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What is this about?

From a modern point of view, Schubert calculus (a.k.a.
classical enumerative geometry, or Hilbert’s 15th problem) is
about two cohomology rings:

H∗

 Gr (k , n)︸ ︷︷ ︸
Grassmannian

 and H∗

 Fl (n)︸ ︷︷ ︸
flag variety


(both varieties over C).

In this talk, we are concerned with the first.

Classical result: as rings,

H∗ (Gr (k , n))
∼= (symmetric polynomials in x1, x2, . . . , xk over Z)

� (hn−k+1, hn−k+2, . . . , hn)ideal ,

where the hi are complete homogeneous symmetric
polynomials (to be defined soon).
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Quantum cohomology of Gr(k , n)

(Small) Quantum cohomology is a deformation of
cohomology from the 1980–90s. For the Grassmannian, it is

QH∗ (Gr (k , n))
∼= (symmetric polynomials in x1, x2, . . . , xk over Z [q])

�
(
hn−k+1, hn−k+2, . . . , hn−1, hn + (−1)k q

)
ideal

.

Many properties of classical cohomology still hold here.
In particular: QH∗ (Gr (k , n)) has a Z [q]-module basis
(sλ)λ∈Pk,n

of (projected) Schur polynomials (to be defined

soon), with λ ranging over all partitions with ≤ k parts and
each part ≤ n − k . The structure constants are the
Gromov–Witten invariants. References:

Aaron Bertram, Ionut Ciocan-Fontanine, William Fulton,
Quantum multiplication of Schur polynomials, 1999.
Alexander Postnikov, Affine approach to quantum
Schubert calculus, 2005.
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Where are we going?

Goal: Deform H∗ (Gr (k, n)) using k parameters instead of
one, generalizing QH∗ (Gr (k , n)).

The new ring has no geometric interpretation known so far,
but various properties suggesting such an interpretation likely
exists.

I will now start from scratch and define standard notations
around symmetric polynomials, then introduce the deformed
cohomology ring algebraically.

There is a number of open questions and things to explore.
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A more general setting: P and S

Let k be a commutative ring.
Let N = {0, 1, 2, . . .}. Let k ∈ N.

Let P = k [x1, x2, . . . , xk ] be the polynomial ring in k
indeterminates over k.

For each k-tuple α ∈ Nk and each i ∈ {1, 2, . . . , k}, let αi be
the i-th entry of α. Same for infinite sequences.

For each α ∈ Nk , let xα be the monomial xα1
1 xα2

2 · · · x
αk
k , and

let |α| be the degree α1 + α2 + · · ·+ αk of this monomial.

Let S denote the ring of symmetric polynomials in P.
These are the polynomials f ∈ P satisfying

f (x1, x2, . . . , xk) = f
(
xσ(1), xσ(2), . . . , xσ(k)

)
for all permutations σ of {1, 2, . . . , k}.
Theorem (Artin ≤1944): The S-module P is free with basis

(xα)α∈Nk ; αi<i for each i (or, informally: “
(
x<1

1 x<2
2 · · · x

<k
k

)
”).

Example: For k = 3, this basis is
(
1, x3, x

2
3 , x2, x2x3, x2x

2
3

)
.
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Symmetric polynomials

The ring S of symmetric polynomials in P = k [x1, x2, . . . , xk ]
has several bases, usually indexed by certain sets of (integer)
partitions.
First, let us recall what partitions are:
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k-partitions: definition

A partition means a weakly decreasing sequence of
nonnegative integers that has only finitely many nonzero
entries.

If λ ∈ Nk is a k-partition, then its Young diagram Y (λ) is
defined as a table made out of k left-aligned rows, where the
i-th row has λi boxes.
Example: If k = 6 and λ = (5, 5, 3, 2, 0, 0), then

Y (λ) = .

(Empty rows are invisible.)
The same convention applies to partitions.
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Symmetric polynomials: the e-basis

For each m ∈ Z, we let em denote the m-th elementary
symmetric polynomial:

em =
∑

1≤i1<i2<···<im≤k
xi1xi2 · · · xim =

∑
α∈{0,1}k ;
|α|=m

xα ∈ S.

(Thus, e0 = 1, and em = 0 when m < 0.)

For each ν = (ν1, ν2, . . . , ν`) ∈ Z` (e.g., a k-partition when
` = k), set

eν = eν1eν2 · · · eν` ∈ S.

Theorem (Gauss): The commutative k-algebra S is freely
generated by the elementary symmetric polynomials
e1, e2, . . . , ek . (That is, it is generated by them, and they are
algebraically independent.)

Equivalent restatement: (eλ)λ is a partition whose entries are ≤ k

is a basis of the k-module S.

Note that em = 0 when m > k .
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Symmetric polynomials: the h-bases

For each m ∈ Z, we let hm denote the m-th complete
homogeneous symmetric polynomial:

hm =
∑

1≤i1≤i2≤···≤im≤k
xi1xi2 · · · xim =

∑
α∈Nk ;
|α|=m

xα ∈ S.

(Thus, h0 = 1, and hm = 0 when m < 0.)

For each ν = (ν1, ν2, . . . , ν`) ∈ Z` (e.g., a k-partition when
` = k), set

hν = hν1hν2 · · · hν` ∈ S.

Theorem: The commutative k-algebra S is freely generated
by the complete homogeneous symmetric polynomials
h1, h2, . . . , hk .

Equivalent restatement: (hλ)λ is a partition whose entries are ≤ k

is a basis of the k-module S.

Theorem: (hλ)λ is a k-partition is a basis of the k-module S.
(Another basis!)
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Symmetric polynomials: the s-basis (Schur polynomials)

For each k-partition λ, we let sλ be the λ-th Schur
polynomial:

sλ =

det

((
x
λj+k−j
i

)
1≤i≤k, 1≤j≤k

)
det

((
xk−ji

)
1≤i≤k, 1≤j≤k

) (alternant formula)

= det
(

(hλi−i+j)1≤i≤k, 1≤j≤k

)
(Jacobi-Trudi) .

Theorem: The equality above holds, and sλ is a symmetric
polynomial with nonnegative coefficients.

Theorem: (sλ)λ is a k-partition is a basis of the k-module S.

10 / 36



Symmetric polynomials: the s-basis (Schur polynomials)

For each k-partition λ, we let sλ be the λ-th Schur
polynomial:

sλ =

det

((
x
λj+k−j
i

)
1≤i≤k, 1≤j≤k

)
det

((
xk−ji

)
1≤i≤k, 1≤j≤k

) (alternant formula)

= det
(

(hλi−i+j)1≤i≤k, 1≤j≤k

)
(Jacobi-Trudi) .

Theorem: The equality above holds, and sλ is a symmetric
polynomial with nonnegative coefficients. Explicitly,

sλ =
∑

T is a semistandard λ-tableau
with entries 1,2,...,k

k∏
i=1

x
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Y (λ) such that the entries weakly increase along rows and
strictly increase along columns.
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Symmetric polynomials: Littlewood-Richardson coefficients

If λ and µ are two k-partitions, then the product sλsµ can be
again written as a k-linear combination of Schur polynomials
(since these form a basis):

sλsµ =
∑

ν is a k-partition

cνλ,µsν ,

where the cνλ,µ lie in k. These cνλ,µ are called the
Littlewood-Richardson coefficients.
Theorem: These Littlewood-Richardson coefficients cνλ,µ are
nonnegative integers (and count something).
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Symmetric polynomials: Schur polynomials for non-partitions

We have defined

sλ = det
(

(hλi−i+j)1≤i≤k, 1≤j≤k

)
for k-partitions λ.
Apply the same definition to arbitrary λ ∈ Zk .
Proposition: If α ∈ Zk , then sα is either 0 or equals ±sλ for
some k-partition λ.

More precisely: Let
β = (α1 + (k − 1) , α2 + (k − 2) , . . . , αk + (k − k)).

If β has a negative entry, then sα = 0.
If β has two equal entries, then sα = 0.
Otherwise, let γ be the k-tuple obtained by sorting β in
decreasing order, and let σ be the permutation of the
indices that causes this sorting. Let λ be the k-partition
(γ1 − (k − 1) , γ2 − (k − 2) , . . . , γk − (k − k)). Then,
sα = (−1)σ sλ.

Also, the alternant formula still holds if all λi + (k − i) are
≥ 0.
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A more general setting: a1, a2, . . . , ak and J

Pick any integer n ≥ k .

Let a1, a2, . . . , ak ∈ P such that deg ai < n − k + i for all i .
(For example, this holds if ai ∈ k.)

Let J be the ideal of P generated by the k differences

hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak .

Theorem (G.): The k-module P�J is free with basis

(xα)α∈Nk ; αi<n−k+i for each i(
informally: “

(
x<n−k+1

1 x<n−k+2
2 · · · x<n

n

)
”
)

where the overline means “projection” onto whatever
quotient we need (here: from P onto P�J).
(This basis has n (n − 1) · · · (n − k + 1) elements.)
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A slightly less general setting: symmetric a1, a2, . . . , ak and J

FROM NOW ON, assume that a1, a2, . . . , ak ∈ S.

Let I be the ideal of S generated by the k differences

hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak .

(Same differences as for J, but we are generating an ideal of
S now.)

Let ω = (n − k , n − k , . . . , n − k)︸ ︷︷ ︸
k entries

and

Pk,n = {λ is a k-partition | λ1 ≤ n − k}
= {k-partitions λ ⊆ ω} .

Here, for two k-partitions α and β, we say that α ⊆ β if and
only if αi ≤ βi for all i .

Theorem (G.): The k-module S�I is free with basis

(sλ)λ∈Pk,n
.
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An even less general setting: constant a1, a2, . . . , ak

FROM NOW ON, assume that a1, a2, . . . , ak ∈ k.

This setting still is general enough to encompass ...

classical cohomology: If k = Z and
a1 = a2 = · · · = ak = 0, then S�I becomes the
cohomology ring H∗ (Gr (k , n)); the basis (sλ)λ∈Pk,n

corresponds to the Schubert classes.
quantum cohomology: If k = Z [q] and
a1 = a2 = · · · = ak−1 = 0 and ak = − (−1)k q, then
S�I becomes the quantum cohomology ring
QH∗ (Gr (k, n)).

The above theorem lets us work in these rings (and more
generally) without relying on geometry.

15 / 36



An even less general setting: constant a1, a2, . . . , ak

FROM NOW ON, assume that a1, a2, . . . , ak ∈ k.

This setting still is general enough to encompass ...

classical cohomology: If k = Z and
a1 = a2 = · · · = ak = 0, then S�I becomes the
cohomology ring H∗ (Gr (k , n)); the basis (sλ)λ∈Pk,n

corresponds to the Schubert classes.
quantum cohomology: If k = Z [q] and
a1 = a2 = · · · = ak−1 = 0 and ak = − (−1)k q, then
S�I becomes the quantum cohomology ring
QH∗ (Gr (k, n)).

The above theorem lets us work in these rings (and more
generally) without relying on geometry.

15 / 36



An even less general setting: constant a1, a2, . . . , ak

FROM NOW ON, assume that a1, a2, . . . , ak ∈ k.

This setting still is general enough to encompass ...

classical cohomology: If k = Z and
a1 = a2 = · · · = ak = 0, then S�I becomes the
cohomology ring H∗ (Gr (k , n)); the basis (sλ)λ∈Pk,n

corresponds to the Schubert classes.
quantum cohomology: If k = Z [q] and
a1 = a2 = · · · = ak−1 = 0 and ak = − (−1)k q, then
S�I becomes the quantum cohomology ring
QH∗ (Gr (k, n)).

The above theorem lets us work in these rings (and more
generally) without relying on geometry.

15 / 36



S3-symmetry of the Gromov–Witten invariants

Recall that (sλ)λ∈Pk,n
is a basis of the k-module S�I .

For each µ ∈ Pk,n, let coeffµ : S�I → k send each element to
its sµ-coordinate wrt this basis.

For every k-partition ν = (ν1, ν2, . . . , νk) ∈ Pk,n, we define

ν∨ := (n − k − νk , n − k − νk−1, . . . , n − k − ν1) ∈ Pk,n.

This k-partition ν∨ is called the complement of ν.
For any three k-partitions α, β, γ ∈ Pk,n, let

gα,β,γ := coeffγ∨ (sαsβ) ∈ k.

These generalize the Littlewood–Richardson coefficients and
(3-point) Gromov–Witten invariants.
Theorem (G.): For any α, β, γ ∈ Pk,n, we have

gα,β,γ = gα,γ,β = gβ,α,γ = gβ,γ,α = gγ,α,β = gγ,β,α

= coeffω (sαsβsγ) .

Equivalent restatement: Each ν ∈ Pk,n and f ∈ S�I satisfy
coeffω (sν f ) = coeffν∨ (f ).
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Equivalent restatement: Each ν ∈ Pk,n and f ∈ S�I satisfy
coeffω (sν f ) = coeffν∨ (f ).
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The h-basis

Theorem (G.): The k-module S�I is free with basis(
hλ
)
λ∈Pk,n

.

The transfer matrix between the two bases (sλ)λ∈Pk,n
and(

hλ
)
λ∈Pk,n

is unitriangular wrt the “size-then-anti-dominance”

order, but seems hard to describe.

Proposition (G.): Let m be a positive integer. Then,

hn+m =
k−1∑
j=0

(−1)j ak−js(m,1j ),

where
(
m, 1j

)
:= (m, 1, 1, . . . , 1︸ ︷︷ ︸

j ones

, 0, 0, 0, . . .) (a hook-shaped

k-partition).
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The Pieri rule for symmetric polynomials

If α and β are two k-partitions, then we say that α�β is a
horizontal strip if and only if the Young diagram Y (α) is
obtained from Y (β) by adding some (possibly none) extra
boxes with no two of these new boxes lying in the same
column.
Example: If k = 4 and α = (5, 3, 2, 1) and β = (3, 2, 2, 0),
then α�β is a horizontal strip, since

Y (β) = ⊆ X X

X

X

= Y (α)

with no two X ’s in the same column.
Equivalently, α�β is a horizontal strip if and only if

α1 ≥ β1 ≥ α2 ≥ β2 ≥ α3 ≥ · · · ≥ αk ≥ βk .

Furthermore, given j ∈ N, we say that α�β is a horizontal
j-strip if α�β is a horizontal strip and |α| − |β| = j .
Theorem (Pieri). Let λ be a k-partition. Let j ∈ N. Then,

sλhj =
∑

µ is a k-partition;
µ�λ is a

horizontal j-strip

sµ.
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A Pieri rule for S�I

Theorem (G.): Let λ ∈ Pk,n. Let j ∈ {0, 1, . . . , n − k}.
Then,

sλhj =
∑

µ∈Pk,n;
µ�λ is a

horizontal j-strip

sµ −
k∑

i=1

(−1)i ai
∑
ν⊆λ

cλ(n−k−j+1,1i−1),νsν .

This generalizes the h-Pieri rule from Bertram,
Ciocan-Fontanine and Fulton, but note that cλ

(n−k−j+1,1i−1),ν

may be > 1.
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A Pieri rule for S�I : example

Example: For n = 7 and k = 3, we have

s(4,3,2)h2 = s(4,4,3) + a1

(
s(4,2) + s(3,2,1) + s(3,3)

)
− a2

(
s(4,1) + s(2,2,1) + s(3,1,1) + 2s(3,2)

)
+ a3

(
s(2,2) + s(2,1,1) + s(3,1)

)
.

Multiplying by ej appears harder: For n = 5 and k = 3, we
have

s(2,2,1)e2 = a1s(2,2)−2a2s(2,1)+a3

(
s(2) + s(1,1)

)
+a2

1s(1)−2a1a2s().
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A “rim hook algorithm”

For QH∗ (Gr (k, n)), Bertram, Ciocan-Fontanine and Fulton
give a “rim hook algorithm” that rewrites an arbitrary sµ as

(−1)something qsomethingsλ with λ ∈ Pk,n.
Is there such a thing for S�I?
If n = 6 and k = 3, then

s(4,4,3) = a2
2s(1) − 2a1a2s(2) + a2

1s(3) + a3s(3,2) − a2s(3,3).

Theorem (G.): Let µ be a k-partition with µ1 > n − k. Let

W =
{
λ = (λ1, λ2, . . . , λk) ∈ Zk | λ1 = µ1 − n

and λi − µi ∈ {0, 1} for all i ∈ {2, 3, . . . , k}} .

Then,

sµ =
k∑

j=1

(−1)k−j aj
∑
λ∈W ;

|λ|=|µ|−(n−k+j)

sλ.

21 / 36

https://doi.org/10.1006/jabr.1999.7960


A “rim hook algorithm”

For QH∗ (Gr (k, n)), Bertram, Ciocan-Fontanine and Fulton
give a “rim hook algorithm” that rewrites an arbitrary sµ as

(−1)something qsomethingsλ with λ ∈ Pk,n.
Is there such a thing for S�I?
If n = 6 and k = 3, then

s(4,4,3) = a2
2s(1) − 2a1a2s(2) + a2

1s(3) + a3s(3,2) − a2s(3,3).

Looks hopeless...

Theorem (G.): Let µ be a k-partition with µ1 > n − k. Let

W =
{
λ = (λ1, λ2, . . . , λk) ∈ Zk | λ1 = µ1 − n

and λi − µi ∈ {0, 1} for all i ∈ {2, 3, . . . , k}} .

Then,

sµ =
k∑

j=1

(−1)k−j aj
∑
λ∈W ;

|λ|=|µ|−(n−k+j)

sλ.

21 / 36

https://doi.org/10.1006/jabr.1999.7960


A “rim hook algorithm”

For QH∗ (Gr (k, n)), Bertram, Ciocan-Fontanine and Fulton
give a “rim hook algorithm” that rewrites an arbitrary sµ as

(−1)something qsomethingsλ with λ ∈ Pk,n.
Is there such a thing for S�I?
If n = 6 and k = 3, then

s(4,4,3) = a2
2s(1) − 2a1a2s(2) + a2

1s(3) + a3s(3,2) − a2s(3,3).

Theorem (G.): Let µ be a k-partition with µ1 > n − k. Let

W =
{
λ = (λ1, λ2, . . . , λk) ∈ Zk | λ1 = µ1 − n

and λi − µi ∈ {0, 1} for all i ∈ {2, 3, . . . , k}} .

(Not all elements of W are k-partitions, but all belong to Zk ,
so we know how to define sλ for them.)Then,

sµ =
k∑

j=1

(−1)k−j aj
∑
λ∈W ;

|λ|=|µ|−(n−k+j)

sλ.

21 / 36

https://doi.org/10.1006/jabr.1999.7960


A “rim hook algorithm”

For QH∗ (Gr (k, n)), Bertram, Ciocan-Fontanine and Fulton
give a “rim hook algorithm” that rewrites an arbitrary sµ as

(−1)something qsomethingsλ with λ ∈ Pk,n.
Is there such a thing for S�I?
If n = 6 and k = 3, then

s(4,4,3) = a2
2s(1) − 2a1a2s(2) + a2

1s(3) + a3s(3,2) − a2s(3,3).

Theorem (G.): Let µ be a k-partition with µ1 > n − k. Let

W =
{
λ = (λ1, λ2, . . . , λk) ∈ Zk | λ1 = µ1 − n

and λi − µi ∈ {0, 1} for all i ∈ {2, 3, . . . , k}} .

Then,

sµ =
k∑

j=1

(−1)k−j aj
∑
λ∈W ;

|λ|=|µ|−(n−k+j)

sλ.

21 / 36

https://doi.org/10.1006/jabr.1999.7960


Positivity?

Conjecture: Let bi = (−1)n−k−1 ai for each i ∈ {1, 2, . . . , k}.
Let λ, µ, ν ∈ Pk,n. Then, (−1)|λ|+|µ|−|ν| coeffν (sλsµ) is a
polynomial in b1, b2, . . . , bk with coefficients in N.

Verified for all n ≤ 8 using SageMath.

This would generalize positivity of Gromov–Witten invariants.
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Other bases?

Theorem (G.): The k-module S�I is free with basis

(mλ)λ∈Pk,n
,

where

mλ = (the sum of all distinct permutations of

the monomial xλ1
1 xλ2

2 · · · x
λk
k

)
is a monomial symmetric polynomial.

What are the structure constants?

The family (pλ)λ∈Pk,n
built of the power-sum symmetric

functions pλ is not generally a basis (not even if k = Q and
ai = 0).

What about other bases? Forgotten symmetric functions?
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More questions

Question: Does S�I have a geometric meaning? If not, why
does it behave so nicely?

Question: What if we replace the generators hn−k+i − ai of
our ideals by pn−k+i − ai ?

Question: Do other properties of QH∗ (Gr (k , n)) generalize
to S�I?
Computations show that Postnikov’s “curious duality” and
“cyclic hidden symmetry” and Bertram et al’s
Gr (k , n)↔ Gr (n − k , n) duality do not generalize (at least
not in any straightforward way).

Question: Is there an analogous generalization of
QH∗ (Fl (n)) ? Is it connected to Fulton’s “universal Schubert
polynomials”?

Question: Is there an equivariant analogue?

Question: What about quotients of the quasisymmetric
polynomials?
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Sk-module structure

The symmetric group Sk acts on P, with invariant ring S.

What is the Sk -module structure on P�J ?

Almost-theorem (G., needs to be checked): Assume that
k is a Q-algebra. Then, as Sk -modules,

P�J ∼=
(
P�PS+

)×(nk
)
∼=

 kSk︸︷︷︸
regular rep

×
(
n

k

)
,

where PS+ is the ideal of P generated by symmetric
polynomials with constant term 0.
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Deforming symmetric functions, 1

Let us recall symmetric functions (not polynomials) now;
we’ll need them soon anyway.

S := {symmetric polynomials in x1, x2, . . . , xk} ;

Λ := {symmetric functions in x1, x2, x3, . . .} .
We use standard notations for symmetric functions, but in
boldface:

e = elementary symmetric,

h = complete homogeneous,

s = Schur (or skew Schur).

We have

S ∼= Λ� (ek+1, ek+2, ek+3, . . .)ideal , thus

S�I ∼= Λ� (hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak ,

ek+1, ek+2, ek+3, . . .)ideal .

So why not replace the ej by ej − bj too?
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Deforming symmetric functions, 2

Theorem (G.): Assume that a1, a2, . . . , ak as well as
b1, b2, b3, . . . are elements of k. Then,

Λ� (hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak ,

ek+1 − b1, ek+2 − b2, ek+3 − b3, . . .)ideal

is a free k-module with basis (sλ)λ∈Pk,n
.
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On the proofs, 1

Proofs of all the above (except for the Sk -action and the
mλ-basis) can be found in

Darij Grinberg, A basis for a quotient of symmetric
polynomials (draft), http://www.cip.ifi.lmu.de/

~grinberg/algebra/basisquot.pdf .

Main ideas:

Use Gröbner bases to show that P�J is free with basis
(xα)α∈Nk ; αi<n−k+i for each i .
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)

Using that + Jacobi–Trudi, show that S�I is free with
basis (sλ)λ∈Pk,n

.
As for the rest, compute in Λ... a lot.
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Gröbner bases, 1: the degree-lexicographic order

A brief introduction to Gröbner bases is appropriate here.
Gröbner bases are “particularly uncomplicated” generating
sets for ideals in polynomial rings.
(But take the word “basis” with a grain of salt – they can
have redundant elements, for example.)

A monomial order is a total order on the monomials in P with
the properties that

1 ≤ m for each monomial m;
a ≤ b implies am ≤ bm for any monomials a, b,m;
the order is well-founded (i.e., we can do induction over
it).

The degree-lexicographic order is the monomial order defined
as follows: Two monomials a = xα1

1 xα2
2 · · · x

αk
k and

b = xβ1
1 xβ2

2 · · · x
βk
k satisfy a > b if and only if

either deg a > deg b
or deg a = deg b and the smallest i satisfying αi 6= βi
satisfies αi > βi .

Given a monomial order,
each nonzero polynomial f ∈ P has a well-defined leading
monomial (= the highest monomial appearing in f ).
a polynomial f is called quasi-monic if the coefficient of
its leading term in f is invertible.
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Gröbner bases, 2: What is a Gröbner basis?

If I is an ideal of P, then a Gröbner basis of I (for a fixed
monomial order) means a family (fi )i∈G of quasi-monic
polynomials that

generates I, and
has the property that the leading monomial of any
nonzero f ∈ I is divisible by the leading monomial of
some fi .

Example: Let k = 3, and rename x1, x2, x3 as x , y , z . Use the
degree-lexicographic order. Let I be the ideal generated by
x2 − yz , y2 − zx , z2 − xy . Then:

The triple
(
x2 − yz , y2 − zx , z2 − xy

)
is not a Gröbner

basis of I, since its leading monomials are x2, xz , xy , but
the leading term y3 of the polynomial y3 − z3 ∈ I is not
divisible by any of them.
The quadruple

(
y3 − z3, x2 − yz , xy − z2, xz − y2

)
is a

Gröbner basis of I. (Thanks SageMath, and whatever
packages it uses for this.)
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Gröbner bases, 3: Buchberger’s first criterion

Note: Our definition of Gröbner basis is a straightforward
generalization of the usual one, since k may not be a field.
Note that some texts use different generalizations!

Theorem (Buchberger’s first criterion). Let I be an ideal
of P.
Let (fi )i∈G be a family of quasi-monic polynomials that
generates I.
Assume that the leading monomials of all the fi are mutually
coprime (i.e., each indeterminate appears in the leading
monomial of fi for at most one i ∈ G ).
Then, (fi )i∈G is a Gröbner basis of I.

Example: Let k = 3, and rename x1, x2, x3 as x , y , z . Use the
degree-lexicographic order. Let I be the ideal generated by
x3 − yz , y3 − zx , z3 − xy . Then,

(
x3 − yz , y3 − zx , z3 − xy

)
is a Gröbner basis of I, since its leading monomials x3, y3, z3

are mutually coprime.
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Note: Our definition of Gröbner basis is a straightforward
generalization of the usual one, since k may not be a field.
Note that some texts use different generalizations!

Theorem (Buchberger’s first criterion). Let I be an ideal
of P.
Let (fi )i∈G be a family of quasi-monic polynomials that
generates I.
Assume that the leading monomials of all the fi are mutually
coprime (i.e., each indeterminate appears in the leading
monomial of fi for at most one i ∈ G ).
Then, (fi )i∈G is a Gröbner basis of I.
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Gröbner bases, 4: Macaulay’s basis theorem

Theorem (Macaulay’s basis theorem). Let I be an ideal of
P that has a Gröbner basis (fi )i∈G . A monomial m will be
called reduced if it is not divisible by the leading term of any
fi . Then, the projections of the reduced monomials form a
basis of the k-module P�I.

Example: Let k = 3, and rename x1, x2, x3 as x , y , z . Use the
degree-lexicographic order. Let I be the ideal generated by
x3 − yz , y3 − zx , z3 − xy . Then,

(
x3 − yz , y3 − zx , z3 − xy

)
is a Gröbner basis of I.
Thus,

(
x iy jz`

)
i ,j ,`<3

is a basis of P�I.

Example: Let k = 3, and rename x1, x2, x3 as x , y , z . Use the
degree-lexicographic order. Let I be the ideal generated by
x2 − yz , y2 − zx , z2 − xy . Then,(
y3 − z3, x2 − yz , xy − z2, xz − y2

)
is a Gröbner basis of I.

Thus, (x) ∪
(
y jz`

)
j<3

is a basis of P�I.
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Gröbner bases, 4: Macaulay’s basis theorem

Theorem (Macaulay’s basis theorem). Let I be an ideal of
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On the proofs, 2: the Gröbner basis argument

It is easy to prove the identity

hp (xi ..k) =
i−1∑
t=0

(−1)t et (x1..i−1) hp−t (x1..k)

for all i ∈ {1, 2, . . . , k + 1} and p ∈ N.
Here, xa..b means xa, xa+1, . . . , xb.

Use this to show that(
hn−k+i (xi ..k)−

i−1∑
t=0

(−1)t et (x1..i−1) ai−t

)
i∈{1,2,...,k}

is a Gröbner basis of the ideal J wrt the degree-lexicographic
order.

Thus, Macaulay’s basis theorem shows that
(xα)α∈Nk ; αi<n−k+i for each i is a basis of the k-module P�J.
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On the proofs, 3: the first basis of S�I

How to prove that S�I is free with basis (sλ)λ∈Pk,n
?

Jacobi–Trudi lets you recursively reduce each sλ with λ /∈ Pk,n

into smaller sµ’s.

=⇒ (sλ)λ∈Pk,n
spans S�I .

On the other hand, (xα)α∈Nk ; αi<i for each i spans P as an
S-module (Artin).

Combining these yields that (sλxα)λ∈Pk,n; α∈Nk ; αi<i for each i

spans P�IP = P�J.

But we also know that the family (xα)α∈Nk ; αi<n−k+i for each i

is a basis of P�J.

What can you say if a k-module has a basis (av )v∈V and a
spanning family (bu)u∈U of the same finite size
(|U| = |V | <∞)?
Easy exercise: You can say that (bu)u∈U is also a basis.

Thus, (sλxα)λ∈Pk,n; α∈Nk ; αi<i for each i is a basis of P�J.

=⇒ (sλ)λ∈Pk,n
is a basis of S�I .
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On the proofs, 4: Bernstein’s identity

The rest of the proofs are long computations inside Λ, using
various identities for symmetric functions.

Maybe the most important one:
Bernstein’s identity: Let λ be a partition. Let m ∈ Z be
such that m ≥ λ1. Then,∑

i∈N
(−1)i hm+i (ei )

⊥ sλ = s(m,λ1,λ2,λ3,...).

Here, f⊥g means “g skewed by f” (so that (sµ)⊥ sλ = sλ�µ).
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