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Introduction

This is an expository talk on a little part of the paper:

Ira M. Gessel, Yan Zhuang, Shuffle-compatible
permutation statistics, arXiv:1706.00750.

Nothing here is my invention.
For my own work, see the next talk.

I will sketch the proofs of Theorem 2.8 and of Theorem 6.1
from their paper.

Unlike that paper, I will avoid any extraneous notation and
theory here.
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Permutations and descents

Let N = {0, 1, 2, . . .}.
For n ∈ N, an n-permutation means a tuple of n distinct
positive integers.
Example: (3, 1, 7) is a 3-permutation, but (2, 1, 2) is not.
(Caveat lector: Not the usual meaning of “permutation”.)

If π is an n-permutation and i ∈ {1, 2, . . . , n}, then πi denotes
the i-th entry of π.

If π is an n-permutation, then a descent of π means an
i ∈ {1, 2, . . . , n − 1} such that πi > πi+1.

The descent set Desπ of an n-permutation π is the set of all
descents of π.
Example: Des (3, 1, 5, 2, 4) = {1, 3}.
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Shuffles of permutations

Let m ∈ N, and let π be an m-permutation.
Let n ∈ N, and let σ be an n-permutation.

We say that π and σ are disjoint if they have no letter in
common.

Assume that π and σ are disjoint. An (m + n)-permutation τ
is called a shuffle of π and σ if both π and σ appear as
subsequences of τ .
(And thus, no other letters can appear in τ .)

Example: The shuffles of (4, 1) and (2, 5) are

(4, 1, 2, 5) , (4, 2, 1, 5) , (4, 2, 5, 1) ,

(2, 4, 1, 5) , (2, 4, 5, 1) , (2, 5, 4, 1) .

Observe that π and σ have

(
m + n

m

)
shuffles, in bijection

with m-element subsets of {1, 2, . . . ,m + n}.
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Weak compositions

The set Nk of k-tuples is an additive monoid.
(Keep in mind: 0 ∈ N.)

If α = (a1, a2, . . . , ak) ∈ Nk , then |α| is defined to be
a1 + a2 + · · ·+ ak .

For any (a1, a2, . . . , ak) ∈ Nk , we define a set
PS (a1, a2, . . . , ak) to be

{a1 + a2 + · · ·+ ai | 1 ≤ i ≤ k − 1}
= {a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak−1} .

(PS stands for “partial sums”.)

(Note: PS (α) ⊆ {0, 1, . . . , |α|}.)
Let n ∈ N. A weak composition of n means an α ∈ Nk

satisfying |α| = n.
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Shuffle-compatibility of Des: statement

Let m ∈ N, and let π be an m-permutation.
Let n ∈ N, and let σ be an n-permutation.
Assume that π and σ are disjoint.
Let A be a subset of [m + n − 1].
Here, [k] means {1, 2, . . . , k} for each k ∈ N.

Let L be a weak composition of m + n such that PS (L) = A.
(Such L can easily be constructed.)
Let k be such that L ∈ Nk .
Theorem (Gessel & Zhuang, arXiv:1706.00750,
Theorem 2.8).
The number of shuffles τ of π and σ satisfying Des τ ⊆ A
equals the number of pairs (J,K ) ∈ Nk × Nk such that

J is a weak composition of m satisfying Desπ ⊆ PS (J);
K is a weak composition of n satisfying Desσ ⊆ PS (K );
we have J + K = L (in the monoid Nk).
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Shuffle-compatibility of Des: example 1

Example: Let m = 2 and π = (4, 1).
Let n = 2 and σ = (2, 5).
The shuffles τ of π and σ are

(4, 1, 2, 5) , (4, 2, 1, 5) , (4, 2, 5, 1) ,

(2, 4, 1, 5) , (2, 4, 5, 1) , (2, 5, 4, 1) .

Their descent sets Des τ are

{1} , {1, 2} , {1, 3} ,
{2} , {2, 3} , {3} .

Pick A = {3}. Then, the number of shuffles τ of π and σ
satisfying Des τ ⊆ A is 1.
What about the other number? We must pick a weak
composition L of m + n = 4 such that PS (L) = A = {3}.
We can take L = (3, 1) (or L = (3, 0, 0, . . . , 0, 1) for any
number of 0’s). Let’s pick L = (3, 1).
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requirements

J 1 1 |J| = 2, PS J ⊇ {1}
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Thus, there is exactly 1 solution, as the Theorem predicts.
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Shuffle-compatibility of Des: example 2

Example: Let m = 2 and π = (4, 1).
Let n = 2 and σ = (2, 5).
The shuffles τ of π and σ are

(4, 1, 2, 5) , (4, 2, 1, 5) , (4, 2, 5, 1) ,

(2, 4, 1, 5) , (2, 4, 5, 1) , (2, 5, 4, 1) .

Their descent sets Des τ are

{1} , {1, 2} , {1, 3} ,
{2} , {2, 3} , {3} .

Pick A = {2, 3}. Then, the number of shuffles τ of π and σ
satisfying Des τ ⊆ A is 3.
What about the other number? We must pick a weak
composition L of m + n = 4 such that PS (L) = A = {2, 3}.
We can take L = (2, 1, 1) (or
L = (2, 0, 0, . . . , 0, 1, 0, 0, . . . , 0, 1) for any number of 0’s).
Let’s pick L = (2, 1, 1).
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So we have A = {2, 3} and L = (2, 1, 1).
We want to find the number of pairs (J,K ) such that

J is a weak composition of m satisfying Desπ ⊆ PS (J);
K is a weak composition of n satisfying Desσ ⊆ PS (K );
we have J + K = L (in the monoid Nk).

Let’s solve this:
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Shuffle-compatibility of Des: consequence

Let m ∈ N, and let π be an m-permutation.
Let n ∈ N, and let σ be an n-permutation.
Assume that π and σ are disjoint.
Let A be a subset of [m + n − 1].
Let L be a weak composition of m + n such that PS (L) = A.
Let k be such that L ∈ Nk .
Theorem (Gessel & Zhuang, from previous slide).
The number of shuffles τ of π and σ satisfying Des τ ⊆ A
equals the number of pairs (J,K ) ∈ Nk × Nk such that

J is a weak composition of m satisfying Desπ ⊆ PS (J);
K is a weak composition of n satisfying Desσ ⊆ PS (K );
we have J + K = L (in the monoid Nk).

Corollary.
The number of shuffles τ of π and σ satisfying Des τ ⊆ A
depends only on m, n, Desπ, Desσ and A (but not on π and
σ themselves).

Corollary.
The number of shuffles τ of π and σ satisfying Des τ = A
depends only on m, n, Desπ, Desσ and A (but not on π and
σ themselves).
(Follows from previous corollary by induction on |A|.)
Gessel and Zhuang say that this makes Des
shuffle-compatible. See the next talk for more about this.
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Shuffle-compatibility of Des: proof, 1

Let m ∈ N, and let π be an m-permutation.
Let n ∈ N, and let σ be an n-permutation.
Assume that π and σ are disjoint.
Let A be a subset of [m + n − 1].
Let L be a weak composition of m + n such that PS (L) = A.
Let k be such that L ∈ Nk .
To prove the Theorem, let us restate it using shorthands:
A good shuffle shall mean a shuffle τ of π and σ satisfying
Des τ ⊆ A.
A good pair shall mean a pair (J,K ) ∈ Nk × Nk such that

J is a weak composition of m satisfying Desπ ⊆ PS (J);
K is a weak composition of n satisfying Desσ ⊆ PS (K );
we have J + K = L (in the monoid Nk).

Theorem (Gessel & Zhuang, from previous slide).
The number of good shuffles equals the number of good pairs.

For a proof, we need bijections

{good shuffles}� {good pairs} .
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Shuffle-compatibility of Des: proof, 2: ←

We construct the map {good pairs} → {good shuffles}:
Let (J,K ) be a good pair. Thus, (J,K ) ∈ Nk × Nk and

J is a weak composition of m satisfying Desπ ⊆ PS (J);
K is a weak composition of n satisfying Desσ ⊆ PS (K );
we have J + K = L (in the monoid Nk).

Write J as J = (j1, j2, . . . , jk),
and K as K = (k1, k2, . . . , kk) (sorry).

For each p ∈ [k − 1], insert a bar (“|”) between the
(j1 + j2 + · · ·+ jp)-th letter of π and the next one.
These bars subdivide π into k blocks (some empty), each
increasing (since Desπ ⊆ PS (J)).
Similarly, subdivide σ into k increasing blocks using K .
Now, for each i ∈ [k], let

π(i) be the i-th block of π;
σ(i) be the i-th block of σ;
τ (i) be the unique increasing shuffle of π(i) and σ(i).

Then, the concatenation π(1)π(2) · · ·π(k) is a good shuffle.
So we have found a map {good pairs} → {good shuffles}.
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Shuffle-compatibility of Des: proof, 3: →

We now construct the map {good shuffles} → {good pairs}:
Let τ be a good shuffle. Thus, τ is a shuffle of π and σ
satisfying Des τ ⊆ A.
Write L as L = (l1, l2, . . . , lk).

For each p ∈ [k − 1], insert a bar (“|”) between the
(l1 + l2 + · · ·+ lp)-th letter of τ and the next one.
These bars subdivide τ into k blocks (some empty), each
increasing (since Des τ ⊆ A = PS (L)).
Let J = (j1, j2, . . . , jk), where jp is the number of letters in the
p-th block of τ that come from π.
Similarly define K .
Then, (J,K ) is a good pair.
So we have found a map {good shuffles} → {good pairs}.
The two maps constructed are mutually inverse bijections

{good shuffles}� {good pairs} ;

so the theorem is proven.
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Similarly define K .
Then, (J,K ) is a good pair.
So we have found a map {good shuffles} → {good pairs}.

The two maps constructed are mutually inverse bijections

{good shuffles}� {good pairs} ;

so the theorem is proven.

12 / 16



Shuffle-compatibility of Des: proof, 3: →

We now construct the map {good shuffles} → {good pairs}:
Let τ be a good shuffle. Thus, τ is a shuffle of π and σ
satisfying Des τ ⊆ A.
Write L as L = (l1, l2, . . . , lk).
For each p ∈ [k − 1], insert a bar (“|”) between the
(l1 + l2 + · · ·+ lp)-th letter of τ and the next one.
These bars subdivide τ into k blocks (some empty), each
increasing (since Des τ ⊆ A = PS (L)).
Let J = (j1, j2, . . . , jk), where jp is the number of letters in the
p-th block of τ that come from π.
Similarly define K .
Then, (J,K ) is a good pair.
So we have found a map {good shuffles} → {good pairs}.
The two maps constructed are mutually inverse bijections

{good shuffles}� {good pairs} ;

so the theorem is proven.

12 / 16



Shuffle-compatibility of Des: proof, 3: →

We now construct the map {good shuffles} → {good pairs}:
Let τ be a good shuffle. Thus, τ is a shuffle of π and σ
satisfying Des τ ⊆ A.
Write L as L = (l1, l2, . . . , lk).
For each p ∈ [k − 1], insert a bar (“|”) between the
(l1 + l2 + · · ·+ lp)-th letter of τ and the next one.
These bars subdivide τ into k blocks (some empty), each
increasing (since Des τ ⊆ A = PS (L)).
Let J = (j1, j2, . . . , jk), where jp is the number of letters in the
p-th block of τ that come from π.
Similarly define K .
Then, (J,K ) is a good pair.
So we have found a map {good shuffles} → {good pairs}.
The two maps constructed are mutually inverse bijections

{good shuffles}� {good pairs} ;

so the theorem is proven.

12 / 16



The hollowed-out descent sets Desi ,j π

Fix i ∈ N and j ∈ N.
For any n and any n-permutation π, we define the
hollowed-out descent set Desi ,j π by

Desi ,j π = (Desπ)∩({1, 2, . . . , i} ∪ {n − 1, n − 2, . . . , n − j}) .

Thus, Desi ,j π is the set of all descents of π that are among
the i first or j last possible positions for a descent to be in.
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Shuffle-compatibility of Desi ,j : statement

Let m ∈ N, and let π be an m-permutation.
Let n ∈ N, and let σ be an n-permutation.
Assume that π and σ are disjoint.
Let B be a subset of
{1, 2, . . . , i} ∪ {m + n − 1,m + n − 2, . . . ,m + n − j}.
Let A = B ∪ {i + 1, i + 2, . . . ,m + n − j − 1}.
Let L be a weak composition of m + n such that PS (L) = A.
Let k be such that L ∈ Nk .
Theorem (Gessel & Zhuang, arXiv:1706.00750,
Theorem 6.1).
The number of shuffles τ of π and σ satisfying Desi ,j τ ⊆ B
equals the number of pairs (J,K ) ∈ Nk × Nk such that

J is a weak composition of m satisfying Desi ,j π ⊆ PS (J);
K is a weak composition of n satisfying
Desi ,j σ ⊆ PS (K );
we have J + K = L (in the monoid Nk).
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Shuffle-compatibility of Desi ,j : proof

We can derive this Theorem from the previous Theorem.
This relies on the following three observations:

We have Desi ,j τ ⊆ B if and only if Des τ ⊆ A.
For any weak composition J of m satisfying J ≤ L (that
is, each entry of J is ≤ to the corresponding entry of L),
we have Desi ,j π ⊆ PS (J) if and only if Desπ ⊆ PS (J).
A similar statement about weak compositions K of n.

Proof of the second observation:
Since PS (L) = A ⊇ {i + 1, i + 2, . . . ,m + n − j − 1}, the
composition L has the form

L =
(

(some numbers with sum ≤ i + 1) ,

(a sequence of 0’s and 1’s) ,

(some numbers with sum ≤ j + 1)
)
.

Since J ≤ L, it follows that J also has this form. In other
words, PS (J) ⊇ {i + 1, i + 2, . . . ,m − j − 1}. Hence, the
second observation follows.
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