A quotient of the ring of symmetric functions generalizing quantum cohomology

Darij Grinberg

1 March 2019
University of Minnesota, Minneapolis, MN
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/umn2019.pdf paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/basisquot.pdf overview: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/fpsac19.pdf

What is this about?

- From a modern point of view, Schubert calculus (a.k.a. classical enumerative geometry, or Hilbert's 15th problem) is about two cohomology rings:

$$
\mathrm{H}^{*}(\underbrace{\operatorname{Gr}(k, n)}_{\text {Grassmannian }}) \text { and } \mathrm{H}^{*}(\underbrace{\mathrm{Fl}(n)}_{\text {flag variety }})
$$

(both varieties over \mathbb{C}).

- From a modern point of view, Schubert calculus (a.k.a. classical enumerative geometry, or Hilbert's 15th problem) is about two cohomology rings:

$$
\mathrm{H}^{*}(\underbrace{\operatorname{Gr}(k, n)}_{\text {Grassmannian }}) \text { and } \mathrm{H}^{*}(\underbrace{\mathrm{Fl}(n)}_{\text {flag variety }})
$$

(both varieties over \mathbb{C}).

- In this talk, we are concerned with the first.
- From a modern point of view, Schubert calculus (a.k.a. classical enumerative geometry, or Hilbert's 15th problem) is about two cohomology rings:

$$
\mathrm{H}^{*}(\underbrace{\operatorname{Gr}(k, n)}_{\text {Grassmannian }}) \text { and } \mathrm{H}^{*}(\underbrace{\mathrm{Fl}(n)}_{\text {flag variety }})
$$

(both varieties over \mathbb{C}).

- In this talk, we are concerned with the first.
- Classical result: as rings,

$$
\begin{aligned}
& \mathrm{H}^{*}(\operatorname{Gr}(k, n)) \\
& \cong\left(\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k} \text { over } \mathbb{Z}\right) \\
& \quad \quad /\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n}\right)_{\text {ideal }},
\end{aligned}
$$

where the h_{i} are complete homogeneous symmetric polynomials (to be defined soon).

- (Small) Quantum cohomology is a deformation of cohomology from the 1980-90s. For the Grassmannian, it is

$$
\begin{aligned}
& \mathrm{QH}^{*}(\operatorname{Gr}(k, n)) \\
& \cong\left(\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k} \text { over } \mathbb{Z}[q]\right) \\
& \quad \quad /\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n-1}, h_{n}+(-1)^{k} q\right)_{\text {ideal }} .
\end{aligned}
$$

Quantum cohomology of $\operatorname{Gr}(k, n)$

- (Small) Quantum cohomology is a deformation of cohomology from the 1980-90s. For the Grassmannian, it is
$\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$
$\cong\left(\right.$ symmetric polynomials in $x_{1}, x_{2}, \ldots, x_{k}$ over $\left.\mathbb{Z}[q]\right)$

$$
/\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n-1}, h_{n}+(-1)^{k} q\right)_{\text {ideal }}
$$

- Many properties of classical cohomology still hold here. In particular: $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ has a $\mathbb{Z}[q]$-module basis $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ of (projected) Schur polynomials (to be defined soon), with λ ranging over all partitions with $\leq k$ parts and each part $\leq n-k$. The structure constants are the Gromov-Witten invariants. References:
- Aaron Bertram, Ionut Ciocan-Fontanine, William Fulton, Quantum multiplication of Schur polynomials, 1999.
- Alexander Postnikov, Affine approach to quantum Schubert calculus, 2005.

Where are we going?

- Goal: Deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- Goal: Deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- The new ring has no geometric interpretation known so far, but various properties suggesting such an interpretation likely exists.
- Goal: Deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- The new ring has no geometric interpretation known so far, but various properties suggesting such an interpretation likely exists.
- I will now start from scratch and define standard notations around symmetric polynomials, then introduce the deformed cohomology ring algebraically.
- Goal: Deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- The new ring has no geometric interpretation known so far, but various properties suggesting such an interpretation likely exists.
- I will now start from scratch and define standard notations around symmetric polynomials, then introduce the deformed cohomology ring algebraically.
- There is a number of open questions and things to explore.

A more general setting: \mathcal{P} and \mathcal{S}

- Let \mathbf{k} be a commutative ring.

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $k \in \mathbb{N}$.

A more general setting: \mathcal{P} and \mathcal{S}

- Let \mathbf{k} be a commutative ring.

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $k \in \mathbb{N}$.

- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be the polynomial ring in k indeterminates over \mathbf{k}.

A more general setting: \mathcal{P} and \mathcal{S}

- Let \mathbf{k} be a commutative ring. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $k \in \mathbb{N}$.
- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be the polynomial ring in k indeterminates over \mathbf{k}.
- For each k-tuple $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences.

A more general setting: \mathcal{P} and \mathcal{S}

- Let \mathbf{k} be a commutative ring. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $k \in \mathbb{N}$.
- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be the polynomial ring in k indeterminates over \mathbf{k}.
- For each k-tuple $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences.
- For each $\alpha \in \mathbb{N}^{k}$, let x^{α} be the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$, and let $|\alpha|$ be the degree $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ of this monomial.
- Let \mathbf{k} be a commutative ring.

$$
\text { Let } \mathbb{N}=\{0,1,2, \ldots\} . \text { Let } k \in \mathbb{N} \text {. }
$$

- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be the polynomial ring in k indeterminates over \mathbf{k}.
- For each k-tuple $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences.
- For each $\alpha \in \mathbb{N}^{k}$, let x^{α} be the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$, and let $|\alpha|$ be the degree $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ of this monomial.
- Let \mathcal{S} denote the ring of symmetric polynomials in \mathcal{P}.

These are the polynomials $f \in \mathcal{P}$ satisfying

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(k)}\right)
$$

for all permutations σ of $\{1,2, \ldots, k\}$.

- Let \mathbf{k} be a commutative ring.

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $k \in \mathbb{N}$.

- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be the polynomial ring in k indeterminates over \mathbf{k}.
- For each k-tuple $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences.
- For each $\alpha \in \mathbb{N}^{k}$, let x^{α} be the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$, and let $|\alpha|$ be the degree $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ of this monomial.
- Let \mathcal{S} denote the ring of symmetric polynomials in \mathcal{P}.

These are the polynomials $f \in \mathcal{P}$ satisfying

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(k)}\right)
$$

for all permutations σ of $\{1,2, \ldots, k\}$.

- Theorem (Artin ≤ 1944): The \mathcal{S}-module \mathcal{P} is free with basis

- Let \mathbf{k} be a commutative ring.

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $k \in \mathbb{N}$.

- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be the polynomial ring in k indeterminates over \mathbf{k}.
- For each k-tuple $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences.
- For each $\alpha \in \mathbb{N}^{k}$, let x^{α} be the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$, and let $|\alpha|$ be the degree $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ of this monomial.
- Let \mathcal{S} denote the ring of symmetric polynomials in \mathcal{P}.

These are the polynomials $f \in \mathcal{P}$ satisfying

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(k)}\right)
$$

for all permutations σ of $\{1,2, \ldots, k\}$.

- Theorem (Artin ≤ 1944): The \mathcal{S}-module \mathcal{P} is free with basis

Example: For $k=3$, this basis is $\left(1, x_{3}, x_{3}^{2}, x_{2}, x_{2} x_{3}, x_{2} x_{3}^{2}\right)$.
- The ring \mathcal{S} of symmetric polynomials in $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ has several bases, usually indexed by certain sets of (integer) partitions.
First, let us recall what partitions are:
- A partition means a weakly decreasing sequence of nonnegative integers that has only finitely many nonzero entries.
- A partition means a weakly decreasing sequence of nonnegative integers that has only finitely many nonzero entries.
Examples: $(4,2,2,0,0,0, \ldots)$ and $(3,2,0,0,0,0, \ldots)$ and $(5,0,0,0,0,0, \ldots)$ are three partitions.
$(2,3,2,0,0,0, \ldots)$ and $(2,1,1,1, \ldots)$ are not.
- A k-partition means a weakly decreasing k-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathbb{N}^{k}$.
- A k-partition means a weakly decreasing k-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathbb{N}^{k}$.
Examples: $(4,2,2)$ and $(3,2,0)$ and $(5,0,0)$ are three 3-partitions.
$(2,3,2)$ is not.
- A k-partition means a weakly decreasing k-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathbb{N}^{k}$.
Examples: $(4,2,2)$ and $(3,2,0)$ and $(5,0,0)$ are three 3-partitions.
$(2,3,2)$ is not.
- Thus there is a bijection
$\{k$-partitions $\} \rightarrow$ \{partitions with at most k nonzero entries $\},$

$$
\lambda \mapsto\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, 0,0,0, \ldots\right) .
$$

- A k-partition means a weakly decreasing k-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathbb{N}^{k}$.
Examples: $(4,2,2)$ and $(3,2,0)$ and $(5,0,0)$ are three 3-partitions.
$(2,3,2)$ is not.
- If $\lambda \in \mathbb{N}^{k}$ is a k-partition, then its Young diagram $Y(\lambda)$ is defined as a table made out of k left-aligned rows, where the i-th row has λ_{i} boxes.
Example: If $k=6$ and $\lambda=(5,5,3,2,0,0)$, then

(Empty rows are invisible.)
- A k-partition means a weakly decreasing k-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathbb{N}^{k}$.
Examples: $(4,2,2)$ and $(3,2,0)$ and $(5,0,0)$ are three 3-partitions.
$(2,3,2)$ is not.
- If $\lambda \in \mathbb{N}^{k}$ is a k-partition, then its Young diagram $Y(\lambda)$ is defined as a table made out of k left-aligned rows, where the i-th row has λ_{i} boxes.
Example: If $k=6$ and $\lambda=(5,5,3,2,0,0)$, then

(Empty rows are invisible.)
- The same convention applies to partitions.

Symmetric polynomials: the e-basis

- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

Symmetric polynomials: the e-basis

- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a k-partition when $\ell=k$), set

$$
e_{\nu}=e_{\nu_{1}} e_{\nu_{2}} \cdots e_{\nu_{\ell}} \in \mathcal{S}
$$

- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a k-partition when $\ell=k$), set

$$
e_{\nu}=e_{\nu_{1}} e_{\nu_{2}} \cdots e_{\nu_{\ell}} \in \mathcal{S}
$$

- Theorem (Gauss): The commutative \mathbf{k}-algebra \mathcal{S} is freely generated by the elementary symmetric polynomials $e_{1}, e_{2}, \ldots, e_{k}$. (That is, it is generated by them, and they are algebraically independent.)
- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a k-partition when $\ell=k$), set

$$
e_{\nu}=e_{\nu_{1}} e_{\nu_{2}} \cdots e_{\nu_{\ell}} \in \mathcal{S}
$$

- Theorem (Gauss): The commutative \mathbf{k}-algebra \mathcal{S} is freely generated by the elementary symmetric polynomials $e_{1}, e_{2}, \ldots, e_{k}$. (That is, it is generated by them, and they are algebraically independent.)
- Equivalent restatement: $\left(e_{\lambda}\right)_{\lambda}$ is a partition whose entries are $\leq k$ is a basis of the \mathbf{k}-module \mathcal{S}.
- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a k-partition when $\ell=k$), set

$$
e_{\nu}=e_{\nu_{1}} e_{\nu_{2}} \cdots e_{\nu_{\ell}} \in \mathcal{S}
$$

- Theorem (Gauss): The commutative \mathbf{k}-algebra \mathcal{S} is freely generated by the elementary symmetric polynomials $e_{1}, e_{2}, \ldots, e_{k}$. (That is, it is generated by them, and they are algebraically independent.)
- Equivalent restatement: $\left(e_{\lambda}\right)_{\lambda}$ is a partition whose entries are $\leq k$ is a basis of the \mathbf{k}-module \mathcal{S}.
- Note that $e_{m}=0$ when $m>k$.

Symmetric polynomials: the h-bases

- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a k-partition when $\ell=k$), set

$$
h_{\nu}=h_{\nu_{1}} h_{\nu_{2}} \cdots h_{\nu_{\ell}} \in \mathcal{S}
$$

- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a k-partition when $\ell=k$), set

$$
h_{\nu}=h_{\nu_{1}} h_{\nu_{2}} \cdots h_{\nu_{\ell}} \in \mathcal{S}
$$

- Theorem: The commutative \mathbf{k}-algebra \mathcal{S} is freely generated by the complete homogeneous symmetric polynomials $h_{1}, h_{2}, \ldots, h_{k}$.
- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a k-partition when $\ell=k$), set

$$
h_{\nu}=h_{\nu_{1}} h_{\nu_{2}} \cdots h_{\nu_{\ell}} \in \mathcal{S} .
$$

- Theorem: The commutative \mathbf{k}-algebra \mathcal{S} is freely generated by the complete homogeneous symmetric polynomials $h_{1}, h_{2}, \ldots, h_{k}$.
- Equivalent restatement: $\left(h_{\lambda}\right)_{\lambda}$ is a partition whose entries are $\leq k$ is a basis of the \mathbf{k}-module \mathcal{S}.
- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a k-partition when $\ell=k$), set

$$
h_{\nu}=h_{\nu_{1}} h_{\nu_{2}} \cdots h_{\nu_{\ell}} \in \mathcal{S} .
$$

- Theorem: The commutative \mathbf{k}-algebra \mathcal{S} is freely generated by the complete homogeneous symmetric polynomials $h_{1}, h_{2}, \ldots, h_{k}$.
- Equivalent restatement: $\left(h_{\lambda}\right)_{\lambda}$ is a partition whose entries are $\leq k$ is a basis of the \mathbf{k}-module \mathcal{S}.
- Theorem: $\left(h_{\lambda}\right)_{\lambda}$ is a k-partition is a basis of the \mathbf{k}-module \mathcal{S}. (Another basis!)
- For each k-partition λ, we let s_{λ} be the λ-th Schur polynomial:

$$
\begin{aligned}
s_{\lambda} & =\frac{\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)}{\operatorname{det}\left(\left(x_{i}^{k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)} \quad \text { (alternant for } \\
& =\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right) \quad \text { (Jacobi-Trudi). }
\end{aligned}
$$

- For each k-partition λ, we let s_{λ} be the λ-th Schur polynomial:

$$
\begin{aligned}
s_{\lambda} & =\frac{\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)}{\operatorname{det}\left(\left(x_{i}^{k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)} \quad \text { (alternant for } \\
& =\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right) \quad \text { (Jacobi-Trudi). }
\end{aligned}
$$

- Theorem: The equality above holds, and s_{λ} is a symmetric polynomial with nonnegative coefficients. Explicitly,

$$
s_{\lambda}=\sum_{\substack{T \text { is a semistandard } \lambda \text {-tableau } \\ \text { with entries } 1,2, \ldots, k}} \prod_{i=1}^{k} x_{i}^{(\text {number of } i \text { 's in } T)}
$$

where a semistandard λ-tableau with entries $1,2, \ldots, k$ is a way of putting an integer $i \in\{1,2, \ldots, k\}$ into each box of $Y(\lambda)$ such that the entries weakly increase along rows and strictly increase along columns.

- For each k-partition λ, we let s_{λ} be the λ-th Schur polynomial:

$$
\begin{aligned}
s_{\lambda} & =\frac{\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)}{\operatorname{det}\left(\left(x_{i}^{k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)} \quad \text { (alternant for } \\
& =\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right) \quad \text { (Jacobi-Trudi). }
\end{aligned}
$$

- Theorem: The equality above holds, and s_{λ} is a symmetric polynomial with nonnegative coefficients.
- Theorem: $\left(s_{\lambda}\right)_{\lambda}$ is a k-partition is a basis of the \mathbf{k}-module \mathcal{S}.
- If λ and μ are two k-partitions, then the product $s_{\lambda} s_{\mu}$ can be again written as a \mathbf{k}-linear combination of Schur polynomials (since these form a basis):

$$
s_{\lambda} s_{\mu}=\sum_{\nu \text { is a } k \text {-partition }} c_{\lambda, \mu}^{\nu} s_{\nu}
$$

where the $c_{\lambda, \mu}^{\nu}$ lie in \mathbf{k}. These $c_{\lambda, \mu}^{\nu}$ are called the Littlewood-Richardson coefficients.

- If λ and μ are two k-partitions, then the product $s_{\lambda} s_{\mu}$ can be again written as a \mathbf{k}-linear combination of Schur polynomials (since these form a basis):

$$
s_{\lambda} s_{\mu}=\sum_{\nu \text { is a } k \text {-partition }} c_{\lambda, \mu}^{\nu} s_{\nu}
$$

where the $c_{\lambda, \mu}^{\nu}$ lie in \mathbf{k}. These $c_{\lambda, \mu}^{\nu}$ are called the Littlewood-Richardson coefficients.

- Theorem: These Littlewood-Richardson coefficients $c_{\lambda, \mu}^{\nu}$ are nonnegative integers (and count something).
- We have defined

$$
s_{\lambda}=\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq k,} 1 \leq j \leq k\right)
$$

for k-partitions λ.
Apply the same definition to arbitrary $\lambda \in \mathbb{Z}^{k}$.

- We have defined

$$
s_{\lambda}=\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)
$$

for k-partitions λ.
Apply the same definition to arbitrary $\lambda \in \mathbb{Z}^{k}$.

- Proposition: If $\alpha \in \mathbb{Z}^{k}$, then s_{α} is either 0 or equals $\pm s_{\lambda}$ for some k-partition λ.
(So we get nothing really new.)
- We have defined

$$
s_{\lambda}=\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)
$$

for k-partitions λ.
Apply the same definition to arbitrary $\lambda \in \mathbb{Z}^{k}$.

- Proposition: If $\alpha \in \mathbb{Z}^{k}$, then s_{α} is either 0 or equals $\pm s_{\lambda}$ for some k-partition λ.
More precisely: Let

$$
\beta=\left(\alpha_{1}+(k-1), \alpha_{2}+(k-2), \ldots, \alpha_{k}+(k-k)\right) .
$$

- We have defined

$$
s_{\lambda}=\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)
$$

for k-partitions λ.
Apply the same definition to arbitrary $\lambda \in \mathbb{Z}^{k}$.

- Proposition: If $\alpha \in \mathbb{Z}^{k}$, then s_{α} is either 0 or equals $\pm s_{\lambda}$ for some k-partition λ.
More precisely: Let
$\beta=\left(\alpha_{1}+(k-1), \alpha_{2}+(k-2), \ldots, \alpha_{k}+(k-k)\right)$.
- If β has a negative entry, then $s_{\alpha}=0$.
- If β has two equal entries, then $s_{\alpha}=0$.
- Otherwise, let γ be the k-tuple obtained by sorting β in decreasing order, and let σ be the permutation of the indices that causes this sorting. Let λ be the k-partition

$$
\begin{aligned}
& \left(\gamma_{1}-(k-1), \gamma_{2}-(k-2), \ldots, \gamma_{k}-(k-k)\right) . \text { Then, } \\
& s_{\alpha}=(-1)^{\sigma} s_{\lambda} .
\end{aligned}
$$

- We have defined

$$
s_{\lambda}=\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)
$$

for k-partitions λ.
Apply the same definition to arbitrary $\lambda \in \mathbb{Z}^{k}$.

- Proposition: If $\alpha \in \mathbb{Z}^{k}$, then s_{α} is either 0 or equals $\pm s_{\lambda}$ for some k-partition λ.
More precisely: Let
$\beta=\left(\alpha_{1}+(k-1), \alpha_{2}+(k-2), \ldots, \alpha_{k}+(k-k)\right)$.
- If β has a negative entry, then $s_{\alpha}=0$.
- If β has two equal entries, then $s_{\alpha}=0$.
- Otherwise, let γ be the k-tuple obtained by sorting β in decreasing order, and let σ be the permutation of the indices that causes this sorting. Let λ be the k-partition

$$
\begin{aligned}
& \left(\gamma_{1}-(k-1), \gamma_{2}-(k-2), \ldots, \gamma_{k}-(k-k)\right) . \text { Then, } \\
& s_{\alpha}=(-1)^{\sigma} s_{\lambda} .
\end{aligned}
$$

- Also, the alternant formula still holds if all $\lambda_{i}+(k-i)$ are ≥ 0.

A more general setting: $a_{1}, a_{2}, \ldots, a_{k}$ and J

- Pick any integer $n \geq k$.

A more general setting: $a_{1}, a_{2}, \ldots, a_{k}$ and J

- Pick any integer $n \geq k$.
- Let $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{P}$ such that $\operatorname{deg} a_{i}<n-k+i$ for all i. (For example, this holds if $a_{i} \in \mathbf{k}$.)

A more general setting: $a_{1}, a_{2}, \ldots, a_{k}$ and J

- Pick any integer $n \geq k$.
- Let $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{P}$ such that $\operatorname{deg} a_{i}<n-k+i$ for all i. (For example, this holds if $a_{i} \in \mathbf{k}$.)
- Let J be the ideal of \mathcal{P} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

A more general setting: $a_{1}, a_{2}, \ldots, a_{k}$ and J

- Pick any integer $n \geq k$.
- Let $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{P}$ such that $\operatorname{deg} a_{i}<n-k+i$ for all i. (For example, this holds if $a_{i} \in \mathbf{k}$.)
- Let J be the ideal of \mathcal{P} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

- Theorem (G.): The \mathbf{k}-module \mathcal{P} / J is free with basis

$$
\begin{aligned}
& \left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<n-k+i \text { for each } i} \\
& \quad\left(\text { informally: " }\left(\overline{x_{1}^{<n-k+1} x_{2}^{<n-k+2} \cdots x_{n}^{<n}}\right)\right. \text { ") }
\end{aligned}
$$

where the overline - means "projection" onto whatever quotient we need (here: from \mathcal{P} onto \mathcal{P} / J).
(This basis has $n(n-1) \cdots(n-k+1)$ elements.)

A slightly less general setting: symmetric $a_{1}, a_{2}, \ldots, a_{k}$ and J

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{S}$.

A slightly less general setting: symmetric $a_{1}, a_{2}, \ldots, a_{k}$ and J

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{S}$.
- Let $/$ be the ideal of \mathcal{S} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

(Same differences as for J, but we are generating an ideal of \mathcal{S} now.)

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{S}$.
- Let $/$ be the ideal of \mathcal{S} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

(Same differences as for J, but we are generating an ideal of \mathcal{S} now.)

- Let $\omega=\underbrace{(n-k, n-k, \ldots, n-k)}_{k \text { entries }}$ and

$$
\begin{aligned}
P_{k, n} & =\left\{\lambda \text { is a } k \text {-partition } \mid \lambda_{1} \leq n-k\right\} \\
& =\{k \text {-partitions } \lambda \subseteq \omega\}
\end{aligned}
$$

- Here, for two k-partitions α and β, we say that $\alpha \subseteq \beta$ if and only if $\alpha_{i} \leq \beta_{i}$ for all i.
- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}
$$

An even less general setting: constant $a_{1}, a_{2}, \ldots, a_{k}$

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{k}$.
- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{k}$.
- This setting still is general enough to encompass ...
- classical cohomology: If $\mathbf{k}=\mathbb{Z}$ and $a_{1}=a_{2}=\cdots=a_{k}=0$, then \mathcal{S} / l becomes the cohomology ring $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$; the basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ corresponds to the Schubert classes.
- quantum cohomology: If $\mathbf{k}=\mathbb{Z}[q]$ and $a_{1}=a_{2}=\cdots=a_{k-1}=0$ and $a_{k}=-(-1)^{k} q$, then \mathcal{S} / l becomes the quantum cohomology ring $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{k}$.
- This setting still is general enough to encompass ...
- classical cohomology: If $\mathbf{k}=\mathbb{Z}$ and $a_{1}=a_{2}=\cdots=a_{k}=0$, then \mathcal{S} / I becomes the cohomology ring $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$; the basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ corresponds to the Schubert classes.
- quantum cohomology: If $\mathbf{k}=\mathbb{Z}[q]$ and $a_{1}=a_{2}=\cdots=a_{k-1}=0$ and $a_{k}=-(-1)^{k} q$, then \mathcal{S} / l becomes the quantum cohomology ring $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- The above theorem lets us work in these rings (and more generally) without relying on geometry.

S_{3}-symmetry of the Gromov-Witten invariants

- Recall that $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I.

S_{3}-symmetry of the Gromov-Witten invariants

- Recall that $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff $\mu: \mathcal{S} / \boldsymbol{I} \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- Recall that $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff ${ }_{\mu}: \mathcal{S} / I \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- For every k-partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in P_{k, n}$, we define

$$
\nu^{\vee}:=\left(n-k-\nu_{k}, n-k-\nu_{k-1}, \ldots, n-k-\nu_{1}\right) \in P_{k, n} .
$$

This k-partition ν^{\vee} is called the complement of ν.

- Recall that $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff $\mu: \mathcal{S} / I \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- For every k-partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in P_{k, n}$, we define

$$
\nu^{\vee}:=\left(n-k-\nu_{k}, n-k-\nu_{k-1}, \ldots, n-k-\nu_{1}\right) \in P_{k, n} .
$$

This k-partition ν^{\vee} is called the complement of ν.

- For any three k-partitions $\alpha, \beta, \gamma \in P_{k, n}$, let

$$
g_{\alpha, \beta, \gamma}:=\operatorname{coeff}_{\gamma^{\vee}}\left(\overline{s_{\alpha} \boldsymbol{s}_{\beta}}\right) \in \mathbf{k} .
$$

These generalize the Littlewood-Richardson coefficients and (3-point) Gromov-Witten invariants.

- Recall that $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff ${ }_{\mu}: \mathcal{S} / I \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- For every k-partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in P_{k, n}$, we define

$$
\nu^{\vee}:=\left(n-k-\nu_{k}, n-k-\nu_{k-1}, \ldots, n-k-\nu_{1}\right) \in P_{k, n} .
$$

This k-partition ν^{\vee} is called the complement of ν.

- For any three k-partitions $\alpha, \beta, \gamma \in P_{k, n}$, let

$$
g_{\alpha, \beta, \gamma}:=\operatorname{coeff}_{\gamma^{\vee}}\left(\overline{s_{\alpha} \boldsymbol{s}_{\beta}}\right) \in \mathbf{k} .
$$

These generalize the Littlewood-Richardson coefficients and (3-point) Gromov-Witten invariants.

- Theorem (G.): For any $\alpha, \beta, \gamma \in P_{k, n}$, we have

$$
\begin{aligned}
g_{\alpha, \beta, \gamma} & =g_{\alpha, \gamma, \beta}=g_{\beta, \alpha, \gamma}=g_{\beta, \gamma, \alpha}=g_{\gamma, \alpha, \beta}=g_{\gamma, \beta, \alpha} \\
& =\operatorname{coeff}_{\omega}\left(\overline{s_{\alpha} s_{\beta} s_{\gamma}}\right)
\end{aligned}
$$

- Recall that $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff ${ }_{\mu}: \mathcal{S} / \boldsymbol{I} \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- For every k-partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in P_{k, n}$, we define

$$
\nu^{\vee}:=\left(n-k-\nu_{k}, n-k-\nu_{k-1}, \ldots, n-k-\nu_{1}\right) \in P_{k, n} .
$$

This k-partition ν^{\vee} is called the complement of ν.

- For any three k-partitions $\alpha, \beta, \gamma \in P_{k, n}$, let

$$
g_{\alpha, \beta, \gamma}:=\operatorname{coeff}_{\gamma^{\vee}}\left(\overline{s_{\alpha} \boldsymbol{s}_{\beta}}\right) \in \mathbf{k} .
$$

These generalize the Littlewood-Richardson coefficients and (3-point) Gromov-Witten invariants.

- Theorem (G.): For any $\alpha, \beta, \gamma \in P_{k, n}$, we have

$$
\begin{aligned}
g_{\alpha, \beta, \gamma} & =g_{\alpha, \gamma, \beta}=g_{\beta, \alpha, \gamma}=g_{\beta, \gamma, \alpha}=g_{\gamma, \alpha, \beta}=g_{\gamma, \beta, \alpha} \\
& =\operatorname{coeff}_{\omega}\left(\overline{s_{\alpha} s_{\beta} s_{\gamma}}\right)
\end{aligned}
$$

- Equivalent restatement: Each $\nu \in P_{k, n}$ and $f \in \mathcal{S} / I$ satisfy $\operatorname{coeff}_{\omega}\left(\overline{s_{\nu}} f\right)=\operatorname{coeff}_{\nu^{\vee}}(f)$.
- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}} .
$$

- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}} .
$$

- The transfer matrix between the two bases $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ and $\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is unitriangular wrt the "size-then-anti-dominance" order, but seems hard to describe.
- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}} .
$$

- The transfer matrix between the two bases $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ and $\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is unitriangular wrt the "size-then-anti-dominance" order, but seems hard to describe.
- Proposition (G.): Let m be a positive integer. Then,

$$
\overline{h_{n+m}}=\sum_{j=0}^{k-1}(-1)^{j} a_{k-j} \overline{s_{\left(m, 1^{j}\right)}}
$$

where $\left(m, 1^{j}\right):=(m, \underbrace{1,1, \ldots, 1}_{j \text { ones }}, 0,0,0, \ldots)$ (a hook-shaped k-partition).

- If α and β are two k-partitions, then we say that α / β is a horizontal strip if and only if the Young diagram $Y(\alpha)$ is obtained from $Y(\beta)$ by adding some (possibly none) extra boxes with no two of these new boxes lying in the same column.
Example: If $k=4$ and $\alpha=(5,3,2,1)$ and $\beta=(3,2,2,0)$, then α / β is a horizontal strip, since

with no two X 's in the same column.
- If α and β are two k-partitions, then we say that α / β is a horizontal strip if and only if the Young diagram $Y(\alpha)$ is obtained from $Y(\beta)$ by adding some (possibly none) extra boxes with no two of these new boxes lying in the same column.
- Equivalently, α / β is a horizontal strip if and only if

$$
\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \geq \alpha_{3} \geq \cdots \geq \alpha_{k} \geq \beta_{k}
$$

- If α and β are two k-partitions, then we say that α / β is a horizontal strip if and only if the Young diagram $Y(\alpha)$ is obtained from $Y(\beta)$ by adding some (possibly none) extra boxes with no two of these new boxes lying in the same column.
- Equivalently, α / β is a horizontal strip if and only if

$$
\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \geq \alpha_{3} \geq \cdots \geq \alpha_{k} \geq \beta_{k}
$$

- Furthermore, given $j \in \mathbb{N}$, we say that α / β is a horizontal j-strip if α / β is a horizontal strip and $|\alpha|-|\beta|=j$.
- If α and β are two k-partitions, then we say that α / β is a horizontal strip if and only if the Young diagram $Y(\alpha)$ is obtained from $Y(\beta)$ by adding some (possibly none) extra boxes with no two of these new boxes lying in the same column.
- Equivalently, α / β is a horizontal strip if and only if

$$
\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \geq \alpha_{3} \geq \cdots \geq \alpha_{k} \geq \beta_{k} .
$$

- Furthermore, given $j \in \mathbb{N}$, we say that α / β is a horizontal j-strip if α / β is a horizontal strip and $|\alpha|-|\beta|=j$.
- Theorem (Pieri). Let λ be a k-partition. Let $j \in \mathbb{N}$. Then,

$$
s_{\lambda} h_{j}=\sum_{\substack{\mu \text { is a } k \text {-partition; } \\ \mu / \lambda \text { is a } \\ \text { horizontal } j \text {-strip }}} s_{\mu} .
$$

A Pieri rule for \mathcal{S} / I

- Theorem (G.): Let $\lambda \in P_{k, n}$. Let $j \in\{0,1, \ldots, n-k\}$. Then,

$$
\overline{s_{\lambda} h_{j}}=\sum_{\substack{\mu \in P_{k, n} ; \\ \mu / \lambda \text { is } a \\ \text { horizontal } j \text {-strip }}} \overline{s_{\mu}}-\sum_{i=1}^{k}(-1)^{i} a_{i} \sum_{\nu \subseteq \lambda} c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda} \overline{s_{\nu}}
$$

- Theorem (G.): Let $\lambda \in P_{k, n}$. Let $j \in\{0,1, \ldots, n-k\}$. Then,

$$
\overline{s_{\lambda} h_{j}}=\sum_{\substack{\mu \in P_{k, n} ; \\ \mu / \lambda \text { is a } \\ \text { horizontal } j \text {-strip }}} \overline{s_{\mu}}-\sum_{i=1}^{k}(-1)^{i} a_{i} \sum_{\nu \subseteq \lambda} c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda} \overline{s_{\nu}} .
$$

- This generalizes the h-Pieri rule from Bertram, Ciocan-Fontanine and Fulton, but note that $c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda}$ may be >1.

A Pieri rule for $\mathcal{S} / /$: example

- Example: For $n=7$ and $k=3$, we have

$$
\begin{aligned}
& \overline{s_{(4,3,2)} h_{2}}=\overline{s_{(4,4,3)}}+a_{1}\left(\overline{s_{(4,2)}}+\overline{s_{(3,2,1)}}+\overline{s_{(3,3)}}\right) \\
&-a_{2}\left(\overline{s_{(4,1)}}+\overline{s_{(2,2,1)}}+\overline{s_{(3,1,1)}}+2 \overline{s_{(3,2)}}\right) \\
&+a_{3}\left(\overline{s_{(2,2)}}+\overline{s_{(2,1,1)}}+\overline{s_{(3,1)}}\right) .
\end{aligned}
$$

- Example: For $n=7$ and $k=3$, we have

$$
\begin{aligned}
& \overline{s_{(4,3,2)} h_{2}}=\overline{s_{(4,4,3)}}+a_{1}\left(\overline{s_{(4,2)}}+\overline{s_{(3,2,1)}}+\overline{s_{(3,3)}}\right) \\
&-a_{2}\left(\overline{s_{(4,1)}}+\overline{s_{(2,2,1)}}+\overline{s_{(3,1,1)}}+2 \overline{s_{(3,2)}}\right) \\
&+a_{3}\left(\overline{s_{(2,2)}}+\overline{s_{(2,1,1)}}+\overline{s_{(3,1)}}\right) .
\end{aligned}
$$

- Multiplying by e_{j} appears harder: For $n=5$ and $k=3$, we have

$$
\overline{s_{(2,2,1)} e_{2}}=a_{1} \overline{s_{(2,2)}}-2 a_{2} \overline{s_{(2,1)}}+a_{3}\left(\overline{s_{(2)}}+\overline{s_{(1,1)}}\right)+a_{1}^{2} \overline{\bar{s}_{(1)}}-2 a_{1} a_{2} \overline{\left.s_{(}\right)} .
$$

A "rim hook algorithm"

- For $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$, Bertram, Ciocan-Fontanine and Fulton give a "rim hook algorithm" that rewrites an arbitrary $\overline{s_{\mu}}$ as $(-1)^{\text {something }} q^{\text {something }} \overline{\bar{s}_{\lambda}}$ with $\lambda \in P_{k, n}$. Is there such a thing for \mathcal{S} / I ?

A "rim hook algorithm"

- For $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$, Bertram, Ciocan-Fontanine and Fulton give a "rim hook algorithm" that rewrites an arbitrary $\overline{s_{\mu}}$ as $(-1)^{\text {something }} q^{\text {something }} \overline{\bar{s}_{\lambda}}$ with $\lambda \in P_{k, n}$. Is there such a thing for \mathcal{S} / I ?
If $n=6$ and $k=3$, then

$$
\overline{s_{(4,4,3)}}=a_{2}^{2} \overline{s_{(1)}}-2 a_{1} a_{2} \overline{s_{(2)}}+a_{1}^{2} \overline{s_{(3)}}+a_{3} \overline{\bar{s}_{(3,2)}}-a_{2} \overline{s_{(3,3)}} .
$$

Looks hopeless...

A "rim hook algorithm"

- For $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$, Bertram, Ciocan-Fontanine and Fulton give a "rim hook algorithm" that rewrites an arbitrary $\overline{s_{\mu}}$ as $(-1)^{\text {something }} q^{\text {something }} \overline{s_{\lambda}}$ with $\lambda \in P_{k, n}$.
Is there such a thing for \mathcal{S} / I ?
If $n=6$ and $k=3$, then

$$
\overline{\bar{s}_{(4,4,3)}}=a_{2}^{2} \overline{\bar{S}_{(1)}}-2 a_{1} a_{2} \overline{s_{(2)}}+a_{1}^{2} \overline{s_{(3)}}+a_{3} \overline{\bar{S}_{(3,2)}}-a_{2} \overline{\bar{s}_{(3,3)}} .
$$

- Theorem (G.): Let μ be a k-partition with $\mu_{1}>n-k$. Let

$$
\begin{aligned}
W=\{ & \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathbb{Z}^{k} \mid \lambda_{1}=\mu_{1}-n \\
& \text { and } \left.\lambda_{i}-\mu_{i} \in\{0,1\} \text { for all } i \in\{2,3, \ldots, k\}\right\} .
\end{aligned}
$$

(Not all elements of W are k-partitions, but all belong to \mathbb{Z}^{k}, so we know how to define s_{λ} for them.)

A "rim hook algorithm"

- For $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$, Bertram, Ciocan-Fontanine and Fulton give a "rim hook algorithm" that rewrites an arbitrary $\overline{s_{\mu}}$ as $(-1)^{\text {something }} q^{\text {something }}{\overline{s_{\lambda}}}$ with $\lambda \in P_{k, n}$.
Is there such a thing for \mathcal{S} / I ?
If $n=6$ and $k=3$, then

$$
\overline{s_{(4,4,3)}}=a_{2}^{2} \overline{s_{(1)}}-2 a_{1} a_{2} \overline{s_{(2)}}+a_{1}^{2} \overline{s_{(3)}}+a_{3} \overline{s_{(3,2)}}-a_{2} \overline{s_{(3,3)}} .
$$

- Theorem (G.): Let μ be a k-partition with $\mu_{1}>n-k$. Let

$$
\begin{aligned}
W=\{ & \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathbb{Z}^{k} \mid \lambda_{1}=\mu_{1}-n \\
& \text { and } \left.\lambda_{i}-\mu_{i} \in\{0,1\} \text { for all } i \in\{2,3, \ldots, k\}\right\} .
\end{aligned}
$$

Then,

$$
\overline{s_{\mu}}=\sum_{j=1}^{k}(-1)^{k-j} a_{j} \sum_{\substack{\lambda \in W_{i} \\|\lambda|=|\mu|-(n-k+j)}} \overline{s_{\lambda}} .
$$

- Conjecture: Let $b_{i}=(-1)^{n-k-1} a_{i}$ for each $i \in\{1,2, \ldots, k\}$. Let $\lambda, \mu, \nu \in P_{k, n}$. Then, $(-1)^{|\lambda|+|\mu|-|\nu|} \operatorname{coeff}_{\nu}\left(\overline{s_{\lambda} s_{\mu}}\right)$ is a polynomial in $b_{1}, b_{2}, \ldots, b_{k}$ with coefficients in \mathbb{N}.
- Verified for all $n \leq 8$ using SageMath.
- This would generalize positivity of Gromov-Witten invariants.
- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{m_{\lambda}}\right)_{\lambda \in P_{k, n}}
$$

where
$m_{\lambda}=$ (the sum of all distinct permutations of the monomial $\left.x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}\right)$
is a monomial symmetric polynomial.

- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{m_{\lambda}}\right)_{\lambda \in P_{k, n}}
$$

where
$m_{\lambda}=$ (the sum of all distinct permutations of the monomial $\left.x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}\right)$
is a monomial symmetric polynomial.

- What are the structure constants?
- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{m_{\lambda}}\right)_{\lambda \in P_{k, n}}
$$

where
$m_{\lambda}=$ (the sum of all distinct permutations of the monomial $\left.x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}\right)$
is a monomial symmetric polynomial.

- What are the structure constants?
- The family $\left(\overline{p_{\lambda}}\right)_{\lambda \in P_{k, n}}$ built of the power-sum symmetric functions p_{λ} is not generally a basis (not even if $\mathbf{k}=\mathbb{Q}$ and $\left.a_{i}=0\right)$.
- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{m_{\lambda}}\right)_{\lambda \in P_{k, n}}
$$

where
$m_{\lambda}=$ (the sum of all distinct permutations of the monomial $\left.x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}\right)$
is a monomial symmetric polynomial.

- What are the structure constants?
- The family $\left(\overline{p_{\lambda}}\right)_{\lambda \in P_{k, n}}$ built of the power-sum symmetric functions p_{λ} is not generally a basis (not even if $\mathbf{k}=\mathbb{Q}$ and $a_{i}=0$).
- What about other bases? Forgotten symmetric functions?

More questions

- Question: Does $\mathcal{S} /$ I have a geometric meaning? If not, why does it behave so nicely?

More questions

- Question: Does $\mathcal{S} /$ I have a geometric meaning? If not, why does it behave so nicely?
- Question: What if we replace the generators $h_{n-k+i}-a_{i}$ of our ideals by $p_{n-k+i}-a_{i}$?
- Question: Does $\mathcal{S} /$ / have a geometric meaning? If not, why does it behave so nicely?
- Question: What if we replace the generators $h_{n-k+i}-a_{i}$ of our ideals by $p_{n-k+i}-a_{i}$?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ generalize to \mathcal{S} / I ?
- Question: Does $\mathcal{S} /$ I have a geometric meaning? If not, why does it behave so nicely?
- Question: What if we replace the generators $h_{n-k+i}-a_{i}$ of our ideals by $p_{n-k+i}-a_{i}$?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ generalize to \mathcal{S} / I ?
Computations show that Postnikov's "curious duality" and "cyclic hidden symmetry" and Bertram et al's
$\operatorname{Gr}(k, n) \leftrightarrow \operatorname{Gr}(n-k, n)$ duality do not generalize (at least not in any straightforward way).

More questions

- Question: Does $\mathcal{S} /$ I have a geometric meaning? If not, why does it behave so nicely?
- Question: What if we replace the generators $h_{n-k+i}-a_{i}$ of our ideals by $p_{n-k+i}-a_{i}$?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ generalize to \mathcal{S} / I ?
Computations show that Postnikov's "curious duality" and "cyclic hidden symmetry" and Bertram et al's
$\operatorname{Gr}(k, n) \leftrightarrow \operatorname{Gr}(n-k, n)$ duality do not generalize (at least not in any straightforward way).
- Question: Is there an analogous generalization of $\mathrm{QH}^{*}(\mathrm{FI}(n))$? Is it connected to Fulton's "universal Schubert polynomials"?

More questions

- Question: Does $\mathcal{S} /$ / have a geometric meaning? If not, why does it behave so nicely?
- Question: What if we replace the generators $h_{n-k+i}-a_{i}$ of our ideals by $p_{n-k+i}-a_{i}$?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ generalize to \mathcal{S} / I ?
Computations show that Postnikov's "curious duality" and "cyclic hidden symmetry" and Bertram et al's
$\operatorname{Gr}(k, n) \leftrightarrow \operatorname{Gr}(n-k, n)$ duality do not generalize (at least not in any straightforward way).
- Question: Is there an analogous generalization of $\mathrm{QH}^{*}(\mathrm{FI}(n))$? Is it connected to Fulton's "universal Schubert polynomials"?
- Question: Is there an equivariant analogue?

More questions

- Question: Does $\mathcal{S} /$ I have a geometric meaning? If not, why does it behave so nicely?
- Question: What if we replace the generators $h_{n-k+i}-a_{i}$ of our ideals by $p_{n-k+i}-a_{i}$?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ generalize to \mathcal{S} / I ?
Computations show that Postnikov's "curious duality" and "cyclic hidden symmetry" and Bertram et al's
$\operatorname{Gr}(k, n) \leftrightarrow \operatorname{Gr}(n-k, n)$ duality do not generalize (at least not in any straightforward way).
- Question: Is there an analogous generalization of $\mathrm{QH}^{*}(\mathrm{FI}(n))$? Is it connected to Fulton's "universal Schubert polynomials"?
- Question: Is there an equivariant analogue?
- Question: What about quotients of the quasisymmetric polynomials?
- The symmetric group S_{k} acts on \mathcal{P}, with invariant ring \mathcal{S}.
- What is the S_{k}-module structure on \mathcal{P} / J ?
- The symmetric group S_{k} acts on \mathcal{P}, with invariant ring \mathcal{S}.
- What is the S_{k}-module structure on \mathcal{P} / J ?
- Almost-theorem (G., needs to be checked): Assume that \mathbf{k} is a \mathbb{Q}-algebra. Then, as S_{k}-modules,

$$
\mathcal{P} / J \cong\left(\mathcal{P} / \mathcal{P S}^{+}\right) \times\binom{ n}{k} \cong(\underbrace{\mathrm{k} S_{k}}_{\text {regular rep }})^{\times\binom{ n}{k}}
$$

where $\mathcal{P S} \mathcal{S}^{+}$is the ideal of \mathcal{P} generated by symmetric polynomials with constant term 0 .

- Let us recall symmetric functions (not polynomials) now; we'll need them soon anyway.

$$
\begin{aligned}
\mathcal{S} & :=\left\{\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k}\right\} ; \\
\Lambda & :=\left\{\text { symmetric functions in } x_{1}, x_{2}, x_{3}, \ldots\right\} .
\end{aligned}
$$

- Let us recall symmetric functions (not polynomials) now; we'll need them soon anyway.

$$
\begin{aligned}
\mathcal{S} & :=\left\{\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k}\right\} ; \\
\Lambda & :=\left\{\text { symmetric functions in } x_{1}, x_{2}, x_{3}, \ldots\right\} .
\end{aligned}
$$

- We use standard notations for symmetric functions, but in boldface:

$$
\begin{aligned}
\mathbf{e} & =\text { elementary symmetric } \\
\mathbf{h} & =\text { complete homogeneous } \\
\mathbf{s} & =\text { Schur (or skew Schur) }
\end{aligned}
$$

- Let us recall symmetric functions (not polynomials) now; we'll need them soon anyway.

$$
\begin{aligned}
\mathcal{S} & :=\left\{\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k}\right\} ; \\
\Lambda & :=\left\{\text { symmetric functions in } x_{1}, x_{2}, x_{3}, \ldots\right\} .
\end{aligned}
$$

- We use standard notations for symmetric functions, but in boldface:

$$
\begin{aligned}
\mathbf{e} & =\text { elementary symmetric } \\
\mathbf{h} & =\text { complete homogeneous } \\
\mathbf{s} & =\text { Schur (or skew Schur) }
\end{aligned}
$$

- We have

$$
\begin{gathered}
\mathcal{S} \cong \Lambda /\left(\mathbf{e}_{k+1}, \quad \mathbf{e}_{k+2}, \quad \mathbf{e}_{k+3}, \quad \ldots\right)_{\text {ideal }}, \\
\mathcal{S} / I \cong \Lambda /\left(\mathbf{h}_{n-k+1}-a_{1}, \quad \mathbf{h}_{n-k+2}-a_{2}, \quad \ldots, \quad \mathbf{h}_{n}-a_{k},\right. \\
\left.\mathbf{e}_{k+1}, \quad \mathbf{e}_{k+2}, \quad \mathbf{e}_{k+3}, \quad \ldots\right)_{\text {ideal }} .
\end{gathered}
$$

- Let us recall symmetric functions (not polynomials) now; we'll need them soon anyway.

$$
\begin{aligned}
\mathcal{S} & :=\left\{\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k}\right\} ; \\
\Lambda & :=\left\{\text { symmetric functions in } x_{1}, x_{2}, x_{3}, \ldots\right\} .
\end{aligned}
$$

- We use standard notations for symmetric functions, but in boldface:

$$
\begin{aligned}
\mathbf{e} & =\text { elementary symmetric } \\
\mathbf{h} & =\text { complete homogeneous } \\
\mathbf{s} & =\text { Schur (or skew Schur) }
\end{aligned}
$$

- We have

$$
\begin{gathered}
\mathcal{S} \cong \Lambda /\left(\mathbf{e}_{k+1}, \quad \mathbf{e}_{k+2}, \quad \mathbf{e}_{k+3}, \quad \ldots\right)_{\text {ideal }}, \\
\mathcal{S} / I \cong \Lambda /\left(\mathbf{h}_{n-k+1}-a_{1}, \quad \mathbf{h}_{n-k+2}-a_{2}, \quad \ldots, \quad \mathbf{h}_{n}-a_{k},\right. \\
\left.\mathbf{e}_{k+1}, \quad \mathbf{e}_{k+2}, \quad \mathbf{e}_{k+3}, \quad \ldots\right)_{\text {ideal }} .
\end{gathered}
$$

- So why not replace the \mathbf{e}_{j} by $\mathbf{e}_{j}-b_{j}$ too?
- Theorem (G.): Assume that $a_{1}, a_{2}, \ldots, a_{k}$ as well as $b_{1}, b_{2}, b_{3}, \ldots$ are elements of \mathbf{k}. Then,

$$
\begin{aligned}
\Lambda /\left(\mathbf{h}_{n-k+1}-a_{1}, \quad \mathbf{h}_{n-k+2}-a_{2},\right. & \ldots, \quad \mathbf{h}_{n}-a_{k}, \\
\mathbf{e}_{k+1}-b_{1}, \quad \mathbf{e}_{k+2}-b_{2}, & \left.\mathbf{e}_{k+3}-b_{3}, \quad \ldots\right)_{\text {ideal }}
\end{aligned}
$$

is a free \mathbf{k}-module with basis $\left(\overline{\mathbf{s}_{\lambda}}\right)_{\lambda \in P_{k, n}}$.

- Proofs of all the above (except for the S_{k}-action and the $\overline{m_{\lambda}}$-basis) can be found in
- Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/ ~grinberg/algebra/basisquot.pdf.
- Proofs of all the above (except for the S_{k}-action and the $\overline{m_{\lambda}}$-basis) can be found in
- Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/ ~grinberg/algebra/basisquot.pdf.
- Main ideas:
- Use Gröbner bases to show that \mathcal{P} / J is free with basis $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i.
(This was already outlined in Aldo Conca, Christian Krattenthaler, Junzo Watanabe, Regular Sequences of Symmetric Polynomials, 2009.)
- Proofs of all the above (except for the S_{k}-action and the $\overline{m_{\lambda}}$-basis) can be found in
- Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/ ~grinberg/algebra/basisquot.pdf.
- Main ideas:
- Use Gröbner bases to show that \mathcal{P} / J is free with basis $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i.
(This was already outlined in Aldo Conca, Christian Krattenthaler, Junzo Watanabe, Regular Sequences of Symmetric Polynomials, 2009.)
- Using that + Jacobi-Trudi, show that \mathcal{S} / I is free with basis $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$.
- Proofs of all the above (except for the S_{k}-action and the $\overline{m_{\lambda}}$-basis) can be found in
- Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/ ~grinberg/algebra/basisquot.pdf.
- Main ideas:
- Use Gröbner bases to show that \mathcal{P} / J is free with basis $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i.
(This was already outlined in Aldo Conca, Christian Krattenthaler, Junzo Watanabe, Regular Sequences of Symmetric Polynomials, 2009.)
- Using that + Jacobi-Trudi, show that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$.
- As for the rest, compute in $\Lambda . .$. a lot.

Gröbner bases, 1: the degree-lexicographic order

- A brief introduction to Gröbner bases is appropriate here.

Gröbner bases, 1: the degree-lexicographic order

- A brief introduction to Gröbner bases is appropriate here.
- Gröbner bases are "particularly uncomplicated" generating sets for ideals in polynomial rings.
(But take the word "basis" with a grain of salt - they can have redundant elements, for example.)

Gröbner bases, 1: the degree-lexicographic order

- A monomial order is a total order on the monomials in \mathcal{P} with the properties that
- $1 \leq \mathfrak{m}$ for each monomial \mathfrak{m};
- $\mathfrak{a} \leq \mathfrak{b}$ implies $\mathfrak{a m} \leq \mathfrak{b m}$ for any monomials $\mathfrak{a}, \mathfrak{b}, \mathfrak{m}$;
- the order is well-founded (i.e., we can do induction over it).

Gröbner bases, 1: the degree-lexicographic order

- A monomial order is a total order on the monomials in \mathcal{P} with the properties that
- $1 \leq \mathfrak{m}$ for each monomial \mathfrak{m};
- $\mathfrak{a} \leq \mathfrak{b}$ implies $\mathfrak{a m} \leq \mathfrak{b m}$ for any monomials $\mathfrak{a}, \mathfrak{b}, \mathfrak{m}$;
- the order is well-founded (i.e., we can do induction over it).
- The degree-lexicographic order is the monomial order defined as follows: Two monomials $\mathfrak{a}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$ and $\mathfrak{b}=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{k}^{\beta_{k}}$ satisfy $\mathfrak{a}>\mathfrak{b}$ if and only if
- either $\operatorname{deg} \mathfrak{a}>\operatorname{deg} \mathfrak{b}$
- or $\operatorname{deg} \mathfrak{a}=\operatorname{deg} \mathfrak{b}$ and the smallest i satisfying $\alpha_{i} \neq \beta_{i}$ satisfies $\alpha_{i}>\beta_{i}$.

Gröbner bases, 1: the degree-lexicographic order

- A monomial order is a total order on the monomials in \mathcal{P} with the properties that
- $1 \leq \mathfrak{m}$ for each monomial \mathfrak{m};
- $\mathfrak{a} \leq \mathfrak{b}$ implies $\mathfrak{a m} \leq \mathfrak{b m}$ for any monomials $\mathfrak{a}, \mathfrak{b}, \mathfrak{m}$;
- the order is well-founded (i.e., we can do induction over it).
- The degree-lexicographic order is the monomial order defined as follows: Two monomials $\mathfrak{a}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$ and $\mathfrak{b}=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{k}^{\beta_{k}}$ satisfy $\mathfrak{a}>\mathfrak{b}$ if and only if
- either $\operatorname{deg} \mathfrak{a}>\operatorname{deg} \mathfrak{b}$
- or $\operatorname{deg} \mathfrak{a}=\operatorname{deg} \mathfrak{b}$ and the smallest i satisfying $\alpha_{i} \neq \beta_{i}$ satisfies $\alpha_{i}>\beta_{i}$.
- Given a monomial order,
- each nonzero polynomial $f \in \mathcal{P}$ has a well-defined leading monomial ($=$ the highest monomial appearing in f).

Gröbner bases, 1: the degree-lexicographic order

- A monomial order is a total order on the monomials in \mathcal{P} with the properties that
- $1 \leq \mathfrak{m}$ for each monomial \mathfrak{m};
- $\mathfrak{a} \leq \mathfrak{b}$ implies $\mathfrak{a m} \leq \mathfrak{b m}$ for any monomials $\mathfrak{a}, \mathfrak{b}, \mathfrak{m}$;
- the order is well-founded (i.e., we can do induction over it).
- The degree-lexicographic order is the monomial order defined as follows: Two monomials $\mathfrak{a}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$ and $\mathfrak{b}=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{k}^{\beta_{k}}$ satisfy $\mathfrak{a}>\mathfrak{b}$ if and only if
- either $\operatorname{deg} \mathfrak{a}>\operatorname{deg} \mathfrak{b}$
- or $\operatorname{deg} \mathfrak{a}=\operatorname{deg} \mathfrak{b}$ and the smallest i satisfying $\alpha_{i} \neq \beta_{i}$ satisfies $\alpha_{i}>\beta_{i}$.
- Given a monomial order,
- each nonzero polynomial $f \in \mathcal{P}$ has a well-defined leading monomial ($=$ the highest monomial appearing in f).
- a polynomial f is called quasi-monic if the coefficient of its leading term in f is invertible.
- If \mathcal{I} is an ideal of \mathcal{P}, then a Gröbner basis of \mathcal{I} (for a fixed monomial order) means a family $\left(f_{i}\right)_{i \in G}$ of quasi-monic polynomials that
- generates \mathcal{I}, and
- has the property that the leading monomial of any nonzero $f \in \mathcal{I}$ is divisible by the leading monomial of some f_{i}.
- If \mathcal{I} is an ideal of \mathcal{P}, then a Gröbner basis of \mathcal{I} (for a fixed monomial order) means a family $\left(f_{i}\right)_{i \in G}$ of quasi-monic polynomials that
- generates \mathcal{I}, and
- has the property that the leading monomial of any nonzero $f \in \mathcal{I}$ is divisible by the leading monomial of some f_{i}.
- Example: Let $k=3$, and rename x_{1}, x_{2}, x_{3} as x, y, z. Use the degree-lexicographic order. Let \mathcal{I} be the ideal generated by $x^{2}-y z, y^{2}-z x, z^{2}-x y$. Then:
- If \mathcal{I} is an ideal of \mathcal{P}, then a Gröbner basis of \mathcal{I} (for a fixed monomial order) means a family $\left(f_{i}\right)_{i \in G}$ of quasi-monic polynomials that
- generates \mathcal{I}, and
- has the property that the leading monomial of any nonzero $f \in \mathcal{I}$ is divisible by the leading monomial of some f_{i}.
- Example: Let $k=3$, and rename x_{1}, x_{2}, x_{3} as x, y, z. Use the degree-lexicographic order. Let \mathcal{I} be the ideal generated by $x^{2}-y z, y^{2}-z x, z^{2}-x y$. Then:
- The triple $\left(x^{2}-y z, y^{2}-z x, z^{2}-x y\right)$ is not a Gröbner basis of \mathcal{I}, since its leading monomials are $x^{2}, x z, x y$, but the leading term y^{3} of the polynomial $y^{3}-z^{3} \in \mathcal{I}$ is not divisible by any of them.
- If \mathcal{I} is an ideal of \mathcal{P}, then a Gröbner basis of \mathcal{I} (for a fixed monomial order) means a family $\left(f_{i}\right)_{i \in G}$ of quasi-monic polynomials that
- generates \mathcal{I}, and
- has the property that the leading monomial of any nonzero $f \in \mathcal{I}$ is divisible by the leading monomial of some f_{i}.
- Example: Let $k=3$, and rename x_{1}, x_{2}, x_{3} as x, y, z. Use the degree-lexicographic order. Let \mathcal{I} be the ideal generated by $x^{2}-y z, y^{2}-z x, z^{2}-x y$. Then:
- The triple $\left(x^{2}-y z, y^{2}-z x, z^{2}-x y\right)$ is not a Gröbner basis of \mathcal{I}, since its leading monomials are $x^{2}, x z, x y$, but the leading term y^{3} of the polynomial $y^{3}-z^{3} \in \mathcal{I}$ is not divisible by any of them.
- The quadruple $\left(y^{3}-z^{3}, x^{2}-y z, x y-z^{2}, x z-y^{2}\right)$ is a Gröbner basis of \mathcal{I}. (Thanks SageMath, and whatever packages it uses for this.)
- Note: Our definition of Gröbner basis is a straightforward generalization of the usual one, since \mathbf{k} may not be a field. Note that some texts use different generalizations!
- Note: Our definition of Gröbner basis is a straightforward generalization of the usual one, since \mathbf{k} may not be a field. Note that some texts use different generalizations!
- Theorem (Buchberger's first criterion). Let \mathcal{I} be an ideal of \mathcal{P}.
Let $\left(f_{i}\right)_{i \in G}$ be a family of quasi-monic polynomials that generates \mathcal{I}.
Assume that the leading monomials of all the f_{i} are mutually coprime (i.e., each indeterminate appears in the leading monomial of f_{i} for at most one $i \in G$).
Then, $\left(f_{i}\right)_{i \in G}$ is a Gröbner basis of \mathcal{I}.
- Note: Our definition of Gröbner basis is a straightforward generalization of the usual one, since \mathbf{k} may not be a field. Note that some texts use different generalizations!
- Theorem (Buchberger's first criterion). Let \mathcal{I} be an ideal of \mathcal{P}.
Let $\left(f_{i}\right)_{i \in G}$ be a family of quasi-monic polynomials that generates \mathcal{I}.
Assume that the leading monomials of all the f_{i} are mutually coprime (i.e., each indeterminate appears in the leading monomial of f_{i} for at most one $i \in G$).
Then, $\left(f_{i}\right)_{i \in G}$ is a Gröbner basis of \mathcal{I}.
- Example: Let $k=3$, and rename x_{1}, x_{2}, x_{3} as x, y, z. Use the degree-lexicographic order. Let \mathcal{I} be the ideal generated by $x^{3}-y z, y^{3}-z x, z^{3}-x y$. Then, $\left(x^{3}-y z, y^{3}-z x, z^{3}-x y\right)$ is a Gröbner basis of \mathcal{I}, since its leading monomials x^{3}, y^{3}, z^{3} are mutually coprime.
- Theorem (Macaulay's basis theorem). Let \mathcal{I} be an ideal of \mathcal{P} that has a Gröbner basis $\left(f_{i}\right)_{i \in G}$. A monomial \mathfrak{m} will be called reduced if it is not divisible by the leading term of any f_{i}. Then, the projections of the reduced monomials form a basis of the \mathbf{k}-module $\mathcal{P} / \mathcal{I}$.
- Theorem (Macaulay's basis theorem). Let \mathcal{I} be an ideal of \mathcal{P} that has a Gröbner basis $\left(f_{i}\right)_{i \in G}$. A monomial \mathfrak{m} will be called reduced if it is not divisible by the leading term of any f_{i}. Then, the projections of the reduced monomials form a basis of the \mathbf{k}-module $\mathcal{P} / \mathcal{I}$.
- Example: Let $k=3$, and rename x_{1}, x_{2}, x_{3} as x, y, z. Use the degree-lexicographic order. Let \mathcal{I} be the ideal generated by $x^{3}-y z, y^{3}-z x, z^{3}-x y$. Then, $\left(x^{3}-y z, y^{3}-z x, z^{3}-x y\right)$ is a Gröbner basis of \mathcal{I}.
Thus, $\left(\overline{x^{i} y^{j} z^{\ell}}\right)_{i, j, \ell<3}$ is a basis of $\mathcal{P} / \mathcal{I}$.
- Theorem (Macaulay's basis theorem). Let \mathcal{I} be an ideal of \mathcal{P} that has a Gröbner basis $\left(f_{i}\right)_{i \in G}$. A monomial \mathfrak{m} will be called reduced if it is not divisible by the leading term of any f_{i}. Then, the projections of the reduced monomials form a basis of the \mathbf{k}-module $\mathcal{P} / \mathcal{I}$.
- Example: Let $k=3$, and rename x_{1}, x_{2}, x_{3} as x, y, z. Use the degree-lexicographic order. Let \mathcal{I} be the ideal generated by $x^{3}-y z, y^{3}-z x, z^{3}-x y$. Then, $\left(x^{3}-y z, y^{3}-z x, z^{3}-x y\right)$ is a Gröbner basis of \mathcal{I}.
Thus, $\left(\overline{x^{i} y^{j} z^{\ell}}\right)_{i, j, \ell<3}$ is a basis of $\mathcal{P} / \mathcal{I}$.
- Example: Let $k=3$, and rename x_{1}, x_{2}, x_{3} as x, y, z. Use the degree-lexicographic order. Let \mathcal{I} be the ideal generated by $x^{2}-y z, y^{2}-z x, z^{2}-x y$. Then, $\left(y^{3}-z^{3}, x^{2}-y z, x y-z^{2}, x z-y^{2}\right)$ is a Gröbner basis of \mathcal{I}.
Thus, $(\bar{x}) \cup\left(\overline{y^{j} z^{\ell}}\right)_{j<3}$ is a basis of $\mathcal{P} / \mathcal{I}$.
- It is easy to prove the identity

$$
h_{p}\left(x_{i . . k}\right)=\sum_{t=0}^{i-1}(-1)^{t} e_{t}\left(x_{1 . . i-1}\right) h_{p-t}\left(x_{1 . . k}\right)
$$

for all $i \in\{1,2, \ldots, k+1\}$ and $p \in \mathbb{N}$.
Here, $x_{a . . b}$ means $x_{a}, x_{a+1}, \ldots, x_{b}$.

- Use this to show that

$$
\left(h_{n-k+i}\left(x_{i . . k}\right)-\sum_{t=0}^{i-1}(-1)^{t} e_{t}\left(x_{1 . . i-1}\right) a_{i-t}\right)_{i \in\{1,2, \ldots, k\}}
$$

is a Gröbner basis of the ideal J wrt the degree-lexicographic order.

- Thus, Macaulay's basis theorem shows that $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<n-k+i \text { for each } i}$ is a basis of the \mathbf{k}-module \mathcal{P} / J.

On the proofs, 3: the first basis of \mathcal{S} / I

- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- How to prove that \mathcal{S} / I is free with basis $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
- How to prove that \mathcal{S} / I is free with basis $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- How to prove that \mathcal{S} / I is free with basis $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; ~} \alpha_{i}<i$ for each i spans \mathcal{P} as an \mathcal{S}-module (Artin).
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / J$.
- How to prove that \mathcal{S} / I is free with basis $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ;} \quad \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i$ for each i spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / \mathrm{J}$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / J$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- What can you say if a \mathbf{k}-module has a basis $\left(a_{v}\right)_{v \in V}$ and a spanning family $\left(b_{u}\right)_{u \in U}$ of the same finite size $(|U|=|V|<\infty)$?
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / J$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- What can you say if a \mathbf{k}-module has a basis $\left(a_{v}\right)_{v \in V}$ and a spanning family $\left(b_{u}\right)_{u \in U}$ of the same finite size $(|U|=|V|<\infty)$?
Easy exercise: You can say that $\left(b_{u}\right)_{u \in U}$ is also a basis.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / J$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- What can you say if a \mathbf{k}-module has a basis $\left(a_{v}\right)_{v \in V}$ and a spanning family $\left(b_{u}\right)_{u \in U}$ of the same finite size $(|U|=|V|<\infty)$?
Easy exercise: You can say that $\left(b_{u}\right)_{u \in U}$ is also a basis.
- Thus, $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ is a basis of \mathcal{P} / J.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / J$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- What can you say if a \mathbf{k}-module has a basis $\left(a_{v}\right)_{v \in V}$ and a spanning family $\left(b_{u}\right)_{u \in U}$ of the same finite size $(|U|=|V|<\infty)$?
Easy exercise: You can say that $\left(b_{u}\right)_{u \in U}$ is also a basis.
- Thus, $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ is a basis of \mathcal{P} / J.
- $\Longrightarrow\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ is a basis of \mathcal{S} / I.
- The rest of the proofs are long computations inside Λ, using various identities for symmetric functions.
- The rest of the proofs are long computations inside Λ, using various identities for symmetric functions.
- Maybe the most important one:

Bernstein's identity: Let λ be a partition. Let $m \in \mathbb{Z}$ be such that $m \geq \lambda_{1}$. Then,

$$
\sum_{i \in \mathbb{N}}(-1)^{i} \mathbf{h}_{m+i}\left(\mathbf{e}_{i}\right)^{\perp} \mathbf{s}_{\lambda}=\mathbf{s}_{\left(m, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)}
$$

Here, $\mathbf{f}^{\perp} \mathbf{g}$ means "g skewed by $\mathbf{f}^{\prime \prime}$ (so that $\left.\left(\mathbf{s}_{\mu}\right)^{\perp} \mathbf{s}_{\lambda}=\mathbf{s}_{\lambda / \mu}\right)$.

- Sasha Postnikov for the paper that gave rise to this project 5 years ago.
- Victor Reiner, Tom Roby, Travis Scrimshaw, Mark Shimozono, Josh Swanson, Kaisa Taipale, and Anders Thorup for enlightening discussions.
- you for your patience.

