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1. Introduction

Let K be a commutative ring. The famous Cayley-Hamilton theorem says that
if χA = det (tIn − A) ∈ K [t] is the characteristic polynomial of an n × n-matrix
A ∈ Kn×n, then χA (A) = 0. Speaking more explicitly, it means that if we write

this polynomial χA in the form χA =
n
∑

i=0
cn−iti (with cn−i ∈ K), then

n
∑

i=0
cn−i Ai = 0.

Various proofs of this theorem are well-known (we will present one in this note,
but it could not be any farther from being new). A less standard fact, which I call
the trace Cayley-Hamilton theorem, states that

kck +
k

∑
i=1

Tr
(

Ai
)

ck−i = 0 for every k ∈ N (1)

(where
n
∑

i=0
cn−iti is χA as before, and where we set cn−i = 0 for every i < 0). In

the case of k ≥ n, this can easily be obtained from the Cayley-Hamilton theorem
n
∑

i=0
cn−i Ai = 0 by multiplying by Ak−n and taking traces1; no such simple proof

exists in the general case, however. The result itself is not new (the k ≤ n case,
for example, is [LomQui16, Chapter III, Exercise 14]), and is well-known e.g. to
algebraic combinatorialists; however, it is hard to find an expository treatment.

When the ground ring K is a field, it is possible to prove the trace Cayley-
Hamilton theorem by expressing both Tr

(
Ai) and the cj through the eigenvalues

of A (indeed, Tr
(

Ai) is the sum of the i-th powers of these eigenvalues, whereas cj

is (−1)j times their j-th elementary symmetric function); the identity (1) then boils
down to the Newton identities for said eigenvalues. However, of course, the use
of eigenvalues in this proof requires K to be a field. There are ways to adapt this
proof to the case when K is a commutative ring. One is to apply the “method of
universal identities” (see, e.g., [LomQui16, Chapter III, Exercise 14]; the method is
also explained in [Conrad09]) to reduce the general case to the case when K is a
field2. Another is to build up the theory of eigenvalues for square matrices over
an arbitrary commutative ring K; this is not as simple as for fields, but doable (see
[Laksov13]).

In this note, I shall give a proof of both the Cayley-Hamilton and the trace Cayley-
Hamilton theorems via a trick whose use in proving the former is well-known (see,
e.g., [Heffer14, Chapter Five, Section IV, Lemma 1.9]). The trick is to observe that

1The details are left to the interested reader. The kck term on the left hand side appears off, but it
actually is harmless: In the k = n case, it can be rewritten as Tr

(
A0) cn and incorporated into

the sum, whereas in the k > n case, it simply vanishes.
2This relies on the observation that (1) (for a given k) is a polynomial identity in the entries of A.
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the adjugate matrix adj (tIn − A) can be written as D0t0 + D1t1 + · · · + Dn−1tn−1

for some n matrices D0, D1, . . . , Dn−1 ∈ Kn×n; then, a telescoping sum establishes
the Cayley-Hamilton theorem. The same trick can be used for the trace Cayley-
Hamilton theorem, although it requires more work; in particular, an intermediate
step is necessary, establishing that the derivative of the characteristic polynomial
χA = det (tIn − A) is Tr (adj (tIn − A)). I hope that this writeup will have two uses:
making the trace Cayley-Hamilton theorem more accessible, and demonstrating
that the trick just mentioned can serve more than one purpose. Next, I shall show
an application of the trace Cayley-Hamilton theorem, answering a question from
[m.se1798703]. Finally, I shall discuss several other properties of the adjugate ma-
trix as well as further applications of polynomial matrices in proving determinant
identities.

2. Notations and theorems

2.1. Notations

Before we state the theorems that we will be occupying ourselves with, let us agree
on the notations.

Definition 2.1. Throughout this note, the word “ring” will mean “associative
ring with unity”. We will always let K denote a commutative ring with unity.
The word “matrix” shall always mean “matrix over K”, unless explicitly stated
otherwise.

As usual, we let K [t] denote the polynomial ring in the indeterminate t over
K.

If f ∈ K [t] is a polynomial and n is an integer, then [tn] f will denote the
coefficient of tn in f . (If n is negative or greater than the degree of f , then this
coefficient is understood to be 0.)

Let N denote the set {0, 1, 2, . . .}.
If n ∈ N and m ∈ N, and if we are given an element ai,j ∈ K for every (i, j) ∈

{1, 2, . . . , n} × {1, 2, . . . , m}, then we use the notation
(
ai,j
)

1≤i≤n, 1≤j≤m for the
n×m-matrix whose (i, j)-th entry is ai,j for all (i, j) ∈ {1, 2, . . . , n}× {1, 2, . . . , m}.

For every n ∈ N, we denote the n × n identity matrix by In.
For every n ∈ N and m ∈ N, we denote the n × m zero matrix by 0n×m.
If A is any n × n-matrix, then we let det A denote the determinant of A, and

we let Tr A denote the trace of A. (Recall that the trace of A is defined to be the
sum of the diagonal entries of A.)

We consider K as a subring of K [t]. Thus, for every n ∈ N, every n× n-matrix
in Kn×n can be considered as a matrix in (K [t])n×n.
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2.2. The main claims

We shall now state the results that we will prove further below. We begin with a
basic fact:

Proposition 2.2. Let n ∈ N. Let A ∈ Kn×n and B ∈ Kn×n be two n × n-matrices.
Consider the matrix tA + B ∈ (K [t])n×n.

(a) Then, det (tA + B) ∈ K [t] is a polynomial of degree ≤ n in t.
(b) We have

[
t0] (det (tA + B)) = det B.

(c) We have [tn] (det (tA + B)) = det A.

Definition 2.3. Let n ∈ N. Let A ∈ Kn×n be an n × n-matrix. Then, we consider
A as a matrix in (K [t])n×n as well (as explained above); thus, a matrix tIn − A ∈
(K [t])n×n is defined. We let χA denote the polynomial det (tIn − A) ∈ K [t]; we
call χA the characteristic polynomial of A.

We notice that the notion of the characteristic polynomial is not standardized
across the literature. Our definition of χA is identical with the definition in [Knapp2016,
§V.3] (except that we use t instead of X as the indeterminate), but the definition in
[Heffer14, Chapter Five, Section II, Definition 3.9] is different (it defines χA to be
det (A − tIn) instead). The two definitions differ merely in a sign (namely, one
version of the characteristic polynomial is (−1)n times the other), whence any
statement about one of them can easily be translated into a statement about the
other; nevertheless this discrepancy creates some occasions for confusion. I shall,
of course, use Definition 2.3 throughout this note.

Corollary 2.4. Let n ∈ N. Let A ∈ Kn×n.
(a) Then, χA ∈ K [t] is a polynomial of degree ≤ n in t.
(b) We have

[
t0] χA = (−1)n det A.

(c) We have [tn] χA = 1.

Of course, combining parts (a) and (c) of Corollary 2.4 shows that, for every
n ∈ N and A ∈ Kn×n, the characteristic polynomial χA is a monic polynomial of
degree n.

Let me now state the main two theorems in this note:

Theorem 2.5 (Cayley-Hamilton theorem). Let n ∈ N. Let A ∈ Kn×n. Then,
χA (A) = 0n×n. (Here, χA (A) denotes the result of substituting A for t in the
polynomial χA. It does not denote the result of substituting A for t in the expres-
sion det (tIn − A); in particular, χA (A) is an n × n-matrix, not a determinant!)

Theorem 2.6 (trace Cayley-Hamilton theorem). Let n ∈ N. Let A ∈ Kn×n. For
every j ∈ Z, define an element cj ∈ K by cj =

[
tn−j] χA. Then,

kck +
k

∑
i=1

Tr
(

Ai
)

ck−i = 0 for every k ∈ N.
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Theorem 2.5 is (as has already been said) well-known and a cornerstone of lin-
ear algebra. It appears (with proofs) in [Bernha11], [Brown93, Theorem 7.23],
[Camero08, Theorem 2.16], [Climen13, Theorem 23.1], [Ford22, Theorem 4.6.12],
[Garrett09, §28.10], [Heffer14, Chapter Five, Section IV, Lemma 1.9], [Knapp2016,
Theorem 5.9], [Loehr14, §5.15], [Mate16, §4, Theorem 1], [McDona84, Theorem
I.8], [Moore68, §6.1, Theorem 1.1], [Sage08, Seconde méthode (§3)], [Shurma15],
[Stoll17, Theorem 3.1], [Straub83], [BroWil89, Theorem 7.10], [Zeilbe85, §3] and in
many other sources3. The proof we will give below will essentially repeat the proof
in [Heffer14, Chapter Five, Section IV, Lemma 1.9].

Theorem 2.6 is a less known result. It appears in [LomQui16, Chapter III, Exercise
14] (with a sketch of a proof), in [Zeilbe93, (C − H)] (with a beautiful short proof
using exterior algebra) and in [Zeilbe85, Exercise 5] (without proof); its particular
case when K is a field also tends to appear in representation-theoretical literature
(mostly left as an exercise to the reader). We will prove it similarly to Theorem 2.5;
this proof, to my knowledge, is new.

3. The proofs

3.1. Proposition 2.2 and Corollary 2.4

Let us now begin proving the results stated above. As a warmup, we will prove
the (rather trivial) Proposition 2.2.

We first recall how the determinant of a matrix is defined: For any n ∈ N,
let Sn denote the n-th symmetric group (i.e., the group of all permutations of
{1, 2, . . . , n}). If n ∈ N and σ ∈ Sn, then (−1)σ denotes the sign of the permu-
tation σ. If n ∈ N, and if A =

(
ai,j
)

1≤i≤n, 1≤j≤n is an n × n-matrix, then

det A = ∑
σ∈Sn

(−1)σ
n

∏
i=1

ai,σ(i). (2)

We prepare for the proof of Proposition 2.2 by stating a simple lemma:

Lemma 3.1. Let n ∈ N. Let x1, x2, . . . , xn be n elements of K. Let y1, y2, . . . , yn be

n elements of K. Define a polynomial f ∈ K [t] by f =
n
∏
i=1

(txi + yi).

3All the sources we are citing (with the possible exception of [Garrett09, §28.10]) prove Theorem
2.5 in full generality, although some of them do not state Theorem 2.5 in full generality (indeed,
they often state it under the additional requirement that K be a field). There are other sources
which only prove Theorem 2.5 in the case when K is a field. The note [Sage08] gives four proofs
of Theorem 2.5 for the case when K = C; the first of these proofs works for every field K,
whereas the second works for any commutative ring K, and the third and the fourth actually
require K = C.

Note that some authors decline to call Theorem 2.5 the Cayley-Hamilton theorem; they instead
use this name for some related result. For instance, Hefferon, in [Heffer14], uses the name
“Cayley-Hamilton theorem” for a corollary.
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(a) Then, f is a polynomial of degree ≤ n.

(b) We have [tn] f =
n
∏
i=1

xi.

(c) We have
[
t0] f =

n
∏
i=1

yi.

Proof of Lemma 3.1. Obvious by multiplying out the product
n
∏
i=1

(txi + yi) (or, if one

desires a formal proof, by a straightforward induction over n).

Proof of Proposition 2.2. Write the n × n-matrix A in the form A =
(
ai,j
)

1≤i≤n, 1≤j≤n.

Thus, ai,j ∈ K for every (i, j) ∈ {1, 2, . . . , n}2 (since A ∈ Kn×n).
Write the n × n-matrix B in the form B =

(
bi,j
)

1≤i≤n, 1≤j≤n. Thus, bi,j ∈ K for

every (i, j) ∈ {1, 2, . . . , n}2 (since B ∈ Kn×n).
For every σ ∈ Sn, define a polynomial fσ ∈ K [t] by

fσ =
n

∏
i=1

(
tai,σ(i) + bi,σ(i)

)
. (3)

The following holds:

Fact 1: For every σ ∈ Sn, the polynomial fσ is a polynomial of degree
≤ n.

[Proof of Fact 1: Let σ ∈ Sn. Then, Lemma 3.1 (a) (applied to ai,σ(i), bi,σ(i) and fσ

instead of xi, yi and f ) shows that fσ is a polynomial of degree ≤ n. This proves
Fact 1.]

From A =
(
ai,j
)

1≤i≤n, 1≤j≤n and B =
(
bi,j
)

1≤i≤n, 1≤j≤n, we obtain tA + B =(
tai,j + bi,j

)
1≤i≤n, 1≤j≤n. Hence,

det (tA + B) = ∑
σ∈Sn

(−1)σ
n

∏
i=1

(
tai,σ(i) + bi,σ(i)

)
︸ ︷︷ ︸

= fσ
(by (3))(

by (2), applied to K [t] , tA + B and tai,j + bi,j

instead of K, A and ai,j

)
= ∑

σ∈Sn

(−1)σ fσ.

Hence, det (tA + B) is a K-linear combination of the polynomials fσ for σ ∈ Sn.
Since all of these polynomials are polynomials of degree ≤ n (by Fact 1), we thus
conclude that det (tA + B) is a K-linear combination of polynomials of degree ≤ n.
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Thus, det (tA + B) is itself a polynomial of degree ≤ n. This proves Proposition 2.2
(a).

(b) We have[
t0
]
(det (tA + B))︸ ︷︷ ︸
= ∑

σ∈Sn
(−1)σ fσ

=
[
t0
] (

∑
σ∈Sn

(−1)σ fσ

)
= ∑

σ∈Sn

(−1)σ
[
t0
]

fσ︸ ︷︷ ︸
=

n
∏
i=1

bi,σ(i)

(by Lemma 3.1 (c) (applied to
ai,σ(i), bi,σ(i) and fσ

instead of xi, yi and f ))

= ∑
σ∈Sn

(−1)σ
n

∏
i=1

bi,σ(i).

Comparing this with

det B = ∑
σ∈Sn

(−1)σ
n

∏
i=1

bi,σ(i)

(
by (2), applied to B and bi,j

instead of A and ai,j

)
,

we obtain
[
t0] (det (tA + B)) = det B. This proves Proposition 2.2 (b).

(c) We have

[tn] (det (tA + B))︸ ︷︷ ︸
= ∑

σ∈Sn
(−1)σ fσ

= [tn]

(
∑

σ∈Sn

(−1)σ fσ

)
= ∑

σ∈Sn

(−1)σ [tn] fσ︸ ︷︷ ︸
=

n
∏
i=1

ai,σ(i)

(by Lemma 3.1 (b) (applied to
ai,σ(i), bi,σ(i) and fσ

instead of xi, yi and f ))

= ∑
σ∈Sn

(−1)σ
n

∏
i=1

ai,σ(i).

Comparing this with (2), we obtain [tn] (det (tA + B)) = det A. This proves Propo-
sition 2.2 (c).

Proof of Corollary 2.4. The definition of χA yields

χA = det

 tIn − A︸ ︷︷ ︸
=tIn+(−A)

 = det (tIn + (−A)). Hence, Corollary 2.4 follows from

Proposition 2.2 (applied to In and −A instead of A and B). (For part (b), we need
the additional observation that det (−A) = (−1)n det A.)

Let me state one more trivial observation as a corollary:
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Corollary 3.2. Let n ∈ N. Let A ∈ Kn×n. For every j ∈ Z, define an element

cj ∈ K by cj =
[
tn−j] χA. Then, χA =

n
∑

k=0
cn−ktk.

Proof of Corollary 3.2. For every k ∈ Z, the definition of cn−k yields

cn−k =
[
tn−(n−k)

]
χA =

[
tk
]

χA. (4)

We know that χA ∈ K [t] is a polynomial of degree ≤ n in t (by Corollary 2.4
(a)). Hence,

χA =
n

∑
k=0

([
tk
]

χA

)
︸ ︷︷ ︸

=cn−k
(by (4))

tk =
n

∑
k=0

cn−ktk.

This proves Corollary 3.2.

3.2. Reminders on the adjugate

Let us now briefly introduce the adjugate of a matrix and state some of its proper-
ties.

We first recall the definitions (mostly quoting them from [Grinbe15, Chapter 6]):

Definition 3.3. Let n ∈ N and m ∈ N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤m be an n × m-
matrix. Let i1, i2, . . . , iu be some elements of {1, 2, . . . , n}; let j1, j2, . . . , jv be some
elements of {1, 2, . . . , m}. Then, we define subj1,j2,...,jv

i1,i2,...,iu A to be the u × v-matrix(
aix,jy

)
1≤x≤u, 1≤y≤v

.

Definition 3.4. Let n ∈ N. Let a1, a2, . . . , an be n objects. Let i ∈ {1, 2, . . . , n}.
Then, (a1, a2, . . . , âi, . . . , an) shall mean the list (a1, a2, . . . , ai−1, ai+1, ai+2, . . . , an)
(that is, the list (a1, a2, . . . , an) with its i-th entry removed). (Thus, the “hat” over
the ai means that this ai is being omitted from the list.)

For example,
(

12, 22, . . . , 5̂2, . . . , 82
)
=
(
12, 22, 32, 42, 62, 72, 82).

Definition 3.5. Let n ∈ N and m ∈ N. Let A be an n × m-matrix. For every
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, we let A∼i,∼j be the (n − 1) × (m − 1)-

matrix sub1,2,..., ĵ,...,m
1,2,...,̂i,...,n

A. (Thus, A∼i,∼j is the matrix obtained from A by crossing
out the i-th row and the j-th column.)

Definition 3.6. Let n ∈ N. Let A be an n × n-matrix. We define a new n × n-
matrix adj A by

adj A =
(
(−1)i+j det

(
A∼j,∼i

))
1≤i≤n, 1≤j≤n

.
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This matrix adj A is called the adjugate of the matrix A.

The main property of the adjugate is the following fact:

Theorem 3.7. Let n ∈ N. Let A be an n × n-matrix. Then,

A · adj A = adj A · A = det A · In.

(Recall that In denotes the n × n identity matrix. Expressions such as adj A · A
and det A · In have to be understood as (adj A) · A and (det A) · In, respectively.)

Theorem 3.7 appears in almost any text on linear algebra that considers the adju-
gate; for example, it appears in [Heffer14, Chapter Four, Section III, Theorem 1.9],
in [Knapp2016, Proposition 2.38], in [BroWil89, Theorem 4.11] and in [Grinbe15,
Theorem 6.100]. (Again, most of these sources only state it in the case when K is a
field, but the proofs given apply in all generality. Different texts use different nota-
tions. The source that is closest to my notations here is [Grinbe15], since Theorem
3.7 above is a verbatim copy of [Grinbe15, Theorem 6.100].)

Let us state a simple fact:

Lemma 3.8. Let n ∈ N. Let u and v be two elements of {1, 2, . . . , n}. Let λ and µ
be two elements of K. Let A and B be two n × n-matrices. Then,

(λA + µB)∼u,∼v = λA∼u,∼v + µB∼u,∼v.

Proof of Lemma 3.8. Obvious.

Next, we prove a crucial, if simple, result:

Proposition 3.9. Let n ∈ N. Let A ∈ Kn×n be an n × n-matrix. Then, there exist
n matrices D0, D1, . . . , Dn−1 in Kn×n such that

adj (tIn − A) =
n−1

∑
k=0

tkDk in (K [t])n×n .

(Here, of course, the matrix Dk on the right hand side is understood as an ele-
ment of (K [t])n×n.)

Proof of Proposition 3.9. Fix (u, v) ∈ {1, 2, . . . , n}2. Then, Proposition 2.2 (a) (applied
to n − 1, (In)∼u,∼v and (−A)∼u,∼v instead of n, A and B) shows that

det
(

t (In)∼u,∼v + (−A)∼u,∼v

)
∈ K [t] is a polynomial of degree ≤ n − 1 in t. In

other words, there exists an n-tuple (du,v,0, du,v,1, . . . , du,v,n−1) ∈ Kn such that

det
(

t (In)∼u,∼v + (−A)∼u,∼v

)
=

n−1

∑
k=0

du,v,ktk.
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Consider this (du,v,0, du,v,1, . . . , du,v,n−1). But Lemma 3.8 (applied to K [t], t, 1, In and
−A instead of K, λ, µ, A and B) yields (tIn − A)∼u,∼v = t (In)∼u,∼v + (−A)∼u,∼v
(after some simplifications). Thus,

det
(
(tIn − A)∼u,∼v

)
= det

(
t (In)∼u,∼v + (−A)∼u,∼v

)
=

n−1

∑
k=0

du,v,ktk. (5)

Now, forget that we fixed (u, v). Thus, for every (u, v) ∈ {1, 2, . . . , n}2, we have
constructed an n-tuple (du,v,0, du,v,1, . . . , du,v,n−1) ∈ Kn satisfying (5).

Now, the definition of adj (tIn − A) yields

adj (tIn − A) =


(−1)i+j det

(
(tIn − A)∼j,∼i

)
︸ ︷︷ ︸

=
n−1
∑

k=0
dj,i,ktk

(by (5), applied to (u,v)=(j,i))


1≤i≤n, 1≤j≤n

=


(−1)i+j

n−1

∑
k=0

dj,i,ktk

︸ ︷︷ ︸
=

n−1
∑

k=0
tk(−1)i+jdj,i,k


1≤i≤n, 1≤j≤n

=

(
n−1

∑
k=0

tk (−1)i+j dj,i,k

)
1≤i≤n, 1≤j≤n

.

Comparing this with

n−1

∑
k=0

tk
(
(−1)i+j dj,i,k

)
1≤i≤n, 1≤j≤n

=

(
n−1

∑
k=0

tk (−1)i+j dj,i,k

)
1≤i≤n, 1≤j≤n

,

we obtain adj (tIn − A) =
n−1
∑

k=0
tk
(
(−1)i+j dj,i,k

)
1≤i≤n, 1≤j≤n

. Hence, there exist n

matrices D0, D1, . . . , Dn−1 in Kn×n such that

adj (tIn − A) =
n−1

∑
k=0

tkDk in (K [t])n×n

(namely, Dk =
(
(−1)i+j dj,i,k

)
1≤i≤n, 1≤j≤n

for every k ∈ {0, 1, . . . , n − 1}). This

proves Proposition 3.9.

3.3. Polynomials with matrix entries: a trivial lemma
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Lemma 3.10. Let n ∈ N and m ∈ N. Let (B0, B1, . . . , Bm) ∈ (Kn×n)
m+1 and

(C0, C1, . . . , Cm) ∈ (Kn×n)
m+1 be two (m + 1)-tuples of matrices in Kn×n. As-

sume that
m

∑
k=0

tkBk =
m

∑
k=0

tkCk in (K [t])n×n .

Then, Bk = Ck for every k ∈ {0, 1, . . . , m}.

Proof of Lemma 3.10. For every k ∈ {0, 1, . . . , m}, write the matrix Bk ∈ Kn×n in
the form Bk =

(
bk,i,j

)
1≤i≤n, 1≤j≤n, and write the matrix Ck ∈ Kn×n in the form

Ck =
(
ck,i,j

)
1≤i≤n, 1≤j≤n.

Now,
m
∑

k=0
tkBk =

(
m
∑

k=0
tkbk,i,j

)
1≤i≤n, 1≤j≤n

(since Bk =
(
bk,i,j

)
1≤i≤n, 1≤j≤n for every

k ∈ {0, 1, . . . , m}). Similarly,
m
∑

k=0
tkCk =

(
m
∑

k=0
tkck,i,j

)
1≤i≤n, 1≤j≤n

. Thus,

(
m

∑
k=0

tkbk,i,j

)
1≤i≤n, 1≤j≤n

=
m

∑
k=0

tkBk =
m

∑
k=0

tkCk =

(
m

∑
k=0

tkck,i,j

)
1≤i≤n, 1≤j≤n

.

In other words,
m

∑
k=0

tkbk,i,j =
m

∑
k=0

tkck,i,j

for every (i, j) ∈ {1, 2, . . . , n}2. Comparing coefficients on both sides of this equality,
we obtain

bk,i,j = ck,i,j

for every k ∈ {0, 1, . . . , m} for every (i, j) ∈ {1, 2, . . . , n}2. Now, every k ∈ {0, 1, . . . , m}
satisfies

Bk =

bk,i,j︸︷︷︸
=ck,i,j


1≤i≤n, 1≤j≤n

=
(
ck,i,j

)
1≤i≤n, 1≤j≤n = Ck.

This proves Lemma 3.10.

3.4. Proof of the Cayley-Hamilton theorem

We are now fully prepared for the proof of the Cayley-Hamilton theorem. However,
we are going to organize the crucial part of this proof as a lemma, so that we can
use it later in our proof of the trace Cayley-Hamilton theorem.
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Lemma 3.11. Let n ∈ N. Let A ∈ Kn×n. For every j ∈ Z, define an element
cj ∈ K by cj =

[
tn−j] χA.

Let D0, D1, . . . , Dn−1 be n matrices in Kn×n such that

adj (tIn − A) =
n−1

∑
k=0

tkDk in (K [t])n×n . (6)

Thus, an n-tuple (D0, D1, . . . , Dn−1) of matrices in Kn×n is defined. Extend this
n-tuple to a family (Dk)k∈Z of matrices in Kn×n by setting

(Dk = 0n×n for every k ∈ Z \ {0, 1, . . . , n − 1}) . (7)

Then:
(a) We have χA =

n
∑

k=0
cn−ktk.

(b) For every integer k, we have cn−k In = Dk−1 − ADk.
(c) Every k ∈ N satisfies

k

∑
i=0

ck−i Ai = Dn−1−k.

Proof of Lemma 3.11. (a) Lemma 3.11 (a) is just Corollary 3.2.
(b) We have

n

∑
k=0

tkDk−1 = t0 D0−1︸ ︷︷ ︸
=D−1=0n×n

(by (7))

+
n

∑
k=1

tkDk−1 =
n

∑
k=1

tkDk−1 =
n−1

∑
k=0

tk+1︸︷︷︸
=ttk

D(k+1)−1︸ ︷︷ ︸
=Dk

(here, we have substituted k + 1 for k in the sum)

=
n−1

∑
k=0

ttkDk = t
n−1

∑
k=0

tkDk︸ ︷︷ ︸
=adj(tIn−A)

(by (6))

= t adj (tIn − A) (8)

and

n

∑
k=0

tkDk = tn Dn︸︷︷︸
=0n×n
(by (7))

+
n−1

∑
k=0

tkDk =
n−1

∑
k=0

tkDk

= adj (tIn − A) (by (6)) . (9)

But Theorem 3.7 (applied to K [t] and tIn − A instead of K and A) shows that

(tIn − A) · adj (tIn − A) = adj (tIn − A) · (tIn − A) = det (tIn − A) · In.
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Thus, in particular,

(tIn − A) · adj (tIn − A) = det (tIn − A)︸ ︷︷ ︸
=χA

(by the definition of χA)

·In = χA · In,

so that

χA · In = (tIn − A) · adj (tIn − A)

= t adj (tIn − A)︸ ︷︷ ︸
=

n
∑

k=0
tkDk−1

(by (8))

−A adj (tIn − A)︸ ︷︷ ︸
=

n
∑

k=0
tkDk

(by (9))

=
n

∑
k=0

tkDk−1 − A
n

∑
k=0

tkDk︸ ︷︷ ︸
=

n
∑

k=0
tk ADk

=
n

∑
k=0

tkDk−1 −
n

∑
k=0

tk ADk =
n

∑
k=0

tk (Dk−1 − ADk) .

Thus,

n

∑
k=0

tk (Dk−1 − ADk) = χA︸︷︷︸
=

n
∑

k=0
cn−ktk

(by Lemma 3.11 (a))

·In =

(
n

∑
k=0

cn−ktk

)
· In

=
n

∑
k=0

tkcn−k In.

Lemma 3.10 (applied to m = n, Bk = Dk−1 − ADk and Ck = cn−k In) thus shows that

Dk−1 − ADk = cn−k In for every k ∈ {0, 1, . . . , n} . (10)

Now, let k be an integer. We must prove that cn−k In = Dk−1 − ADk.
If k ∈ {0, 1, . . . , n}, then this follows from (10). Thus, we WLOG assume that k /∈

{0, 1, . . . , n}. Hence, k− 1 ∈ Z\ {0, 1, . . . , n − 1}, so that (7) (applied to k− 1 instead
of k) yields Dk−1 = 0n×n. Also, k /∈ {0, 1, . . . , n} leads to k ∈ Z \ {0, 1, . . . , n − 1};
therefore, (7) yields Dk = 0n×n. Now, Dk−1︸ ︷︷ ︸

=0n×n

−A Dk︸︷︷︸
=0n×n

= 0n×n − 0n×n = 0n×n.

On the other hand, cn−k = 0 4. Hence, cn−k︸︷︷︸
=0

In = 0n×n. Compared with

Dk−1 − ADk = 0n×n, this yields cn−k In = Dk−1 − ADk.
Hence, cn−k In = Dk−1 − ADk is proven. In other words, Lemma 3.11 (b) is

proven.

4Proof. Recall that χA is a polynomial of degree ≤ n (by Corollary 2.4 (a)). Hence,
[
tk
]

χA = 0

(since k /∈ {0, 1, . . . , n}). Now, (4) yields cn−k =
[
tk
]

χA = 0.
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(c) Let k ∈ N. Then,

k

∑
i=0

ck−i Ai =
n

∑
i=n−k

ck−(k−n+i)︸ ︷︷ ︸
=cn−i

Ak−n+i

(here, we have substituted k − n + i for i in the sum)

=
n

∑
i=n−k

cn−i Ak−n+i︸ ︷︷ ︸
=Ak−n+icn−i In

=
n

∑
i=n−k

Ak−n+i cn−i In︸ ︷︷ ︸
=Di−1−ADi

(by Lemma 3.11 (b),
applied to i instead of k)

=
n

∑
i=n−k

Ak−n+i (Di−1 − ADi)︸ ︷︷ ︸
=Ak−n+iDi−1−Ak−n+i ADi

=
n

∑
i=n−k

Ak−n+iDi−1 − Ak−n+i A︸ ︷︷ ︸
=Ak−n+i+1=Ak−n+(i+1)

Di︸︷︷︸
=D(i+1)−1


=

n

∑
i=n−k

(
Ak−n+iDi−1 − Ak−n+(i+1)D(i+1)−1

)
= Ak−n+(n−k)︸ ︷︷ ︸

=A0=In

Dn−k−1 − Ak−n+(n+1) D(n+1)−1︸ ︷︷ ︸
=Dn=0n×n

(by (7))

(by the telescope principle)
= Dn−k−1 = Dn−1−k.

This proves Lemma 3.11 (c).

Proof of Theorem 2.5. For every j ∈ Z, define an element cj ∈ K by cj =
[
tn−j] χA.

Proposition 3.9 shows that there exist n matrices D0, D1, . . . , Dn−1 in Kn×n such
that

adj (tIn − A) =
n−1

∑
k=0

tkDk in (K [t])n×n .

Consider these D0, D1, . . . , Dn−1. Thus, an n-tuple (D0, D1, . . . , Dn−1) of matrices in
Kn×n is defined. Extend this n-tuple to a family (Dk)k∈Z of matrices in Kn×n by
setting

Dk = 0n×n for every k ∈ Z \ {0, 1, . . . , n − 1} .

Thus, in particular, D−1 = 0n×n.

Lemma 3.11 (a) shows that χA =
n
∑

k=0
cn−ktk =

n
∑

i=0
cn−iti. Substituting A for t in
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this equality, we obtain

χA (A) =
n

∑
i=0

cn−i Ai = Dn−1−n (by Lemma 3.11 (c), applied to k = n)

= D−1 = 0n×n.

This proves Theorem 2.5.

3.5. Derivations and determinants

Now, let us make what seems to be a detour, and define K-derivations of a K-
algebra5:

Definition 3.12. Let L be a K-algebra. A K-linear map f : L → L is said to be a
K-derivation if it satisfies

( f (ab) = a f (b) + f (a) b for every a ∈ L and b ∈ L) . (11)

The notion of a “K-derivation” is a particular case of the notion of a “k-derivation”
defined in [Grinbe16a, Definition 1.5]; specifically, it is obtained from the latter
when setting k = K, A = L and M = L. This particular case will suffice for us.
Examples of K-derivations abound (there are several in [Grinbe16a]), but the only
one we will need is the following:

Proposition 3.13. Let ∂ : K [t] → K [t] be the differentiation operator (i.e., the
map that sends every polynomial f ∈ K [t] to the derivative of f ). Then, ∂ :
K [t] → K [t] is a K-derivation.

Proof of Proposition 3.13. This follows from the fact that ∂ (ab) = a∂ (b) + ∂ (a) b for
any two polynomials a and b (the well-known Leibniz law).

A fundamental fact about K-derivations is the following:

Proposition 3.14. Let L be a K-algebra. Let f : L → L be a K-derivation. Let
n ∈ N, and let a1, a2, . . . , an ∈ L. Then,

f (a1a2 · · · an) =
n

∑
i=1

a1a2 · · · ai−1 f (ai) ai+1ai+2 · · · an.

5See [Grinbe16a, Convention 1.1] for what we mean by a “K-algebra”. In a nutshell, we require
K-algebras to be associative and unital, and we require the multiplication map on a K-algebra
to be K-bilinear.
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This proposition is a particular case of [Grinbe16a, Theorem 1.14] (obtained by
setting k = K, A = L and M = L); it is also easy to prove6.

What we are going to need is a formula for how a derivation acts on the deter-
minant of a matrix. We first introduce a notation:

Definition 3.15. Let n ∈ N and m ∈ N. Let L and M be rings. Let f : L → M be
any map. Then, f n×m will denote the map from Ln×m to Mn×m which sends ev-
ery matrix

(
ai,j
)

1≤i≤n, 1≤j≤m ∈ Ln×m to the matrix
(

f
(
ai,j
))

1≤i≤n, 1≤j≤m ∈ Mn×m.

(In other words, f n×m is the map which takes an n × m-matrix in Ln×m, and ap-
plies f to each entry of this matrix.)

Theorem 3.16. Let L be a commutative K-algebra. Let f : L → L be a K-
derivation. Let n ∈ N. Let A ∈ Ln×n. Then,

f (det A) = Tr
(

f n×n (A) · adj A
)

.

Proving Theorem 3.16 will take us a while. Let us begin by stating three lemmas:

Lemma 3.17. Let n ∈ N and m ∈ N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤m ∈ Kn×m and

B =
(
bi,j
)

1≤i≤m, 1≤j≤n ∈ Km×n. Then,

Tr (AB) =
n

∑
i=1

m

∑
j=1

ai,jbj,i.

Proof of Lemma 3.17. The definition of AB yields AB =

(
m
∑

k=1
ai,kbk,j

)
1≤i≤n, 1≤j≤n

(since A =
(
ai,j
)

1≤i≤n, 1≤j≤m and B =
(
bi,j
)

1≤i≤m, 1≤j≤n). Hence,

Tr (AB) =
n

∑
i=1

m

∑
k=1

ai,kbk,i =
n

∑
i=1

m

∑
j=1

ai,jbj,i

(here, we have renamed the summation index k as j in the second sum). This proves
Lemma 3.17.

Lemma 3.18. Let L be a commutative K-algebra. Let f : L → L be a K-
derivation. Let n ∈ N, and let a1, a2, . . . , an ∈ L. Then,

f (a1a2 · · · an) =
n

∑
k=1

f (ak) ∏
i∈{1,2,...,n};

i ̸=k

ai.

6First one should show that f (1) = 0 (by applying (11) to a = 1 and b = 1). Then, one can prove
Proposition 3.14 by straightforward induction on n.
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Proof of Lemma 3.18. Proposition 3.14 yields

f (a1a2 · · · an) =
n

∑
i=1

a1a2 · · · ai−1 f (ai) ai+1ai+2 · · · an

=
n

∑
k=1

a1a2 · · · ak−1 f (ak) ak+1ak+2 · · · an︸ ︷︷ ︸
= f (ak)(a1a2···ak−1)(ak+1ak+2···an)

(since L is commutative)

(here, we have renamed the summation index i as k)

=
n

∑
k=1

f (ak) (a1a2 · · · ak−1) (ak+1ak+2 · · · an)︸ ︷︷ ︸
= ∏

i∈{1,2,...,n};
i ̸=k

ai

=
n

∑
k=1

f (ak) ∏
i∈{1,2,...,n};

i ̸=k

ai.

This proves Lemma 3.18.

Lemma 3.19. Let n ∈ N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤n be an n × n-matrix. Let
p ∈ {1, 2, . . . , n} and q ∈ {1, 2, . . . , n}. Then,

∑
σ∈Sn;

σ(p)=q

(−1)σ ∏
i∈{1,2,...,n};

i ̸=p

ai,σ(i) = (−1)p+q det
(

A∼p,∼q
)

.

Lemma 3.19 is [Grinbe15, Lemma 6.84]; it is also easy to prove (it is the main
step in the proof of the Laplace expansion formula for the determinant).

Proof of Theorem 3.16. Write the matrix A ∈ Ln×n in the form A =
(
ai,j
)

1≤i≤n, 1≤j≤n.

Hence, f n×n (A) =
(

f
(
ai,j
))

1≤i≤n, 1≤j≤n (by the definition of f n×n). The definition

of adj A shows that adj A =
(
(−1)i+j det

(
A∼j,∼i

))
1≤i≤n, 1≤j≤n

. Hence, Lemma

3.17 (applied to L, n, f n×n (A), f
(
ai,j
)
, adj A and (−1)i+j det

(
A∼j,∼i

)
instead of K,

m, A, ai,j, B and bi,j) yields

Tr
(

f n×n (A) · adj A
)
=

n

∑
i=1

n

∑
j=1

f
(
ai,j
)
(−1)j+i det

(
A∼i,∼j

)
=

n

∑
k=1

n

∑
j=1

f
(
ak,j
)
(−1)j+k︸ ︷︷ ︸
=(−1)k+j

det
(

A∼k,∼j
)

(
here, we have renamed the summation index i

as k in the outer sum

)
=

n

∑
k=1

n

∑
j=1

f
(
ak,j
)
(−1)k+j det

(
A∼k,∼j

)
. (12)
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But the map f is a K-derivation, and thus is K-linear. Now, (2) (applied to L

instead of K) yields det A = ∑
σ∈Sn

(−1)σ
n
∏
i=1

ai,σ(i). Applying f to both sides of this

equality, we find

f (det A)

= f

(
∑

σ∈Sn

(−1)σ
n

∏
i=1

ai,σ(i)

)

= ∑
σ∈Sn

(−1)σ f


n

∏
i=1

ai,σ(i)︸ ︷︷ ︸
=a1,σ(1)a2,σ(2)···an,σ(n)

 (since the map f is K-linear)

= ∑
σ∈Sn

(−1)σ f
(

a1,σ(1)a2,σ(2) · · · an,σ(n)

)
︸ ︷︷ ︸
=

n
∑

k=1
f (ak,σ(k)) ∏

i∈{1,2,...,n};
i ̸=k

ai,σ(i)

(by Lemma 3.18, applied to
ai,σ(i) instead of ai)

= ∑
σ∈Sn

(−1)σ
n

∑
k=1

f
(

ak,σ(k)

)
∏

i∈{1,2,...,n};
i ̸=k

ai,σ(i)

=
n

∑
k=1

∑
σ∈Sn

(−1)σ f
(

ak,σ(k)

)
∏

i∈{1,2,...,n};
i ̸=k

ai,σ(i). (13)
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But every k ∈ {1, 2, . . . , n} satisfies

∑
σ∈Sn︸︷︷︸

= ∑
j∈{1,2,...,n}

∑
σ∈Sn;
σ(k)=j

(since σ(k)∈{1,2,...,n} for each σ∈Sn)

(−1)σ f
(

ak,σ(k)

)
∏

i∈{1,2,...,n};
i ̸=k

ai,σ(i)

= ∑
j∈{1,2,...,n}

∑
σ∈Sn;
σ(k)=j

(−1)σ f

 ak,σ(k)︸ ︷︷ ︸
=ak,j

(since σ(k)=j)

 ∏
i∈{1,2,...,n};

i ̸=k

ai,σ(i)

= ∑
j∈{1,2,...,n}

∑
σ∈Sn;
σ(k)=j

(−1)σ f
(
ak,j
)

∏
i∈{1,2,...,n};

i ̸=k

ai,σ(i)

= ∑
j∈{1,2,...,n}︸ ︷︷ ︸

=
n
∑

j=1

f
(
ak,j
)

∑
σ∈Sn;
σ(k)=j

(−1)σ ∏
i∈{1,2,...,n};

i ̸=k

ai,σ(i)

︸ ︷︷ ︸
=(−1)k+j det(A∼k,∼j)

(by Lemma 3.19, applied to
L, k and j instead of K, p and q)

=
n

∑
j=1

f
(
ak,j
)
(−1)k+j det

(
A∼k,∼j

)
.

Hence, (13) becomes

f (det A) =
n

∑
k=1

∑
σ∈Sn

(−1)σ f
(

ak,σ(k)

)
∏

i∈{1,2,...,n};
i ̸=k

ai,σ(i)

︸ ︷︷ ︸
=

n
∑

j=1
f (ak,j)(−1)k+j det(A∼k,∼j)

=
n

∑
k=1

n

∑
j=1

f
(
ak,j
)
(−1)k+j det

(
A∼k,∼j

)
= Tr

(
f n×n (A) · adj A

)
(by (12)). This proves Theorem 3.16.

3.6. The derivative of the characteristic polynomial

The characteristic polynomial χA of a square matrix A is, first of all, a polynomial;
and a polynomial has a derivative. We shall have need for a formula for this
derivative:
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Theorem 3.20. Let n ∈ N. Let A ∈ Kn×n. Let ∂ : K [t] → K [t] be the differ-
entiation operator (i.e., the map that sends every polynomial f ∈ K [t] to the
derivative of f ). Then,

∂χA = Tr (adj (tIn − A)) .

Proof of Theorem 3.20. Proposition 3.13 shows that ∂ : K [t] → K [t] is a K-derivation.
Now, consider the map ∂n×n : (K [t])n×n → (K [t])n×n (defined according to Defi-
nition 3.15). It is easy to see that

∂n×n (tB − A) = B (14)

for any n×n-matrix B ∈ Kn×n 7. Applying this to B = In, we obtain ∂n×n (tIn − A) =
In.

The definition of χA yields χA = det (tIn − A). Applying the map ∂ to both sides
of this equality, we obtain

∂χA = ∂ (det (tIn − A)) = Tr

∂n×n (tIn − A)︸ ︷︷ ︸
=In

· adj (tIn − A)


(

by Theorem 3.16 (applied to K [t] , ∂ and tIn − A
instead of L, f and A)

)

= Tr

In · adj (tIn − A)︸ ︷︷ ︸
=adj(tIn−A)

 = Tr (adj (tIn − A)) .

This proves Theorem 3.20.

7Proof. Let B ∈ Kn×n be an n × n-matrix. Write the matrix B in the form B =
(
bi,j
)

1≤i≤n, 1≤j≤n.

Write the matrix A in the form A =
(
ai,j
)

1≤i≤n, 1≤j≤n. Both matrices A and B belong to Kn×n;

thus, every (i, j) ∈ {1, 2, . . . , n}2 satisfies ai,j ∈ K and bi,j ∈ K and therefore ∂
(
tbi,j − ai,j

)
= bi,j

(since ∂ is the differentiation operator).
Now,

t B︸︷︷︸
=(bi,j)1≤i≤n, 1≤j≤n

− A︸︷︷︸
=(ai,j)1≤i≤n, 1≤j≤n

= t
(
bi,j
)

1≤i≤n, 1≤j≤n −
(
ai,j
)

1≤i≤n, 1≤j≤n =
(
tbi,j − ai,j

)
1≤i≤n, 1≤j≤n .

Hence, the definition of the map ∂n×n yields

∂n×n (tB − A) =

∂
(
tbi,j − ai,j

)︸ ︷︷ ︸
=bi,j


1≤i≤n, 1≤j≤n

=
(
bi,j
)

1≤i≤n, 1≤j≤n = B,

qed.
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We can use Theorem 3.20 to obtain the following result:

Proposition 3.21. Let n ∈ N. Let A ∈ Kn×n. For every j ∈ Z, define an element
cj ∈ K by cj =

[
tn−j] χA.

Let D0, D1, . . . , Dn−1 be n matrices in Kn×n satisfying (6). Thus, an n-tuple
(D0, D1, . . . , Dn−1) of matrices in Kn×n is defined. Extend this n-tuple to a family
(Dk)k∈Z of matrices in Kn×n by setting (7). Then, every k ∈ Z satisfies

Tr (Dk) = (k + 1) cn−(k+1). (15)

Proof of Proposition 3.21. Let ∂ : K [t] → K [t] be the differentiation operator (i.e.,
the map that sends every polynomial f ∈ K [t] to the derivative of f ).

Lemma 3.11 (a) yields χA =
n
∑

k=0
cn−ktk. Applying the map ∂ to both sides of this

equality, we obtain

∂χA = ∂

(
n

∑
k=0

cn−ktk

)
=

n

∑
k=1

cn−kktk−1
(

since ∂ is the differentiation
operator

)

=
n

∑
k=1

kcn−ktk−1 =
n−1

∑
k=0

(k + 1) cn−(k+1)t
k

(here, we have substituted k + 1 for k in the sum). Comparing this with

∂χA = Tr


adj (tIn − A)︸ ︷︷ ︸

=
n−1
∑

k=0
tkDk

(by (6))


(by Theorem 3.20)

= Tr

(
n−1

∑
k=0

tkDk

)
=

n−1

∑
k=0

tk Tr (Dk) =
n−1

∑
k=0

Tr (Dk) tk,

we obtain
n−1

∑
k=0

Tr (Dk) tk =
n−1

∑
k=0

(k + 1) cn−(k+1)t
k.

This is an identity between two polynomials in K [t]. Comparing coefficients on
both sides of this identity, we conclude that

Tr (Dk) = (k + 1) cn−(k+1) for every k ∈ {0, 1, . . . , n − 1} . (16)

Now, let k ∈ Z. We must prove (15).
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If k ∈ {0, 1, . . . , n − 1}, then (15) follows immediately from (16). Hence, for the
rest of this proof, we WLOG assume that we don’t have k ∈ {0, 1, . . . , n − 1}.

We don’t have k ∈ {0, 1, . . . , n − 1}. Thus, k ∈ Z \ {0, 1, . . . , n − 1}. Hence, (7)
yields Dk = 0n×n, so that Tr (Dk) = Tr (0n×n) = 0.

Recall again that k ∈ Z \ {0, 1, . . . , n − 1}. In other words, we have either k < 0
or k ≥ n. Thus, we are in one of the following two cases:

Case 1: We have k < 0.
Case 2: We have k ≥ n.
Let us first consider Case 1. In this case, we have k < 0. If k = −1, then (15)

holds8. Hence, for the rest of this proof, we WLOG assume that k ̸= −1. Combining
k < 0 with k ̸= −1, we obtain k < −1. Hence, k + 1 < 0.

The definition of cn−(k+1) yields cn−(k+1) =

tn−(n−(k+1))︸ ︷︷ ︸
=tk+1

 χA =
[
tk+1] χA = 0

(since k + 1 < 0, but χA is a polynomial). Hence, (k + 1) cn−(k+1)︸ ︷︷ ︸
=0

= 0. Comparing

this with Tr (Dk) = 0, we obtain Tr (Dk) = (k + 1) cn−(k+1). Hence, (15) is proven in
Case 1.

Let us now consider Case 2. In this case, we have k ≥ n. Thus, k + 1 ≥ n + 1 > n.
But χA is a polynomial of degree ≤ n. Hence, [tm] χA = 0 for every integer

m > n. Applying this to m = k + 1, we obtain
[
tk+1] χA = 0 (since k + 1 > n).

The definition of cn−(k+1) yields cn−(k+1) =

tn−(n−(k+1))︸ ︷︷ ︸
=tk+1

 χA =
[
tk+1] χA = 0.

Hence, (k + 1) cn−(k+1)︸ ︷︷ ︸
=0

= 0. Comparing this with Tr (Dk) = 0, we obtain Tr (Dk) =

(k + 1) cn−(k+1). Hence, (15) is proven in Case 2.
We have now proven (15) in each of the two Cases 1 and 2. Thus, (15) always

holds. Thus, Proposition 3.21 is proven.

3.7. Proof of the trace Cayley-Hamilton theorem

Now, we can finally prove the trace Cayley-Hamilton theorem itself:

Proof of Theorem 2.6. Proposition 3.9 shows that there exist n matrices D0, D1, . . . , Dn−1
in Kn×n such that

adj (tIn − A) =
n−1

∑
k=0

tkDk in (K [t])n×n .

8Proof. Assume that k = −1. Then, k + 1 = 0, so that (k + 1)︸ ︷︷ ︸
=0

cn−(k+1) = 0. Comparing this with

Tr (Dk) = 0, we obtain Tr (Dk) = (k + 1) cn−(k+1); hence, (15) holds, qed.
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Consider these D0, D1, . . . , Dn−1. Thus, an n-tuple (D0, D1, . . . , Dn−1) of matrices in
Kn×n is defined. Extend this n-tuple to a family (Dk)k∈Z of matrices in Kn×n by
setting

(Dk = 0n×n for every k ∈ Z \ {0, 1, . . . , n − 1}) .

Now, let k ∈ N. Then, Proposition 3.21 (applied to n − 1 − k instead of k) yields

Tr (Dn−1−k) = ((n − 1 − k) + 1)︸ ︷︷ ︸
=n−k

cn−((n−1−k)+1)︸ ︷︷ ︸
=ck

(since n−((n−1−k)+1)=k)

= (n − k) ck.

Thus,

(n − k) ck = Tr


Dn−1−k︸ ︷︷ ︸
=

k
∑

i=0
ck−i Ai

(by Lemma 3.11 (c))


= Tr

(
k

∑
i=0

ck−i Ai

)

=
k

∑
i=0

ck−i Tr
(

Ai
)
= ck−0︸︷︷︸

=ck

Tr

 A0︸︷︷︸
=In

+
k

∑
i=1

ck−i Tr
(

Ai
)

(here, we have split off the addend for i = 0 from the sum)

= ck Tr (In)︸ ︷︷ ︸
=n

+
k

∑
i=1

ck−i Tr
(

Ai
)

︸ ︷︷ ︸
=Tr(Ai)ck−i

= ckn +
k

∑
i=1

Tr
(

Ai
)

ck−i.

Solving this equation for
k
∑

i=1
Tr
(

Ai) ck−i, we obtain

k

∑
i=1

Tr
(

Ai
)

ck−i = (n − k) ck︸ ︷︷ ︸
=nck−kck

− ckn︸︷︷︸
=nck

= nck − kck − nck = −kck.

Adding kck to both sides of this equation, we obtain kck +
k
∑

i=1
Tr
(

Ai) ck−i = 0. This

proves Theorem 2.6.

3.8. A corollary

The following fact (which can also be easily proven by other means) follows readily
from Theorem 2.6:
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Corollary 3.22. Let n ∈ N. Let A ∈ Kn×n. Then,
[
tn−1] χA = −Tr A.

Proof of Corollary 3.22. For every j ∈ Z, define an element cj ∈ K by cj =
[
tn−j] χA.

The definition of c1 yields c1 =
[
tn−1] χA. The definition of c0 yields c0 =

[
tn−0

]
︸ ︷︷ ︸
=[tn]

χA =

[tn] χA = 1 (by Corollary 2.4 (c)).

Theorem 2.6 (applied to k = 1) yields 1c1 +
1
∑

i=1
Tr
(

Ai) c1−i = 0. Thus,

1c1 = −
1

∑
i=1

Tr
(

Ai
)

c1−i︸ ︷︷ ︸
=Tr(A1)c1−1

= −Tr

 A1︸︷︷︸
=A

 c1−1︸︷︷︸
=c0=1

= −Tr A.

Comparing this with 1c1 = c1 =
[
tn−1] χA, we obtain

[
tn−1] χA = −Tr A. This

proves Corollary 3.22.

4. Application: Nilpotency and traces

4.1. A nilpotency criterion

As an application of Theorem 2.6, let us now prove the following fact (generalizing
[m.se1798703]):

Corollary 4.1. Let n ∈ N. Let A ∈ Kn×n. Assume that

Tr
(

Ai
)
= 0 for every i ∈ {1, 2, . . . , n} . (17)

(a) Then, n!An = 0n×n.
(b) If K is a commutative Q-algebra, then An = 0n×n.
(c) We have n!χA = n!tn.
(d) If K is a commutative Q-algebra, then χA = tn.

Proof of Corollary 4.1. For every j ∈ Z, define an element cj ∈ K by cj =
[
tn−j] χA.

The definition of c0 yields c0 =
[
tn−0

]
︸ ︷︷ ︸
=[tn]

χA = [tn] χA = 1 (by Corollary 2.4 (c)).

We now claim that

kck = 0 for every k ∈ {1, 2, . . . , n} . (18)

[Proof of (18): Let k ∈ {1, 2, . . . , n}. Then, every i ∈ {1, 2, . . . , k} satisfies i ∈
{1, 2, . . . , n} and therefore also

Tr
(

Ai
)
= 0 (19)
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(by (17)). Now, Theorem 2.6 yields

kck +
k

∑
i=1

Tr
(

Ai
)

ck−i = 0.

Solving this equation for kck, we obtain

kck = −
k

∑
i=1

Tr
(

Ai
)

︸ ︷︷ ︸
=0

(by (19))

ck−i = −
k

∑
i=1

0ck−i︸ ︷︷ ︸
=0

= −0 = 0.

This proves (18).]
Now, we claim that

n!ck = 0 for every k ∈ {1, 2, . . . , n} . (20)

[Proof of (20): Let k ∈ {1, 2, . . . , n}. The product 1 · 2 · · · · · n contains k as a
factor, and thus is a multiple of k; in other words, n! is a multiple of k (since
n! = 1 · 2 · · · · · n). Hence, n!ck is a multiple of kck. Thus, (20) follows from (18).]

Finally, we observe that

n!cn−k = 0 for every k ∈ {0, 1, . . . , n − 1} . (21)

[Proof of (21): Let k ∈ {0, 1, . . . , n − 1}. Then, n − k ∈ {1, 2, . . . , n}. Hence, (20)
(applied to n − k instead of k) yields n!cn−k = 0. This proves (21).]

Now, Corollary 3.2 yields χA =
n
∑

k=0
cn−ktk. Substituting A for t in this equality,

we obtain χA (A) =
n
∑

k=0
cn−k Ak. Multiplying both sides of the latter equality by n!,

we obtain

n!χA (A) = n!
n

∑
k=0

cn−k Ak =
n

∑
k=0

n!cn−k Ak =
n−1

∑
k=0

n!cn−k︸ ︷︷ ︸
=0

(by (21))

Ak + n! cn−n︸︷︷︸
=c0=1

An

(here, we have split off the addend for k = n from the sum)

=
n−1

∑
k=0

0Ak

︸ ︷︷ ︸
=0

+n!An = n!An.

Hence,
n!An = n! χA (A)︸ ︷︷ ︸

=0n×n
(by Theorem 2.5)

= 0n×n.

This proves Corollary 4.1 (a).
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(b) Assume that K is a commutative Q-algebra. Corollary 4.1 (a) yields n!An =

0n×n. Now,
1
n!

∈ Q, so that we can multiply an n × n-matrix in Kn×n by
1
n!

(since

K is a Q-algebra). We have
1
n!

n!︸︷︷︸
=1

An = An. Hence, An =
1
n!

n!An︸ ︷︷ ︸
=0n×n

=
1
n!

0n×n = 0n×n.

This proves Corollary 4.1 (b).

(c) Multiplying the equality χA =
n
∑

k=0
cn−ktk by n!, we obtain

n!χA = n!
n

∑
k=0

cn−ktk =
n

∑
k=0

n!cn−ktk =
n−1

∑
k=0

n!cn−k︸ ︷︷ ︸
=0

(by (21))

tk + n! cn−n︸︷︷︸
=c0=1

tn

(here, we have split off the addend for k = n from the sum)

=
n−1

∑
k=0

0tk

︸ ︷︷ ︸
=0

+n!tn = n!tn.

This proves Corollary 4.1 (c).
(d) Assume that K is a commutative Q-algebra. Corollary 4.1 (c) yields n!χA =

n!tn.
Now,

1
n!

∈ Q, so that we can multiply any polynomial in K [t] by
1
n!

(since K is

a Q-algebra). We have
1
n!

n!︸︷︷︸
=1

χA = χA. Hence, χA =
1
n!

n!χA︸ ︷︷ ︸
=n!tn

=
1
n!

n!tn = tn. This

proves Corollary 4.1 (d).

4.2. A converse direction

The following result – in a sense, a converse of Corollary 4.1 (d) – also follows from
Theorem 2.6:

Corollary 4.2. Let n ∈ N. Let A ∈ Kn×n. Assume that χA = tn. Then, Tr
(

Ai) =
0 for every positive integer i.

Proof of Corollary 4.2. For every j ∈ Z, define an element cj ∈ K by cj =
[
tn−j] χA.

Then, each positive integer j satisfies

cj = 0. (22)

[Proof of (22): Let j be a positive integer. Thus, j ̸= 0, so that n − j ̸= n and thus[
tn−j] (tn) = 0. In view of χA = tn, this rewrites as

[
tn−j] χA = 0. But the definition

of cj yields cj =
[
tn−j] χA = 0. This proves (22).]



The trace Cayley-Hamilton theorem page 27

The definition of c0 yields c0 =
[
tn−0

]
︸ ︷︷ ︸
=[tn]

χA = [tn] χA = 1 (by Corollary 2.4 (c)).

Now, we claim that

Tr (Ap) = 0 for every positive integer p. (23)

[Proof of (23): We shall prove (23) by strong induction on p:
Induction step: Fix a positive integer k. Assume (as the induction hypothesis) that

(23) holds whenever p < k. We must now prove that (23) holds for p = k.
From (22) (applied to j = k), we obtain ck = 0.
We have assumed that (23) holds whenever p < k. In other words,

Tr (Ap) = 0 for every positive integer p < k. (24)

Now, Theorem 2.6 yields

kck +
k

∑
i=1

Tr
(

Ai
)

ck−i = 0.

Hence,

0 = k ck︸︷︷︸
=0

+
k

∑
i=1

Tr
(

Ai
)

ck−i =
k

∑
i=1

Tr
(

Ai
)

ck−i =
k−1

∑
i=1

Tr
(

Ai
)

︸ ︷︷ ︸
=0

(by (24),
applied
to p=i)

ck−i + Tr
(

Ak
)

ck−k︸︷︷︸
=c0=1

(here, we have split off the addend for i = k from the sum)

=
k−1

∑
i=1

0ck−i︸ ︷︷ ︸
=0

+Tr
(

Ak
)
= Tr

(
Ak
)

.

Thus, Tr
(

Ak) = 0. In other words, (23) holds for p = k. This completes the
induction step. Thus, (23) is proven by strong induction.]

We have thus proven that Tr (Ap) = 0 for every positive integer p. Renaming the
variable p as i in this statement, we conclude that Tr

(
Ai) = 0 for every positive

integer i. This proves Corollary 4.2.

5. More on the adjugate

I shall now discuss various other properties of the adjugate adj A of a square matrix
A.
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5.1. Functoriality

For any n ∈ N and m ∈ N, a homomorphism f : L → M between two rings L and
M gives rise to a map f n×m : Ln×m → Mn×m (as defined in Definition 3.15). We
recall some classical properties of these maps f n×m:

Proposition 5.1. Let L and M be two commutative rings. Let f : L → M be a
ring homomorphism.

(a) For every n ∈ N and m ∈ N, the map f n×m : Ln×m → Mn×m is a homo-
morphism of additive groups.

(b) Every n ∈ N satisfies f n×n (In) = In.
(c) For every n ∈ N, m ∈ N, p ∈ N, A ∈ Ln×m and B ∈ Lm×p, we have

f n×p (AB) = f n×m (A) · f m×p (B).
(d) For every n ∈ N and m ∈ N and every A ∈ Ln×m and λ ∈ L, we have

f n×m (λA) = f (λ) f n×m (A).

Now, let me state the classical (and simple) fact which is often (somewhat incom-
pletely) subsumed under the slogan “ring homomorphisms preserve determinants
and adjugates”:

Proposition 5.2. Let L and M be two commutative rings. Let f : L → M be a
ring homomorphism. Let n ∈ N. Let A ∈ Ln×n.

(a) We have f (det A) = det ( f n×n (A)).
(b) Any two elements u and v of {1, 2, . . . , n} satisfy f (n−1)×(n−1) (A∼u,∼v) =

( f n×n (A))∼u,∼v.
(c) We have f n×n (adj A) = adj ( f n×n (A)).

Proof of Proposition 5.2. Proving Proposition 5.2 is completely straightforward, and
left to the reader.

5.2. The evaluation homomorphism

We shall apply the above to relate the determinant and the adjugate of a matrix A
with those of the matrix tIn + A:

Proposition 5.3. Let ε : K [t] → K be the map which sends every polynomial
p ∈ K [t] to its value p (0). It is well-known that ε is a K-algebra homomorphism.

Let n ∈ N. Let A ∈ Kn×n. Consider the matrix tIn + A ∈ (K [t])n×n. Then:
(a) We have ε (det (tIn + A)) = det A.
(b) We have εn×n (adj (tIn + A)) = adj A.
(c) We have εn×n (tIn + A) = A.

Proof of Proposition 5.3. We have

εn×n (tB + A) = A
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for every B ∈ Kn×n 9. Applying this to B = In, we obtain εn×n (tIn + A) = A.
This proves Proposition 5.3 (c).

(a) Proposition 5.2 (a) (applied to K [t], K, ε and tIn + A instead of L, M, f and
A) yields

ε (det (tIn + A)) = det

εn×n (tIn + A)︸ ︷︷ ︸
=A

 = det A.

This proves Proposition 5.3 (a).
(b) Proposition 5.2 (c) (applied to K [t], K, ε and tIn + A instead of L, M, f and

A) yields

εn×n (adj (tIn + A)) = adj

εn×n (tIn + A)︸ ︷︷ ︸
=A

 = adj A.

This proves Proposition 5.3 (b).

If A ∈ Kn×n is a square matrix, then the matrix tIn + A ∈ (K [t])n×n has a
property which the matrix A might not have: namely, its determinant is regular.
Let us first define what this means:

Definition 5.4. Let A be a commutative ring. Let a ∈ A. The element a of A is
said to be regular if and only if every x ∈ A satisfying ax = 0 satisfies x = 0.

Instead of saying that a is regular, one can also say that “a is cancellable”, or
that “a is a non-zero-divisor”.

A basic property of regular elements is the following:

Lemma 5.5. Let A be a commutative ring. Let a be a regular element of A. Let
b and c be two elements of A such that ab = ac. Then, b = c.

Proof of Lemma 5.5. We have a (b − c) = ab︸︷︷︸
=ac

−ac = ac − ac = 0.

Now, recall that the element a of A is regular if and only if every x ∈ A satisfying
ax = 0 satisfies x = 0 (by the definition of “regular”). Hence, every x ∈ A

satisfying ax = 0 satisfies x = 0 (because the element a of A is regular). Applying
this to x = b − c, we obtain b − c = 0 (since a (b − c) = 0). Thus, b = c. This proves
Lemma 5.5.

Regular elements, of course, can also be cancelled from matrix equations:

Lemma 5.6. Let n ∈ N and m ∈ N. Let a be a regular element of K. Let
B ∈ Kn×m and C ∈ Kn×m be such that aB = aC. Then, B = C.

9Proof. This equality is similar to (14), and is proven analogously.
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Proof of Lemma 5.6. Write the n×m-matrices B and C in the forms B =
(
bi,j
)

1≤i≤n, 1≤j≤m
and C =

(
ci,j
)

1≤i≤n, 1≤j≤m. Then, aB =
(
abi,j

)
1≤i≤n, 1≤j≤m and aC =

(
aci,j

)
1≤i≤n, 1≤j≤m.

Hence, (
abi,j

)
1≤i≤n, 1≤j≤m = aB = aC =

(
aci,j

)
1≤i≤n, 1≤j≤m .

In other words,

abi,j = aci,j for every (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , m} .

Thus,
bi,j = ci,j for every (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , m}

(by Lemma 5.5, applied to b = bi,j and c = ci,j). Hence,
(
bi,j
)

1≤i≤n, 1≤j≤m =(
ci,j
)

1≤i≤n, 1≤j≤m. Thus, B =
(
bi,j
)

1≤i≤n, 1≤j≤m =
(
ci,j
)

1≤i≤n, 1≤j≤m = C. Lemma
5.6 is proven.

One important way to construct regular elements is the following fact:

Proposition 5.7. Let n ∈ N. Let p ∈ K [t] be a monic polynomial of degree n.
Then, the element p of K [t] is regular.

Proof of Proposition 5.7. Proposition 5.7 is precisely [Grinbe16b, Corollary 3.15].

Corollary 5.8. Let n ∈ N. Let A ∈ Kn×n. Consider the matrix tIn + A ∈
(K [t])n×n.

Then, the element det (tIn + A) of K [t] is regular.

Proof of Corollary 5.8. Proposition 2.2 (a) (applied to In and A instead of A and B)
yields that det (tIn + A) ∈ K [t] is a polynomial of degree ≤ n in t. Proposition
2.2 (c) (applied to In and A instead of A and B) yields that [tn] (det (tIn + A)) =
det (In) = 1.

So we know that the polynomial det (tIn + A) ∈ K [t] is a polynomial of degree
≤ n, and that the coefficient of tn in this polynomial is [tn] (det (tIn + A)) = 1.
In other words, the polynomial det (tIn + A) ∈ K [t] is monic of degree n. Thus,
Proposition 5.7 (applied to p = det (tIn + A)) shows that the element det (tIn + A)
of K [t] is regular. This proves Corollary 5.8.

A square matrix whose determinant is regular can be cancelled from equations,
as the following lemma shows:

Lemma 5.9. Let n ∈ N. Let A ∈ Kn×n. Assume that the element det A of K is
regular. Let m ∈ N.

(a) If B ∈ Kn×m and C ∈ Kn×m are such that AB = AC, then B = C.
(b) If B ∈ Km×n and C ∈ Km×n are such that BA = CA, then B = C.
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Proof of Lemma 5.9. Define an element a of K by a = det A. Recall that the element
det A of K is regular. In other words, the element a of K is regular (since a = det A).
Theorem 3.7 yields A · adj A = adj A · A = det A · In.

(a) Let B ∈ Kn×m and C ∈ Kn×m be such that AB = AC. We must prove that
B = C.

We have
adj A · A︸ ︷︷ ︸
=det A·In

B = det A︸ ︷︷ ︸
=a

· InB︸︷︷︸
=B

= aB.

Thus,
aB = adj A · AB︸︷︷︸

=AC

= adj A · A︸ ︷︷ ︸
=det A·In

C = det A︸ ︷︷ ︸
=a

· InC︸︷︷︸
=C

= aC.

Lemma 5.6 thus yields B = C. This proves Lemma 5.9 (a).
(b) The proof of Lemma 5.9 (b) is similar to the proof of Lemma 5.9 (a) (but

now we need to work with BA · adj A and CA · adj A instead of adj A · AB and
adj A · AC). The details are left to the reader.

5.3. The adjugate of a product

Corollary 5.8 can be put to use in several circumstances. Here is a simple example:

Theorem 5.10. Let n ∈ N. Let A and B be two n × n-matrices. Then,

adj (AB) = adj B · adj A.

Theorem 5.10 is the statement of [Grinbe15, Exercise 6.33]; see [Grinbe15, solu-
tion of Exercise 6.33] for a proof of this theorem. We shall show a different proof
of it now.

We begin by showing a particular case of Theorem 5.10:

Lemma 5.11. Let n ∈ N. Let A and B be two n × n-matrices. Assume that the
elements det A and det B of K are regular. Then, adj (AB) = adj B · adj A.

Proof of Lemma 5.11. Theorem 3.7 yields

A · adj A = adj A · A = det A · In.

Theorem 3.7 (applied to B instead of A) yields

B · adj B = adj B · B = det B · In.

Theorem 3.7 (applied to AB instead of A) yields

AB · adj (AB) = adj (AB) · AB = det (AB) · In.
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Now,

A B · adj B︸ ︷︷ ︸
=det B·In

· adj A = A · det B · In︸ ︷︷ ︸
=det B·A

· adj A

= det B · A · adj A︸ ︷︷ ︸
=det A·In

= det B · det A · In

= det A · det B · In.

Comparing this with

AB · adj (AB) = det (AB)︸ ︷︷ ︸
=det A·det B

·In = det A · det B · In,

we obtain AB · adj B · adj A = AB · adj (AB). Lemma 5.9 (a) (applied to n, B · adj B ·
adj A and B · adj (AB) instead of m, B and C) therefore yields B · adj B · adj A =
B · adj (AB) (since the element det A of K is regular). Thus, Lemma 5.9 (a) (applied
to n, B, adj B · adj A and adj (AB) instead of m, A, B and C) yields adj B · adj A =
adj (AB) (since the element det B of K is regular). This proves Lemma 5.11.

We now derive Theorem 5.10 from this lemma:

Proof of Theorem 5.10. Define the K-algebra homomorphism ε : K [t] → K as in
Proposition 5.3.

Define two matrices Ã and B̃ in (K [t])n×n by Ã = tIn + A and B̃ = tIn + B.
From Ã = tIn + A, we obtain εn×n

(
adj Ã

)
= εn×n (adj (tIn + A)) = adj A (by

Proposition 5.3 (b)). Similarly, εn×n
(

adj B̃
)
= adj B.

From Ã = tIn + A, we obtain εn×n
(

Ã
)
= εn×n (tIn + A) = A (by Proposition 5.3

(c)). Similarly, εn×n
(

B̃
)
= B.

Corollary 5.8 shows that the element det (tIn + A) of K [t] is regular. In other
words, the element det Ã of K [t] is regular (since Ã = tIn + A). Similarly, the
element det B̃ of K [t] is regular. Lemma 5.11 (applied to K [t], Ã and B̃ instead of
K, A and B) thus yields

adj
(

ÃB̃
)
= adj B̃ · adj Ã.

Applying the map εn×n to both sides of this equality, we obtain

εn×n
(

adj
(

ÃB̃
))

= εn×n
(

adj B̃ · adj Ã
)
= εn×n

(
adj B̃

)
︸ ︷︷ ︸

=adj B

· εn×n
(

adj Ã
)

︸ ︷︷ ︸
=adj A by Proposition 5.1 (c), applied to

K [t] , K, ε, n, n, adj B̃ and adj Ã
instead of L, M, f , m, p, A and B


= adj B · adj A.
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Hence,
adj B · adj A = εn×n

(
adj
(

ÃB̃
))

= adj
(

εn×n
(

ÃB̃
))

(25)

(by Proposition 5.2 (c), applied to K [t], K, ε and ÃB̃ instead of L, M, f and A).
But Proposition 5.1 (c) (applied to K [t], K, ε, n, n, Ã and B̃ instead of L, M, f ,

m, p, A and B) shows that

εn×n
(

ÃB̃
)
= εn×n

(
Ã
)

︸ ︷︷ ︸
=A

· εn×n
(

B̃
)

︸ ︷︷ ︸
=B

= AB.

Hence, (25) becomes

adj B · adj A = adj

εn×n
(

ÃB̃
)

︸ ︷︷ ︸
=AB

 = adj (AB) .

This proves Theorem 5.10.

5.4. Determinant and adjugate of an adjugate

Our next target is the following result:

Theorem 5.12. Let n ∈ N. Let A be an n × n-matrix.
(a) If n ≥ 1, then det (adj A) = (det A)n−1.
(b) If n ≥ 2, then adj (adj A) = (det A)n−2 A.

Again, we shall first prove it in a particular case:

Lemma 5.13. Let n ∈ N. Let A be an n × n-matrix. Assume that the element
det A of K is regular.

(a) If n ≥ 1, then det (adj A) = (det A)n−1.
(b) If n ≥ 2, then adj (adj A) = (det A)n−2 A.

Before we start proving Lemma 5.13, let us first recall the following fact: If n ∈ N,
λ ∈ K and C ∈ Kn×n, then

det (λC) = λn det C. (26)

(In fact, this is precisely [Grinbe15, Proposition 6.12] (applied to C instead of A).)

Proof of Lemma 5.13. Theorem 3.7 yields

A · adj A = adj A · A = det A · In.
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(a) Assume that n ≥ 1. Now,

det

A · adj A︸ ︷︷ ︸
=det A·In

 = det (det A · In) = (det A)n det (In)︸ ︷︷ ︸
=1

(by (26) (applied to det A and In instead of λ and C))

= (det A)n = det A · (det A)n−1 .

Thus,
det A · (det A)n−1 = det (A · adj A) = det A · det (adj A) .

Hence, Lemma 5.5 (applied to A = K, a = det A, b = (det A)n−1 and c =

det (adj A)) yields (det A)n−1 = det (adj A) (since det A is a regular element of
K). This proves Lemma 5.13 (a).

(b) Assume that n ≥ 2. Thus, n − 1 ≥ 1 and n ≥ 2 ≥ 1. Now, Lemma 5.13 (a)
yields

det (adj A) = (det A)n−1 = det A · (det A)(n−1)−1︸ ︷︷ ︸
=(det A)n−2

(since n − 1 ≥ 1)

= det A · (det A)n−2 .

But Theorem 3.7 (applied to adj A instead of A) yields

adj A · adj (adj A) = adj (adj A) · adj A = det (adj A) · In.

Now,

A · adj A · adj (adj A)︸ ︷︷ ︸
=det(adj A)·In

= A · det (adj A) · In = det (adj A)︸ ︷︷ ︸
=det A·(det A)n−2

A

= det A · (det A)n−2 A.

Hence,

det A · (det A)n−2 A = A · adj A︸ ︷︷ ︸
=det A·In

· adj (adj A) = det A · In · adj (adj A)

= det A · adj (adj A) .

Hence, Lemma 5.6 (applied to n, det A, (det A)n−2 A and adj (adj A) instead of m,
a, B and C) yields (det A)n−2 A = adj (adj A) (since det A is a regular element of
K). This proves Lemma 5.13 (b).

Let us now derive Theorem 5.12 from this lemma:
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Proof of Theorem 5.12. Define the K-algebra homomorphism ε : K [t] → K as in
Proposition 5.3.

Define a matrix Ã ∈ (K [t])n×n by Ã = tIn + A. Corollary 5.8 shows that the
element det (tIn + A) of K [t] is regular. In other words, the element det Ã of K [t]
is regular (since Ã = tIn + A).

We have εn×n

adj Ã︸︷︷︸
=tIn+A

 = εn×n (adj (tIn + A)) = adj A (by Proposition 5.3

(b)). Also, ε

det Ã︸︷︷︸
=tIn+A

 = ε (det (tIn + A)) = det A (by Proposition 5.3 (a)).

(a) Assume that n ≥ 1. Lemma 5.13 (a) (applied to K [t] and Ã instead of K and

A) yields det
(

adj Ã
)
=
(

det Ã
)n−1

.

Now, Proposition 5.2 (a) (applied to K [t], K, ε and adj Ã instead of L, M, f and
A) yields

ε
(

det
(

adj Ã
))

= det

εn×n
(

adj Ã
)

︸ ︷︷ ︸
=adj A

 = det (adj A) .

Hence,

det (adj A) = ε

det
(

adj Ã
)

︸ ︷︷ ︸
=(det Ã)

n−1

 = ε

((
det Ã

)n−1
)

=

ε
(

det Ã
)

︸ ︷︷ ︸
=det A


n−1

(since ε is a K-algebra homomorphism)

= (det A)n−1 .

This proves Theorem 5.12 (a).
(b) Assume that n ≥ 2. Lemma 5.13 (b) (applied to K [t] and Ã instead of K and

A) yields adj
(

adj Ã
)
=
(

det Ã
)n−2

Ã. We have εn×n

 Ã︸︷︷︸
=tIn+A

 = εn×n (tIn + A) =

A (by Proposition 5.3 (c)). Proposition 5.2 (c) (applied to K [t], K, ε and adj Ã
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instead of L, M, f and A) yields

εn×n
(

adj
(

adj Ã
))

= adj

εn×n
(

adj Ã
)

︸ ︷︷ ︸
=adj A

 = adj (adj A) .

Thus,

adj (adj A) = εn×n

adj
(

adj Ã
)

︸ ︷︷ ︸
=(det Ã)

n−2
Ã

 = εn×n
((

det Ã
)n−2

Ã
)

= ε

((
det Ã

)n−2
)

︸ ︷︷ ︸
=(ε(det Ã))

n−2

(since ε is a K-algebra
homomorphism)

εn×n
(

Ã
)

︸ ︷︷ ︸
=A

 by Proposition 5.1 (applied to K [t] , K,

ε, n, Ã and
(

det Ã
)n−2

instead of L, M, f , m, A and λ)



=

ε
(

det Ã
)

︸ ︷︷ ︸
=det A


n−2

A = (det A)n−2 A.

This proves Theorem 5.12 (b).

5.5. The adjugate of A as a polynomial in A

Next, let us show that the adjugate of a square matrix A is a polynomial in A (with
coefficients that depend on A, but are scalars – not matrices):

Theorem 5.14. Let n ∈ N. Let A ∈ Kn×n. For every j ∈ Z, define an element
cj ∈ K by cj =

[
tn−j] χA. Then,

adj A = (−1)n−1
n−1

∑
i=0

cn−1−i Ai.

One consequence of Theorem 5.14 is that every n × n-matrix which commutes
with a given n × n-matrix A must also commute with adj A.

We prepare for the proof of Theorem 5.14 with two really simple facts:
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Lemma 5.15. Let n ∈ N. Let u and v be two elements of {1, 2, . . . , n}. Let λ ∈ K.
Let A be an n × n-matrix. Then,

(λA)∼u,∼v = λA∼u,∼v.

Proof of Lemma 5.15. This follows from Lemma 3.8 (applied to µ = 0 and B = A).

Proposition 5.16. Let n be a positive integer. Let A ∈ Kn×n and λ ∈ K. Then,
adj (λA) = λn−1 adj A.

Proof of Proposition 5.16. Recalling the definitions of adj (λA) and adj A (and using
Lemma 5.15), the reader can easily reduce Proposition 5.16 to (26) (applied to n − 1
and A∼j,∼i instead of n and C).

Now, let me show a slightly simpler variant of Theorem 5.14:

Lemma 5.17. Let n be a positive integer. Let A ∈ Kn×n. For every j ∈ Z, define
an element cj ∈ K by cj =

[
tn−j] χA. Then,

adj (−A) =
n−1

∑
i=0

cn−1−i Ai.

Proof of Lemma 5.17. For every j ∈ Z, define an element cj ∈ K by cj =
[
tn−j] χA.

Proposition 3.9 shows that there exist n matrices D0, D1, . . . , Dn−1 in Kn×n such
that

adj (tIn − A) =
n−1

∑
k=0

tkDk in (K [t])n×n . (27)

Consider these D0, D1, . . . , Dn−1. Thus, an n-tuple (D0, D1, . . . , Dn−1) of matrices in
Kn×n is defined. Extend this n-tuple to a family (Dk)k∈Z of matrices in Kn×n by
setting (7). Lemma 3.11 (c) (applied to k = n − 1) yields

n−1

∑
i=0

cn−1−i Ai = Dn−1−(n−1) = D0. (28)

On the other hand, define the K-algebra homomorphism ε : K [t] → K as in
Proposition 5.3. This homomorphism ε satisfies ε (t) = 0. Also, it satisfies ε (u) = u
for every u ∈ K. Hence, the map εn×n : (K [t])n×n → Kn×n (defined as in Definition
3.15) satisfies

εn×n (F) = F for every F ∈ Kn×n. (29)



The trace Cayley-Hamilton theorem page 38

But Proposition 5.1 (a) (applied to L = K [t], M = K, f = ε and m = n) yields
that the map εn×n : (K [t])n×n → Kn×n is a homomorphism of additive groups.
Hence,

εn×n

(
n−1

∑
k=0

tkDk

)
=

n−1

∑
k=0

εn×n
(

tkDk

)
︸ ︷︷ ︸
=ε(tk)εn×n(Dk)

(by Proposition 5.1 (d) (applied to
K[t], K, ε, n, Dk and tk

instead of L, M, f , m, A and λ))

=
n−1

∑
k=0

ε
(

tk
)

︸ ︷︷ ︸
=(ε(t))k

(since ε is a ring
homomorphism)

εn×n (Dk)︸ ︷︷ ︸
=Dk

(by (29)
(applied to F=Dk))

=
n−1

∑
k=0

ε (t)︸︷︷︸
=0

k

Dk =
n−1

∑
k=0

0kDk = 00︸︷︷︸
=1

D0 +
n−1

∑
k=1

0k︸︷︷︸
=0

(since k≥1)

Dk

(
here, we have split off the addend for k = 0 from the sum

(since 0 ∈ {0, 1, . . . , n − 1} )

)
= D0 +

n−1

∑
k=1

0Dk︸ ︷︷ ︸
=0n×n

= D0. (30)

But applying the map εn×n to both sides of the equality (27), we obtain

εn×n (adj (tIn − A)) = εn×n

(
n−1

∑
k=0

tkDk

)
= D0

(by (30)). Thus,

D0 = εn×n

adj

 tIn − A︸ ︷︷ ︸
=tIn+(−A)


 = εn×n (adj (tIn + (−A))) = adj (−A)

(by Proposition 5.3 (b), applied to −A instead of A). Hence, (28) becomes

n−1

∑
i=0

cn−1−i Ai = D0 = adj (−A) .

This proves Lemma 5.17.

Finally, we are ready to prove Theorem 5.14:
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Proof of Theorem 5.14. We must prove the equality adj A = (−1)n−1 n−1
∑

i=0
cn−1−i Ai.

This is an equality between two n × n-matrices, and thus obviously holds if n =
0. Hence, we WLOG assume that n ̸= 0. Thus, n is a positive integer. Hence,
Proposition 5.16 (applied to λ = −1) yields

adj (−A) = (−1)n−1 adj A.

Therefore,

adj A = (−1)n−1 adj (−A)︸ ︷︷ ︸
=

n−1
∑

i=0
cn−1−i Ai

(by Lemma 5.17)

= (−1)n−1
n−1

∑
i=0

cn−1−i Ai.

This proves Theorem 5.14.

5.6. Minors of the adjugate: Jacobi’s theorem

A minor of a matrix A is defined to be a determinant of a square submatrix of A.
A theorem due to Jacobi connects the minors of adj A (for a square matrix A) with
the minors of A. Before we can state this theorem, let us introduce some notations:

Definition 5.18. Let n ∈ N and m ∈ N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤m be an n ×
m-matrix. Let i1, i2, . . . , iu be some elements of {1, 2, . . . , n}; let j1, j2, . . . , jv be
some elements of {1, 2, . . . , m}. Then, we shall use sub(j1,j2,...,jv)

(i1,i2,...,iu)
A as a synonym

for the u × v-matrix subj1,j2,...,jv
i1,i2,...,iu A. Thus, for every i ∈ {1, 2, . . . , n}u and j ∈

{1, 2, . . . , m}v, a u × v-matrix subj
i A is defined.

Definition 5.19. If I is a finite set of integers, then ∑ I shall denote the sum of all
elements of I. (Thus, ∑ I = ∑

i∈I
i.)

Definition 5.20. If I is a finite set of integers, then w (I) shall denote the list
of all elements of I in increasing order (with no repetitions). (For example,
w ({3, 4, 8}) = (3, 4, 8).)

The following fact is obvious:

Remark 5.21. Let n ∈ N. Let I be a subset of {1, 2, . . . , n}. Then, w (I) ∈
{1, 2, . . . , n}|I|.

Now, we can state Jacobi’s theorem10:
10This is [Grinbe15, Corollary 7.256]. It also appears in [Prasol94, Theorem 2.5.2] (in a different

form).
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Theorem 5.22. Let n ∈ N. For any subset I of {1, 2, . . . , n}, we let Ĩ denote the
complement {1, 2, . . . , n} \ I of I.

Let A be an n × n-matrix.
Let P and Q be two subsets of {1, 2, . . . , n} such that |P| = |Q| ≥ 1. Then,

det
(

subw(Q)
w(P) (adj A)

)
= (−1)∑ P+∑ Q (det A)|Q|−1 det

(
sub

w(P̃)
w(Q̃)

A
)

.

We shall not give a standalone proof of this theorem; instead, we will merely
derive it from results proven in [Grinbe15]. Namely, in [Grinbe15, Corollary 7.255],
the following was proven:

Lemma 5.23. Let n ∈ N. For any subset I of {1, 2, . . . , n}, we let Ĩ denote the
complement {1, 2, . . . , n} \ I of I.

Let A be an n × n-matrix.
Let P and Q be two subsets of {1, 2, . . . , n} such that |P| = |Q|. Then,

det A · det
(

subw(Q)
w(P) (adj A)

)
= (−1)∑ P+∑ Q (det A)|Q| det

(
sub

w(P̃)
w(Q̃)

A
)

.

We shall also use the following obvious lemma:

Lemma 5.24. Let L and M be two commutative rings. Let f : L → M be any
map. Let n ∈ N and m ∈ N. Let A ∈ Ln×m.

Let u ∈ N and v ∈ N. Let i ∈ {1, 2, . . . , n}u and j ∈ {1, 2, . . . , m}v. Then,

f u×v
(

subj
i A
)
= subj

i
(

f n×m (A)
)

.

Proof of Theorem 5.22. Define the K-algebra homomorphism ε : K [t] → K as in
Proposition 5.3.

Define a matrix Ã ∈ (K [t])n×n by Ã = tIn + A. Corollary 5.8 shows that the
element det (tIn + A) of K [t] is regular. In other words, the element det Ã of K [t]
is regular (since Ã = tIn + A).

We have |Q| − 1 ∈ N (since |Q| ≥ 1). Lemma 5.23 (applied to K [t] and Ã instead
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of K and A) yields

det Ã · det
(

subw(Q)
w(P)

(
adj Ã

))
= (−1)∑ P+∑ Q

(
det Ã

)|Q|

︸ ︷︷ ︸
=(det Ã)(det Ã)

|Q|−1

(since |Q|≥1)

det
(

sub
w(P̃)
w(Q̃)

Ã
)

= (−1)∑ P+∑ Q
(

det Ã
) (

det Ã
)|Q|−1

det
(

sub
w(P̃)
w(Q̃)

Ã
)

= det Ã · (−1)∑ P+∑ Q
(

det Ã
)|Q|−1

det
(

sub
w(P̃)
w(Q̃)

Ã
)

.

Hence, Lemma 5.5 (applied to A = K [t], a = det Ã, b = det
(

subw(Q)
w(P)

(
adj Ã

))
and c = (−1)∑ P+∑ Q

(
det Ã

)|Q|−1
det

(
sub

w(P̃)
w(Q̃)

Ã
)

) yields

det
(

subw(Q)
w(P)

(
adj Ã

))
= (−1)∑ P+∑ Q

(
det Ã

)|Q|−1
det

(
sub

w(P̃)
w(Q̃)

Ã
)

(since the element det Ã of K [t] is regular). Applying the map ε to both sides of
this equality, we obtain

ε
(

det
(

subw(Q)
w(P)

(
adj Ã

)))
= ε

(
(−1)∑ P+∑ Q

(
det Ã

)|Q|−1
det

(
sub

w(P̃)
w(Q̃)

Ã
))

= (−1)∑ P+∑ Q
(

ε
(

det Ã
))|Q|−1

ε

(
det

(
sub

w(P̃)
w(Q̃)

Ã
))

(31)

(since ε is a K-algebra homomorphism).
The definition of P̃ yields P̃ = {1, 2, . . . , n} \ P. Hence,∣∣∣P̃∣∣∣ = |{1, 2, . . . , n}|︸ ︷︷ ︸

=n

− |P| (since P ⊆ {1, 2, . . . , n})

= n − |P| .

Similarly,
∣∣∣Q̃∣∣∣ = n − |Q|. Notice that

∣∣∣P̃∣∣∣ = n − |P|︸︷︷︸
=|Q|

= n − |Q|.

But Remark 5.21 (applied to I = P) yields w (P) ∈ {1, 2, . . . , n}|P| = {1, 2, . . . , n}|Q|

(since |P| = |Q|). Also, Remark 5.21 (applied to I = Q) yields w (Q) ∈ {1, 2, . . . , n}|Q|.

Furthermore, Remark 5.21 (applied to I = P̃) yields w
(

P̃
)

∈ {1, 2, . . . , n}|P̃| =

{1, 2, . . . , n}n−|Q| (since
∣∣∣P̃∣∣∣ = n − |Q|). Finally, Remark 5.21 (applied to I = Q̃)

yields w
(

Q̃
)
∈ {1, 2, . . . , n}|Q̃| = {1, 2, . . . , n}n−|Q| (since

∣∣∣Q̃∣∣∣ = n − |Q|).
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Recall that adj Ã ∈ (K [t])n×n. Furthermore,

εn×n

adj Ã︸︷︷︸
=tIn+A

 = εn×n (adj (tIn + A)) = adj A

(by Proposition 5.3 (b)).
We have w (P) ∈ {1, 2, . . . , n}|Q| and w (Q) ∈ {1, 2, . . . , n}|Q|. Hence,

subw(Q)
w(P)

(
adj Ã

)
∈ (K [t])|Q|×|Q| .

Thus, Proposition 5.2 (a) (applied to K [t], K, ε, |Q| and subw(Q)
w(P)

(
adj Ã

)
instead of

L, M, f , n and A) yields

ε
(

det
(

subw(Q)
w(P)

(
adj Ã

)))
= det


ε|Q|×|Q|

(
subw(Q)

w(P)

(
adj Ã

))
︸ ︷︷ ︸

=subw(Q)
w(P) (εn×n(adj Ã))

(by Lemma 5.24 (applied to K[t], K, ε, n, adj Ã, |Q|, |Q|,
w(P) and w(Q) instead of L, M, f , m, A, u, v, i and j))



= det

subw(Q)
w(P)

εn×n
(

adj Ã
)

︸ ︷︷ ︸
=adj A




= det
(

subw(Q)
w(P) (adj A)

)
. (32)

Comparing this with (31), we obtain

det
(

subw(Q)
w(P) (adj A)

)
= (−1)∑ P+∑ Q

(
ε
(

det Ã
))|Q|−1

ε

(
det

(
sub

w(P̃)
w(Q̃)

Ã
))

. (33)

Recall that εn×n

 Ã︸︷︷︸
=tIn+A

 = εn×n (tIn + A) = A (by Proposition 5.3 (c)).

On the other hand, w
(

P̃
)

∈ {1, 2, . . . , n}n−|Q| and w
(

Q̃
)

∈ {1, 2, . . . , n}n−|Q|.
Hence,

sub
w(P̃)
w(Q̃)

Ã ∈ (K [t])(n−|Q|)×(n−|Q|) .
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Hence, Proposition 5.2 (a) (applied to K [t], K, ε, n − |Q| and sub
w(P̃)
w(Q̃)

Ã instead of

L, M, f , n and A) yields

ε

(
det

(
sub

w(P̃)
w(Q̃)

Ã
))

= det


ε(n−|Q|)×(n−|Q|)

(
sub

w(P̃)
w(Q̃)

Ã
)

︸ ︷︷ ︸
=sub

w(P̃)
w(Q̃)

(εn×n(Ã))

(by Lemma 5.24 (applied to K[t], K, ε, n, Ã, n−|Q|, n−|Q|,
w(Q̃) and w(P̃) instead of L, M, f , m, A, u, v, i and j))



= det

sub
w(P̃)
w(Q̃)

εn×n
(

Ã
)

︸ ︷︷ ︸
=A




= det
(

sub
w(P̃)
w(Q̃)

A
)

. (34)

Also, ε

det Ã︸︷︷︸
=tIn+A

 = ε (det (tIn + A)) = det A (by Proposition 5.3 (a)).

Now, (33) becomes

det
(

subw(Q)
w(P) (adj A)

)

= (−1)∑ P+∑ Q

ε
(

det Ã
)

︸ ︷︷ ︸
=det A


|Q|−1

ε

(
det

(
sub

w(P̃)
w(Q̃)

Ã
))

︸ ︷︷ ︸
=det

(
sub

w(P̃)
w(Q̃)

A
)

(by (34))

= (−1)∑ P+∑ Q (det A)|Q|−1 det
(

sub
w(P̃)
w(Q̃)

A
)

.

This proves Theorem 5.22.

5.7. Another application of the tIn + A strategy

The strategy that we have used to prove Theorem 5.10, Theorem 5.12 and Theorem
5.22 (namely, replacing a matrix A ∈ Kn×n by the matrix tIn + A ∈ (K [t])n×n,
whose determinant is a regular element of K [t]; and then applying the homo-
morphism ε to get back to A) has many applications; not all of them concern the
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adjugate of a matrix. As an example of such an application, let us prove a neat
property of commuting matrices:

Theorem 5.25. Let n ∈ N. Let A, B and S be three n × n-matrices such that
AB = BA. Then,

det (AS + B) = det (SA + B) .

Again, we start by showing a particular case of this theorem:

Lemma 5.26. Let n ∈ N. Let A, B and S be three n × n-matrices such that
AB = BA. Assume that the element det A of K is regular. Then,

det (AS + B) = det (SA + B) .

Proof of Lemma 5.26. Define two n × n-matrices X and Y by X = AS + B and Y =
SA + B. Comparing

X︸︷︷︸
=AS+B

A = (AS + B) A = ASA + BA

with
A Y︸︷︷︸

=SA+B

= A (SA + B) = ASA + AB︸︷︷︸
=BA

= ASA + BA,

we obtain XA = AY. Now, comparing

det

XA︸︷︷︸
=AY

 = det (AY) = det A · det Y

with
det (XA) = det X · det A = det A · det X,

we obtain det A · det X = det A · det Y. Lemma 5.5 (applied to K, det A, det X
and det Y instead of A, a, b and c) thus yields det X = det Y (since the element
det A of K is regular). In view of X = AS + B and Y = SA + B, this rewrites as
det (AS + B) = det (SA + B). This proves Lemma 5.26.

Proof of Theorem 5.25. Define the K-algebra homomorphism ε : K [t] → K as in
Proposition 5.3. Thus, ε is a ring homomorphism. Hence, Proposition 5.1 (a) (ap-
plied to L = K [t], M = K and m = n) shows that the map εn×n : (K [t])n×n →
Kn×n is a homomorphism of additive groups.

Recall that every n×n-matrix in Kn×n can be considered as a matrix in (K [t])n×n.
In other words, for each F ∈ Kn×n, we can consider F as a matrix in (K [t])n×n;
therefore, εn×n (F) is well-defined. We have

εn×n (F) = F for every F ∈ Kn×n. (35)
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(In fact, the proof of (35) is identical with the proof of (29) we gave above.)
Let Ã be the matrix tIn + A ∈ (K [t])n×n. Thus, Ã = tIn + A. Applying the

map εn×n to both sides of this equality, we find εn×n
(

Ã
)
= εn×n (tIn + A) = A (by

Proposition 5.3 (c)).
Corollary 5.8 shows that the element det (tIn + A) of K [t] is regular. In other

words, the element det Ã of K [t] is regular (since Ã = tIn + A).
Let us consider the matrix S ∈ Kn×n as a matrix in (K [t])n×n (since every n × n-

matrix in Kn×n can be considered as a matrix in (K [t])n×n).
Similarly, let us consider the matrix B ∈ Kn×n as a matrix in (K [t])n×n. Then,

Ã︸︷︷︸
=tIn+A

B = (tIn + A) B = t InB︸︷︷︸
=B=BIn

+ AB︸︷︷︸
=BA

= tBIn︸︷︷︸
=B·tIn

+BA

= B · tIn + BA = B (tIn + A)︸ ︷︷ ︸
=Ã

= BÃ.

Hence, Lemma 5.26 (applied to K [t] and Ã instead of K and A) yields

det
(

ÃS + B
)
= det

(
SÃ + B

)
. (36)

Proposition 5.2 (a) (applied to K [t], K, ε and ÃS + B instead of L, M, f and A)
yields

ε
(

det
(

ÃS + B
))

= det
(

εn×n
(

ÃS + B
))

.

In view of

εn×n
(

ÃS + B
)
= εn×n

(
ÃS
)

︸ ︷︷ ︸
=εn×n(Ã)·εn×n(S)

(by Proposition 5.1 (b)
(applied to K[t], K, ε, n, n, Ã and S
instead of L, M, f , m, p, A and B))

+εn×n (B)

(
since the map εn×n is a homomorphism

of additive groups

)
= εn×n

(
Ã
)

︸ ︷︷ ︸
=A

· εn×n (S)︸ ︷︷ ︸
=S

(by (35)
(applied to F=S))

+ εn×n (B)︸ ︷︷ ︸
=B

(by (35)
(applied to F=B))

= AS + B,

this becomes

ε
(

det
(

ÃS + B
))

= det

εn×n
(

ÃS + B
)

︸ ︷︷ ︸
=AS+B

 = det (AS + B) . (37)
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Similarly,
ε
(

det
(

SÃ + B
))

= det (SA + B) .

Comparing this with

ε

det
(

SÃ + B
)

︸ ︷︷ ︸
=det(ÃS+B)

(by (36))

 = ε
(

det
(

ÃS + B
))

= det (AS + B) (by (37)) ,

we obtain det (AS + B) = det (SA + B). This proves Theorem 5.25.

5.8. Another application of the strategy: block matrices

The same strategy (replacing A ∈ Kn×n by tIn + A ∈ (K [t])n×n) turns out to
be useful in proving a formula for determinants of block matrices with a certain
property.

We will use [Grinbe15, Definition 6.89] in this section. Roughly speaking, this
definition says that if n, n′, m and m′ are four nonnegative integers, and if A ∈

Kn×m, B ∈ Kn×m′
, C ∈ Kn′×m and D ∈ Kn′×m′

are four matrices, then
(

A B
C D

)
shall denote the (n + n′)× (m + m′)-matrix obtained by “gluing the matrices A, B,
C and D together” in the way the notation suggests (i.e., the matrix B is glued to
the right edge of A, and then the matrices C and D are glued to the bottom edges
of A and B, respectively). For example, if n = 2, n′ = 2, m = 2 and m′ = 2, and if

A =

(
a1,1 a1,2
a2,1 a2,2

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
, (38)

C =

(
c1,1 c1,2
c2,1 c2,2

)
, and D =

(
d1,1 d1,2
d2,1 d2,2

)
, (39)

then (
A B
C D

)
=


a1,1 a1,2 b1,1 b1,2
a2,1 a2,2 b2,1 b2,2
c1,1 c1,2 d1,1 d1,2
c2,1 c2,2 d2,1 d2,2

 .

There are more general versions of this “gluing operation” that allow for more than
four matrices; but we will only concern ourselves with the case of four matrices.

We are aiming to prove the following theorem:
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Theorem 5.27. Let n ∈ N. Let A, B, C and D be four n × n-matrices such that

AC = CA. Then, the (2n)× (2n)-matrix
(

A B
C D

)
satisfies

det
(

A B
C D

)
= det (AD − CB) .

Theorem 5.27 appears, e.g., in [Silves00, (14)]. Our proof of this theorem will
closely follow [Silves00, proof of Lemma 2]. We will use the following obvious
lemma:

Lemma 5.28. Let L and M be two commutative rings. Let f : L → M be any
map. Let n, n′, m and m′ be four nonnegative integers. Let A ∈ Ln×m, B ∈ Ln×m′

,
C ∈ Ln′×m and D ∈ Ln′×m′

be four matrices. Then,

f (n+n′)×(m+m′)
((

A B
C D

))
=

(
f n×m (A) f n×m′

(B)
f n′×m (C) f n′×m′

(D)

)
.

Example 5.29. For this example, set n = 2 and n′ = 2 and m = 2 and m′ = 2,
and let the 2× 2-matrices A, B, C and D be given by (38) and (39). Then, Lemma
5.28 says that

f 4×4
((

A B
C D

))
=

(
f 2×2 (A) f 2×2 (B)
f 2×2 (C) f 2×2 (D)

)
.

Both the left and the right hand side of this equality are easily seen to equal
f (a1,1) f (a1,2) f (b1,1) f (b1,2)

f (a2,1) f (a2,2) f (b2,1) f (b2,2)

f (c1,1) f (c1,2) f (d1,1) f (d1,2)

f (c2,1) f (c2,2) f (d2,1) f (d2,2)

 .

Next, let us recall a result from [Grinbe15] (a version of the Schur complement
theorem):

Proposition 5.30. Let n ∈ N and m ∈ N. Let A ∈ Kn×n, B ∈ Kn×m, C ∈ Km×n

and D ∈ Km×m. Furthermore, let W ∈ Km×m and V ∈ Km×n be such that
VA = −WC. Then,

det W · det
(

A B
C D

)
= det A · det (VB + WD) .
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Proposition 5.30 appears (with proof) in [Grinbe15, Exercise 6.35], so we will not
prove it here.

Let us next prove the particular case of Theorem 5.27 in which we assume det A
to be regular:

Lemma 5.31. Let n ∈ N. Let A, B, C and D be four n × n-matrices such that
AC = CA. Assume that the element det A of K is regular. Then, the (2n)× (2n)-

matrix
(

A B
C D

)
satisfies

det
(

A B
C D

)
= det (AD − CB) .

Proof of Lemma 5.31. The matrix
(

A B
C D

)
is an (n + n) × (n + n)-matrix (by its

definition), i.e., a (2n)× (2n)-matrix (since n + n = 2n).
We have CA = − (−A)C (since − (−A)C = AC = CA). Thus, Proposition 5.30

(applied to V = C and W = −A) yields

det (−A) · det
(

A B
C D

)
= det A · det

CB + (−A) D︸ ︷︷ ︸
=CB−AD


= det A · det (CB − AD) . (40)

But (26) (applied to −1 and CB − AD instead of λ and C) yields

det ((−1) (CB − AD)) = (−1)n det (CB − AD) . (41)

Also, (26) (applied to −1 and −A instead of λ and C) yields det ((−1) (−A)) =
(−1)n det (−A). In view of (−1) (−A) = A, this rewrites as det A = (−1)n det (−A).
Hence,

det A︸ ︷︷ ︸
=(−1)n det(−A)

·det
(

A B
C D

)

= (−1)n det (−A) · det
(

A B
C D

)
︸ ︷︷ ︸

=det A·det(CB−AD)
(by (40))

= (−1)n det A · det (CB − AD) = det A · (−1)n det (CB − AD)︸ ︷︷ ︸
=det((−1)(CB−AD))

(by (41))

= det A · det

(−1) (CB − AD)︸ ︷︷ ︸
=AD−CB

 = det A · det (AD − CB) .
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Lemma 5.5 (applied to K, det A, det
(

A B
C D

)
and det (AD − CB) instead of A,

a, b and c) thus yields det
(

A B
C D

)
= det (AD − CB) (since the element det A of

K is regular). This proves Lemma 5.31.

We are now ready to prove Theorem 5.27:

Proof of Theorem 5.27. The matrix
(

A B
C D

)
is a (2n)× (2n)-matrix. (This is proven

in the same way as in our proof of Lemma 5.31.)
Define the K-algebra homomorphism ε : K [t] → K as in Proposition 5.3. Thus, ε

is a ring homomorphism. Hence, Proposition 5.1 (a) (applied to L = K [t], M = K

and m = n) shows that the map εn×n : (K [t])n×n → Kn×n is a homomorphism of
additive groups.

Recall that every n×n-matrix in Kn×n can be considered as a matrix in (K [t])n×n.
In other words, for each F ∈ Kn×n, we can consider F as a matrix in (K [t])n×n;
therefore, εn×n (F) is well-defined. We have

εn×n (F) = F for every F ∈ Kn×n. (42)

(In fact, the proof of (42) is identical with the proof of (29) we gave above.)
Let Ã be the matrix tIn + A ∈ (K [t])n×n. Thus, Ã = tIn + A. Applying the

map εn×n to both sides of this equality, we find εn×n
(

Ã
)
= εn×n (tIn + A) = A (by

Proposition 5.3 (c)).
Corollary 5.8 shows that the element det (tIn + A) of K [t] is regular. In other

words, the element det Ã of K [t] is regular (since Ã = tIn + A).
Let us consider the matrix B ∈ Kn×n as a matrix in (K [t])n×n (since every n ×

n-matrix in Kn×n can be considered as a matrix in (K [t])n×n). Similarly, let us
consider the matrices C and D as matrices in (K [t])n×n.

Notice that (42) (applied to F = B) yields εn×n (B) = B. Similarly, εn×n (C) = C
and εn×n (D) = D.

Now,

Ã︸︷︷︸
=tIn+A

C = (tIn + A)C = t InC︸︷︷︸
=C=CIn

+ AC︸︷︷︸
=CA

= tCIn︸︷︷︸
=C·tIn

+CA

= C · tIn + CA = C (tIn + A)︸ ︷︷ ︸
=Ã

= CÃ.

Thus, Lemma 5.31 (applied to K [t] and Ã instead of K and A) yields

det
(

Ã B
C D

)
= det

(
ÃD − CB

)
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(since the element det Ã of K [t] is regular). Applying the map ε to both sides of
this equality, we find

ε

(
det

(
Ã B
C D

))
= ε

(
det

(
ÃD − CB

))
. (43)

But Proposition 5.2 (a) (applied to K [t], K, ε and ÃD − CB instead of L, M, f and
A) yields

ε
(

det
(

ÃD − CB
))

= det
(

εn×n
(

ÃD − CB
))

.

In view of

εn×n
(

ÃD − CB
)
= εn×n

(
ÃD
)

︸ ︷︷ ︸
=εn×n(Ã)·εn×n(D)

(by Proposition 5.1 (b)
(applied to K[t], K, ε, n, n, Ã and D
instead of L, M, f , m, p, A and B))

− εn×n (CB)︸ ︷︷ ︸
=εn×n(C)·εn×n(B)

(by Proposition 5.1 (b)
(applied to K[t], K, ε, n, n, C and B
instead of L, M, f , m, p, A and B))(

since the map εn×n is a homomorphism
of additive groups

)
= εn×n

(
Ã
)

︸ ︷︷ ︸
=A

· εn×n (D)︸ ︷︷ ︸
=D

− εn×n (C)︸ ︷︷ ︸
=C

· εn×n (B)︸ ︷︷ ︸
=B

= AD − CB,

this becomes

ε
(

det
(

ÃD − CB
))

= det

εn×n
(

ÃD − CB
)

︸ ︷︷ ︸
=AD−CB


= det (AD − CB) . (44)

But Proposition 5.2 (a) (applied to K [t], K, ε, n + n and
(

Ã B
C D

)
instead of L,

M, f , n and A) yields

ε

(
det

(
Ã B
C D

))
= det

(
ε(n+n)×(n+n)

((
Ã B
C D

)))
. (45)

On the other hand, Lemma 5.28 (applied to K [t], K, ε, n, n, n and Ã instead of
L, M, f , n′, m, m′ and A) yields

ε(n+n)×(n+n)
((

Ã B
C D

))
=

 εn×n
(

Ã
)

εn×n (B)

εn×n (C) εn×n (D)

 =

(
A B
C D

)
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(since εn×n
(

Ã
)

= A and εn×n (B) = B and εn×n (C) = C and εn×n (D) = D).
Taking determinants on both sides of this equality, we find

det
(

ε(n+n)×(n+n)
((

Ã B
C D

)))
= det

(
A B
C D

)
.

Hence,

det
(

A B
C D

)
= det

(
ε(n+n)×(n+n)

((
Ã B
C D

)))
= ε

(
det

(
Ã B
C D

))
(by (45))

= ε
(

det
(

ÃD − CB
))

(by (43))

= det (AD − CB) (by (44)) .

This completes the proof of Theorem 5.27.

5.9. The trace of the adjugate

The following neat result follows so easily from Theorem 5.14 and Theorem 2.6
that it would be strange not to mention it:

Theorem 5.32. Let n ∈ N. Let A ∈ Kn×n. For every j ∈ Z, define an element
cj ∈ K by cj =

[
tn−j] χA. Then,

Tr (adj A) = (−1)n−1 cn−1 = (−1)n−1
[
t1
]

χA.

In other words, the trace of the adjugate adj A of an n× n-matrix is the coefficient
of t in the characteristic polynomial χA.

Proof of Theorem 5.32. The definition of cn−1 yields cn−1 =
[
tn−(n−1)

]
χA =

[
t1] χA

(since n − (n − 1) = 1).
It is easy to see that Theorem 5.32 holds for n = 0 11. Thus, for the rest of

this proof, we can WLOG assume that we don’t have n = 0. Assume this. Hence,
n ̸= 0, so that n ≥ 1 (since n ∈ N). Therefore, n − 1 ∈ N.
11Proof. Assume that n = 0. Thus, 1 > 0 = n. But Corollary 2.4 (a) yields that χA ∈ K [t] is a

polynomial of degree ≤ n in t. Hence, [tm] χA = 0 for every integer m > n. Applying this to
m = 1, we obtain

[
t1] χA = 0 (since 1 > n). Also, adj A is an n × n-matrix, and thus a 0 × 0-

matrix (since n = 0). Hence, Tr (adj A) = 0 (since the trace of a 0× 0-matrix is 0). Comparing this
with (−1)n−1 cn−1︸︷︷︸

=[t1]χA=0

= 0, we obtain Tr (adj A) = (−1)n−1 cn−1︸︷︷︸
=[t1]χA

= (−1)n−1 [t1] χA. Hence,

we have proven Theorem 5.32 under the assumption that n = 0.
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Thus, Theorem 2.6 (applied to k = n − 1) yields

(n − 1) cn−1 +
n−1

∑
i=1

Tr
(

Ai
)

cn−1−i = 0.

Subtracting (n − 1) cn−1 from both sides of this equation, we obtain

n−1

∑
i=1

Tr
(

Ai
)

cn−1−i = − (n − 1) cn−1. (46)

But Theorem 5.14 yields

adj A = (−1)n−1
n−1

∑
i=0

cn−1−i Ai.

Applying the map Tr : Kn×n → K to both sides of this equality, we obtain

Tr (adj A) = Tr

(
(−1)n−1

n−1

∑
i=0

cn−1−i Ai

)

= (−1)n−1
n−1

∑
i=0

cn−1−i Tr
(

Ai
)

(47)

(since the map Tr : Kn×n → K is K-linear). But n − 1 ≥ 0 (since n ≥ 1); therefore,
0 ∈ {0, 1, . . . , n − 1}. Hence, we can split off the addend for i = 0 from the sum
n−1
∑

i=0
cn−1−i Tr

(
Ai). We thus obtain

n−1

∑
i=0

cn−1−i Tr
(

Ai
)
= cn−1−0︸ ︷︷ ︸

=cn−1

Tr

 A0︸︷︷︸
=In

+
n−1

∑
i=1

cn−1−i Tr
(

Ai
)

︸ ︷︷ ︸
=Tr(Ai)cn−1−i

= cn−1 Tr (In)︸ ︷︷ ︸
=n

+
n−1

∑
i=1

Tr
(

Ai
)

cn−1−i︸ ︷︷ ︸
=−(n−1)cn−1

(by (46))

= cn−1n + (− (n − 1) cn−1)

= (n − (n − 1))︸ ︷︷ ︸
=1

cn−1 = cn−1.

Hence, (47) becomes

Tr (adj A) = (−1)n−1
n−1

∑
i=0

cn−1−i Tr
(

Ai
)

︸ ︷︷ ︸
=cn−1

= (−1)n−1 cn−1︸︷︷︸
=[t1]χA

= (−1)n−1
[
t1
]

χA.

This proves Theorem 5.32.
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5.10. Yet another application to block matrices

Let us show one further formula for determinants of certain block matrices that
can be proved using our “replace A by tIn + A” strategy.

We will again use [Grinbe15, Definition 6.89] in this section. We shall further-
more use the following notation:

Definition 5.33. If B is any 1 × 1-matrix, then ent B will denote the (1, 1)-th
entry of B. (This entry is, of course, the only entry of B. Thus, the 1 × 1-matrix
B satisfies B =

(
ent B

)
.)

We now claim the following:

Theorem 5.34. Let n ∈ N and m ∈ N. Let A ∈ Kn×n and D ∈ Km×m be
two square matrices. Let p ∈ Kn×1 and q ∈ Km×1 be two column vectors. Let
v ∈ K1×m and u ∈ K1×n be two row vectors. Then,

det
(

A pv
qu D

)
= det A · det D − ent (u (adj A) p) · ent (v (adj D) q) .

Example 5.35. Let us see what Theorem 5.34 says in the case when n = 2 and
m = 2. Indeed, let n = 2 and m = 2 and

A =

(
a1,1 a1,2
a2,1 a2,2

)
and D =

(
d1,1 d1,2
d2,1 d2,2

)
and

p =

(
p1
p2

)
and q =

(
q1
q2

)
and

v =
(

v1 v2
)

and u =
(

u1 u2
)

.

Then,

pv =

(
p1v1 p1v2
p2v1 p2v2

)
and qu =

(
q1u1 q1u2
q2u1 q2u2

)
.

Hence, (
A pv
qu D

)
=


a1,1 a1,2 p1v1 p1v2
a2,1 a2,2 p2v1 p2v2
q1u1 q1u2 d1,1 d1,2
q2u1 q2u2 d2,1 d2,2

 .
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Hence, the claim of Theorem 5.34 rewrites as follows in our case:

det


a1,1 a1,2 p1v1 p1v2
a2,1 a2,2 p2v1 p2v2
q1u1 q1u2 d1,1 d1,2
q2u1 q2u2 d2,1 d2,2


= det

(
a1,1 a1,2
a2,1 a2,2

)
· det

(
d1,1 d1,2
d2,1 d2,2

)
− ent

((
u1 u2

) (
adj
(

a1,1 a1,2
a2,1 a2,2

))(
p1
p2

))
· ent

((
v1 v2

) (
adj
(

d1,1 d1,2
d2,1 d2,2

))(
q1
q2

))
.

In order to prove Theorem 5.34, we will need one standard result (known as the
matrix determinant lemma):

Theorem 5.36. Let n ∈ N. Let u be a column vector with n entries, and let v
be a row vector with n entries. (Thus, uv is an n × n-matrix, whereas vu is a
1 × 1-matrix.) Let A be an n × n-matrix. Then,

det (A + uv) = det A + ent (v (adj A) u) .

See [Grinbe15, Theorem 7.262] for a proof of Theorem 5.36.
We will furthermore need the following three trivial lemmas:

Lemma 5.37. Let C ∈ K1×1 be an 1 × 1-matrix. Let λ ∈ K. Then, ent (λC) =
λ ent C.

Lemma 5.38. Let B and C be two 1 × 1-matrices. Then, ent (BC) = ent B · ent C.

Lemma 5.39. Let L and M be rings. Let f : L → M be any map. Let B ∈ L1×1.
Then, ent

(
f 1×1 (B)

)
= f (ent B).

Finally, we will need a simple property of regular elements in a commutative
ring:

Lemma 5.40. Let A be a commutative ring. Let a be a regular element of A. Let
m ∈ N. Then, am is a regular element of A.

Proof of Lemma 5.40. The element a is regular. In other words,

every x ∈ A satisfying ax = 0 satisfies x = 0 (48)
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(by the definition of “regular”).
Now, let x ∈ A satisfy amx = 0. We shall show that x = 0. Indeed, we shall first

prove that
am−ix = 0 for each i ∈ {0, 1, . . . , m} . (49)

[Proof of (49): We proceed by induction on i:
Induction base: We have am−0x = amx = 0 (by assumption). Hence, (49) holds for

i = 0.
Induction step: Let j ∈ {1, 2, . . . , m}. Assume that (49) holds for i = j − 1. We

must show that (49) holds for i = j as well.
We have assumed that (49) holds for i = j − 1. In other words, am−(j−1)x = 0.

In other words, am−j+1x = 0 (since m − (j − 1) = m − j + 1). In other words,
aam−jx = 0 (since am−j+1 = aam−j). Hence, (48) (applied to am−jx instead of x)
yields am−jx = 0. In other words, (49) holds for i = j. This completes the induction
step. Thus, (49) is proved by induction.]

Now, (49) (applied to i = m) yields am−mx = 0. Since am−m︸ ︷︷ ︸
=a0=1

x = x, this rewrites

as x = 0.
Forget that we fixed x. We thus have shown that every x ∈ A satisfying amx = 0

satisfies x = 0. In other words, the element am of A is regular (by the definition of
“regular”). This proves Lemma 5.40.

Now, we can approach the proof of Theorem 5.34 using the same technique as
various theorems proved above. We begin by proving it in the case when det A is
regular:

Lemma 5.41. Let n ∈ N and m ∈ N. Let A ∈ Kn×n and D ∈ Km×m be two
square matrices. Assume that the element det A of K is regular. Let p ∈ Kn×1

and q ∈ Km×1 be two column vectors. Let v ∈ K1×m and u ∈ K1×n be two row
vectors. Then,

det
(

A pv
qu D

)
= det A · det D − ent (u (adj A) p) · ent (v (adj D) q) .

Proof of Lemma 5.41. Set λ = det A. Thus, the element λ of K is regular (since the
element det A of K is regular). Hence, Lemma 5.40 (applied to A = K and a = λ)
shows that λm is a regular element of K.

It is furthermore easy to see that

λ adj (λD) = λm adj D. (50)

[Proof of (50): If m = 0, then (50) holds for trivial reasons12. Thus, for the rest
of this proof, we WLOG assume that we don’t have m = 0. Hence, m is a positive

12Proof. Assume that m = 0. The matrices λ adj (λD) and λm adj D are m × m-matrices (since D is
an m × m-matrix). In other words, the matrices λ adj (λD) and λm adj D are 0× 0-matrices (since
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integer (since m ∈ N). Therefore, Proposition 5.16 (applied to m and D instead
of n and A) yields adj (λD) = λm−1 adj D. Hence, λ adj (λD)︸ ︷︷ ︸

=λm−1 adj D

= λλm−1︸ ︷︷ ︸
=λm

adj D =

λm adj D. This proves (50).]

Define two matrices W ∈ Km×m and V ∈ Km×n by

W = λIm and V = −qu adj A.

Then,

V︸︷︷︸
=−qu adj A

A = −qu adj A · A︸ ︷︷ ︸
=det A·In

(by Theorem 3.7)

= −qu det A︸ ︷︷ ︸
=λ

(since λ=det A)

·In = −quλIn

= −λquIn = −λqu = −Wqu

(since − W︸︷︷︸
=λIm

qu = −λImqu = −λqu). Hence, Proposition 5.30 (applied to B = pv

and C = qu) yields

det W · det
(

A pv
qu D

)
= det A · det (Vpv + WD) .

In view of

det W︸︷︷︸
=λIm

= det (λIm) = λm det (Im)︸ ︷︷ ︸
=1

(
by (26), applied to m and Im

instead of n and C

)
= λm

and det A = λ, we can rewrite this as

λm · det
(

A pv
qu D

)
= λ · det (Vpv + WD) . (51)

Let us define two 1 × 1-matrices B and C by

B = u (adj A) p ∈ K1×1 and C = v · adj (λD) · (−q) ∈ K1×1.

Next, we observe that

V︸︷︷︸
=−qu adj A

pv + W︸︷︷︸
=λIm

D

= (−qu adj A) pv︸ ︷︷ ︸
=(−q)u(adj A)pv

+λ ImD︸︷︷︸
=D

= (−q) u (adj A) p︸ ︷︷ ︸
=B

(since B=u(adj A)p)

v + λD = (−q) Bv + λD

= λD + (−q) Bv = λD + (−q) (Bv) . (52)

m = 0). Hence, these two matrices λ adj (λD) and λm adj D are equal (since there exists only
one 0 × 0-matrix, and therefore any two 0 × 0-matrices are equal). In other words, λ adj (λD) =
λm adj D. Thus, we have proved (50) under the assumption that m = 0.
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Note that λD ∈ Km×m and −q ∈ Km×1 and Bv ∈ K1×m. Hence, Theorem 5.36
(applied to m, −q, Bv and D instead of n, u, v and A) yields

det (λD + (−q) (Bv))

= det (λD)︸ ︷︷ ︸
=λm det D

(by (26), applied to m and D
instead of n and A)

+ ent

(Bv) · adj (λD) · (−q)︸ ︷︷ ︸
=B(v·adj(λD)·(−q))



= λm det D + ent

B (v · adj (λD) · (−q))︸ ︷︷ ︸
=C

(since C=v·adj(λD)·(−q))

 = λm det D + ent (BC)︸ ︷︷ ︸
=ent B·ent C

(by Lemma 5.38)

= λm det D + ent B · ent C.

In view of (52), we can rewrite this as

det (Vpv + WD) = λm det D + ent B · ent C.

Thus, (51) becomes

λm · det
(

A pv
qu D

)
= λ · det (Vpv + WD)︸ ︷︷ ︸

=λm det D+ent B·ent C

= λ · (λm det D + ent B · ent C)
= λλm det D + λ ent B · ent C︸ ︷︷ ︸

=λ ent C·ent B

= λλm det D + λ ent C · ent B
= λλm det D − (−λ) ent C · ent B. (53)

However, Lemma 5.37 (applied to −λ instead of λ) yields ent ((−λ)C) = (−λ) ent C.
Thus,

(−λ) ent C = ent

(−λ) C︸︷︷︸
=v·adj(λD)·(−q)

 = ent

(−λ) v · adj (λD) · (−q)︸ ︷︷ ︸
=λv·adj(λD)·q
=v·λ adj(λD)·q



= ent

v · λ adj (λD)︸ ︷︷ ︸
=λm adj D
(by (50))

·q

 = ent

v · (λm adj D) · q︸ ︷︷ ︸
=λm·v(adj D)q


= ent (λm · v (adj D) q) = λm ent (v (adj D) q)
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(by Lemma 5.37, applied to λm and v (adj D) q instead of λ and C). Thus, (53)
becomes

λm · det
(

A pv
qu D

)
= λλm det D − (−λ) ent C︸ ︷︷ ︸

=λm ent(v(adj D)q)

· ent B

= λλm det D − λm ent (v (adj D) q) · ent B
= λm · (λ det D − ent (v (adj D) q) · ent B) .

Since λm is a regular element of K, we can thus conclude that

det
(

A pv
qu D

)
= λ det D − ent (v (adj D) q) · ent B

(by Lemma 5.5, applied to A = K and a = λm and b = det
(

A pv
qu D

)
and

c = λ det D − ent (v (adj D) q) · ent B). In view of λ = det A and B = u (adj A) p,
we can rewrite this as

det
(

A pv
qu D

)
= det A · det D − ent (v (adj D) q) · ent (u (adj A) p)

= det A · det D − ent (u (adj A) p) · ent (v (adj D) q) .

This proves Lemma 5.41.

We can now derive Theorem 5.34 from Lemma 5.41 by the same recipe as before:

Proof of Theorem 5.34. Define the K-algebra homomorphism ε : K [t] → K as in
Proposition 5.3. Thus, ε is a ring homomorphism.

Recall that every n×n-matrix in Kn×n can be considered as a matrix in (K [t])n×n.
More generally, every k × ℓ-matrix in Kk×ℓ (for any nonnegative integers k and ℓ)
can be considered as a matrix in (K [t])k×ℓ. In other words, for each F ∈ Kk×ℓ, we
can consider F as a matrix in (K [t])k×ℓ; therefore, εk×ℓ (F) is well-defined. We have

εk×ℓ (F) = F for every F ∈ Kk×ℓ. (54)

(In fact, the proof of (54) is analogous to the proof of (29) we gave above.)
Let Ã be the matrix tIn + A ∈ (K [t])n×n. Thus, Ã = tIn + A. Applying the

map εn×n to both sides of this equality, we find εn×n
(

Ã
)
= εn×n (tIn + A) = A (by

Proposition 5.3 (c)).
Corollary 5.8 shows that the element det (tIn + A) of K [t] is regular. In other

words, the element det Ã of K [t] is regular (since Ã = tIn + A).
Let us consider the matrix A ∈ Kn×n as a matrix in (K [t])n×n (since every

n × n-matrix in Kn×n can be considered as a matrix in (K [t])n×n). Similarly, let
us consider the matrices D ∈ Km×m, p ∈ Kn×1, q ∈ Km×1, v ∈ K1×m and u ∈
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K1×n as matrices in (K [t])m×m, (K [t])n×1, (K [t])m×1, (K [t])1×m and (K [t])1×n,
respectively.

Notice that (54) (applied to k = n and ℓ = n and F = A) yields εn×n (A) = A.
Similarly, εm×m (D) = D and εn×1 (p) = p and εm×1 (q) = q and ε1×m (v) = v and
ε1×n (u) = u and εn×m (pv) = pv and εm×n (qu) = qu.

In the proof of Theorem 5.12, we have already shown that

εn×n
(

adj Ã
)
= adj A and ε

(
det Ã

)
= det A.

Next, we claim that

ε
(

ent
(

u
(

adj Ã
)

p
))

= ent (u (adj A) p) . (55)

[Proof of (55): Define the 1× 1-matrix B = u
(

adj Ã
)

p ∈ (K [t])1×1. Then, Lemma

5.39 (applied to L = K [t] and M = K and f = ε) yields ent
(
ε1×1 (B)

)
= ε (ent B).

However, from B = u
(

adj Ã
)

p = u
((

adj Ã
)

p
)

, we obtain

ε1×1 (B) = ε1×1
(

u
((

adj Ã
)

p
))

= ε1×n (u)︸ ︷︷ ︸
=u

· εn×1
((

adj Ã
)

p
)

︸ ︷︷ ︸
=εn×n(adj Ã)·εn×1(p)

(by Theorem 5.1 (c))

(by Theorem 5.1 (c))

= u · εn×n
(

adj Ã
)

︸ ︷︷ ︸
=adj A

· εn×1 (p)︸ ︷︷ ︸
=p

= u (adj A) p.

In view of this, we can rewrite the equality ent
(
ε1×1 (B)

)
= ε (ent B) (which we

have proved in the previous paragraph) as

ent (u (adj A) p) = ε (ent B) = ε
(

ent
(

u
(

adj Ã
)

p
))

(since B = u
(

adj Ã
)

p). This proves (55).]

Furthermore, we have ε (λ) = λ for each λ ∈ K (by the definition of ε). Applying
this to λ = det D, we find

ε (det D) = det D.

Also, v (adj D) q ∈ K1×1 and thus ent (v (adj D) q) ∈ K. Recall again that we
have ε (λ) = λ for each λ ∈ K. Applying this to λ = ent (v (adj D) q), we obtain

ε (ent (v (adj D) q)) = ent (v (adj D) q) (56)

(since ent (v (adj D) q) ∈ K).
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Now, Lemma 5.41 (applied to K [t] and Ã instead of K and A) yields

det

(
Ã pv
qu D

)
= det Ã · det D − ent

(
u
(

adj Ã
)

p
)
· ent (v (adj D) q)

(since the element det Ã of K [t] is regular). Applying the map ε to both sides of
this equality, we find

ε

(
det

(
Ã pv
qu D

))
= ε

(
det Ã · det D − ent

(
u
(

adj Ã
)

p
)
· ent (v (adj D) q)

)
= ε

(
det Ã

)
︸ ︷︷ ︸

=det A

· ε (det D)︸ ︷︷ ︸
=det D

− ε
(

ent
(

u
(

adj Ã
)

p
))

︸ ︷︷ ︸
=ent(u(adj A)p)

(by (55))

· ε (ent (v (adj D) q))︸ ︷︷ ︸
=ent(v(adj D)q)

(by (56))

(since ε is a ring homomorphism)

= det A · det D − ent (u (adj A) p) · ent (v (adj D) q) . (57)

However,

(
Ã pv
qu D

)
is an (n + m)× (n + m)-matrix in (K [t])(n+m)×(n+m). Thus,

Proposition 5.2 (a) (applied to K [t], K, ε, n + m and

(
Ã pv
qu D

)
instead of L, M,

f , n and A) yields

ε

(
det

(
Ã pv
qu D

))
= det

(
ε(n+m)×(n+m)

(
Ã pv
qu D

))
. (58)

On the other hand, Lemma 5.28 (applied to K [t], K, ε, m, n, m, Ã, pv and qu
instead of L, M, f , n′, m, m′, A, B and C) yields

ε(n+m)×(n+m)

((
Ã pv
qu D

))
=

 εn×n
(

Ã
)

εn×m (pv)

εm×n (qu) εm×m (D)

 =

(
A pv
qu D

)

(since εn×n
(

Ã
)
= A and εn×m (pv) = pv and εm×n (qu) = qu and εm×m (D) = D).

Taking determinants on both sides of this equality, we find

det

(
ε(n+m)×(n+m)

((
Ã pv
qu D

)))
= det

(
A pv
qu D

)
.
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Hence,

det
(

A pv
qu D

)
= det

(
ε(n+m)×(n+m)

((
Ã pv
qu D

)))

= ε

(
det

(
Ã pv
qu D

))
(by (58))

= det A · det D − ent (u (adj A) p) · ent (v (adj D) q) (by (57)) .

This completes the proof of Theorem 5.34.

Note that Theorem 5.34 generalizes the following known fact (e.g., [Grinbe15,
Exercise 6.60 (a)]):

Corollary 5.42. Let n ∈ N. Let u ∈ Kn×1 be a column vector with n entries,
and let v ∈ K1×n be a row vector with n entries. (Thus, uv is an n × n-matrix,
whereas vu is a 1× 1-matrix.) Let h ∈ K. Let H be the 1× 1-matrix

(
h
)
∈ K1×1.

Let A ∈ Kn×n be an n × n-matrix. Then,

det
(

A u
v H

)
= h det A − ent (v (adj A) u) .

Proof of Corollary 5.42 (sketched). Consider the 1× 1 identity matrix I1 =
(

1
)
. Then,

I1 is both a row vector and a column vector, and we have u = uI1 and v = I1v.
Moreover, the adjugate of any 1 × 1-matrix is

(
1
)

(since the determinant of a
0 × 0-matrix is defined to be 1). Thus, in particular, adj H =

(
1
)
= I1. Further-

more, from H =
(

h
)
, we obtain det H = h. Now, from u = uI1 and v = I1v, we

obtain

det
(

A u
v H

)
= det

(
A uI1

I1v H

)

= det A · det H︸ ︷︷ ︸
=h

− ent (v (adj A) u) · ent

I1 (adj H)︸ ︷︷ ︸
=I1

I1


(

by Theorem 5.34, applied to 1, H, u, I1, I1 and v
instead of m, D, p, q, v and u

)
= det A · h︸ ︷︷ ︸

=h det A

− ent (v (adj A) u) · ent (I1 · I1 · I1)︸ ︷︷ ︸
=I1

= h det A − ent (v (adj A) u) · ent (I1)︸ ︷︷ ︸
=1

= h det A − ent (v (adj A) u) .

This proves Corollary 5.42.
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Another particular case of Theorem 5.34 is the following:

Corollary 5.43. Let n and m be two positive integers. Let A ∈ Kn×n and D ∈
Km×m be two square matrices. Let B be the n × m-matrix whose (n, 1)-th entry
is 1 and whose all other entries are 0. Let C be the m × n-matrix whose (1, n)-th
entry is 1 and whose all other entries are 0. Then,

det
(

A B
C D

)
= det A · det D − det (A∼n,∼n) · det (D∼1,∼1) .

(Recall that we are using the notations from Definition 3.5.)

Example 5.44. Let us see what Corollary 5.43 says in the case when n = 2 and
m = 3. Indeed, let n = 2 and m = 3 and

A =

(
a1,1 a1,2
a2,1 a2,2

)
and D =

 d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

 .

Then, the matrices B and C defined in Corollary 5.43 are

B =

(
0 0 0
1 0 0

)
and C =

 0 1
0 0
0 0

 .

Hence,

(
A B
C D

)
=


a1,1 a1,2 0 0 0
a2,1 a2,2 1 0 0
0 1 d1,1 d1,2 d1,3
0 0 d2,1 d2,2 d2,3
0 0 d3,1 d3,2 d3,3

 .

Therefore, the claim of Corollary 5.43 rewrites as follows in our case:

det


a1,1 a1,2 0 0 0
a2,1 a2,2 1 0 0
0 1 d1,1 d1,2 d1,3
0 0 d2,1 d2,2 d2,3
0 0 d3,1 d3,2 d3,3


= det

(
a1,1 a1,2
a2,1 a2,2

)
· det

 d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

− det
(

a1,1
)
· det

(
d2,2 d2,3
d3,2 d3,3

)
.

Proof of Corollary 5.43 (sketched). What follows is by far not the easiest proof of Corol-
lary 5.43, but it puts the corollary in the context of Theorem 5.34.
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We let p ∈ Kn×1 be the column vector whose n-th entry is 1 and whose all other
entries are 0.

We let q ∈ Km×1 be the column vector whose 1-st entry is 1 and whose all other
entries are 0.

We let v ∈ K1×m be the row vector whose 1-st entry is 1 and whose all other
entries are 0.

We let u ∈ K1×n be the row vector whose n-th entry is 1 and whose all other
entries are 0.

Thus,

p =


0
0
...
0
1

 ∈ Kn×1, q =


1
0
0
...
0

 ∈ Km×1,

v =
(

1 0 0 · · · 0
)
∈ K1×m, u =

(
0 0 · · · 0 1

)
∈ K1×n.

Now, it is easy to see (using just the definition of a product of two matrices) that
the following four claims hold:

Claim 1: We have qu = C.

Claim 2: We have pv = B.

Claim 3: Every m × m-matrix Y satisfies

ent (vYq) = (the (1, 1) -th entry of Y) . (59)

Claim 4: Every n × n-matrix X satisfies

ent (uXp) = (the (n, n) -th entry of X) . (60)

Now, Theorem 5.34 yields

det
(

A pv
qu D

)
= det A · det D − ent (u (adj A) p) · ent (v (adj D) q) .

In view of pv = B and qu = C and

ent (u (adj A) p) = (the (n, n) -th entry of adj A)

(by (60), applied to X = adj A)

= (−1)n+n︸ ︷︷ ︸
=(−1)2n=1

(since 2n is even)

det (A∼n,∼n) (by the definition of an adjugate)

= det (A∼n,∼n)
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and

ent (v (adj D) q) = (the (1, 1) -th entry of adj D)

(by (59), applied to Y = adj D)

= (−1)1+1︸ ︷︷ ︸
=1

det (D∼1,∼1) (by the definition of an adjugate)

= det (D∼1,∼1) ,

we can rewrite this as

det
(

A B
C D

)
= det A · det D − det (A∼n,∼n) · det (D∼1,∼1) .

This proves Corollary 5.43.
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