http://aimath.org/workshops/upcoming/dynalgcomb/ Among the subjects of the workshop:

- everything touched upon in this talk
- yes, that includes Young tableaux and Bender-Knuth, promotion, Lascoux-Schützenberger crystal operators
- homomesies (unsurprisingly)
- alternating sign matrices and gyration
- probably cluster algebras

Acknowledgments

- Tom Roby: collaboration
- Pavlo Pylyavskyy, Gregg Musiker: suggestions to mimic Volkov's proof of Zamolodchikov conjecture
- James Propp, David Einstein: introducing birational rowmotion and conjecturing the rectangle results; helpful advice
- Nathan Williams: bringing root systems into play
- Jessica Striker: familiarizing the author with rowmotion
- Alexander Postnikov: organizing a seminar where the author first met the problem
- David Einstein, Hugh Thomas: corrections
- Sage and Sage-combinat: computations
- FPSAC referees: useful comments

Thank you for listening!

- Andries E. Brouwer and A. Schrijver, On the period of an operator, defined on antichains, 1974. http://www.win.tue.nl/~aeb/preprints/zw24.pdf
- David Einstein, James Propp, Combinatorial, piecewise-linear, and birational homomesy for products of two chains, 2013. http://arxiv.org/abs/1310.5294
- David Rush, XiaoLin Shi, On Orbits of Order Ideals of Minuscule Posets, 2013. http://arxiv.org/abs/1108.5245
- Jessica Striker, Nathan Williams, Promotion and Rowmotion, 2012. http://arxiv.org/abs/1108.1172
- Alexandre Yu. Volkov, On the Periodicity Conjecture for Y-systems, 2007. (Old version available at http://arxiv.org/abs/hep-th/0606094)
- Nathan Williams, Cataland, 2013. https://conservancy.umn. edu/bitstream/159973/1/Williams_umn_0130E_14358.pdf
- See our paper
http://mit.edu/~darij/www/algebra/skeletal.pdf for the full bibliography.

