Shuffle-compatibility of the descent set

Darij Grinberg (UMN)

8 March 2018
University of Illinois at Urbana-Champaign
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/urbana18a.pdf paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf project: https://github.com/darijgr/gzshuf

- This is an expository talk on a little part of the paper:
- Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation statistics, arXiv:1706.00750.
Nothing here is my invention.
- This is an expository talk on a little part of the paper:
- Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation statistics, arXiv:1706.00750.
Nothing here is my invention.
For my own work, see the next talk.
- This is an expository talk on a little part of the paper:
- Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation statistics, arXiv:1706.00750.
Nothing here is my invention.
For my own work, see the next talk.
- I will sketch the proofs of Theorem 2.8 and of Theorem 6.1 from their paper.
- Unlike that paper, I will avoid any extraneous notation and theory here.
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- For $n \in \mathbb{N}$, an n-permutation means a tuple of n distinct positive integers.
Example: $(3,1,7)$ is a 3 -permutation, but $(2,1,2)$ is not. (Caveat lector: Not the usual meaning of "permutation".)
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- For $n \in \mathbb{N}$, an n-permutation means a tuple of n distinct positive integers.
Example: $(3,1,7)$ is a 3 -permutation, but $(2,1,2)$ is not. (Caveat lector: Not the usual meaning of "permutation".)
- If π is an n-permutation and $i \in\{1,2, \ldots, n\}$, then π_{i} denotes the i-th entry of π.
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- For $n \in \mathbb{N}$, an n-permutation means a tuple of n distinct positive integers.
Example: $(3,1,7)$ is a 3 -permutation, but $(2,1,2)$ is not. (Caveat lector: Not the usual meaning of "permutation".)
- If π is an n-permutation and $i \in\{1,2, \ldots, n\}$, then π_{i} denotes the i-th entry of π.
- If π is an n-permutation, then a descent of π means an $i \in\{1,2, \ldots, n-1\}$ such that $\pi_{i}>\pi_{i+1}$.
- The descent set Des π of an n-permutation π is the set of all descents of π.
Example: $\operatorname{Des}(3,1,5,2,4)=\{1,3\}$.

Shuffles of permutations

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.

- We say that π and σ are disjoint if they have no letter in common.
- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation.
- We say that π and σ are disjoint if they have no letter in common.
- Assume that π and σ are disjoint. An $(m+n)$-permutation τ is called a shuffle of π and σ if both π and σ appear as subsequences of τ.
(And thus, no other letters can appear in τ.)
- Example: The shuffles of $(4,1)$ and $(2,5)$ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

- Let $m \in \mathbb{N}$, and let π be an m-permutation. Let $n \in \mathbb{N}$, and let σ be an n-permutation.
- We say that π and σ are disjoint if they have no letter in common.
- Assume that π and σ are disjoint. An $(m+n)$-permutation τ is called a shuffle of π and σ if both π and σ appear as subsequences of τ.
(And thus, no other letters can appear in τ.)
- Example: The shuffles of $(4,1)$ and $(2,5)$ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

- Observe that π and σ have $\binom{m+n}{m}$ shuffles, in bijection with m-element subsets of $\{1,2, \ldots, m+n\}$.

Weak compositions

- The set \mathbb{N}^{k} of k-tuples is an additive monoid. (Keep in mind: $0 \in \mathbb{N}$.)
- If $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$, then $|\alpha|$ is defined to be $a_{1}+a_{2}+\cdots+a_{k}$.
- The set \mathbb{N}^{k} of k-tuples is an additive monoid. (Keep in mind: $0 \in \mathbb{N}$.)
- If $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$, then $|\alpha|$ is defined to be $a_{1}+a_{2}+\cdots+a_{k}$.
- For any $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$, we define a set PS $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ to be

$$
\begin{aligned}
& \left\{a_{1}+a_{2}+\cdots+a_{i} \mid 1 \leq i \leq k-1\right\} \\
& =\left\{a_{1}, a_{1}+a_{2}, \ldots, a_{1}+a_{2}+\cdots+a_{k-1}\right\}
\end{aligned}
$$

(PS stands for "partial sums".)

- The set \mathbb{N}^{k} of k-tuples is an additive monoid. (Keep in mind: $0 \in \mathbb{N}$.)
- If $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$, then $|\alpha|$ is defined to be $a_{1}+a_{2}+\cdots+a_{k}$.
- For any $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$, we define a set PS $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ to be

$$
\begin{aligned}
& \left\{a_{1}+a_{2}+\cdots+a_{i} \mid 1 \leq i \leq k-1\right\} \\
& =\left\{a_{1}, a_{1}+a_{2}, \ldots, a_{1}+a_{2}+\cdots+a_{k-1}\right\}
\end{aligned}
$$

(PS stands for "partial sums".)
(Note: $\operatorname{PS}(\alpha) \subseteq\{0,1, \ldots,|\alpha|\}$.)

- The set \mathbb{N}^{k} of k-tuples is an additive monoid. (Keep in mind: $0 \in \mathbb{N}$.)
- If $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$, then $|\alpha|$ is defined to be $a_{1}+a_{2}+\cdots+a_{k}$.
- For any $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$, we define a set PS $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ to be

$$
\begin{aligned}
& \left\{a_{1}+a_{2}+\cdots+a_{i} \mid 1 \leq i \leq k-1\right\} \\
& =\left\{a_{1}, a_{1}+a_{2}, \ldots, a_{1}+a_{2}+\cdots+a_{k-1}\right\}
\end{aligned}
$$

(PS stands for "partial sums".)
(Note: $\operatorname{PS}(\alpha) \subseteq\{0,1, \ldots,|\alpha|\}$.)

- Let $n \in \mathbb{N}$. A weak composition of n means an $\alpha \in \mathbb{N}^{k}$ satisfying $|\alpha|=n$.

Shuffle-compatibility of Des: statement

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$. Here, $[k]$ means $\{1,2, \ldots, k\}$ for each $k \in \mathbb{N}$.

Shuffle-compatibility of Des: statement

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$.

Here, [k] means $\{1,2, \ldots, k\}$ for each $k \in \mathbb{N}$.

- How many shuffles τ of π and σ satisfy $\operatorname{Des} \tau \subseteq A$?

Shuffle-compatibility of Des: statement

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$. Here, $[k]$ means $\{1,2, \ldots, k\}$ for each $k \in \mathbb{N}$.
- How many shuffles τ of π and σ satisfy $\operatorname{Des} \tau \subseteq A$?
- The following theorem by Gessel and Zhuang gives the answer.
- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$. Here, [k] means $\{1,2, \ldots, k\}$ for each $k \in \mathbb{N}$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. (Such L can easily be constructed.)
Let k be such that $L \in \mathbb{N}^{k}$.
- Theorem (Gessel \& Zhuang, arXiv:1706.00750, Theorem 2.8).
The number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ equals the number of pairs $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ such that
- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
The shuffles τ of π and σ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
The shuffles τ of π and σ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

Their descent sets Des τ are

$$
\begin{array}{lll}
\{1\}, & \{1,2\}, & \{1,3\}, \\
\{2\}, & \{2,3\}, & \{3\} .
\end{array}
$$

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
The shuffles τ of π and σ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

Their descent sets Des τ are

$$
\begin{array}{lll}
\{1\}, & \{1,2\}, & \{1,3\}, \\
\{2\}, & \{2,3\}, & \{3\}
\end{array}
$$

Pick $A=\{3\}$. Then, the number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ is 1 .
What about the other number?

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
The shuffles τ of π and σ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

Their descent sets Des τ are

$$
\begin{array}{lll}
\{1\}, & \{1,2\}, & \{1,3\}, \\
\{2\}, & \{2,3\}, & \{3\} .
\end{array}
$$

Pick $A=\{3\}$. Then, the number of shuffles τ of π and σ satisfying $\operatorname{Des} \tau \subseteq A$ is 1 .
What about the other number? We must pick a weak composition L of $m+n=4$ such that $\mathrm{PS}(L)=A=\{3\}$. We can take $L=(3,1)$ (or $L=(3,0,0, \ldots, 0,1)$ for any number of 0 's). Let's pick $L=(3,1)$.

Shuffle-compatibility of Des: example 1

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{3\}$ and $L=(3,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{3\}$ and $L=(3,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

			requirements
J	$?$	$?$	$\|J\|=m$, PS $J \supseteq \operatorname{Des} \pi$
$+K$	$?$	$?$	$\|K\|=n$, PS $K \supseteq \operatorname{Des} \sigma$
$=L$	3	1	

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{3\}$ and $L=(3,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

			requirements
J	$?$	$?$	$\|J\|=2, \quad$ PS $J \supseteq\{1\}$
$+K$	$?$	$?$	$\|K\|=2, \quad P S K \supseteq\{ \}$
$=L$	3	1	

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{3\}$ and $L=(3,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

			requirements
J	1	1	$\|J\|=2, \quad$ PS $J \supseteq\{1\}$
$+K$	$?$	$?$	$\|K\|=2, \quad P S K \supseteq\{ \}$
$=L$	3	1	

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{3\}$ and $L=(3,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

			requirements
J	1	1	$\|J\|=2, \quad$ PS $J \supseteq\{1\}$
$+K$	2	0	$\|K\|=2, \quad P S K \supseteq\{ \}$
L	3	1	

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{3\}$ and $L=(3,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

			requirements
J	1	1	$\|J\|=2, \quad$ PS $J \supseteq\{1\}$
$+K$	2	0	$\|K\|=2, \quad P S K \supseteq\{ \}$
$=L$	3	1	

Thus, there is exactly 1 solution, as the Theorem predicts.

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
The shuffles τ of π and σ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
The shuffles τ of π and σ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

Their descent sets Des τ are

$$
\begin{array}{lll}
\{1\}, & \{1,2\}, & \{1,3\}, \\
\{2\}, & \{2,3\}, & \{3\} .
\end{array}
$$

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
The shuffles τ of π and σ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

Their descent sets Des τ are

$$
\begin{array}{lll}
\{1\}, & \{1,2\}, & \{1,3\}, \\
\{2\}, & \{2,3\}, & \{3\} .
\end{array}
$$

Pick $A=\{2,3\}$. Then, the number of shuffles τ of π and σ satisfying $\operatorname{Des} \tau \subseteq A$ is 3 .
What about the other number?

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
The shuffles τ of π and σ are

$$
\begin{aligned}
& (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)
\end{aligned}
$$

Their descent sets Des τ are

$$
\begin{array}{lll}
\{1\}, & \{1,2\}, & \{1,3\}, \\
\{2\}, & \{2,3\}, & \{3\} .
\end{array}
$$

Pick $A=\{2,3\}$. Then, the number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ is 3 .
What about the other number? We must pick a weak composition L of $m+n=4$ such that $\operatorname{PS}(L)=A=\{2,3\}$.
We can take $L=(2,1,1)$ (or
$L=(2,0,0, \ldots, 0,1,0,0, \ldots, 0,1)$ for any number of 0 's $)$.
Let's pick $L=(2,1,1)$.

Shuffle-compatibility of Des: example 2

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{2,3\}$ and $L=(2,1,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{2,3\}$ and $L=(2,1,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

				requirements
J	$?$	$?$	$?$	$\|J\|=m$, PS $J \supseteq \operatorname{Des} \pi$
$+K$	$?$	$?$	$?$	$\|K\|=n$, PS $K \supseteq \operatorname{Des} \sigma$
$=L$	2	1	1	

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{2,3\}$ and $L=(2,1,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

				requirements
J	$?$	$?$	$?$	$\|J\|=2, \quad$ PS $J \supseteq\{1\}$
$+K$	$?$	$?$	$?$	$\|K\|=2, \quad$ PS $K \supseteq\}$
$=L$	2	1	1	

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{2,3\}$ and $L=(2,1,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

				requirements	
J	1	1	0	$\|J\|=2$,	PS $J \supseteq\{1\}$
$+K$	1	0	1	$\|K\|=2$,	PS $K \supseteq\}$
$=L$	2	1	1		

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{2,3\}$ and $L=(2,1,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

				requirements	
J	1	0	1	$\|J\|=2, \quad$ PS $J \supseteq\{1\}$	
$+K$	1	1	0	$\|K\|=2, \quad$ PS $K \supseteq\}$	
$=L$	2	1	1		

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{2,3\}$ and $L=(2,1,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

				requirements	
J	0	1	1	$\|J\|=2, \quad$ PS $J \supseteq\{1\}$	
$+K$	2	0	0	$\|K\|=2, \quad$ PS $K \supseteq\}$	
$=L$	2	1	1		

- Example: Let $m=2$ and $\pi=(4,1)$.

Let $n=2$ and $\sigma=(2,5)$.
So we have $A=\{2,3\}$ and $L=(2,1,1)$.
We want to find the number of pairs (J, K) such that

- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Let's solve this:

				requirements	
J	0	1	1	$\|J\|=2$,	PS $J \supseteq\{1\}$
$+K$	2	0	0	$\|K\|=2$,	PS $K \supseteq\}$
$=L$	2	1	1		

Thus, there are 3 solutions, as the Theorem predicts.

Shuffle-compatibility of Des: consequence

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. Let k be such that $L \in \mathbb{N}^{k}$.
- Theorem (Gessel \& Zhuang, from previous slide). The number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ equals the number of pairs $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ such that
- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Shuffle-compatibility of Des: consequence

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. Let k be such that $L \in \mathbb{N}^{k}$.
- Corollary.

The number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ depends only on m, n, $\operatorname{Des} \pi$, $\operatorname{Des} \sigma$ and A (but not on π and σ themselves).

Shuffle-compatibility of Des: consequence

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. Let k be such that $L \in \mathbb{N}^{k}$.
- Corollary.

The number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ depends only on m, n, $\operatorname{Des} \pi$, $\operatorname{Des} \sigma$ and A (but not on π and σ themselves).

- Corollary.

The number of shuffles τ of π and σ satisfying Des $\tau=A$ depends only on m, n, $\operatorname{Des} \pi$, Des σ and A (but not on π and σ themselves).
(Follows from previous corollary by induction on $|A|$.)

Shuffle-compatibility of Des: consequence

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. Let k be such that $L \in \mathbb{N}^{k}$.
- Corollary.

The number of shuffles τ of π and σ satisfying Des $\tau \subseteq A$ depends only on m, n, $\operatorname{Des} \pi$, $\operatorname{Des} \sigma$ and A (but not on π and σ themselves).

- Corollary.

The number of shuffles τ of π and σ satisfying Des $\tau=A$
depends only on m, n, Des π, Des σ and A (but not on π and σ themselves).
(Follows from previous corollary by induction on $|A|$.)
Gessel and Zhuang say that this makes Des shuffle-compatible. See the next talk for more about this.

Shuffle-compatibility of Des: proof, 1

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. Let k be such that $L \in \mathbb{N}^{k}$.
- To prove the Theorem, let us restate it using shorthands:
- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. Let k be such that $L \in \mathbb{N}^{k}$.
- A good shuffle shall mean a shuffle τ of π and σ satisfying Des $\tau \subseteq A$.
- A good pair shall mean a pair $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ such that - J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Theorem (Gessel \& Zhuang, from previous slide). The number of good shuffles equals the number of good pairs.
- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let A be a subset of $[m+n-1]$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. Let k be such that $L \in \mathbb{N}^{k}$.
- A good shuffle shall mean a shuffle τ of π and σ satisfying Des $\tau \subseteq A$.
- A good pair shall mean a pair $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ such that - J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Theorem (Gessel \& Zhuang, from previous slide). The number of good shuffles equals the number of good pairs.
- For a proof, we need bijections

$$
\{\text { good shuffles }\} \rightleftarrows \text { \{good pairs }\}
$$

Shuffle-compatibility of Des: proof, 2: \leftarrow

- We construct the map \{good pairs $\} \rightarrow$ \{good shuffles\}:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ and
- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Shuffle-compatibility of Des: proof, 2: \leftarrow

- We construct the map \{good pairs $\} \rightarrow$ \{good shuffles\}:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ and
- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Write J as $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$,
and K as $K=\left(k_{1}, k_{2}, \ldots, k_{k}\right)$ (sorry).
- We construct the map \{good pairs $\} \rightarrow$ \{good shuffles $\}$:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ and
- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Write J as $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, and K as $K=\left(k_{1}, k_{2}, \ldots, k_{k}\right)$ (sorry).
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(j_{1}+j_{2}+\cdots+j_{p}\right)$-th letter of π and the next one. Example: If $m=8$ and $J=(3,2,0,2,1,0)$, then we get $\pi_{1} \pi_{2} \pi_{3}\left|\pi_{4} \pi_{5}\right|\left|\pi_{6} \pi_{7}\right| \pi_{8} \mid$.
- We construct the map \{good pairs $\} \rightarrow$ \{good shuffles\}:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ and
- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Write J as $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, and K as $K=\left(k_{1}, k_{2}, \ldots, k_{k}\right)$ (sorry).
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(j_{1}+j_{2}+\cdots+j_{p}\right)$-th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since Des $\pi \subseteq \operatorname{PS}(J)$).
- We construct the map \{good pairs $\} \rightarrow$ \{good shuffles\}:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ and
- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Write J as $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, and K as $K=\left(k_{1}, k_{2}, \ldots, k_{k}\right)$ (sorry).
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(j_{1}+j_{2}+\cdots+j_{p}\right)$-th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since Des $\pi \subseteq \operatorname{PS}(J)$).
- Similarly, subdivide σ into k increasing blocks using K.
- We construct the map \{good pairs $\} \rightarrow$ \{good shuffles\}:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ and
- J is a weak composition of m satisfying Des $\pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Write J as $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, and K as $K=\left(k_{1}, k_{2}, \ldots, k_{k}\right)$ (sorry).
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(j_{1}+j_{2}+\cdots+j_{p}\right)$-th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since Des $\pi \subseteq \operatorname{PS}(J)$).
- Similarly, subdivide σ into k increasing blocks using K.
- Now, for each $i \in[k]$, let
- $\pi^{(i)}$ be the i-th block of π;
- $\sigma^{(i)}$ be the i-th block of σ;
- $\tau^{(i)}$ be the unique increasing shuffle of $\pi^{(i)}$ and $\sigma^{(i)}$.

Shuffle-compatibility of Des: proof, 2: \leftarrow

- We construct the map \{good pairs\} \rightarrow \{good shuffles\}:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ and
- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Write J as $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, and K as $K=\left(k_{1}, k_{2}, \ldots, k_{k}\right)$ (sorry).
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(j_{1}+j_{2}+\cdots+j_{p}\right)$-th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since Des $\pi \subseteq \operatorname{PS}(J)$).
- Similarly, subdivide σ into k increasing blocks using K.
- Now, for each $i \in[k]$, let
- $\pi^{(i)}$ be the i-th block of π;
- $\sigma^{(i)}$ be the i-th block of σ;
- $\tau^{(i)}$ be the unique increasing shuffle of $\pi^{(i)}$ and $\sigma^{(i)}$. Then, the concatenation $\pi^{(1)} \pi^{(2)} \cdots \pi^{(k)}$ is a good shuffle.

Shuffle-compatibility of Des: proof, 2: \leftarrow

- We construct the map \{good pairs\} \rightarrow \{good shuffles\}:
- Let (J, K) be a good pair. Thus, $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ and
- J is a weak composition of m satisfying $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying $\operatorname{Des} \sigma \subseteq \operatorname{PS}(K)$;
- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).
- Write J as $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, and K as $K=\left(k_{1}, k_{2}, \ldots, k_{k}\right)$ (sorry).
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(j_{1}+j_{2}+\cdots+j_{p}\right)$-th letter of π and the next one.
- These bars subdivide π into k blocks (some empty), each increasing (since Des $\pi \subseteq \operatorname{PS}(J)$).
- Similarly, subdivide σ into k increasing blocks using K.
- Now, for each $i \in[k]$, let
- $\pi^{(i)}$ be the i-th block of π;
- $\sigma^{(i)}$ be the i-th block of σ;
- $\tau^{(i)}$ be the unique increasing shuffle of $\pi^{(i)}$ and $\sigma^{(i)}$. Then, the concatenation $\pi^{(1)} \pi^{(2)} \cdots \pi^{(k)}$ is a good shuffle. So we have found a map $\{$ good pairs $\} \rightarrow$ \{good shuffles $\}$.

Shuffle-compatibility of Des: proof, 3: \rightarrow

- We now construct the map \{good shuffles\} \rightarrow \{good pairs\}:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying $\operatorname{Des} \tau \subseteq A$.

Shuffle-compatibility of Des: proof, 3: \rightarrow

- We now construct the map \{good shuffles\} \rightarrow \{good pairs\}:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$.

Shuffle-compatibility of Des: proof, 3: \rightarrow

- We now construct the map \{good shuffles $\} \rightarrow$ \{good pairs\}:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying $\operatorname{Des} \tau \subseteq A$.
- Write L as $L=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$.
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(I_{1}+I_{2}+\cdots+I_{p}\right)$-th letter of τ and the next one. (The positions of these bars are the elements of A, though they might have multiplicities.)

Shuffle-compatibility of Des: proof, 3: \rightarrow

- We now construct the map \{good shuffles\} \rightarrow \{good pairs\}:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$.
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(I_{1}+I_{2}+\cdots+I_{p}\right)$-th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since Des $\tau \subseteq A=\mathrm{PS}(L)$).

Shuffle-compatibility of Des: proof, $3: \rightarrow$

- We now construct the map \{good shuffles $\} \rightarrow$ \{good pairs\}:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$.
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(I_{1}+I_{2}+\cdots+I_{p}\right)$-th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since Des $\tau \subseteq A=\mathrm{PS}(L)$).
- Let $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, where j_{p} is the number of letters in the p-th block of τ that come from π.
- We now construct the map \{good shuffles\} \rightarrow \{good pairs\}:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying $\operatorname{Des} \tau \subseteq A$.
- Write L as $L=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$.
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(I_{1}+I_{2}+\cdots+I_{p}\right)$-th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since Des $\tau \subseteq A=\mathrm{PS}(L)$).
- Let $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, where j_{p} is the number of letters in the p-th block of τ that come from π.
- Similarly define K.
- We now construct the map \{good shuffles $\} \rightarrow$ \{good pairs\}:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying $\operatorname{Des} \tau \subseteq A$.
- Write L as $L=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$.
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(I_{1}+I_{2}+\cdots+I_{p}\right)$-th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since Des $\tau \subseteq A=\mathrm{PS}(L)$).
- Let $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, where j_{p} is the number of letters in the p-th block of τ that come from π.
- Similarly define K.
- Then, (J, K) is a good pair.
- We now construct the map \{good shuffles $\} \rightarrow$ \{good pairs\}:
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying $\operatorname{Des} \tau \subseteq A$.
- Write L as $L=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$.
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(I_{1}+I_{2}+\cdots+I_{p}\right)$-th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since Des $\tau \subseteq A=\mathrm{PS}(L)$).
- Let $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, where j_{p} is the number of letters in the p-th block of τ that come from π.
- Similarly define K.
- Then, (J, K) is a good pair.

So we have found a map \{good shuffles $\} \rightarrow$ \{good pairs $\}$.

Shuffle-compatibility of Des: proof, 3: \rightarrow

- We now construct the map \{good shuffles $\} \rightarrow$ \{good pairs $\}:$
- Let τ be a good shuffle. Thus, τ is a shuffle of π and σ satisfying Des $\tau \subseteq A$.
- Write L as $L=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$.
- For each $p \in[k-1]$, insert a bar ("|") between the $\left(I_{1}+I_{2}+\cdots+I_{p}\right)$-th letter of τ and the next one.
- These bars subdivide τ into k blocks (some empty), each increasing (since Des $\tau \subseteq A=\mathrm{PS}(L)$).
- Let $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right)$, where j_{p} is the number of letters in the p-th block of τ that come from π.
- Similarly define K.
- Then, (J, K) is a good pair.

So we have found a map \{good shuffles\} \rightarrow \{good pairs $\}$.

- The two maps constructed are mutually inverse bijections

$$
\{\text { good shuffles }\} \rightleftarrows\{\text { good pairs }\} ;
$$

so the theorem is proven.

- Fix $i \in \mathbb{N}$ and $j \in \mathbb{N}$.

For any n and any n-permutation π, we define the hollowed-out descent set Des ${ }_{i, j} \pi$ by
$\operatorname{Des}_{i, j} \pi=(\operatorname{Des} \pi) \cap(\{1,2, \ldots, i\} \cup\{n-1, n-2, \ldots, n-j\})$.

- Fix $i \in \mathbb{N}$ and $j \in \mathbb{N}$.

For any n and any n-permutation π, we define the hollowed-out descent set $\operatorname{Des}_{i, j} \pi$ by
$\operatorname{Des}_{i, j} \pi=(\operatorname{Des} \pi) \cap(\{1,2, \ldots, i\} \cup\{n-1, n-2, \ldots, n-j\})$.
Thus, $\operatorname{Des}_{i, j} \pi$ is the set of all descents of π that are among the i first or j last possible positions for a descent to be in.

- Let $m \in \mathbb{N}$, and let π be an m-permutation.

Let $n \in \mathbb{N}$, and let σ be an n-permutation.
Assume that π and σ are disjoint.

- Let B be a subset of $\{1,2, \ldots, i\} \cup\{m+n-1, m+n-2, \ldots, m+n-j\}$.
- Let $A=B \cup\{i+1, i+2, \ldots, m+n-j-1\}$.
- Let L be a weak composition of $m+n$ such that $\operatorname{PS}(L)=A$. Let k be such that $L \in \mathbb{N}^{k}$.
- Theorem (Gessel \& Zhuang, arXiv:1706.00750, Theorem 6.1).
The number of shuffles τ of π and σ satisfying $\operatorname{Des}_{i, j} \tau \subseteq B$ equals the number of pairs $(J, K) \in \mathbb{N}^{k} \times \mathbb{N}^{k}$ such that
- J is a weak composition of m satisfying $\operatorname{Des}_{i, j} \pi \subseteq \operatorname{PS}(J)$;
- K is a weak composition of n satisfying

Des $_{i, j} \sigma \subseteq \mathrm{PS}(K)$;

- we have $J+K=L$ (in the monoid \mathbb{N}^{k}).

Shuffle-compatibility of Des $_{i, j}$: proof

- We can derive this Theorem from the previous Theorem.

This relies on the following three observations:

- We have $\operatorname{Des}_{i, j} \tau \subseteq B$ if and only if $\operatorname{Des} \tau \subseteq A$.
- For any weak composition J of m satisfying $J \leq L$ (that is, each entry of J is \leq to the corresponding entry of L), we have $\operatorname{Des}_{i, j} \pi \subseteq \operatorname{PS}(J)$ if and only if $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$.
- A similar statement about weak compositions K of n.

Shuffle-compatibility of Des $_{i, j}$: proof

- We can derive this Theorem from the previous Theorem.

This relies on the following three observations:

- We have $\operatorname{Des}_{i, j} \tau \subseteq B$ if and only if $\operatorname{Des} \tau \subseteq A$.
- For any weak composition J of m satisfying $J \leq L$ (that is, each entry of J is \leq to the corresponding entry of L), we have $\operatorname{Des}_{i, j} \pi \subseteq \operatorname{PS}(J)$ if and only if $\operatorname{Des} \pi \subseteq \operatorname{PS}(J)$.
- A similar statement about weak compositions K of n.
- The first observation is obvious.

Shuffle-compatibility of Des $_{i, j}$: proof

- We can derive this Theorem from the previous Theorem.

This relies on the following three observations:

- We have $\operatorname{Des}_{i, j} \tau \subseteq B$ if and only if $\operatorname{Des} \tau \subseteq A$.
- For any weak composition J of m satisfying $J \leq L$ (that is, each entry of J is \leq to the corresponding entry of L), we have $\operatorname{Des}_{i, j} \pi \subseteq \operatorname{PS}(J)$ if and only if Des $\pi \subseteq \operatorname{PS}(J)$.
- A similar statement about weak compositions K of n.
- Proof of the second observation:

Since $\operatorname{PS}(L)=A \supseteq\{i+1, i+2, \ldots, m+n-j-1\}$, the composition L has the form

$$
\begin{aligned}
L=(& (\text { some numbers with sum } \leq i+1) \\
& (\text { a sequence of } 0 \text { 's and } 1 \text { 's) } \\
& (\text { some numbers with sum } \leq j+1))
\end{aligned}
$$

Since $J \leq L$, it follows that J also has this form. In other words, $\mathrm{PS}(J) \supseteq\{i+1, i+2, \ldots, m-j-1\}$. Hence, the second observation follows.

Thanks to Ira Gessel and Yan Zhuang for initiating this direction (and for helpful discussions), and to Alex Yong for an invitation to UIUC.
And thanks to you for attending!
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/urbana18a.pdf paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf project: https://github.com/darijgr/gzshuf

