A few classical results on tensor, symmetric and exterior powers

Darij Grinberg

Version 0.3 (June 13, 2017) (not proofread!)

Contents

0.1. Version 1
0.2 . Introduction 1
0.3 . Basic conventions 2
0.4. Tensor products 2
0.5 . Tensor powers of k-modules 4
0.6. The tensor algebra 5
0.7 . A variation on the nine lemma 7
0.8. Another diagram theorem about the nine lemma configuration 8
0.9. $\operatorname{Ker}(f \otimes g)$ when f and g are surjective 9
0.10. Extension to n modules 15
0.11. The tensor algebra case 23
0.12. The pseudoexterior algebra 29
0.13. The kernel of Exter f 48
0.14 . The symmetric algebra 53
0.15 . The exterior algebra 58
0.16. The relation between the exterior and pseudoexterior algebras 74
0.17. The symmetric algebra is commutative 77
0.18 . Some universal properties 80

0.1. Version

ver:S

0.2. Introduction

In this note, I am going to give proofs to a few results about tensor products as well as tensor, pseudoexterior, symmetric and exterior powers of k-modules (where k is a commutative ring with 1). None of the results is new, as I have seen them used all around literature as if they were well-known and/or completely trivial. I have not yet found a place where they are actually proved (though I have not looked far), so I am doing it here.

This note is not completely new: The first four Subsections (0.4, 0.5, 0.6 and 0.7) as well as the proof of Proposition 38 are lifted from my diploma thesis [3], while Subsections 0.8 and 0.9 are translated from an additional section of 44 which was written by me.

0.3. Basic conventions

Before we come to the actual body of this note, let us fix some conventions to prevent misunderstandings from happening:

Convention 1. In this note, \mathbb{N} will mean the set $\{0,1,2,3, \ldots\}$ (rather than the set $\{1,2,3, \ldots\}$, which is denoted by \mathbb{N} by various other authors).

For each $n \in \mathbb{N}$, we let S_{n} denote the n-th symmetric group (defined as the group of all permutations of the set $\{1,2, \ldots, n\})$.
| Convention 2. In this note, a ring will always mean an associative ring with 1. If k is a commutative ring, then a k-algebra will mean a (not necessarily commutative, but necessarily associative) k-algebra with 1 . Sometimes we will use the word "algebra" as an abbreviation for " k-algebra". If L is a k-algebra, then a left L-module is always supposed to be a left L-module on which the unity of L acts as the identity. Whenever we use the tensor product sign \otimes without an index, we mean \otimes_{k}.

0.4. Tensor products

The goal of this note is not to define tensor products; we assume that the reader already knows what they are. But let us recall one possible way to define the tensor product of several k-modules (assuming that the tensor product of two k-modules is already defined):

Definition 3. Let k be a commutative ring. Let $n \in \mathbb{N}$.
Now, by induction over n, we are going to define a k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ for any n arbitrary k-modules $V_{1}, V_{2}, \ldots, V_{n}$:
Induction base: For $n=0$, we define $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ as the k-module k.
Induction step: Let $p \in \mathbb{N}$. Assuming that we have defined a k-module $V_{1} \otimes V_{2} \otimes$ $\cdots \otimes V_{p}$ for any p arbitrary k-modules $V_{1}, V_{2}, \ldots, V_{p}$, we now define a k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p+1}$ for any $p+1$ arbitrary k-modules $V_{1}, V_{2}, \ldots, V_{p+1}$ by the equation

$$
\begin{equation*}
V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p+1}=V_{1} \otimes\left(V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}\right) \tag{1}
\end{equation*}
$$

Here, $V_{1} \otimes\left(V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}\right)$ is to be understood as the tensor product of the k-module V_{1} with the k-module $V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}$ (note that the k-module $V_{2} \otimes V_{3} \otimes$ $\cdots \otimes V_{p+1}$ is already defined because we assumed that we have defined a k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p}$ for any p arbitrary k-modules $V_{1}, V_{2}, \ldots, V_{p}$). This completes the inductive definition.
Thus we have defined a k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ for any n arbitrary k-modules $V_{1}, V_{2}, \ldots, V_{n}$ for any $n \in \mathbb{N}$. This k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ is called the tensor product of the k-modules $V_{1}, V_{2}, \ldots, V_{n}$.

Remark 4. (a) Definition 3 is not the only possible definition of the tensor product of several k-modules. One could obtain a different definition by replacing the equation (1) by

$$
V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p+1}=\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p}\right) \otimes V_{p+1}
$$

This definition would have given us a different k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ for any n arbitrary k-modules $V_{1}, V_{2}, \ldots, V_{n}$ for any $n \in \mathbb{N}$ than the one defined in Definition 3. However, this k-module would still be canonically isomorphic to the one defined in Definition 3, and thus it is commonly considered to be "more or less the same k-module".
There is yet another definition of $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$, which proceeds by taking the free k-module on the set $V_{1} \times V_{2} \times \cdots \times V_{n}$ and factoring it modulo a certain submodule. This definition gives yet another k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$, but this module is also canonically isomorphic to the k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ defined in Definition 3, and thus can be considered to be "more or less the same k-module".
(b) Definition 3, applied to $n=1$, defines the tensor product of one k-module V_{1} as $V_{1} \otimes k$. This takes some getting used to, since it seems more natural to define the tensor product of one k-module V_{1} simply as V_{1}. But this isn't really different because there is a canonical isomorphism of k-modules $V_{1} \cong V_{1} \otimes k$, so most people consider V_{1} to be "more or less the same k-module" as $V_{1} \otimes k$.

Convention 5. A remark about notation is appropriate at this point:
There are two different conflicting notions of a "pure tensor" in a tensor product $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ of n arbitrary k-modules $V_{1}, V_{2}, \ldots, V_{n}$, where $n \geq 1$. The one notion defines a "pure tensor" as an element of the form $v \otimes T$ for some $v \in V_{1}$ and some $T \in V_{2} \otimes V_{3} \otimes \cdots \otimes V_{n} \quad$ 1. The other notion defines a "pure tensor" as an element of the form $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$ for some $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V_{1} \times V_{2} \times \cdots \times V_{n}$. These two notions are not equivalent. In this note, we are going to yield right of way to the second of these notions, i. e. we are going to define a pure tensor in $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ as an element of the form $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$ for some $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in$ $V_{1} \times V_{2} \times \cdots \times V_{n}$. The first notion, however, will also be used - but we will not call it a "pure tensor" but rather a "left-induced tensor". Thus we define a left-induced tensor in $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ as an element of the form $v \otimes T$ for some $v \in V_{1}$ and some $T \in V_{2} \otimes V_{3} \otimes \cdots \otimes V_{n}$.
We note that the k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ is generated by its left-induced tensors, but also generated by its pure tensors.

We also recall the definition of the tensor product of several k-module homomorphisms (assuming that the notion of the tensor product of two k-module homomorphisms is already defined):

[^0]Definition 6. Let k be a commutative ring. Let $n \in \mathbb{N}$.
Now, by induction over n, we are going to define a k-module homomorphism $f_{1} \otimes$ $f_{2} \otimes \cdots \otimes f_{n}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \rightarrow W_{1} \otimes W_{2} \otimes \cdots \otimes W_{n}$ whenever $V_{1}, V_{2}, \ldots, V_{n}$ are n arbitrary k-modules, $W_{1}, W_{2}, \ldots, W_{n}$ are n arbitrary k-modules, and $f_{1}: V_{1} \rightarrow W_{1}$, $f_{2}: V_{2} \rightarrow W_{2}, \ldots, f_{n}: V_{n} \rightarrow W_{n}$ are n arbitrary k-module homomorphisms:
Induction base: For $n=0$, we define $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}$ as the identity map id : $k \rightarrow k$. Induction step: Let $p \in \mathbb{N}$. Assume that we have defined a k-module homomorphism $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p} \rightarrow W_{1} \otimes W_{2} \otimes \cdots \otimes W_{p}$ whenever $V_{1}, V_{2}, \ldots, V_{p}$ are p arbitrary k-modules, $W_{1}, W_{2}, \ldots, W_{p}$ are p arbitrary k-modules, and $f_{1}: V_{1} \rightarrow W_{1}$, $f_{2}: V_{2} \rightarrow W_{2}, \ldots, f_{p}: V_{p} \rightarrow W_{p}$ are p arbitrary k-module homomorphisms. Now let us define a k-module homomorphism $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p+1} \rightarrow$ $W_{1} \otimes W_{2} \otimes \cdots \otimes W_{p+1}$ whenever $V_{1}, V_{2}, \ldots, V_{p+1}$ are $p+1$ arbitrary k-modules, $W_{1}, W_{2}, \ldots, W_{p+1}$ are $p+1$ arbitrary k-modules, and $f_{1}: V_{1} \rightarrow W_{1}, f_{2}: V_{2} \rightarrow W_{2}$, $\ldots, f_{p+1}: V_{p+1} \rightarrow W_{p+1}$ are $p+1$ arbitrary k-module homomorphisms. Namely, we define this homomorphism $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}$ to be $f_{1} \otimes\left(f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}\right)$.
Here, $f_{1} \otimes\left(f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}\right)$ is to be understood as the tensor product of the k-module homomorphism $f_{1}: V_{1} \rightarrow W_{1}$ with the k-module homomorphism $f_{2} \otimes$ $f_{3} \otimes \cdots \otimes f_{p+1}: V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1} \rightarrow W_{2} \otimes W_{3} \otimes \cdots \otimes W_{p+1}$ (note that the k-module homomorphism $f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}: V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1} \rightarrow W_{2} \otimes W_{3} \otimes$ $\cdots \otimes W_{p+1}$ is already defined (because we assumed that we have defined a k-module homomorphism $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p} \rightarrow W_{1} \otimes W_{2} \otimes \cdots \otimes W_{p}$ whenever $V_{1}, V_{2}, \ldots, V_{p}$ are p arbitrary k-modules, $W_{1}, W_{2}, \ldots, W_{p}$ are p arbitrary k-modules, and $f_{1}: V_{1} \rightarrow W_{1}, f_{2}: V_{2} \rightarrow W_{2}, \ldots, f_{p}: V_{p} \rightarrow W_{p}$ are p arbitrary k-module homomorphisms)). This completes the inductive definition.
Thus we have defined a k-module homomorphism $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \rightarrow$ $W_{1} \otimes W_{2} \otimes \cdots \otimes W_{n}$ whenever $V_{1}, V_{2}, \ldots, V_{n}$ are n arbitrary k-modules, W_{1}, W_{2}, \ldots, W_{n} are n arbitrary k-modules, and $f_{1}: V_{1} \rightarrow W_{1}, f_{2}: V_{2} \rightarrow W_{2}, \ldots, f_{n}:$ $V_{n} \rightarrow W_{n}$ are n arbitrary k-module homomorphisms. This k-module homomorphism $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}$ is called the tensor product of the k-module homomorphisms f_{1}, f_{2}, \ldots, f_{n}.

Finally let us agree on a rather harmless abuse of notation:
Convention 7. Let k be a commutative ring. Let V be a k-module.
We are going to identify the three k-modules $V \otimes k, k \otimes V$ and V with each other (due to the canonical isomorphisms $V \rightarrow V \otimes k$ and $V \rightarrow k \otimes V$).

0.5. Tensor powers of k-modules

Next we define a particular case of tensor products of k-modules, namely the tensor powers. Here is the classical definition of this notion:

Definition 8. Let k be a commutative ring. Let $n \in \mathbb{N}$. For any k-module V, we define a k-module $V^{\otimes n}$ by $V^{\otimes n}=\underbrace{V \otimes V \otimes \cdots \otimes V}_{n \text { times }}$. This k-module $V^{\otimes n}$ is called the n-th tensor power of the k-module V.

Remark 9. Let k be a commutative ring, and let V be a k-module. Then, $V^{\otimes 0}=k$ (because $V^{\otimes n}=\underbrace{V \otimes V \otimes \cdots \otimes V}_{0 \text { times }}=$ (tensor product of zero k-modules) $=k$ according to the induction base of Definition 3) and $V^{\otimes 1}=V \otimes k$ (because $V^{\otimes 1}=$ $\underbrace{V \otimes V \otimes \cdots \otimes V}_{1 \text { times }}=V \otimes k$ according to the induction step of Definition 3). Since we identify $V \otimes k$ with V, we thus have $V^{\otimes 1}=V$.

Convention 10. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V and V^{\prime} be k modules, and let $f: V \rightarrow V^{\prime}$ be a k-module homomorphism. Then, $f^{\otimes n}$ denotes the k-module homomorphism $\underbrace{f \otimes f \otimes \cdots \otimes f}_{n \text { times }}: \underbrace{V \otimes V \otimes \cdots \otimes V}_{n \text { times }} \rightarrow \underbrace{V^{\prime} \otimes V^{\prime} \otimes \cdots \otimes V^{\prime}}_{n \text { times }}$. Since $\underbrace{V \otimes V \otimes \cdots \otimes V}_{n \text { times }}=V^{\otimes n}$ and $\underbrace{V^{\prime} \otimes V^{\prime} \otimes \cdots \otimes V^{\prime}}_{n \text { times }}=V^{\prime \otimes n}$, this $f^{\otimes n}$ is thus a k-module homomorphism from $V^{\otimes n}$ to $V^{\prime \otimes n}$.

0.6 . The tensor algebra

First let us agree on a convention which simplifies working with direct sums:
Convention 11. Let k be a commutative ring. Let S be a set. For every $s \in S$, let V_{s} be a k-module. For every $t \in S$, we are going to identify the k-module V_{t} with the image of V_{t} under the canonical injection $V_{t} \rightarrow \bigoplus_{s \in S} V_{s}$. This is an abuse of notation, but a relatively harmless one. It allows us to consider V_{t} as a k-submodule of the direct sum $\bigoplus_{s \in S} V_{s}$.

Secondly, we make a convention that simplifies working with the tensor powers of a k-module:

Convention 12. Let k be a commutative ring. For every k-module V, every $n \in \mathbb{N}$ and every $i \in\{0,1, \ldots, n\}$, we are going to identify the k-module $V^{\otimes i} \otimes V^{\otimes(n-i)}$ with the k-module $V^{\otimes n}$ (using the canonical isomorphism $V^{\otimes i} \otimes V^{\otimes(n-i)} \cong V^{\otimes n}$). In other words, for every k-module V, every $a \in \mathbb{N}$ and every $b \in \mathbb{N}$, we are going to identify the k-module $V^{\otimes a} \otimes V^{\otimes b}$ with the k-module $V^{\otimes(a+b)}$.

The tensor powers $V^{\otimes n}$ of a k-module V can be combined to a k-module $\otimes V$ which turns out to have an algebra structure: that of the so-called tensor algebra. Let us recall its definition (which can easily shown to be well-defined):

Definition 13. Let k be a commutative ring.
(a) Let V be a k-module. The tensor algebra $\otimes V$ of V over k is defined to be the k-algebra formed by the k-module $\bigoplus_{i \in \mathbb{N}} V^{\otimes i}=V^{\otimes 0} \oplus V^{\otimes 1} \oplus V^{\otimes 2} \oplus \cdots$ equipped with a multiplication which is defined by

$$
\left(\begin{array}{rl}
\left(a_{i}\right)_{i \in \mathbb{N}} \cdot\left(b_{i}\right)_{i \in \mathbb{N}}= & \left(\sum_{i=0}^{n} a_{i} \otimes b_{n-i}\right) \tag{2}\\
\text { for every }\left(a_{i}\right)_{i \in \mathbb{N}} \in \bigoplus_{i \in \mathbb{N}} V^{\otimes i} \text { and }\left(b_{i}\right)_{i \in \mathbb{N}} \in \bigoplus_{i \in \mathbb{N}} V^{\otimes i}
\end{array}\right)
$$

(where for every $n \in \mathbb{N}$ and every $i \in\{0,1, \ldots, n\}$, the tensor $a_{i} \otimes b_{n-i} \in$ $V^{\otimes i} \otimes V^{\otimes(n-i)}$ is considered as an element of $V^{\otimes n}$ due to the canonical identification $V^{\otimes i} \otimes V^{\otimes(n-i)} \cong V^{\otimes n}$ which was defined in Convention 12).
The k-module $\otimes V$ itself (without the k-algebra structure) is called the tensor module of V.
(b) Let V and W be two k-modules, and let $f: V \rightarrow W$ be a k-module homomorphism. The k-module homomorphisms $f^{\otimes i}: V^{\otimes i} \rightarrow W^{\otimes i}$ for all $i \in \mathbb{N}$ can be combined together to a k-module homomorphism from $V^{\otimes 0} \oplus V^{\otimes 1} \oplus V^{\otimes 2} \oplus \cdots$ to $W^{\otimes 0} \oplus W^{\otimes 1} \oplus W^{\otimes 2} \oplus \cdots$. This homomorphism is called $\otimes f$. Since $V^{\otimes 0} \oplus V^{\otimes 1} \oplus$ $V^{\otimes 2} \oplus \cdots=\otimes V$ and $W^{\otimes 0} \oplus W^{\otimes 1} \oplus W^{\otimes 2} \oplus \cdots=\otimes W$, we see that this homomorphism $\otimes f$ is a k-module homomorphism from $\otimes V$ to $\otimes W$. Moreover, it follows easily from (2) that this $\otimes f$ is actually a k-algebra homomorphism from $\otimes V$ to $\otimes W$.
(c) Let V be a k-module. Then, according to Convention 11, we consider $V^{\otimes n}$ as a k-submodule of the direct sum $\bigoplus_{i \in \mathbb{N}} V^{\otimes i}=\otimes V$ for every $n \in \mathbb{N}$. In particular, every element of k is considered to be an element of $\otimes V$ by means of the canonical embedding $k=V^{\otimes 0} \subseteq \otimes V$, and every element of V is considered to be an element of $\otimes V$ by means of the canonical embedding $V=V^{\otimes 1} \subseteq \otimes V$. The element $1 \in k \subseteq \otimes V$ is easily seen to be the unity of the tensor algebra $\otimes V$.

Remark 14. The formula (2) (which defines the multiplication on the tensor algebra $\otimes V)$ is often put in words by saying that "the multiplication in the tensor algebra $\otimes V$ is given by the tensor product". This informal statement tempts many authors (including myself in [2]) to use the sign \otimes for multiplication in the algebra $\otimes V$, that is, to write $u \otimes v$ for the product of any two elements u and v of the tensor algebra $\otimes V$. This notation, however, can collide with the notation $u \otimes v$ for the tensor product of two vectors u and v in a k-module 2 Due to this possibility of collision, we are not going to use the sign \otimes for multiplication in the algebra $\otimes V$ in this paper. Instead we will use the sign • for this multiplication. However, due to (2), we still have

$$
\begin{equation*}
\left(a \cdot b=a \otimes b \quad \text { for any } n \in \mathbb{N}, \text { any } m \in \mathbb{N}, \text { any } a \in V^{\otimes n} \text { and any } b \in V^{\otimes m}\right), \tag{3}
\end{equation*}
$$

where $a \otimes b$ is considered to be an element of $V^{\otimes(n+m)}$ by means of the identification of $V^{\otimes n} \otimes V^{\otimes m}$ with $V^{\otimes(n+m)}$.

The k-algebra $\otimes V$ is also denoted by $T(V)$ by many authors.

[^1]
0.7. A variation on the nine lemma

The following fact is one of several algebraic statements related to the nine lemma, but having both weaker assertions and weaker conditions. We record it here to use it later:

Proposition 15. Let k be a commutative ring. Let A, B, C and D be k-modules, and let $x: A \rightarrow B, y: A \rightarrow C, z: B \rightarrow D$ and $w: C \rightarrow D$ be k-linear maps such that the diagram

commutes. Assume that $\operatorname{Ker} z \subseteq x(\operatorname{Ker} y)$. Further assume that y is surjective. Then, $\operatorname{Ker} w=y(\operatorname{Ker} x)$.

Proof of Proposition 15 . We know that the diagram

commutes. In other words, $w \circ y=z \circ x$.
We have

$$
\begin{gathered}
w(y(\operatorname{Ker} x))=\underbrace{(w \circ y)}_{=z \circ x}(\operatorname{Ker} x)=(z \circ x)(\operatorname{Ker} x)=z(\underbrace{x(\operatorname{Ker} x)}_{=0})=z(0)=0 \\
\quad(\text { Since } z \text { is } k \text {-linear) },
\end{gathered}
$$

and thus $y(\operatorname{Ker} x) \subseteq \operatorname{Ker} w$. We will now prove that $\operatorname{Ker} w \subseteq y(\operatorname{Ker} x)$:
Let $c \in \operatorname{Ker} w$ be arbitrary. Then, $w(c)=0$. Now, since y is surjective, there exists some $a \in A$ such that $c=y(a)$. Consider this a. Then,

$$
0=w(\underbrace{c}_{=y(a)})=w(y(a))=\underbrace{(w \circ y)}_{=z \circ x}(a)=(z \circ x)(a)=z(x(a)),
$$

so that $x(a) \in \operatorname{Ker} z \subseteq x(\operatorname{Ker} y)$. Thus, there exists some $a^{\prime} \in \operatorname{Ker} y$ such that $x(a)=x\left(a^{\prime}\right)$. Consider this a^{\prime}. Since x is k-linear, we have $x\left(a-a^{\prime}\right)=\underbrace{x(a)}_{=x\left(a^{\prime}\right)}-x\left(a^{\prime}\right)=$ $x\left(a^{\prime}\right)-x\left(a^{\prime}\right)=0$, so that $a-a^{\prime} \in \operatorname{Ker} x$. Thus, $y\left(a-a^{\prime}\right) \in y(\operatorname{Ker} x)$. But since

$$
\begin{aligned}
y\left(a-a^{\prime}\right) & =\underbrace{y(a)}_{=c}-\underbrace{y\left(a^{\prime}\right)}_{=0} \quad \text { (since } a^{\prime} \in \operatorname{Ker} y) \\
& =c-0=c,
\end{aligned}
$$

this rewrites as $c \in y(\operatorname{Ker} x)$.
We have thus shown that every $c \in \operatorname{Ker} w$ satisfies $c \in y(\operatorname{Ker} x)$. Thus, $\operatorname{Ker} w \subseteq$ $y(\operatorname{Ker} x)$. Combined with $y(\operatorname{Ker} x) \subseteq \operatorname{Ker} w$, this yields $\operatorname{Ker} w=y(\operatorname{Ker} x)$. This proves Proposition 15.

Note that we would not lose any generality if we would replace k by \mathbb{Z} in the statement of Proposition 15, because every k-module is an abelian group, i. e., a \mathbb{Z}-module (with additional structure). We could actually generalize Proposition 15 by replacing " k modules" by "groups" (not necessarily abelian), but we will not have any use for Proposition 15 in this generality here.

0.8. Another diagram theorem about the nine lemma configuration

The next fact we will use is, again, about the nine lemma configuration:
Proposition 16. Let k be a ring. Let

be a commutative diagram of k-left modules. Assume that every row of the diagram (6) is an exact sequence, and that every column of the diagram (6) is an exact sequence. Then,

$$
\operatorname{Ker}\left(c_{2} \circ v_{2}\right)=\operatorname{Ker}\left(v_{3} \circ b_{2}\right)=b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right) .
$$

Actually we will show something a bit stronger:
Proposition 17. Let k be a ring. Let

be a commutative diagram of k-left modules. Assume that every row of the diagram (6) is an exact sequence, and that every column of the diagram (6) is an exact sequence. Also assume that a_{2} is surjective. Then,

$$
\operatorname{Ker}\left(c_{2} \circ v_{2}\right)=\operatorname{Ker}\left(v_{3} \circ b_{2}\right)=b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right) .
$$

Proof of Proposition 17. Since (6) is a commutative diagram, we have $c_{2} \circ v_{2}=v_{3} \circ b_{2}$ and $b_{2} \circ u_{2}=u_{3} \circ a_{2}$.

Since every row of the diagram (6) is an exact sequence, we have $b_{2} \circ b_{1}=0$.
Since every column of the diagram (6) is an exact sequence, we have $v_{3} \circ u_{3}=0$.

From $c_{2} \circ v_{2}=v_{3} \circ b_{2}$, we conclude $\operatorname{Ker}\left(c_{2} \circ v_{2}\right)=\operatorname{Ker}\left(v_{3} \circ b_{2}\right)$. Thus, it only remains to prove that $\operatorname{Ker}\left(v_{3} \circ b_{2}\right)=b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)$. Since $b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right) \subseteq \operatorname{Ker}\left(v_{3} \circ b_{2}\right)$ is obvious (because

$$
\begin{aligned}
& \left(v_{3} \circ b_{2}\right)\left(b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)\right) \\
& =v_{3}\left(b_{2}\left(b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)\right)\right)=\underbrace{v_{3}\left(b_{2}\left(b_{1}\left(B_{1}\right)\right)\right)}_{=v_{3}\left(\left(b_{2} \circ b_{1}\right)\left(B_{1}\right)\right)}+\underbrace{v_{3}\left(b_{2}\left(u_{2}\left(A_{2}\right)\right)\right)}_{=\left(v_{3} \circ b_{2} \circ u_{2}\right)\left(A_{2}\right)} \\
& =v_{3}(\underbrace{\left(b_{2} \circ b_{1}\right)}_{=0}\left(B_{1}\right))+(v_{3} \circ \underbrace{b_{2} \circ u_{2}}_{=u_{3} \circ a_{2}})\left(A_{2}\right)=\underbrace{v_{3}\left(0\left(B_{1}\right)\right)}_{=0}+(\underbrace{\left.v_{3} \circ u_{3} \circ a_{2}\right)\left(A_{2}\right)}_{=0} \\
& =0+\underbrace{\left(0 \circ a_{2}\right)\left(A_{2}\right)}_{=0}=0
\end{aligned}
$$

), we must now only show that $\operatorname{Ker}\left(v_{3} \circ b_{2}\right) \subseteq b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)$.
Let $t \in \operatorname{Ker}\left(v_{3} \circ b_{2}\right)$ be arbitrary. Then, $\left(v_{3} \circ b_{2}\right)(t)=0$, so that $v_{3}\left(b_{2}(t)\right)=$ $\left(v_{3} \circ b_{2}\right)(t)=0$ and thus $b_{2}(t) \in \operatorname{Ker} v_{3}=u_{3}\left(A_{3}\right)$ (because every column of the diagram (6) is an exact sequence). Thus, there exists some $x \in A_{3}$ such that $b_{2}(t)=$ $u_{3}(x)$. Consider this x. Since $a_{2}: A_{2} \rightarrow A_{3}$ is surjective, we have $x=a_{2}\left(x^{\prime}\right)$ for some $x^{\prime} \in A_{2}$. Consider this x^{\prime}. Now,
$b_{2}\left(t-u_{2}\left(x^{\prime}\right)\right)=\underbrace{b_{2}(t)}_{=u_{3}(x)}-\underbrace{b_{2}\left(u_{2}\left(x^{\prime}\right)\right)}_{=\left(b_{2} \circ u_{2}\right)\left(x^{\prime}\right)}=u_{3}(x)-\underbrace{\left(b_{2} \circ u_{2}\right)}_{=u_{3} \circ a_{2}}\left(x^{\prime}\right)=u_{3}(x)-u_{3}(\underbrace{a_{2}\left(x^{\prime}\right)}_{=x})=0$,
so that $t-u_{2}\left(x^{\prime}\right) \in \operatorname{Ker} b_{2}=b_{1}\left(B_{1}\right)$ (because every row of the diagram (6) is an exact sequence). Thus, $t=\underbrace{t-u_{2}\left(x^{\prime}\right)}_{\in b_{1}\left(B_{1}\right)}+\underbrace{u_{2}\left(x^{\prime}\right)}_{\in u_{2}\left(A_{2}\right)} \in b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)$.

We thus have shown that every $t \in \operatorname{Ker}\left(v_{3} \circ b_{2}\right)$ satisfies $t \in b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)$. Consequently, $\operatorname{Ker}\left(v_{3} \circ b_{2}\right) \subseteq b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)$. Combined with $b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right) \subseteq$ $\operatorname{Ker}\left(v_{3} \circ b_{2}\right)$, this yields $\operatorname{Ker}\left(v_{3} \circ b_{2}\right)=b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)$. Combined with $\operatorname{Ker}\left(c_{2} \circ v_{2}\right)=$ $\operatorname{Ker}\left(v_{3} \circ b_{2}\right)$, this now completes the proof of Proposition 17 .

Proof of Proposition 16. Since the diagram (5) is commutative, the diagram (6) must also be commutative (because the diagram (6) is a subdiagram of the diagram (5)). Also, the map a_{2} is surjective (since every row of the diagram (5) is an exact sequence). Therefore, we can apply Proposition 17, and conclude that $\operatorname{Ker}\left(c_{2} \circ v_{2}\right)=$ $\operatorname{Ker}\left(v_{3} \circ b_{2}\right)=b_{1}\left(B_{1}\right)+u_{2}\left(A_{2}\right)$. This proves Proposition 16 .

0.9. $\operatorname{Ker}(f \otimes g)$ when f and g are surjective

Theorem 18. Let k be a commutative ring. Let V, W, V^{\prime} and W^{\prime} be four k modules. Let $f: V \rightarrow V^{\prime}$ and $g: W \rightarrow W^{\prime}$ be two surjective k-linear maps. Let i_{V} be the canonical inclusion $\operatorname{Ker} f \rightarrow V$. Let i_{W} be the canonical inclusion $\operatorname{Ker} g \rightarrow W$. Then,

$$
\operatorname{Ker}(f \otimes g)=\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))
$$

Remark 19. (a) In Theorem 18, the condition that f and g be surjective cannot be removed (otherwise, $V=\mathbb{Z}, W=\mathbb{Z}, V^{\prime}=\mathbb{Z} / 4 \mathbb{Z}, W^{\prime}=\mathbb{Z} / 4 \mathbb{Z}, f=(x \mapsto \overline{2 x})$, $g=(x \mapsto \overline{2 x})$ would be a counterexample), but it can be replaced by some other conditions (see Lemma 21 and Corollary 20). (Here is a more complicated counterexample to show that having only g surjective is not yet enough: $V=\mathbb{Z}, W=\mathbb{Z} \oplus(\mathbb{Z} / 4 \mathbb{Z})$, $V^{\prime}=\mathbb{Z}, W^{\prime}=\mathbb{Z} / 4 \mathbb{Z}, f=(x \mapsto 2 x), g=((x, \alpha) \mapsto \overline{2 x}+\alpha)$. $)$
(b) If the k-module V is flat in Theorem 18, then the map $\mathrm{id} \otimes i_{W}$ is injective (as can be easily seen), and therefore many people prefer to identify the image $\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))$ with $V \otimes(\operatorname{Ker} g)$. Similarly, the image $\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)$ can be identified with $(\operatorname{Ker} f) \otimes W$ when the k-module W is flat. It is common among algebraists to perform these identifications when k is a field (because when k is a field, both k-modules V and W are flat), and sometimes even when k is not, but we will not perform these identifications here.

Proof of Theorem 18. The sequence

$$
0 \longrightarrow \operatorname{Ker} f \xrightarrow{i_{V}} V \xrightarrow{f} V^{\prime} \longrightarrow 0
$$

is exact (since i_{V} is the inclusion map $\operatorname{Ker} f \rightarrow V$, while f is surjective). Since the tensor product is right exact, this yields that

On the other hand, the sequence

$$
0 \longrightarrow \operatorname{Ker} g \xrightarrow{i_{W}} W \xrightarrow{g} W^{\prime} \longrightarrow 0
$$

is exact (since i_{W} is the inclusion map $\operatorname{Ker} g \rightarrow W$, while g is surjective). Since the tensor product is right exact, this yields that

$$
\left(\begin{array}{c}
\text { the sequences } \tag{8}\\
(\operatorname{Ker} f) \otimes(\operatorname{Ker} g) \xrightarrow{\mathrm{id} \otimes i_{W}}(\operatorname{Ker} f) \otimes W \xrightarrow{\mathrm{id} \otimes g}(\operatorname{Ker} f) \otimes W^{\prime} \longrightarrow 0 \\
V \otimes(\operatorname{Ker} g) \xrightarrow{\mathrm{id} \otimes i_{W}} V \otimes W \xrightarrow[\mathrm{id} \otimes g]{\longrightarrow} V \otimes W^{\prime} \longrightarrow \\
V^{\prime} \otimes(\operatorname{Ker} g) \xrightarrow{\mathrm{id} \otimes i_{W}} V^{\prime} \otimes W \xrightarrow{\mathrm{id} \otimes g} V^{\prime} \otimes W^{\prime} \longrightarrow \text { are exact }
\end{array}\right) .
$$

Now, the diagram

is commutative (because

$$
\begin{aligned}
\left(i_{V} \otimes \mathrm{id}\right) \circ\left(\mathrm{id} \otimes i_{W}\right) & =i_{V} \otimes i_{W}=\left(\mathrm{id} \otimes i_{W}\right) \circ\left(i_{V} \otimes \mathrm{id}\right) ; \\
\left(i_{V} \otimes \mathrm{id}\right) \circ(\mathrm{id} \otimes g) & =i_{V} \otimes g=(\mathrm{id} \otimes g) \circ\left(i_{V} \otimes \mathrm{id}\right) ; \\
(f \otimes \mathrm{id}) \circ\left(\mathrm{id} \otimes i_{W}\right) & =f \otimes i_{W}=\left(\mathrm{id} \otimes i_{W}\right) \circ(f \otimes \mathrm{id}) ; \\
(f \otimes \mathrm{id}) \circ(\mathrm{id} \otimes g) & =f \otimes g=(\mathrm{id} \otimes g) \circ(f \otimes \mathrm{id})
\end{aligned}
$$

). Every row of this diagram is an exact sequence (due to (8)), and every column of this diagram is an exact sequence (due to (7)). Thus, Proposition 16 (applied to the diagram (9) instead of the diagram (5)) yields that

$$
\begin{aligned}
\operatorname{Ker}((\operatorname{id} \otimes g) \circ(f \otimes \mathrm{id})) & =\operatorname{Ker}((f \otimes \mathrm{id}) \circ(\operatorname{id} \otimes g)) \\
& =\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))+\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W) .
\end{aligned}
$$

Thus,

$$
\text { Ker } \begin{aligned}
\underbrace{(f \otimes g)}_{=(f \otimes \mathrm{id}) \circ(\mathrm{id} \otimes g)} & =\operatorname{Ker}((f \otimes \mathrm{id}) \circ(\mathrm{id} \otimes g)) \\
& =\left(\mathrm{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))+\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W) \\
& =\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\mathrm{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g)) .
\end{aligned}
$$

This proves Theorem 18 .
Let us notice a corollary of this theorem:
Corollary 20. Let k be a commutative ring. Let V, W, V^{\prime} and W^{\prime} be four k modules. Let $f: V \rightarrow V^{\prime}$ and $g: W \rightarrow W^{\prime}$ be two k-linear maps. Assume that $f(V)$ and W^{\prime} are flat k-modules. Let i_{V} be the canonical inclusion $\operatorname{Ker} f \rightarrow V$. Let i_{W} be the canonical inclusion $\operatorname{Ker} g \rightarrow W$. Then,

$$
\operatorname{Ker}(f \otimes g)=\left(i_{V} \otimes \operatorname{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g)) .
$$

Note that this Corollary 20 does not require f or g to be surjective, but instead it requires $f(V)$ and W^{\prime} to be flat (which is always satisfied if k is a field, for example).

To show this, we first prove:
Lemma 21. Let k be a commutative ring. Let V, W, V^{\prime} and W^{\prime} be four k-modules. Let $f: V \rightarrow V^{\prime}$ and $g: W \rightarrow W^{\prime}$ be two k-linear maps. Assume that V^{\prime} is a flat k-module, and that f is surjective. Let i_{V} be the canonical inclusion $\operatorname{Ker} f \rightarrow V$. Let i_{W} be the canonical inclusion $\operatorname{Ker} g \rightarrow W$. Then,

$$
\operatorname{Ker}(f \otimes g)=\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))
$$

Lemma 22. Let k be a commutative ring. Let V, W and A be three k-modules such that the k-module A is flat. Let $i: V \rightarrow W$ be an injective k-module homomorphism.
(a) The k-module homomorphism id $\otimes i: A \otimes V \rightarrow A \otimes W$ is injective.
(b) The k-module homomorphism $i \otimes \mathrm{id}: V \otimes A \rightarrow W \otimes A$ is injective.

Proof of Lemma 22. Let p be the canonical projection $p: W \rightarrow W /(i(V))$. Then, p is a surjective k-module homomorphism, and $\operatorname{Ker} p=i(V)$. Thus,

$$
\begin{equation*}
0 \longrightarrow V \xrightarrow{i} W \xrightarrow{p} W /(i(V)) \longrightarrow 0 \tag{10}
\end{equation*}
$$

is a short exact sequence (since p is surjective, since i is injective, and since $\operatorname{Ker} p=$ $i(V)$). Since tensoring with A is an exact functor (because A is a flat k-module), this yields that

$$
0 \longrightarrow A \otimes V \xrightarrow{\mathrm{id} \otimes i} A \otimes W \xrightarrow{\mathrm{id} \otimes p} A \otimes(W /(i(V))) \longrightarrow \longrightarrow
$$

is a short exact sequence. Therefore, id $\otimes i: A \otimes V \rightarrow A \otimes W$ is injective. This proves Lemma 22 (a).

Since (10) is a short exact sequence, and since tensoring with A is an exact functor (because A is a flat k-module), we find that

$$
0 \longrightarrow V \otimes A \xrightarrow{i \otimes \mathrm{id}} W \otimes A \xrightarrow{p \otimes \mathrm{id}}(W /(i(V))) \otimes A \longrightarrow
$$

is a short exact sequence. Therefore, $i \otimes \mathrm{id}: V \otimes A \rightarrow W \otimes A$ is injective. This proves Lemma 22 (b).

Proof of Lemma 21. Define a k-linear map $g_{1}: W \rightarrow g(W)$ by

$$
\left(g_{1}(w)=g(w) \quad \text { for every } w \in W\right)
$$

(this is well-defined since $g(w) \in g(W)$ for every $w \in W)$. Let m_{W} be the canonical inclusion $g(W) \rightarrow W^{\prime}$. Clearly, every $w \in W$ satisfies

$$
\begin{aligned}
\left(m_{W} \circ g_{1}\right)(w) & =m_{W}\left(g_{1}(w)\right)=g_{1}(w) \quad\left(\text { since } m_{W}\right. \text { is the canonical inclusion) } \\
& =g(w) .
\end{aligned}
$$

Thus, $m_{W} \circ g_{1}=g$.
Also, g_{1} is surjective, because every $x \in g(W)$ satisfies $x \in g_{1}(W) \quad{ }^{3}$. Also,

$$
\operatorname{Ker} g=\{w \in W \mid \underbrace{g(w)}_{=g_{1}(w)}=0\}=\left\{w \in W \mid g_{1}(w)=0\right\}=\operatorname{Ker} g_{1}
$$

Thus, i_{W} is the canonical inclusion $\operatorname{Ker} g_{1} \rightarrow W$ (since i_{W} is the canonical inclusion Ker $g \rightarrow W$). Thus, Theorem 18 (applied to $g(W)$ and g_{1} instead of W^{\prime} and g) shows that

$$
\begin{align*}
\operatorname{Ker}\left(f \otimes g_{1}\right) & =\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\mathrm{id} \otimes i_{W}\right)(V \otimes \underbrace{\left(\operatorname{Ker} g_{1}\right)}_{=\operatorname{Ker} g}) \\
& =\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\mathrm{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g)) . \tag{11}
\end{align*}
$$

[^2]Now, m_{W} is injective (since m_{W} is a canonical inclusion). Thus, applying Lemma 22 (a) to $m_{W}, g(W), W^{\prime}$ and V^{\prime} instead of i, V, W and A, we obtain that the map id $\otimes m_{W}: V^{\prime} \otimes g(W) \rightarrow V^{\prime} \otimes W^{\prime}$ is injective. In other words, $\operatorname{Ker}\left(\mathrm{id} \otimes m_{W}\right)=0$.

Now, it is known that whenever $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are six k-modules, and α : $A \rightarrow B, \beta: B \rightarrow C, \gamma: A^{\prime} \rightarrow B^{\prime}$ and $\delta: B^{\prime} \rightarrow C^{\prime}$ are four k-linear maps, then $(\beta \otimes \delta) \circ(\alpha \otimes \gamma)=(\beta \circ \alpha) \otimes(\delta \circ \gamma)$. Applying this fact to $A=V, B=V^{\prime}, C=V^{\prime}$, $A^{\prime}=W, B^{\prime}=g(W), C^{\prime}=W^{\prime}, \alpha=f, \beta=\mathrm{id}, \gamma=g_{1}$ and $\delta=m_{W}$, we obtain

$$
\left(\mathrm{id} \otimes m_{W}\right) \circ\left(f \otimes g_{1}\right)=\underbrace{(\mathrm{id} \circ f)}_{=f} \otimes(\underbrace{m_{W} \circ g_{1}}_{=g})=f \otimes g .
$$

Now, let $x \in \operatorname{Ker}\left(f \otimes g_{1}\right)$ be arbitrary. Then, $\left(f \otimes g_{1}\right)(x)=0$. Now,

$$
\begin{aligned}
\underbrace{(f \otimes g)}_{=\left(\mathrm{id} \otimes m_{W}\right) \circ\left(f \otimes g_{1}\right)}(x) & =\left(\left(\mathrm{id} \otimes m_{W}\right) \circ\left(f \otimes g_{1}\right)\right)(x)=\left(\mathrm{id} \otimes m_{W}\right)(\underbrace{\left(f \otimes g_{1}\right)(x)}_{=0}) \\
& =\left(\mathrm{id} \otimes m_{W}\right)(0)=0,
\end{aligned}
$$

so that $x \in \operatorname{Ker}(f \otimes g)$. Thus we have seen that every $x \in \operatorname{Ker}\left(f \otimes g_{1}\right)$ satisfies $x \in \operatorname{Ker}(f \otimes g)$. In other words, $\operatorname{Ker}\left(f \otimes g_{1}\right) \subseteq \operatorname{Ker}(f \otimes g)$.

On the other hand, let $y \in \operatorname{Ker}(f \otimes g)$ be arbitrary. Then,

$$
\left(\mathrm{id} \otimes m_{W}\right)\left(\left(f \otimes g_{1}\right)(y)\right)=(\underbrace{\left(\mathrm{id} \otimes m_{W}\right) \circ\left(f \otimes g_{1}\right)}_{=f \otimes g})(y)=(f \otimes g)(y)=0
$$

(since $y \in \operatorname{Ker}(f \otimes g)$), so that $\left(f \otimes g_{1}\right)(y) \in \operatorname{Ker}\left(\operatorname{id} \otimes m_{W}\right)=0$. Thus, $\left(f \otimes g_{1}\right)(y)=$ 0 , so that $y \in \operatorname{Ker}\left(f \otimes g_{1}\right)$. Thus we have shown that every $y \in \operatorname{Ker}(f \otimes g)$ satisfies $y \in \operatorname{Ker}\left(f \otimes g_{1}\right)$. In other words, $\operatorname{Ker}(f \otimes g) \subseteq \operatorname{Ker}\left(f \otimes g_{1}\right)$.

Combined with $\operatorname{Ker}\left(f \otimes g_{1}\right) \subseteq \operatorname{Ker}(f \otimes g)$, this yields $\operatorname{Ker}(f \otimes g)=\operatorname{Ker}\left(f \otimes g_{1}\right)$. Thus, (11) becomes

$$
\operatorname{Ker}(f \otimes g)=\left(i_{V} \otimes \operatorname{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))
$$

This proves Lemma 21.
Proof of Corollary 20. Define a k-linear map $f_{1}: V \rightarrow f(V)$ by

$$
\left(f_{1}(v)=f(v) \quad \text { for every } v \in V\right)
$$

(this is well-defined since $f(v) \in f(V)$ for every $v \in V$). Let m_{V} be the canonical inclusion $f(V) \rightarrow V^{\prime}$. Clearly, every $v \in V$ satisfies

$$
\begin{aligned}
\left(m_{V} \circ f_{1}\right)(v) & =m_{V}\left(f_{1}(v)\right)=f_{1}(v) \quad \text { (since } m_{V} \text { is the canonical inclusion) } \\
& =f(v) .
\end{aligned}
$$

Thus, $m_{V} \circ f_{1}=f$.

Also, f_{1} is surjective, because every $x \in f(V)$ satisfies $x \in f_{1}(V) \quad{ }^{4}$. Also,

$$
\operatorname{Ker} f=\{v \in V \mid \underbrace{f(v)}_{=f_{1}(v)}=0\}=\left\{v \in V \mid f_{1}(v)=0\right\}=\operatorname{Ker} f_{1} .
$$

Thus, i_{V} is the canonical inclusion $\operatorname{Ker} f_{1} \rightarrow V$ (since i_{V} is the canonical inclusion Ker $f \rightarrow V$). Thus, Lemma 21 (applied to $f(V)$ and f_{1} instead of V^{\prime} and f) shows that

$$
\begin{align*}
\operatorname{Ker}\left(f_{1} \otimes g\right) & =\left(i_{V} \otimes \mathrm{id}\right)(\underbrace{\left(\operatorname{Ker} f_{1}\right)}_{=\operatorname{Ker} f} \otimes W)+\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g)) \\
& =\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\mathrm{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g)) \tag{12}
\end{align*}
$$

Now, m_{V} is injective (since m_{V} is a canonical inclusion). Thus, applying Lemma 22 (b) to $m_{V}, f(V), V^{\prime}$ and W^{\prime} instead of i, V, W and A, we obtain that the map $m_{V} \otimes \mathrm{id}: f(V) \otimes W^{\prime} \rightarrow V^{\prime} \otimes W^{\prime}$ is injective. In other words, $\operatorname{Ker}\left(m_{V} \otimes \mathrm{id}\right)=0$.

Now, it is known that whenever $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are six k-modules, and α : $A \rightarrow B, \beta: B \rightarrow C, \gamma: A^{\prime} \rightarrow B^{\prime}$ and $\delta: B^{\prime} \rightarrow C^{\prime}$ are four k-linear maps, then $(\beta \otimes \delta) \circ(\alpha \otimes \gamma)=(\beta \circ \alpha) \otimes(\delta \circ \gamma)$. Applying this fact to $A=V, B=f(V), C=V^{\prime}$, $A^{\prime}=W, B^{\prime}=W^{\prime}, C^{\prime}=W^{\prime}, \alpha=f_{1}, \beta=m_{V}, \gamma=g$ and $\delta=\mathrm{id}$, we obtain

$$
\left(m_{V} \otimes \mathrm{id}\right) \circ\left(f_{1} \otimes g\right)=\underbrace{\left(m_{V} \circ f_{1}\right)}_{=f} \otimes \underbrace{(\mathrm{id} \circ g)}_{=g}=f \otimes g .
$$

Now, let $x \in \operatorname{Ker}\left(f_{1} \otimes g\right)$ be arbitrary. Then, $\left(f_{1} \otimes g\right)(x)=0$. Now,

$$
\begin{aligned}
\underbrace{(f \otimes g)}_{=\left(m_{V} \otimes i \mathrm{id}\right) \circ\left(f_{1} \otimes g\right)}(x) & =\left(\left(m_{V} \otimes \mathrm{id}\right) \circ\left(f_{1} \otimes g\right)\right)(x)=\left(m_{V} \otimes \mathrm{id}\right)(\underbrace{\left(f_{1} \otimes g\right)(x)}_{=0}) \\
& =\left(m_{V} \otimes \mathrm{id}\right)(0)=0
\end{aligned}
$$

so that $x \in \operatorname{Ker}(f \otimes g)$. Thus we have seen that every $x \in \operatorname{Ker}\left(f_{1} \otimes g\right)$ satisfies $x \in \operatorname{Ker}(f \otimes g)$. In other words, $\operatorname{Ker}\left(f_{1} \otimes g\right) \subseteq \operatorname{Ker}(f \otimes g)$.

On the other hand, let $y \in \operatorname{Ker}(f \otimes g)$ be arbitrary. Then,

$$
\left(m_{V} \otimes \mathrm{id}\right)\left(\left(f_{1} \otimes g\right)(y)\right)=(\underbrace{\left(m_{V} \otimes \mathrm{id}\right) \circ\left(f_{1} \otimes g\right)}_{=f \otimes g})(y)=(f \otimes g)(y)=0
$$

(since $y \in \operatorname{Ker}(f \otimes g))$, so that $\left(f_{1} \otimes g\right)(y) \in \operatorname{Ker}\left(m_{V} \otimes \mathrm{id}\right)=0$. Thus, $\left(f_{1} \otimes g\right)(y)=$ 0 , so that $y \in \operatorname{Ker}\left(f_{1} \otimes g\right)$. Thus we have shown that every $y \in \operatorname{Ker}(f \otimes g)$ satisfies $y \in \operatorname{Ker}\left(f_{1} \otimes g\right)$. In other words, $\operatorname{Ker}(f \otimes g) \subseteq \operatorname{Ker}\left(f_{1} \otimes g\right)$.

Combined with $\operatorname{Ker}\left(f_{1} \otimes g\right) \subseteq \operatorname{Ker}(f \otimes g)$, this yields $\operatorname{Ker}(f \otimes g)=\operatorname{Ker}\left(f_{1} \otimes g\right)$. Thus, (12) becomes

$$
\operatorname{Ker}(f \otimes g)=\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))
$$

This proves Corollary 20.

[^3]We notice a triviality on tensor products of surjective maps:
Lemma 23. Let k be a commutative ring. Let V, W, V^{\prime} and W^{\prime} be four k-modules. Let $f: V \rightarrow V^{\prime}$ and $g: W \rightarrow W^{\prime}$ be two surjective k-linear maps. Then, the map $f \otimes g: V \otimes W \rightarrow V^{\prime} \otimes W^{\prime}$ is surjective.

Proof of Lemma 23. Let $T \in V^{\prime} \otimes W^{\prime}$ be arbitrary. Then, we can write the tensor T in the form $T=\sum_{i=1}^{n} \alpha_{i} \otimes \beta_{i}$ for some $n \in \mathbb{N}$, some elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ of V^{\prime} and some elements $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ of W^{\prime}. Consider this n, these $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and these $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$.

For every $i \in\{1,2, \ldots, n\}$, there exists some $v_{i} \in V$ such that $\alpha_{i}=f\left(v_{i}\right)$ (since f is surjective). Consider this v_{i}.

For every $i \in\{1,2, \ldots, n\}$, there exists some $w_{i} \in W$ such that $\beta_{i}=g\left(w_{i}\right)$ (since g is surjective). Consider this w_{i}.

Now,

$$
\begin{aligned}
T & =\sum_{i=1}^{n} \underbrace{\alpha_{i}}_{=f\left(v_{i}\right)} \otimes \underbrace{\beta_{i}}_{=g\left(w_{i}\right)}=\sum_{i=1}^{n} \underbrace{f\left(v_{i}\right) \otimes g\left(w_{i}\right)}_{=(f \otimes g)\left(v_{i} \otimes w_{i}\right)}=\sum_{i=1}^{n}(f \otimes g)\left(v_{i} \otimes w_{i}\right) \\
& =(f \otimes g)\left(\sum_{i=1}^{n} v_{i} \otimes w_{i}\right) \quad \quad \text { (since } f \otimes g \text { is } k \text {-linear) } \\
& \in(f \otimes g)(V \otimes W) .
\end{aligned}
$$

So we have proven that every $T \in V^{\prime} \otimes W^{\prime}$ satisfies $T \in(f \otimes g)(V \otimes W)$. Thus, $f \otimes g$ is surjective, so that Lemma 23 is proven.

0.10. Extension to n modules

We can trivially generalize Lemma 23 to several k-modules:
Lemma 24. Let k be a commutative ring. Let $n \in \mathbb{N}$. For any $i \in\{1,2, \ldots, n\}$, let V_{i} and V_{i}^{\prime} be two k-modules, and let $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ be a surjective k-module homomorphism. Then, the map $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \rightarrow V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes \cdots \otimes V_{n}^{\prime}$ is surjective.

Proof of Lemma 24. We are going to prove Lemma 24 by induction over n :
Induction base: For $n=0$, Lemma 24 holds (because for $n=0$, the map $f_{1} \otimes f_{2} \otimes$ $\cdots \otimes f_{n}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \rightarrow V_{1}^{\prime} \otimes \overline{V_{2}^{\prime}} \otimes \cdots \otimes V_{n}^{\prime}$ is the identity map id $: k \rightarrow k$ and therefore surjective). Thus, the induction base is complete.

Induction step: Let $p \in \mathbb{N}$ be arbitrary. Assume that Lemma 24 holds for $n=p$.
Now let us prove that Lemma 24 holds for $n=p+1$. So let V_{i} and V_{i}^{\prime} be two k-modules for every $i \in\{1,2, \ldots, p+1\}$, and let $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ be a surjective k-module homomorphism for every $i \in\{1,2, \ldots, p+1\}$.

According to Definition 6, we have $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}=f_{1} \otimes\left(f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}\right)$.
We know that V_{i} and V_{i}^{\prime} are two k-modules for every $i \in\{1,2, \ldots, p+1\}$. Thus, V_{i} and V_{i}^{\prime} are two k-modules for every $i \in\{2,3, \ldots, p+1\}$. Substituting $i+1$ for i in this fact, we obtain that V_{i+1} and V_{i+1}^{\prime} are two k-modules for every $i \in\{1,2, \ldots, p\}$.

We know that $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ is a surjective k-module homomorphism for every $i \in$ $\{1,2, \ldots, p+1\}$. Thus, $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ is a surjective k-module homomorphism for every $i \in\{2,3, \ldots, p+1\}$. Substituting $i+1$ for i in this fact, we obtain that f_{i+1} is a surjective k-module homomorphism for every $i \in\{1,2, \ldots, p\}$.

Applying Lemma 24 to $p, V_{i+1}, V_{i+1}^{\prime}$ and f_{i+1} instead of n, V_{i}, V_{i}^{\prime} and f_{i} (this is allowed, because we have assumed that Lemma 24 holds for $n=p$), we see that the map $f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}$ is surjective.

We know that $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ is a surjective k-module homomorphism for every $i \in$ $\{1,2, \ldots, p+1\}$. Applying this to $i=1$, we conclude that $f_{1}: V_{1} \rightarrow V_{1}^{\prime}$ is a surjective k-module homomorphism.

Applying Lemma 23 to $V=V_{1}, V^{\prime}=V_{1}^{\prime}, W=V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}, W^{\prime}=$ $V_{2}^{\prime} \otimes V_{3}^{\prime} \otimes \cdots \otimes V_{p+1}^{\prime}, f=f_{1}$ and $g=f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}$, we now conclude that the map $f_{1} \otimes\left(f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}\right)$ is surjective. Since $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}=$ $f_{1} \otimes\left(f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}\right)$, this yields that the map $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}$ is surjective.

We have thus proven that if V_{i} and V_{i}^{\prime} are two k-modules for every $i \in\{1,2, \ldots, p+1\}$, and $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ is a surjective k-module homomorphism for every $i \in\{1,2, \ldots, p+1\}$, then the map $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p+1} \rightarrow V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes \cdots \otimes V_{p+1}^{\prime}$ is surjective. In other words, we have proven that Lemma 24 holds for $n=p+1$. This completes the induction step, and thus Lemma 24 is proven.

Now let us extend Theorem 18 to n modules:
Theorem 25. Let k be a commutative ring. Let $n \in \mathbb{N}$. For any $i \in\{1,2, \ldots, n\}$, let V_{i} and V_{i}^{\prime} be two k-modules, and let $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ be a surjective k-module homomorphism. For any $i \in\{1,2, \ldots, n\}$, let \mathfrak{i}_{i} be the canonical inclusion $\operatorname{Ker} f_{i} \rightarrow$ V_{i}. Then,

$$
\begin{align*}
& \operatorname{Ker}\left(f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}\right) \\
& =\sum_{i=1}^{n}(\underbrace{\mathrm{id} \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id} \otimes \mathfrak{i}_{i} \otimes \underbrace{\operatorname{times}}_{n-i} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-1 \text { times }}) \\
& \quad\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{n}\right) . \tag{13}
\end{align*}
$$

Before we show this, we need an (almost trivial) lemma:
Lemma 26. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let A and B be two k modules. For any $i \in\{1,2, \ldots, n\}$, let B_{i} be a k-submodule of B. Let B^{\prime} be the k-submodule $\sum_{i=1}^{n} B_{i}$ of B.
For any k-module C and any k-submodule D of C, we let $\operatorname{inc}_{D, C}$ denote the canonical inclusion map $D \rightarrow C$.
Then,

$$
\left(\operatorname{id} \otimes \operatorname{inc}_{B^{\prime}, B}\right)\left(A \otimes B^{\prime}\right)=\sum_{i=1}^{n}\left(\operatorname{id} \otimes \operatorname{inc}_{B_{i}, B}\right)\left(A \otimes B_{i}\right)
$$

(as k-submodules of $A \otimes B$).

Proof of Lemma 26. Since $\sum_{i=1}^{n} B_{i}=B^{\prime}$, we have $B_{i} \subseteq B^{\prime}$ for every $i \in\{1,2, \ldots, n\}$.
The maps $\operatorname{inc}_{B_{i}, B}: B_{i} \rightarrow B$ for all $i \in\{1,2, \ldots, n\}$ give rise to a map $\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B}$: $\bigoplus_{i=1}^{n} B_{i} \rightarrow B$. Similarly, the maps id $\otimes \operatorname{inc}_{B_{i}, B}: A \otimes B_{i} \rightarrow A \otimes B$ for all $i \in\{1,2, \ldots, n\}$ give rise to a map $\sum_{i=1}^{n} \mathrm{id} \otimes \operatorname{inc}_{B_{i}, B}: \bigoplus_{i=1}^{n}\left(A \otimes B_{i}\right) \rightarrow A \otimes B$.

Since the tensor product is known to commute with direct sums, there is a canonical k-module isomorphism $A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right) \rightarrow \bigoplus_{i=1}^{n}\left(A \otimes B_{i}\right)$. Denote this isomorphism by I. By the universal property of this I, the diagram

commutes. In other words,

$$
\mathrm{id} \otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B}\right)=\left(\sum_{i=1}^{n}\left(\operatorname{id} \otimes \operatorname{inc}_{B_{i}, B}\right)\right) \circ I,
$$

so that

$$
\begin{align*}
& \left(\mathrm{id} \otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B}\right)\right)\left(A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)\right)=\left(\left(\sum_{i=1}^{n}\left(\mathrm{id} \otimes \operatorname{inc}_{B_{i}, B}\right)\right) \circ I\right)\left(A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)\right) \\
& =\left(\sum_{i=1}^{n}\left(\mathrm{id} \otimes \operatorname{inc}_{B_{i}, B}\right)\right) \underbrace{\left(I\left(A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)\right)\right)}_{\substack{\bullet \\
i=1 \\
\left(A \otimes B_{i}\right)}} \\
& \text { (since } I \text { is an isomorphism) } \\
& =\left(\sum_{i=1}^{n}\left(\mathrm{id} \otimes \operatorname{inc}_{B_{i}, B}\right)\right)\left(\bigoplus_{i=1}^{n}\left(A \otimes B_{i}\right)\right) \\
& =\sum_{i=1}^{n}\left(\mathrm{id} \otimes \operatorname{inc}_{B_{i}, B}\right)\left(A \otimes B_{i}\right) . \tag{14}
\end{align*}
$$

On the other hand, the maps $\operatorname{inc}_{B_{i}, B^{\prime}}: B_{i} \rightarrow B^{\prime}$ for all $i \in\{1,2, \ldots, n\}$ (these maps are well-defined since $B_{i} \subseteq B^{\prime}$ for every $i \in\{1,2, \ldots, n\}$) give rise to a map $\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}: \bigoplus_{i=1}^{n} B_{i} \rightarrow B^{\prime}$. Every $i \in\{1,2, \ldots, n\}$ satisfies $\operatorname{inc}_{B_{i}, B}=\operatorname{inc}_{B^{\prime}, B} \circ \operatorname{inc}_{B_{i}, B^{\prime}}$, so that

$$
\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}=\sum_{i=1}^{n}\left(\operatorname{inc}_{B^{\prime}, B} \circ \operatorname{inc}_{B_{i}, B^{\prime}}\right)=\operatorname{inc}_{B^{\prime}, B} \circ\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}\right) .
$$

Hence,

$$
\begin{aligned}
\operatorname{id} \otimes \sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}} & =\operatorname{id} \otimes\left(\operatorname{inc}_{B^{\prime}, B} \circ\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}\right)\right) \\
& =\left(\operatorname{id} \otimes \operatorname{inc}_{B^{\prime}, B}\right) \circ\left(\operatorname{id} \otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}\right)\right)
\end{aligned}
$$

as maps from $A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)$ to $A \otimes B$ (where id always denotes $\left.\mathrm{id}_{A}\right)$. Hence,

$$
\begin{align*}
& \left(\operatorname{id} \otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B}\right)\right)\left(A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)\right) \\
& =\left(\left(\operatorname{id} \otimes \operatorname{inc}_{B^{\prime}, B}\right) \circ\left(\operatorname{id} \otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}\right)\right)\right)\left(A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)\right) \\
& =\left(\operatorname{id} \otimes \operatorname{inc}_{B^{\prime}, B}\right)\left(\left(\operatorname{id} \otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}\right)\right)\left(A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)\right)\right) . \tag{15}
\end{align*}
$$

But since $\operatorname{inc}_{B_{i}, B^{\prime}}$ is the inclusion map $B_{i} \rightarrow B^{\prime}$ for every $i \in\{1,2, \ldots, n\}$, it is clear that the image of the map $\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}: \bigoplus_{i=1}^{n} B_{i} \rightarrow B^{\prime}$ is $\sum_{i=1}^{n} B_{i}=B^{\prime}$. In other words, the map $\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}: \bigoplus_{i=1}^{n} B_{i} \rightarrow B^{\prime}$ is surjective. Hence, the map id $\otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}\right): A \otimes$ $\left(\bigoplus_{i=1}^{n} B_{i}\right) \rightarrow A \otimes B^{\prime}$ is surjective as well (by Lemma 23, applied to $V=A, V^{\prime}=A, W=$ $\bigoplus_{i=1}^{n} B_{i}, W^{\prime}=B^{\prime}, f=\mathrm{id}$ and $\left.g=\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}\right)$, so that $\left(\mathrm{id} \otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B^{\prime}}\right)\right)\left(A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)\right)=$ $A \otimes B^{\prime}$. Thus, (15) simplifies to

$$
\left(\operatorname{id} \otimes\left(\sum_{i=1}^{n} \operatorname{inc}_{B_{i}, B}\right)\right)\left(A \otimes\left(\bigoplus_{i=1}^{n} B_{i}\right)\right)=\left(\operatorname{id} \otimes \operatorname{inc}_{B^{\prime}, B}\right)\left(A \otimes B^{\prime}\right) .
$$

Compared with (14), we obtain

$$
\sum_{i=1}^{n}\left(\mathrm{id} \otimes \operatorname{inc}_{B_{i}, B}\right)\left(A \otimes B_{i}\right)=\left(\operatorname{id} \otimes \operatorname{inc}_{B^{\prime}, B}\right)\left(A \otimes B^{\prime}\right) .
$$

This proves Lemma 26.
Another lemma:
Lemma 27. Let A, B and C be three k-modules. Let $f: B \rightarrow C$ be a k-module map. Then,

$$
(\mathrm{id} \otimes f)(A \otimes B)=\left(\mathrm{id}^{\left(\mathrm{inc}_{f(B), C}\right)}(A \otimes(f(B)))\right.
$$

as k-submodules of $A \otimes C$.

Proof of Lemma 27. We define a map $f^{\prime}: B \rightarrow f(B)$ by

$$
\left(f^{\prime}(x)=f(x) \quad \text { for every } x \in B\right)
$$

(This map is well-defined, since $f(x) \in f(B)$ for every $x \in B$.) Then, every $x \in B$ satisfies

$$
f(x)=f^{\prime}(x)=\operatorname{inc}_{f(B), C}\left(f^{\prime}(x)\right)=\left(\operatorname{inc}_{f(B), C} \circ f^{\prime}\right)(x) .
$$

Thus, $f=\operatorname{inc}_{f(B), C} \circ f^{\prime}$. Hence,

$$
\mathrm{id} \otimes f=\mathrm{id} \otimes\left(\operatorname{inc}_{f(B), C} \circ f^{\prime}\right)=\left(\mathrm{id} \otimes \operatorname{inc}_{f(B), C}\right) \circ\left(\mathrm{id} \otimes f^{\prime}\right)
$$

where id means id_{A}. Thus,

$$
\begin{align*}
(\mathrm{id} \otimes f)(A \otimes B) & =\left(\left(\operatorname{id} \otimes \operatorname{inc}_{f(B), C}\right) \circ\left(\mathrm{id} \otimes f^{\prime}\right)\right)(A \otimes B) \\
& =\left(\mathrm{id} \otimes \operatorname{inc}_{f(B), C}\right)\left(\left(\mathrm{id} \otimes f^{\prime}\right)(A \otimes B)\right) . \tag{16}
\end{align*}
$$

Now, the map $f^{\prime}: B \rightarrow f(B)$ is surjectiv ϵ^{5}, so that the map id $\otimes f^{\prime}: A \otimes B \rightarrow$ $A \otimes(f(B))$ is surjective as well (by Lemma 23, applied to $A, A, B, f(B), \mathrm{id}, f^{\prime}$ instead of $V, V^{\prime}, W, W^{\prime}, f, g$, respectively). Thus, $\left(\mathrm{id} \otimes f^{\prime}\right)(A \otimes B)=A \otimes(f(B))$. Hence, (16) becomes

$$
(\mathrm{id} \otimes f)(A \otimes B)=\left(\mathrm{id} \otimes \operatorname{inc}_{f(B), C}\right)(A \otimes(f(B)))
$$

This proves Lemma 27.
Proof of Theorem 25. We are going to prove Theorem 25 by induction over n :
Induction base: For $n=0$, Theorem 25 holds (because for $n=0$, the map $f_{1} \otimes f_{2} \otimes$ $\cdots \otimes f_{n}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \rightarrow V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes \cdots \otimes V_{n}^{\prime}$ is the identity map id $: k \rightarrow k$ and therefore its kernel $\operatorname{Ker}\left(f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}\right)$ is 0 , while the right hand side of (13) is also 0 when $n=0$). Thus, the induction base is complete.

Induction step: Let $p \in \mathbb{N}$ be arbitrary. Assume that Theorem 25 holds for $n=p$.
Now let us prove that Theorem 25 holds for $n=p+1$. So let V_{i} and V_{i}^{\prime} be two k-modules for every $i \in\{1,2, \ldots, p+1\}$, and let $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ be a surjective k-module homomorphism for every $i \in\{1,2, \ldots, p+1\}$.

According to Definition 6, we have $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}=f_{1} \otimes\left(f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}\right)$.
We know that $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ is a surjective k-module homomorphism for every $i \in$ $\{1,2, \ldots, p+1\}$. Thus, $f_{i}: V_{i} \rightarrow V_{i}^{\prime}$ is a surjective k-module homomorphism for every $i \in\{2,3, \ldots, p+1\}$. Substituting $i+1$ for i in this fact, we obtain that f_{i+1} is a surjective k-module homomorphism for every $i \in\{1,2, \ldots, p\}$. Thus, Lemma 24 (applied to $p, V_{i+1}, V_{i+1}^{\prime}$ and f_{i+1} instead of n, V_{i}, V_{i}^{\prime} and f_{i}) yields that the map $f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}$ is surjective. On the other hand, the map f_{1} is surjective (since f_{i} is surjective for every $i \in\{1,2, \ldots, p+1\})$.

Now let $V=V_{1}, V^{\prime}=W_{1}, f=f_{1}$ and $i_{V}=\mathfrak{i}_{1}$. Then, f is a surjective k-linear map (since f_{1} is a surjective k-linear map), and i_{V} is the canonical inclusion Ker $f \rightarrow V$ (since $i_{V}=\mathfrak{i}_{1}$ is the canonical inclusion $\operatorname{Ker} f_{1} \rightarrow V_{1}$).

[^4]Further let $W=V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}, W^{\prime}=W_{2} \otimes W_{3} \otimes \cdots \otimes W_{p+1}$ and $g=$ $f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}$. Then, g is a surjective k-linear map (since $f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}$ is a surjective k-linear map). Let i_{W} be the canonical inclusion $\operatorname{Ker} g \rightarrow W$. Then, Theorem 18 yields

$$
\begin{equation*}
\operatorname{Ker}(f \otimes g)=\left(i_{V} \otimes \mathrm{id}\right)((\operatorname{Ker} f) \otimes W)+\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g)) . \tag{17}
\end{equation*}
$$

Note that $V=V_{1}$ and $W=V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}$ yield $V \otimes W=V_{1} \otimes\left(V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}\right)=$ $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p+1}$.

We now define some more abbreviations. For every $i \in\{1,2, \ldots, p+1\}$, let K_{i} denote the k-module

$$
V_{1} \otimes V_{2} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1} .
$$

For every $i \in\{1,2, \ldots, p+1\}$, let κ_{i} denote the k-linear map

$$
\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-1 \text { times }} \otimes \mathfrak{i}_{i} \otimes \underbrace{\mathrm{id} \otimes \operatorname{id} \otimes \cdots \otimes \mathrm{id}}_{p+1-i \text { times }}: K_{i} \rightarrow V \otimes W
$$

(this is well-defined since $K_{i}=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1}$ and $\left.V \otimes W=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{p+1}\right)$.

For every $i \in\{2,3, \ldots, p+1\}$, let M_{i} denote the k-module

$$
V_{2} \otimes V_{3} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1} .
$$

For every $i \in\{2,3, \ldots, p+1\}$, let μ_{i} denote the k-linear map

$$
\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-2 \text { times }} \otimes \mathfrak{i}_{i} \otimes \underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{p+1-i \text { times }}: M_{i} \rightarrow W
$$

(this is well-defined since $M_{i}=V_{2} \otimes V_{3} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1}$ and $\left.W=V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}\right)$.

For any k-module C and any k-submodule D of C, we let inc ${ }_{D, C}$ denote the canonical inclusion map $D \rightarrow C$. Then,

$$
\text { inc }_{\text {Ker } f_{i}, V_{i}}=\left(\text { the canonical inclusion map Ker } f_{i} \rightarrow V_{i}\right)=\mathfrak{i}_{i}
$$

for every $i \in\{1,2, \ldots, p+1\}$. On the other hand,

$$
\operatorname{inc}_{\text {Ker } g, W}=(\text { the canonical inclusion map Ker } g \rightarrow W)=i_{W}
$$

(by definition of i_{W}).
Applying Theorem 25 to $p, V_{i+1}, V_{i+1}^{\prime}$ and f_{i+1} instead of n, V_{i}, V_{i}^{\prime} and f_{i} (this is
allowed, because we have assumed that Theorem 25 holds for $n=p$), we see that

$$
\begin{aligned}
& \operatorname{Ker}\left(f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}\right) \\
& =\sum_{i=1}^{p}(\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-1 \text { times }} \otimes \mathfrak{i}_{i+1} \otimes \underbrace{\mathrm{id} \otimes \operatorname{id} \otimes \cdots \otimes \mathrm{id}}_{p-i \text { times }}) \\
& \left(V_{2} \otimes V_{3} \otimes \cdots \otimes V_{i} \otimes\left(\operatorname{Ker} f_{i+1}\right) \otimes V_{i+2} \otimes V_{i+3} \otimes \cdots \otimes V_{p+1}\right) \\
& =\sum_{i=2}^{p+1} \underbrace{(\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-2 \text { times }} \otimes \mathfrak{i}_{i} \otimes \underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{p-i+1 \text { times }})}_{=\mu_{i}} \\
& \underbrace{\left(V_{2} \otimes V_{3} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1}\right)}_{=M_{i}} \\
& \text { (here, we substituted } i \text { for } i+1 \text { in the sum) } \\
& =\sum_{i=2}^{p+1} \mu_{i}\left(M_{i}\right) .
\end{aligned}
$$

Since $f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}=g$, this rewrites as

$$
\begin{equation*}
\operatorname{Ker} g=\sum_{i=2}^{p+1} \mu_{i}\left(M_{i}\right)=\sum_{i=1}^{p} \mu_{i+1}\left(M_{i+1}\right) \tag{18}
\end{equation*}
$$

(here, we substituted i for $i-1$). But now it is easy to see that

$$
\begin{equation*}
\left(\operatorname{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))=\sum_{i=2}^{p+1} \kappa_{i}\left(K_{i}\right) . \tag{19}
\end{equation*}
$$

Proof of (19). Let $i \in\{2,3, \ldots, p+1\}$. Then,

$$
\begin{aligned}
\kappa_{i} & =\underbrace{\operatorname{id} \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id} \otimes \mathfrak{i}_{i} \otimes \underbrace{\mathrm{id} \otimes \operatorname{id} \otimes \cdots \otimes \mathrm{id}}_{p+1-i \text { times }}}_{i-1 \text { times }} \\
& =\operatorname{id} \otimes \underbrace{(\underbrace{\mathrm{id} \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id} \otimes \mathfrak{i}_{i} \otimes \underbrace{\mathrm{id} \otimes \operatorname{id} \otimes \cdots \otimes \mathrm{id}}_{p+1-i \text { times }})}_{i-2 \text { times }}=\operatorname{id} \otimes \mu_{i}}_{=\mu_{i}}
\end{aligned}
$$

and

$$
\begin{aligned}
K_{i} & =V_{1} \otimes V_{2} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1} \\
& =\underbrace{V_{1}}_{=V} \otimes \underbrace{\left(V_{2} \otimes V_{3} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1}\right)}_{=M_{i}} \\
& =V \otimes M_{i} .
\end{aligned}
$$

Thus,

$$
\kappa_{i}\left(K_{i}\right)=\left(\mathrm{id} \otimes \mu_{i}\right)\left(V \otimes M_{i}\right)=\left(\mathrm{id} \otimes \operatorname{inc}_{\mu_{i}\left(M_{i}\right), W}\right)\left(V \otimes\left(\mu_{i}\left(M_{i}\right)\right)\right)
$$

(by Lemma 27, applied to $A=V, B=M_{i}, C=W$ and $f=\mu_{i}$).
But since $\mu_{i}\left(M_{i}\right) \subseteq \operatorname{Ker} g$ (by (18)), we have

$$
\left.\begin{array}{rl}
\operatorname{inc}_{\mu_{i}\left(M_{i}\right), W}= & \underbrace{\operatorname{inc}_{K e r}, W}_{=i_{W}} \\
& \quad(\text { since any three } k \text {-modules } A, B, C \text { such that } A \subseteq B \subseteq C \text { satisfy }) \\
\operatorname{inc}_{A, C}=\operatorname{inc}_{\mu_{i}\left(M_{i}\right), \operatorname{Ker} g} \circ \operatorname{inc}_{A, B}
\end{array}\right)
$$

Now forget that we fixed $i \in\{2,3, \ldots, p+1\}$. Due to (18), we can apply Lemma 26 to $n=p, A=V, B=W, B^{\prime}=\operatorname{Ker} g$ and $B_{i}=\mu_{i+1}\left(M_{i+1}\right)$. Applying it yields that

$$
\begin{aligned}
\left(\mathrm{id} \otimes \operatorname{inc}_{\operatorname{Ker} g, W}\right)(V \otimes(\operatorname{Ker} g)) & =\sum_{i=1}^{p}\left(\operatorname{id} \otimes \operatorname{inc}_{\mu_{i+1}\left(M_{i+1}\right), W}\right)\left(V \otimes\left(\mu_{i+1}\left(M_{i+1}\right)\right)\right) \\
& =\sum_{i=2}^{p+1} \underbrace{\left(\mathrm{id} \otimes \operatorname{inc}_{\mu_{i}\left(M_{i}\right), W}\right)\left(V \otimes\left(\mu_{i}\left(M_{i}\right)\right)\right)}_{=\kappa_{i}\left(K_{i}\right)} \\
& =\sum_{i=2}^{p+1} \kappa_{i}\left(K_{i}\right),
\end{aligned}
$$

and thus (19) is proven.
On the other hand, we defined the k-module K_{i} as

$$
V_{1} \otimes V_{2} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1}
$$

for every $i \in\{1,2, \ldots, p+1\}$. Applied to $i=1$, this yields

$$
\begin{equation*}
K_{1}=\left(\operatorname{Ker} f_{1}\right) \otimes V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}=(\operatorname{Ker} \underbrace{f_{1}}_{=f}) \otimes \underbrace{\left(V_{2} \otimes V_{3} \otimes \cdots \otimes V_{p+1}\right)}_{=W}=(\operatorname{Ker} f) \otimes W . \tag{20}
\end{equation*}
$$

We further defined the map κ_{i} as

$$
\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-1 \text { times }} \otimes \mathfrak{i}_{i} \otimes \underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{p+1-i \text { times }}: K_{i} \rightarrow V \otimes W
$$

for every $i \in\{1,2, \ldots, p+1\}$. Applied to $i=1$, this yields

$$
\begin{equation*}
\kappa_{1}=\mathfrak{i}_{1} \otimes \underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{p+1-1 \text { times }}=\underbrace{\mathfrak{i}_{1}}_{=i_{V}} \otimes \underbrace{(\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{p+1-1 \text { times }})}_{=\text {id }}=i_{V} \otimes \mathrm{id} . \tag{21}
\end{equation*}
$$

Now, (17) becomes

$$
\begin{aligned}
\operatorname{Ker}(f \otimes g) & =\underbrace{\left(i_{V} \otimes \mathrm{id}\right)}_{=\kappa_{1}(\text { by } \sqrt[21]{ })}(\underbrace{(\operatorname{Ker} f) \otimes W}_{=K_{1}(\text { by } \sqrt[201]{ })})+\underbrace{\left(\mathrm{id} \otimes i_{W}\right)(V \otimes(\operatorname{Ker} g))}_{\substack{=_{i=2}^{p+1} \kappa_{i}\left(K_{i}\right)(\text { by (19) })}} \\
& =\kappa_{1}\left(K_{1}\right)+\sum_{i=2}^{p+1} \kappa_{i}\left(K_{i}\right)=\sum_{i=1}^{p+1} \kappa_{i}\left(K_{i}\right) .
\end{aligned}
$$

Since

$$
\underbrace{f}_{=f_{1}} \otimes \underbrace{g}_{=f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}}=f_{1} \otimes\left(f_{2} \otimes f_{3} \otimes \cdots \otimes f_{p+1}\right)=f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}
$$

this rewrites as

$$
\begin{aligned}
& \operatorname{Ker}\left(f_{1} \otimes f_{2} \otimes \cdots \otimes f_{p+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{p+1}(\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-1 \text { times }} \otimes \mathfrak{i}_{i} \otimes \underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{p+1-i \text { times }}) \\
& \left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{i-1} \otimes\left(\operatorname{Ker} f_{i}\right) \otimes V_{i+1} \otimes V_{i+2} \otimes \cdots \otimes V_{p+1}\right) .
\end{aligned}
$$

We thus have proven that (13) holds for $n=p+1$. This completes the induction step. Thus, the induction proof of Theorem 25 is complete.

0.11. The tensor algebra case

Before we actually come to the tensor algebra, let us bring Theorem 25 to a nicer form when all the f_{i} are equal:

Theorem 28. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V and V^{\prime} be two k-modules, and let $f: V \rightarrow V^{\prime}$ be a surjective k-module homomorphism. Let \mathfrak{i} be the canonical inclusion Ker $f \rightarrow V$. Then,

$$
\begin{equation*}
\operatorname{Ker}\left(f^{\otimes n}\right)=\sum_{i=1}^{n}\left(\operatorname{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \mathrm{id}_{V^{\otimes(n-i)}}\right)\left(V^{\otimes(i-1)} \otimes(\operatorname{Ker} f) \otimes V^{\otimes(n-i)}\right) . \tag{22}
\end{equation*}
$$

Notice that the left hand side of the equation (22) is a subset of $V^{\otimes n}$, while the i-th addend on the right hand side is a subset of $V^{\otimes(i-1)} \otimes V \otimes V^{\otimes(n-i)}$. To make sense of
the equation (22), the set $V^{\otimes n}$ thus must be equal to $V^{\otimes(i-1)} \otimes V \otimes V^{\otimes(n-i)}$ for every $i \in\{1,2, \ldots, n\}$. Fortunately, this is guaranteed by Convention $12{ }^{6}$.

For the proof of Theorem 28, we will use one more convention:
Convention 29. Let k be a commutative ring, and let A, B and C be three k modules. Then, we identify the k-module $(A \otimes B) \otimes C$ with the k-module $A \otimes$ $(B \otimes C)$ by means of the k-module isomorphism

$$
\begin{gathered}
(A \otimes B) \otimes C \rightarrow A \otimes(B \otimes C), \\
(a \otimes b) \otimes c \mapsto a \otimes(b \otimes c) .
\end{gathered}
$$

Note that we will only use Convention 29 in the proof of Theorem 28, but nowhere else in this text.

Remark 30. As a consequence of Convention 29, it can be easily seen that the tensor product $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ of any k-modules $V_{1}, V_{2}, \ldots, V_{n}$ can be computed by means of any bracketing. For instance, when $n=4$, this means that

$$
\begin{aligned}
V_{1} \otimes\left(V_{2} \otimes\left(V_{3} \otimes V_{4}\right)\right) & =V_{1} \otimes\left(\left(V_{2} \otimes V_{3}\right) \otimes V_{4}\right)=\left(V_{1} \otimes V_{2}\right) \otimes\left(V_{3} \otimes V_{4}\right) \\
& =\left(V_{1} \otimes\left(V_{2} \otimes V_{3}\right)\right) \otimes V_{4}=\left(\left(V_{1} \otimes V_{2}\right) \otimes V_{3}\right) \otimes V_{4}
\end{aligned}
$$

for any four k-modules $V_{1}, V_{2}, V_{3}, V_{4}$.
Remark 31. Convention 29 is compatible with Convention 12 . In fact, Conventions 29 and 7 combined make Convention 12 redundant, in the following sense: If we identify $(A \otimes B) \otimes C$ with $A \otimes(B \otimes C)$ for all k-modules A, B and C (as in Convention 29), and identify $V \otimes k, k \otimes V$ and V for all k-modules V (as in Convention 7), then automatically $V^{\otimes a} \otimes V^{\otimes b}$ becomes identical with $V^{\otimes(a+b)}$ for all k-modules V and $a \in \mathbb{N}$ and $b \in \mathbb{N}$ (and this identification is the same as the one given in Convention 12).

Proof of Theorem 28. During this proof, we are going to use Convention 29.
Now, we apply Theorem 25 to $V_{i}=V, V_{i}^{\prime}=V^{\prime}, f_{i}=f$ and $\mathfrak{i}_{i}=\mathfrak{i}$. As a result, we

```
\({ }^{6}\) In fact, using Convention 12 we have
\(V^{\otimes(i-1)} \otimes \underbrace{V}_{=V^{\otimes 1}{ }_{\text {(by Remark }} \sigma} \otimes V^{\otimes(n-i)}\)
    \(=\underbrace{V^{\otimes(i-1)} \otimes V^{\otimes 1}}_{=V^{\otimes(i-1+1)}(\text { by Convention } 12]} \otimes V^{\otimes(n-i)}\)
\(=\underbrace{V^{\otimes(i-1+1)}}_{=V^{\otimes i}} \otimes V^{\otimes(n-i)}=V^{\otimes i} \otimes V^{\otimes(n-i)}=V^{\otimes(i+n-i)} \quad\) (by Convention 12)
\(=V^{\otimes n}\).
```

obtain

$$
\begin{align*}
& \operatorname{Ker}(\underbrace{f \otimes f \otimes \cdots \otimes f}_{n \text { times }}) \\
& =\sum_{i=1}^{n}(\underbrace{\operatorname{id} \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{i-1 \text { times }} \otimes \mathfrak{i} \otimes \underbrace{\operatorname{id} \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{n-i \text { times }}) \\
& \quad(\underbrace{V \otimes V \otimes \cdots \otimes V \otimes(\operatorname{Ker} f) \otimes \underbrace{V \otimes V \otimes \cdots \otimes V}_{n-i \text { times }}) .}_{i-1 \text { times }} \tag{23}
\end{align*}
$$

Now, since we are using Convention 29, we can write

$$
\begin{aligned}
& \underbrace{V \otimes V \otimes \cdots \otimes V \otimes(\operatorname{Ker} f) \otimes \underbrace{V \otimes V \otimes \cdots \otimes V}_{n-i \text { times }}}_{i-1 \text { times }} \\
& =\underbrace{(\underbrace{V \otimes V \otimes \cdots \otimes V}_{i-1 \text { times }})}_{=V^{\otimes(i-1)}} \otimes(\operatorname{Ker} f) \otimes \underbrace{(\underbrace{V \otimes V \otimes \cdots \otimes V}_{n-i \text { times }})}_{=V^{\otimes(n-i)}} \\
& =V^{\otimes(i-1)} \otimes(\operatorname{Ker} f) \otimes V^{\otimes(n-i)}
\end{aligned}
$$

and correspondingly

$$
\begin{aligned}
& \underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes \mathfrak{i} \otimes \underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{n-i \text { times }}}_{i-1 \text { times }} \\
& =\underbrace{=\mathrm{id}_{V \otimes(i-1)} \otimes \mathfrak{i} \otimes \mathrm{id}_{V \otimes(n-i)}}_{=\mathrm{id}_{V \otimes(i-1)}^{(\underbrace{(\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-1 \text { times }})} \otimes \mathfrak{i} \otimes \underbrace{(\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{n-i \text { times }})}_{=\mathrm{id}_{V \otimes(n-i)}}}
\end{aligned}
$$

for every $i \in\{1,2, \ldots, n\}$. Now, since $f^{\otimes n}=\underbrace{f \otimes f \otimes \cdots \otimes f}_{n \text { times }}$, we have

$$
\begin{aligned}
& \operatorname{Ker}\left(f^{\otimes n}\right)=\operatorname{Ker}(\underbrace{f \otimes f \otimes \cdots \otimes f}_{n \text { times }}) \\
& =\sum_{i=1}^{n} \underbrace{(\underbrace{\mathrm{id}})}_{=\mathrm{id}_{V \otimes(i-1)} \otimes \otimes_{\otimes i \mathrm{id}_{V \otimes(n-i)}}^{(\underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{n-i \text { times }} \otimes \mathfrak{i} \otimes \underbrace{\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}}_{i-1 \text { times }})}} \\
& \underbrace{(\underbrace{V \otimes V \otimes \cdots \otimes V}_{i-1 \text { times }} \otimes(\operatorname{Ker} f) \otimes \underbrace{V \otimes V \otimes \cdots \otimes V}_{n-i \text { times }})}_{=V^{\otimes(i-1)} \otimes(\operatorname{Ker} f) \otimes V^{\otimes(n-i)}} \\
& \text { (by 23) } \\
& =\sum_{i=1}^{n}\left(\mathrm{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \operatorname{id}_{V^{\otimes(n-i)}}\right)\left(V^{\otimes(i-1)} \otimes(\operatorname{Ker} f) \otimes V^{\otimes(n-i)}\right) .
\end{aligned}
$$

This proves Theorem 28.
Now, our claim about the tensor algebra:
Theorem 32. Let k be a commutative ring. Let V and V^{\prime} be two k-modules, and let $f: V \rightarrow V^{\prime}$ be a surjective k-module homomorphism. Then, the kernel of the map $\otimes f: \otimes V \rightarrow \otimes V^{\prime}$ is

$$
\operatorname{Ker}(\otimes f)=(\otimes V) \cdot(\operatorname{Ker} f) \cdot(\otimes V)
$$

Here, $\operatorname{Ker} f$ is considered a k-submodule of $\otimes V$ by means of the inclusion $\operatorname{Ker} f \subseteq$ $V=V^{\otimes 1} \subseteq \otimes V$.

We are going to derive this theorem from Theorem 28. For this we need the following lemma:

Lemma 33. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let $i \in\{0,1, \ldots, n\}$. Let V be a k-module, and let W be a k-submodule of V. Let \mathfrak{i} be the canonical inclusion $W \rightarrow V$. Then,

$$
\left(\mathrm{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \mathrm{id}_{V^{\otimes(n-i)}}\right)\left(V^{\otimes(i-1)} \otimes W \otimes V^{\otimes(n-i)}\right)=V^{\otimes(i-1)} \cdot W \cdot V^{\otimes(n-i)},
$$

where we identify $V^{\otimes n}$ with a k-submodule of $\otimes V$ as in Definition 13 (c).
To prove this lemma, we make a convention:
Convention 34. (a) Whenever k is a commutative ring, M is a k-module, and S is a subset of M, we denote by $\langle S\rangle$ the k-submodule of M generated by the elements of S. This k-submodule $\langle S\rangle$ is called the k-linear span (or simply the k-span) of S.
(b) Whenever k is a commutative ring, M is a k-module, Φ is a set, and $P: \Phi \rightarrow M$ is a map (not necessarily a linear map), we denote by $\langle P(v) \mid v \in \Phi\rangle$ the k-submodule $\langle\{P(v) \mid v \in \Phi\}\rangle$ of M. (In other words, $\langle P(v) \mid v \in \Phi\rangle$ is the k-submodule of M generated by the elements $P(v)$ for all $v \in \Phi$.)

Note that some authors use the notation $\langle S\rangle$ for various other things (e. g., the two-sided ideal generated by S, or the Lie subalgebra generated by S), but we will only use it for the k-submodule generated by S (as defined in Convention 34 (a)).

The following fact was proven in [3], $\S 1.7$ (but is basically trivial):
Proposition 35. Let k be a commutative ring. Let M be a k-module. Let S be a subset of M.
(a) Let Q be a k-submodule of M such that $S \subseteq Q$. Then, $\langle S\rangle \subseteq Q$.
(b) Let R be a k-module, and $f: M \rightarrow R$ be a k-module homomorphism. Then, $f(\langle S\rangle)=\langle f(S)\rangle$.

Now let us come to the proof of Lemma 33:
Proof of Lemma 33. The tensor product $V^{\otimes(i-1)} \otimes W \otimes V^{\otimes(n-i)}$ is generated (as a k module) by its pure tensors. In other words,

$$
\begin{aligned}
V^{\otimes(i-1)} \otimes W \otimes V^{\otimes(n-i)} & =\left\langle u \otimes v \otimes w \mid \quad(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\rangle \\
& =\left\langle\left\{u \otimes v \otimes w \mid \quad(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\}\right\rangle
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left(\mathrm{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \mathrm{id}_{V^{\otimes(n-i)}}\right)\left(V^{\otimes(i-1)} \otimes W \otimes V^{\otimes(n-i)}\right) \\
& =\left(\mathrm{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \mathrm{id}_{V^{\otimes(n-i)}}\right)\left(\left\langle\left\{u \otimes v \otimes w \mid \quad(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\}\right\rangle\right) \\
& =\left\langle\left(\mathrm{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \operatorname{id}_{V^{\otimes(n-i)}}\right)\left(\left\{u \otimes v \otimes w \mid \quad(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\}\right)\right\rangle \\
& \quad\left(\begin{array}{c}
\text { by } \operatorname{Proposition~}^{35}(\mathbf{b}), \text { applied to } M=V^{\otimes(i-1)} \otimes W \otimes V^{\otimes(n-i)}, \\
R=V^{\otimes n}, f=\operatorname{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \operatorname{id}_{V^{\otimes(n-i)}} \text { and } \\
S=\left\{u \otimes v \otimes w \mid(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\}
\end{array}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left(\mathrm{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \operatorname{id}_{V \otimes(n-i)}\right)\left(\left\{u \otimes v \otimes w \mid \quad(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\}\right) \\
& =\{\underbrace{\left(\mathrm{id}_{V \otimes(i-1)} \otimes \mathfrak{i} \otimes \operatorname{id}_{V \otimes(n-i)}\right)(u \otimes v \otimes w)}_{=\mathrm{id}_{V \otimes(i-1)}(u) \otimes \mathrm{i}(v) \otimes \mathrm{id}_{V \otimes(n-i)}(w)} \mid(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\} \\
& =\{\left.\underbrace{\operatorname{id}_{V^{\otimes(i-1)}}(u)}_{=u} \otimes \underbrace{\mathfrak{i}(v)}_{\begin{array}{c}
=v \\
\text { incluscoin map })
\end{array}} \otimes \underbrace{\operatorname{id}_{V \otimes(n-i)}(w)}_{=w} \right\rvert\,(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\} \\
& =\left\{u \otimes v \otimes w \mid \quad(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\},
\end{aligned}
$$

this rewrites as

$$
\begin{align*}
& \left(\operatorname{id}_{V^{\otimes(i-1)}} \otimes i \otimes \operatorname{id}_{V^{\otimes(n-i)}}\right)\left(V^{\otimes(i-1)} \otimes W \otimes V^{\otimes(n-i)}\right) \\
& =\left\langle\left\{u \otimes v \otimes w \mid(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\}\right\rangle \\
& =\left\langle u \otimes v \otimes w \mid \quad(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\rangle . \tag{24}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
V^{\otimes(i-1)} \cdot W \cdot V^{\otimes(n-i)}=\left\langle u \cdot v \cdot w \mid(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\rangle, \tag{25}
\end{equation*}
$$

where the \cdot sign stands for multiplication inside the k-algebra $\otimes V$. But for every $(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}$, we have $u \cdot v \cdot w=u \otimes v \otimes w \quad{ }^{7}$, so that (25) becomes

$$
\begin{aligned}
V^{\otimes(i-1)} \cdot W \cdot V^{\otimes(n-i)} & =\left\langle u \otimes v \otimes w \mid(u, v, w) \in V^{\otimes(i-1)} \times W \times V^{\otimes(n-i)}\right\rangle \\
& =\left(\operatorname{id}_{V^{\otimes(i-1)}} \otimes \mathfrak{i} \otimes \operatorname{id}_{V \otimes(n-i)}\right)\left(V^{\otimes(i-1)} \otimes W \otimes V^{\otimes(n-i)}\right)
\end{aligned}
$$

(by (24)). This proves Lemma 33 .
Proof of Theorem 32. Let \mathfrak{i} be the canonical inclusion $\operatorname{Ker} f \rightarrow V$.
We have

$$
\begin{align*}
\otimes V & =\bigoplus_{i \in \mathbb{N}} V^{\otimes i}=\sum_{i \in \mathbb{N}} V^{\otimes i} \quad \text { (since direct sums are sums) } \tag{26}\\
& =\sum_{j \in \mathbb{N}} V^{\otimes j} \quad \text { (here, we renamed the index } i \text { as } j \text {) } . \tag{27}
\end{align*}
$$

But the map $\otimes f$ is defined as the direct sum of the k-module homomorphisms

[^5]$f^{\otimes i}: V^{\otimes i} \rightarrow W^{\otimes i}$ for all $i \in \mathbb{N}$. Hence,
\[

$$
\begin{aligned}
\operatorname{Ker}(\otimes f) & =\bigoplus_{i \in \mathbb{N}} \operatorname{Ker}\left(f^{\otimes i}\right)=\sum_{i \in \mathbb{N}} \operatorname{Ker}\left(f^{\otimes i}\right) \quad \text { (since direct sums are sums) } \\
& =\sum_{n \in \mathbb{N}} \operatorname{Ker}\left(f^{\otimes n}\right) \quad \text { (here, we renamed the index } i \text { as } n \text { in the sum) } \\
& =\sum_{n \in \mathbb{N}} \sum_{i=1}^{n} \underbrace{\left(\operatorname{id}_{V^{\otimes(i-1)}} \otimes i \otimes \operatorname{id}_{V^{\otimes(n-i)}}\right)\left(V^{\otimes(i-1)} \otimes(\operatorname{Ker} f) \otimes V^{\otimes(n-i)}\right)}_{\begin{array}{c}
=V^{\otimes(i-1) \cdot(\operatorname{Ker} f) \cdot V} \otimes(n-i) \\
\text { (by Lemma 33 applied to } W=\operatorname{Ker} f)
\end{array}} \\
& =\sum_{n \in \mathbb{N}} \sum_{i=1}^{n} V^{\otimes(i-1)} \cdot(\operatorname{Ker} f) \cdot V^{\otimes(n-i)}=\sum_{n \in \mathbb{N}} \sum_{i=0}^{n-1} V^{\otimes i} \cdot(\operatorname{Ker} f) \cdot \underbrace{V^{\otimes(n-(i+1))}}_{=V^{\otimes(n-1-i)}}
\end{aligned}
$$
\]

(here, we substituted $i+1$ for i in the second sum)

$$
=\sum_{n \in \mathbb{N}} \sum_{i=0}^{n-1} V^{\otimes i} \cdot(\operatorname{Ker} f) \cdot V^{\otimes(n-1-i)}
$$

$$
=\sum_{\substack{n \in \mathbb{N} ; \\ n \geq 1}} \sum_{i=0}^{n-1} V^{\otimes i} \cdot(\operatorname{Ker} f) \cdot V^{\otimes(n-1-i)}+\underbrace{\sum_{i=0}^{0-1} V^{\otimes i} \cdot(\operatorname{Ker} f) \cdot V^{\otimes(0-1-i)}}_{=(\text {empty sum })=0}
$$

$$
=\sum_{\substack{n \in \mathbb{N} ; \\
n \geq 1}} \sum_{i=0}^{n-1} V^{\otimes i} \cdot(\operatorname{Ker} f) \cdot V^{\otimes(n-1-i)}=\underbrace{n}_{\substack{=\sum_{i \in \mathbb{N}} \\
\sum_{\begin{subarray}{c}{n \in \mathbb{N} ; \\
n \geq i} }} \sum_{i=0}}\end{subarray}} V^{\otimes i} \cdot(\operatorname{Ker} f) \cdot V^{\otimes(n-i)}
$$

(here, we substituted n for $n-1$ in the first sum)
$=\sum_{i \in \mathbb{N}} \sum_{\substack{n \in \mathbb{N} ; \\ n \geq i}} V^{\otimes i} \cdot(\operatorname{Ker} f) \cdot V^{\otimes(n-i)}=\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} V^{\otimes i} \cdot(\operatorname{Ker} f) \cdot V^{\otimes j}$
(here, we substituted j for $n-i$ in the second sum)

$$
=\underbrace{\left(\sum_{i \in \mathbb{N}} V^{\otimes i}\right)}_{=\otimes V} \cdot(\operatorname{Ker} f) \cdot \underbrace{\left(\sum_{j \in \mathbb{N}} V^{\otimes j}\right)}_{=\otimes V}=(\otimes V) \cdot(\operatorname{Ker} f) \cdot(\otimes V) .
$$

This proves Theorem 32 .

0.12. The pseudoexterior algebra

We are now going to introduce the pseudoexterior algebra Exter V of a k-module V. There are two ways to do this: one is by constructing Exter V as a direct sum of pseudoexterior powers $\operatorname{Exter}^{n} V$ (so these pseudoexterior powers must be defined first); the other is by directly constructing Exter V as a quotient of the tensor algebra $\otimes V$ modulo a certain two-sided ideal (and then we can construct the pseudoexterior powers Exter ${ }^{n} V$ as homogeneous components of this Exter V). It is not immediately clear (although not difficult) to prove that these two ways yield one and the same (up
to canonical isomorphism) k-algebra Exter V. We are going to reconcile these two ways by first proving some properties of the two-sided ideal that we want to factor the tensor algebra $\otimes V$ by; once these are shown, it will be easy to see that both definitions of Exter V are the same. We delay the definition of Exter V until that moment. So let us first define the pseudoexterior powers Exter ${ }^{n} V$:

Definition 36. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$.
Let $Q_{n}(V)$ be the k-submodule
$\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\rangle$
of the k-module $V^{\otimes n}$ (where we are using Convention 34, and are denoting the n-th symmetric group by S_{n}).
The factor k-module $V^{\otimes n} / Q_{n}(V)$ is called the n-th pseudoexterior power of the k-module V and will be denoted by $\operatorname{Exter}^{n} V$. We denote by exter ${ }_{V, n}$ the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / Q_{n}(V)=$ Exter $^{n} V$. Clearly, this map exter ${ }_{V, n}$ is a surjective k-module homomorphism.

Warning 37. This n-th pseudoexterior power $\operatorname{Exter}^{n} V$ is called pseudoexterior for a reason: it is not exactly the same as the n-th exterior power $\wedge^{n} V$ (which we will introduce in Definition 65). While the difference between Exter ${ }^{n} V$ and $\wedge^{n} V$ is not that large (in particular, they are identic when 2 is invertible in k, as Theorem 82 will show), this difference exists and should not be forgotten.
Most literature only works with the n-th exterior power $\wedge^{n} V$, because the n-th pseudoexterior power Exter ${ }^{n} V$ is much less interesting in the general case. However, a number of texts which are only concerned with the case when 2 is invertible in k define the n-th exterior power $\wedge^{n} V$ by our Definition 36; i. e., what they call the n-th exterior power $\wedge^{n} V$ is what we call the n-th pseudoexterior power Exter ${ }^{n} V$. Fortunately this does not conflict with our notation as long as 2 is invertible in k (because when 2 is invertible in k, Theorem 82 (c) yields $\wedge^{n} V=\operatorname{Exter}^{n} V$).

This is not the pseudoexterior algebra Exter V yet, but only the n-th pseudoexterior power Exter ${ }^{n} V$; we will compose the pseudoexterior algebra from these later. First, here is an alternative description of the module $Q_{n}(V)$ from this definition:

Proposition 38. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Then,
$Q_{n}(V)=\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle$,
where τ_{i} denotes the transposition $(i, i+1) \in S_{n}$.
This proposition is classical and can be concluded from the definition of $Q_{n}(V)$ and the fact that the transpositions $\tau_{1}, \tau_{2}, \ldots, \tau_{n-1}$ generate the symmetric group S_{n}. Here are the details of this proof:

Proof of Proposition 38. Let T denote the subset
$\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\}$
of $V^{\otimes n}$. Then,

$$
\begin{aligned}
\langle T\rangle & =\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\rangle \\
& =Q_{n}(V) \quad \quad \quad \text { by Definition 36) } .
\end{aligned}
$$

On the other hand,

$$
\begin{align*}
& v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \in T \tag{28}\\
& \quad \text { for every }\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}
\end{align*}
$$

(since
$T=\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\}$).

On the other hand, let Z denote the k-submodule

$$
\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle
$$

of $V^{\otimes n}$. Then,

$$
\begin{equation*}
\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{\mathbf{I}}(1)} \otimes v_{\tau_{\mathbf{I}}(2)} \otimes \cdots \otimes v_{\tau_{\mathbf{I}}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \subseteq Z \tag{29}
\end{equation*}
$$

for every $\mathbf{I} \in\{1,2, \ldots, n-1\}$. Now,

$$
\begin{aligned}
& \left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{\mathbf{I}}(1)} \otimes w_{\tau_{\mathbf{I}}(2)} \otimes \cdots \otimes w_{\tau_{\mathbf{I}}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n}\right\} \\
& =\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\boldsymbol{\tau}_{\mathbf{I}}(1)} \otimes v_{\tau_{\mathbf{I}}(2)} \otimes \cdots \otimes v_{\boldsymbol{\tau}_{\mathbf{I}}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} \\
& \left.\quad \text { (here, we renamed }\left(w_{1}, w_{2}, \ldots, w_{n}\right) \text { as }\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right) \\
& \subseteq\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{\mathbf{I}}(1)} \otimes v_{\tau_{\mathbf{I}}(2)} \otimes \cdots \otimes v_{\tau_{\mathbf{I}}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{\mathbf{I}}(1)} \otimes v_{\tau_{\mathbf{I}}(2)} \otimes \cdots \otimes v_{\tau_{\mathbf{I}}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \subseteq Z
\end{aligned}
$$

for every $\mathbf{I} \in\{1,2, \ldots, n-1\}$. Thus,

$$
\begin{align*}
& w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{1}(1)} \otimes w_{\tau^{\prime}(2)} \otimes \cdots \otimes w_{\tau_{\mathbf{I}(n)}} \in Z \\
& \quad \quad \quad \text { or every }\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} \text { and every } \mathbf{I} \in\{1,2, \ldots, n-1\} . \tag{30}
\end{align*}
$$

We are now going to show that $Z=\langle T\rangle$.
First, let us prove that $Z \subseteq\langle T\rangle$. In fact, every $i \in\{1,2, \ldots, n-1\}$ satisfies

$$
\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} \subseteq\langle T\rangle
$$

(since every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies

$$
\begin{aligned}
& v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+\underbrace{v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{2}(n)}}_{=-(-1) v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}} \\
& =v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-\underbrace{(-1)}_{\begin{array}{c}
=(-1)^{\tau_{i}} \\
\text { (since } \tau_{i} \text { is a transposition, } \\
\text { so that } \left.(-1)^{T_{i}}=-1\right)
\end{array}} v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}
\end{aligned}
$$

$=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\tau_{i}} v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}$
$\in T \quad$ (due to (28), applied to $\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \tau_{i}\right)$ instead of $\left.\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right)\right)$
$\subseteq\langle T\rangle$
). Now,

$$
\begin{aligned}
Z & =\sum_{i=1}^{n-1} \underbrace{\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle}_{\subseteq\langle T\rangle} \\
& \subseteq \sum_{i=1}^{n-1}\langle T\rangle \subseteq\langle T\rangle \quad \text { (since }\langle T\rangle \text { is a } k \text {-module) } .
\end{aligned}
$$

Now, let us show that $\langle T\rangle \subseteq Z$. To that aim, we will show that $T \subseteq Z$.
In fact, let $\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}$ be arbitrary. Then, $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ and $\sigma \in S_{n}$. Now, it is known that every element of the symmetric group S_{n} can be written as a product of some transpositions from the set $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n-1}\right\}$. Applying this to the element $\sigma \in S_{n}$, we conclude that σ can be written as a product of some transpositions from the set $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n-1}\right\}$. In other words, there exists a natural number $m \in \mathbb{N}$ and a sequence $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in\{1,2, \ldots, n-1\}^{m}$ such that $\sigma=\tau_{i_{1}} \tau_{i_{2}} \cdots \tau_{i_{m}}$. Consider this m and this $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$. For every $j \in\{0,1, \ldots, m\}$, let σ_{j} denote the permutation $\tau_{i_{1}} \tau_{i_{2}} \cdots \tau_{i_{j}} \in S_{n}$. Thus, $\sigma_{0}=\tau_{i_{1}} \tau_{i_{2}} \cdots \tau_{i_{0}}=$ (empty product) $=\mathrm{id}$ and $\sigma_{m}=\tau_{i_{1}} \tau_{i_{2}} \cdots \tau_{i_{m}}=\sigma$. Moreover, every $j \in\{1,2, \ldots, m\}$ satisfies $(-1)^{\sigma_{j-1}} v_{\sigma_{j-1}(1)} \otimes$
$v_{\sigma_{j-1}(2)} \otimes \cdots \otimes v_{\sigma_{j-1}(n)}-(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)} \in Z . \quad \otimes^{8}$ Thus,
$\sum_{j=1}^{m} \underbrace{\left((-1)^{\sigma_{j-1}} v_{\sigma_{j-1}(1)} \otimes v_{\sigma_{j-1}(2)} \otimes \cdots \otimes v_{\sigma_{j-1}(n)}-(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}\right)}_{\in Z} \in \sum_{j=1}^{m} Z \subseteq Z$
(since Z is a k-module). Since

$$
\begin{align*}
& \sum_{j=1}^{m}\left((-1)^{\sigma_{j-1}} v_{\sigma_{j-1}(1)} \otimes v_{\sigma_{j-1}(2)} \otimes \cdots \otimes v_{\sigma_{j-1}(n)}-(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}\right) \\
& =v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \tag{31}
\end{align*}
$$

2. this rewrites as

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \in Z
$$

We have thus shown that every $\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}$ satisfies $v_{1} \otimes v_{2} \otimes \cdots \otimes$ $v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \in Z$. Thus, $\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\} \subseteq Z$.
${ }^{8}$ Proof. Let $j \in\{1,2, \ldots, m\}$ be arbitrary. Then,
so that $\sigma_{j}=\sigma_{j-1} \tau_{i_{j}}$. Denote i_{j} by \mathbf{I}. Then, $\sigma_{j}=\sigma_{j-1} \tau_{i_{j}}$ rewrites as $\sigma_{j}=\sigma_{j-1} \tau_{\mathbf{I}}$. Thus,

$$
(-1)^{\sigma_{j}}=(-1)^{\sigma_{j-1} \tau}=(-1)^{\sigma_{j-1}} \underbrace{(-1)^{\tau}}_{=-1 \text { (since } \tau_{\tau} \text { is a transposition) }}=-(-1)^{\sigma_{j-1}} .
$$

Now, define an n-tuple $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n}$ by ($w_{\rho}=v_{\sigma_{j-1}(\rho)}$ for every $\rho \in\{1,2, \ldots, n\}$). Then, $\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\left(v_{\sigma_{j-1}(1)}, v_{\sigma_{j-1}(2)}, \ldots, v_{\sigma_{j-1}(n)}\right)$, so that $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}=v_{\sigma_{j-1}(1)} \otimes$ $v_{\sigma_{j-1}(2)} \otimes \cdots \otimes v_{\sigma_{j-1}(n)}$. On the other hand, every $\xi \in\{1,2, \ldots, n\}$ satisfies

$$
\begin{aligned}
w_{\tau_{\mathbf{I}}(\xi)} & =v_{\sigma_{j-1}\left(\tau_{\mathbb{I}}(\xi)\right)} \quad \quad \quad \quad \quad\left(\text { by the formula } w_{\rho}=v_{\sigma_{j-1}(\rho)}, \text { applied to } \rho=\tau_{\mathbf{I}}(\xi)\right) \\
& =v_{\sigma_{j}(\xi)} \quad(\text { since } \sigma_{j-1}\left(\tau_{\mathbf{I}}(\xi)\right)=\underbrace{\left(\sigma_{j-1} \tau_{\mathbf{I}}\right)}_{=\sigma_{j}}(\xi)=\sigma_{j}(\xi)) .
\end{aligned}
$$

Thus, $\left(w_{\boldsymbol{\tau}_{(}(1)}, w_{\tau_{\mathbb{I}}(2)}, \ldots, w_{\tau_{\mathcal{I}}(n)}\right)=\left(v_{\sigma_{j}(1)}, v_{\sigma_{j}(2)}, \ldots, v_{\sigma_{j}(n)}\right)$, so that $w_{\boldsymbol{\tau}_{\mathcal{I}}(1)} \otimes w_{\tau_{\mathcal{I}}(2)} \otimes \cdots \otimes w_{\tau_{\mathbb{I}}(n)}=$ $v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}$.

Now,

$$
\begin{aligned}
& (-1)^{\sigma_{j-1}} \underbrace{v_{\sigma_{j-1}(1)} \otimes v_{\sigma_{j-1}(2)} \otimes \cdots \otimes v_{\sigma_{j-1}(n)}}_{=w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}}-\underbrace{(-1)^{\sigma_{j}}}_{=-(-1)^{\sigma_{j-1}}} \underbrace{v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}}_{=w_{\tau_{\mathrm{I}}(1)} \otimes w_{\tau_{1}(2)} \otimes \cdots \otimes w_{\tau_{\mathrm{I}}(n)}} \\
& =(-1)^{\sigma_{j-1}} w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}-\left(-(-1)^{\sigma_{j-1}}\right) w_{\tau_{\mathrm{I}}(1)} \otimes w_{\tau_{\mathrm{I}}(2)} \otimes \cdots \otimes w_{\tau_{\mathrm{I}}(n)} \\
& =(-1)^{\sigma_{j-1}} \underbrace{\left(w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{1}(1)} \otimes w_{\tau_{1}(2)} \otimes \cdots \otimes w_{\tau_{1}(n)}\right)}_{\in Z \text { (by } \sqrt{30})} \in Z \quad \text { (since } Z \text { is a } k \text {-module), }
\end{aligned}
$$

qed.
${ }^{9}$ Proof of (31). We distinguish between two cases: the case when $m>0$, and the case when $m=0$.

Since $\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\}=$ T, this rewrites as $T \subseteq Z$. Proposition 35 (a) (applied to $V^{\otimes n}, T$ and Z instead of M, S and Q) thus yields that $\langle T\rangle \subseteq Z$. Combined with $Z \subseteq\langle T\rangle$, this yields $Z=\langle T\rangle$.

In the case when $m>0$, we have

$$
\begin{aligned}
& \sum_{j=1}^{m}\left((-1)^{\sigma_{j-1}} v_{\sigma_{j-1}(1)} \otimes v_{\sigma_{j-1}(2)} \otimes \cdots \otimes v_{\sigma_{j-1}(n)}-(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}\right) \\
& =\sum_{j=1}^{m}(-1)^{\sigma_{j-1}} v_{\sigma_{j-1}(1)} \otimes v_{\sigma_{j-1}(2)} \otimes \cdots \otimes v_{\sigma_{j-1}(n)}-\sum_{j=1}^{m}(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)} \\
& =\underbrace{\sum_{j=0}^{m-1}(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}}_{=(-1)^{\sigma_{0}} v_{\sigma_{0}(1)} \otimes v_{\sigma_{0}(2)} \otimes \cdots \otimes v_{\sigma_{0}(n)}+\sum_{j=1}^{m-1}(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}} \\
& -\quad \underbrace{\sum_{j=1}^{m}(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}} \\
& =\sum_{j=1}^{m-1}(-1)^{\sigma_{j}} v_{v_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}+(-1)^{\sigma_{m}} v_{\sigma_{m}(1)} \otimes v_{\sigma_{m}(2)} \otimes \cdots \otimes v_{\sigma_{m}(n)}
\end{aligned}
$$

(here, we substituted j for $j-1$ in the first sum)

$$
\begin{aligned}
& =\left((-1)^{\sigma_{0}} v_{\sigma_{0}(1)} \otimes v_{\sigma_{0}(2)} \otimes \cdots \otimes v_{\sigma_{0}(n)}+\sum_{j=1}^{m-1}(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}\right) \\
& -\left(\sum_{j=1}^{m-1}(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}+(-1)^{\sigma_{m}} v_{\sigma_{m}(1)} \otimes v_{\sigma_{m}(2)} \otimes \cdots \otimes v_{\sigma_{m}(n)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)},
\end{aligned}
$$

so that (31) is proven in the case when $m>0$.
In the case when $m=0$, we have

$$
\begin{aligned}
& \sum_{j=1}^{m}\left((-1)^{\sigma_{j-1}} v_{\sigma_{j-1}(1)} \otimes v_{\sigma_{j-1}(2)} \otimes \cdots \otimes v_{\sigma_{j-1}(n)}-(-1)^{\sigma_{j}} v_{\sigma_{j}(1)} \otimes v_{\sigma_{j}(2)} \otimes \cdots \otimes v_{\sigma_{j}(n)}\right) \\
& =(\text { empty sum })=0
\end{aligned}
$$

$$
\begin{aligned}
& =v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)},
\end{aligned}
$$

so that (31) is proven in the case when $m=0$.
Thus, (31) is proven in both possible cases. This completes the proof of (31).

We now have

$$
\begin{aligned}
& \sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& =Z=\langle T\rangle=Q_{n}(V)
\end{aligned}
$$

This proves Proposition 38.
A trivial corollary from Proposition 38,
Corollary 39. Let k be a commutative ring. Let V be a k-module. Then,

$$
Q_{2}(V)=\left\langle v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle .
$$

Proof of Corollary 39. Applying Proposition 38 to $n=2$, we obtain

$$
\begin{aligned}
Q_{2}(V) & =\sum_{i=1}^{2-1}\left\langle v_{1} \otimes v_{2}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2}+v_{\tau_{1}(1)} \otimes v_{\tau_{1}(2)} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle=\left\langle v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle
\end{aligned}
$$

(since $\tau_{1}(1)=2$ and $\left.\tau_{1}(2)=1\right)$. This proves Corollary 39 .
Next something very basic:
Lemma 40. Let k be a commutative. Let P be a k-algebra.
(a) Let X and Y be two sets, and $a: X \rightarrow P$ and $b: Y \rightarrow P$ be two maps. Then,

$$
\langle a(x) \mid x \in X\rangle \cdot\langle b(y) \mid y \in Y\rangle=\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle
$$

(b) Let X, Y and Z be three sets, and $a: X \rightarrow P, b: Y \rightarrow P$ and $c: Z \rightarrow P$ be three maps. Then,

$$
\begin{aligned}
& \langle a(x) \mid x \in X\rangle \cdot\langle b(y) \mid y \in Y\rangle \cdot\langle c(z) \mid z \in Z\rangle \\
& =\langle a(x) b(y) c(z) \mid \quad(x, y, z) \in X \times Y \times Z\rangle .
\end{aligned}
$$

Proof of Lemma 40. (a) Let $X^{\prime}=\langle a(x) \mid x \in X\rangle$ and $Y^{\prime}=\langle b(y) \mid y \in Y\rangle$.
We will now prove that $X^{\prime} Y^{\prime} \subseteq\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle$ and $\langle a(x) b(y) \mid \quad(x, y) \in X \times Y\rangle \subseteq X^{\prime} Y^{\prime}$.

Proof of $X^{\prime} Y^{\prime} \subseteq\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle$:
By the definition of the product of two k-submodules, we have

$$
\begin{equation*}
X^{\prime} Y^{\prime}=\left\langle p q \mid(p, q) \in X^{\prime} \times Y^{\prime}\right\rangle=\left\langle\left\{p q \mid(p, q) \in X^{\prime} \times Y^{\prime}\right\}\right\rangle \tag{32}
\end{equation*}
$$

Now, let $(p, q) \in X^{\prime} \times Y^{\prime}$ be arbitrary. Then, $p \in X^{\prime}=\langle a(x) \mid x \in X\rangle$, so that we can find some $n \in \mathbb{N}$, some elements $x_{1}, x_{2}, \ldots, x_{n}$ of X and some elements $\lambda_{1}, \lambda_{2}, \ldots$,
λ_{n} of k such that $p=\sum_{i=1}^{n} \lambda_{i} a\left(x_{i}\right)$. Consider this n, these $x_{1}, x_{2}, \ldots, x_{n}$ and these λ_{1}, $\lambda_{2}, \ldots, \lambda_{n}$.

Since $(p, q) \in X^{\prime} \times Y^{\prime}$, we have $q \in Y^{\prime}=\langle b(y) \mid y \in Y\rangle$, so that we can find some $m \in \mathbb{N}$, some elements $y_{1}, y_{2}, \ldots, y_{m}$ of Y and some elements $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$ of k such that $q=\sum_{j=1}^{m} \mu_{j} b\left(y_{j}\right)$. Consider this m, these $y_{1}, y_{2}, \ldots, y_{m}$ and these $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$.

Since $p=\sum_{i=1}^{n} \lambda_{i} a\left(x_{i}\right)$ and $q=\sum_{j=1}^{m} \mu_{j} b\left(y_{j}\right)$, we have

$$
\begin{aligned}
& p q=\sum_{i=1}^{n} \lambda_{i} a\left(x_{i}\right) \cdot \sum_{j=1}^{m} \mu_{j} b\left(y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i} \mu_{j} \underbrace{a\left(x_{i}\right) b\left(y_{j}\right)}_{\begin{array}{c}
\in\{a(x) b(y) \mid \\
\subseteq\{x, x)(x) \\
=\{a(x) b(y) \mid \\
\mid(x, y) \in X \times Y \times Y\} \\
(x, y) \in X \times Y\}
\end{array}} \\
& \subseteq \sum_{i=1}^{n} \sum_{j=1}^{m}\langle a(x) b(y) \mid \quad(x, y) \in X \times Y\rangle \\
& \subseteq\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle \quad \text { (since }\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle \text { is a } k \text {-module). }
\end{aligned}
$$

Since this holds for all $(p, q) \in X^{\prime} \times Y^{\prime}$, we have thus proven that

$$
\left\{p q \mid \quad(p, q) \in X^{\prime} \times Y^{\prime}\right\} \subseteq\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle
$$

Therefore, Proposition 35 (a) (applied to $P,\left\{p q \mid(p, q) \in X^{\prime} \times Y^{\prime}\right\}$ and $\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle$ instead of M, S and $Q)$ yields that

$$
\left\langle\left\{p q \mid(p, q) \in X^{\prime} \times Y^{\prime}\right\}\right\rangle \subseteq\langle a(x) b(y) \mid \quad(x, y) \in X \times Y\rangle
$$

Combined with (32), this yields

$$
X^{\prime} Y^{\prime} \subseteq\langle a(x) b(y) \quad \mid \quad(x, y) \in X \times Y\rangle
$$

We have thus proven that $X^{\prime} Y^{\prime} \subseteq\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle$.
Proof of $\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle \subseteq X^{\prime} Y^{\prime}$: We have

$$
X^{\prime}=\langle a(x) \mid x \in X\rangle=\langle\{a(x) \mid x \in X\}\rangle \supseteq\{a(x) \mid x \in X\} .
$$

Thus, $a(x) \in X^{\prime}$ for every $x \in X$. Similarly, $b(y) \in Y^{\prime}$ for every $y \in Y$.
Now, let $(x, y) \in X \times Y$ be arbitrary. Then, $x \in X$ and $y \in Y^{\prime}$, so that $a(x) \in X^{\prime}$ and $b(y) \in Y^{\prime}$ (as we just have seen). Hence, $a(x) b(y) \in X^{\prime} Y^{\prime}$.

We have thus shown that $a(x) b(y) \in X^{\prime} Y^{\prime}$ for every $(x, y) \in X \times Y$. In other words, $\{a(x) b(y) \mid(x, y) \in X \times Y\} \subseteq X^{\prime} Y^{\prime}$. Therefore, Proposition 35 (a) (applied to P, $\{a(x) b(y) \mid(x, y) \in X \times Y\}$ and $X^{\prime} Y^{\prime}$ instead of M, S and $\left.Q\right)$ yields that

$$
\langle\{a(x) b(y) \mid \quad(x, y) \in X \times Y\}\rangle \subseteq X^{\prime} Y^{\prime}
$$

Since $\langle\{a(x) b(y) \mid(x, y) \in X \times Y\}\rangle=\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle$, we have thus proven $\langle a(x) b(y) \mid \quad(x, y) \in X \times Y\rangle \subseteq X^{\prime} Y^{\prime}$.

Combined with $X^{\prime} Y^{\prime} \subseteq\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle$, this yields that $X^{\prime} Y^{\prime}=$ $\langle a(x) b(y) \mid \quad(x, y) \in X \times Y\rangle$. Since $X^{\prime}=\langle a(x) \mid x \in X\rangle$ and $Y^{\prime}=\langle b(y) \mid y \in Y\rangle$, this rewrites as follows:

$$
\langle a(x) \mid x \in X\rangle \cdot\langle b(y) \mid y \in Y\rangle=\langle a(x) b(y) \mid(x, y) \in X \times Y\rangle .
$$

Thus, Lemma 40 (a) is proven.
(b) Define a map $d: X \times Y \rightarrow P$ by

$$
(d(x, y)=a(x) b(y) \text { for all }(x, y) \in X \times Y) .
$$

Now, Lemma 40 (a) yields

$$
\begin{aligned}
\langle a(x) \mid x \in X\rangle \cdot\langle b(y) \mid y \in Y\rangle & =\langle\underbrace{a(x) b(y)}_{=d(x, y)} \mid(x, y) \in X \times Y\rangle \\
& =\langle d(x, y) \mid(x, y) \in X \times Y\rangle=\langle d(x) \mid x \in X \times Y\rangle
\end{aligned}
$$

(here, we renamed the index (x, y) as x). Also, $\langle c(z) \mid z \in Z\rangle=\langle c(y) \mid y \in Z\rangle$ (here, we renamed the index z as y). But Lemma 40 (a) (applied to $X \times Y, Z, d$ and c instead of X, Y, a and b) yields

$$
\langle d(x) \mid x \in X \times Y\rangle \cdot\langle c(y) \mid y \in Z\rangle=\langle d(x) \cdot c(y) \mid(x, y) \in(X \times Y) \times Z\rangle .
$$

Thus,

$$
\begin{aligned}
& \underbrace{\langle a(x) \mid x \in X\rangle \cdot\langle b(y) \mid y \in Y\rangle}_{=\langle d(x) \mid x \in X \times Y\rangle} \cdot \underbrace{\langle c(z) \mid z \in Z\rangle}_{=\langle c(y)|} \\
& =\langle d(x) \mid x \in X \times Y\rangle \cdot\langle c(y) \mid y \in Z\rangle=\langle d(x) \cdot c(y) \mid(x, y) \in(X \times Y) \times Z\rangle \\
& =\langle d(t) \cdot c(z) \mid(t, z) \in(X \times Y) \times Z\rangle
\end{aligned}
$$

(here, we renamed the index (x, y) as $(t, z))$

$$
=\langle d(x, y) \cdot c(z) \mid((x, y), z) \in(X \times Y) \times Z\rangle
$$

(here, we renamed the index (t, z) as $((x, y), z))$

$$
=\langle\underbrace{d(x, y)}_{=a(x) b(y)} \cdot c(z) \mid(x, y, z) \in X \times Y \times Z\rangle
$$

(here, we substituted the triple (x, y, z) for the pair $((x, y), z))$

$$
=\langle a(x) b(y) c(z) \mid \quad(x, y, z) \in X \times Y \times Z\rangle .
$$

This proves Lemma 40 (b).
The following lemma will help us in making use of Proposition 38:
Lemma 41. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Let $i \in\{1,2, \ldots, n-1\}$.
Then,

$$
\begin{aligned}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& =V^{\otimes(i-1)} \cdot\left(Q_{2}(V)\right) \cdot V^{\otimes(n-1-i)},
\end{aligned}
$$

where τ_{i} denotes the transposition $(i, i+1) \in S_{n}$. Here, we consider $V^{\otimes n}$ as a k-submodule of $\otimes V$.

Proof of Lemma 41. Define a map $a: V^{i-1} \rightarrow V^{\otimes(i-1)}$ by

$$
\left(a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1} \quad \text { for every }\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \in V^{i-1}\right) .
$$

Define a map $b: V^{2} \rightarrow V^{\otimes 2}$ by

$$
\left(b\left(v_{i}, v_{i+1}\right)=v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i} \quad \text { for every }\left(v_{i}, v_{i+1}\right) \in V^{2}\right) .
$$

Define a map $c: V^{n-1-i} \rightarrow V^{\otimes(n-1-i)}$ by
$\left(c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)=v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n} \quad\right.$ for every $\left.\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \in V^{n-1-i}\right)$.
Since $V^{\otimes(i-1)}, V^{\otimes 2}$ and $V^{\otimes(n-1-i)}$ are k-submodules of $\otimes V$, we can consider all three maps a, b and c as maps to the set $\otimes V$.

It is now easy to see that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right),
$$

where the multiplication on the right hand side is the multiplication in the tensor

algebra $\otimes V .{ }^{10}$ Thus,

$$
\begin{aligned}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& =\left\langle a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& =\left\langle a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right. \\
& \quad\left|\quad\left(\left(v_{1}, v_{2}, \ldots, v_{i-1}\right),\left(v_{i}, v_{i+1}\right),\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right) \in V^{i-1} \times V^{2} \times V^{n-1-i}\right\rangle
\end{aligned}
$$

(here, we substituted the triple $\left.\left(\left(v_{1}, v_{2}, \ldots, v_{i-1}\right),\left(v_{i}, v_{i+1}\right),\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right)\right)$

$$
\begin{equation*}
=\left\langle a(x) b(y) c(z) \mid \quad(x, y, z) \in V^{i-1} \times V^{2} \times V^{n-1-i}\right\rangle \tag{34}
\end{equation*}
$$

(here, we renamed $\left(\left(v_{1}, v_{2}, \ldots, v_{i-1}\right),\left(v_{i}, v_{i+1}\right),\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right)$ as $\left.(x, y, z)\right)$.
${ }^{10}$ Proof. Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$. Then, recalling Convention 12 we have

$$
\begin{align*}
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} & =\underbrace{\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}\right)}_{=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)} \otimes\left(v_{i} \otimes v_{i+1}\right) \otimes \underbrace{\left(v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}\right)}_{=c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)} \\
& =a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes\left(v_{i} \otimes v_{i+1}\right) \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) . \tag{33}
\end{align*}
$$

On the other hand, every $j \in\{1,2, \ldots, i-1\}$ satisfies $\tau_{i}(j)=j$ (since τ_{i} is the transposition $(i, i+1))$ and thus $v_{\tau_{i}(j)}=v_{j}$. In other words, we have the equalities $v_{\tau_{i}(1)}=v_{1}, v_{\tau_{i}(2)}=v_{2}, \ldots$, $v_{\tau_{i}(i-1)}=v_{i-1}$. Taking the tensor product of these equalities yields

$$
v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(i-1)}=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)
$$

Every $j \in\{i+2, i+3, \ldots, n\}$ satisfies $\tau_{i}(j)=j$ (since τ_{i} is the transposition $(i, i+1)$) and thus $v_{\tau_{i}(j)}=v_{j}$. In other words, we have the equalities $v_{\tau_{i}(i+2)}=v_{i+2}, v_{\tau_{i}(i+3)}=v_{i+3}, \ldots, v_{\tau_{i}(n)}=v_{n}$. Taking the tensor product of these equalities yields

$$
v_{\tau_{i}(i+2)} \otimes v_{\tau_{i}(i+3)} \otimes \cdots \otimes v_{\tau_{i}(n)}=v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}=c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)
$$

Since τ_{i} is the transposition $(i, i+1)$, we have $\tau_{i}(i)=i+1$ and $\tau_{i}(i+1)=i$. These equalities yield $v_{\tau_{i}(i)}=v_{i+1}$ and $v_{\tau_{i}(i+1)}=v_{i}$, respectively.

Now,

$$
\begin{aligned}
& v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \\
& =\underbrace{\left(v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(i-1)}\right)}_{=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)} \otimes(\underbrace{v_{\tau_{i}(i)}}_{=v_{i+1}} \otimes \underbrace{v_{\tau_{i}(i+1)}}_{=v_{i}}) \otimes \underbrace{\left(v_{\tau_{i}(i+2)} \otimes v_{\tau_{i}(i+3)} \otimes \cdots \otimes v_{\tau_{i}(n)}\right)}_{=c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)} \\
& =a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes\left(v_{i+1} \otimes v_{i}\right) \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) .
\end{aligned}
$$

Adding this to (33), we get

$$
\begin{aligned}
& v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \\
& =a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes\left(v_{i} \otimes v_{i+1}\right) \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \\
& \quad \quad+a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes\left(v_{i+1} \otimes v_{i}\right) \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \\
& =a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes \underbrace{\left(v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i}\right)}_{=b\left(v_{i}, v_{i+1}\right)} \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \\
& =a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes b\left(v_{i}, v_{i+1}\right) \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)
\end{aligned}
$$

On the other hand, (3) (applied to $a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right), b\left(v_{i}, v_{i+1}\right), i-1$ and 2 instead of a, b, n and m) yields

$$
a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right)=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes b\left(v_{i}, v_{i+1}\right) .
$$

Also, (3) (applied to $a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right), c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right), i+1$ and $n-1-i$ instead of a, b, n and m) yields

$$
\begin{aligned}
& a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \\
& =\underbrace{\left(a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right)\right)}_{=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes b\left(v_{i}, v_{i+1}\right)} \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \\
& =a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes b\left(v_{i}, v_{i+1}\right) \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \\
& =v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau 马(G)}\left(\otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)},\right.
\end{aligned}
$$

qed.

But Lemma 40 (b) (applied to $X=V^{i-1}, Y=V^{2}, Z=V^{n-1-i}$ and $P=\otimes V$) yields

$$
\begin{aligned}
& \left\langle a(x) \mid x \in V^{i-1}\right\rangle \cdot\left\langle b(y) \mid y \in V^{2}\right\rangle \cdot\left\langle c(z) \mid z \in V^{n-1-i}\right\rangle \\
& =\left\langle a(x) b(y) c(z) \mid(x, y, z) \in V^{i-1} \times V^{2} \times V^{n-1-i}\right\rangle .
\end{aligned}
$$

Compared to (34), this yields

$$
\begin{align*}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}\right| \\
& \left.\left.=\langle a(x)| x \in V_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \tag{35}\\
& =\left\langle a(y) \mid y \in V^{2}\right\rangle \cdot\left\langle c(z) \mid z \in V^{n-1-i}\right\rangle .
\end{align*}
$$

But

$$
\begin{aligned}
&\left\langle a(x) \mid x \in V^{i-1}\right\rangle=\langle\underbrace{a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)}_{=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}} \mid\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \in V^{i-1}\rangle \\
&\left.\quad \text { (here, we renamed } x \text { as }\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)\right) \\
&=\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1} \mid\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \in V^{i-1}\right\rangle=V^{\otimes(i-1)}
\end{aligned}
$$

(since the k-module $V^{\otimes(i-1)}$ is generated by its pure tensors, i. e., by tensors of the form $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}$ with $\left.\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \in V^{i-1}\right)$. Also,

$$
\begin{aligned}
\left\langle c(z) \mid z \in V^{n-1-i}\right\rangle= & \langle\underbrace{c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)}_{=v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}} \mid\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \in V^{n-1-i}\rangle \\
& \left.\quad \text { (here, we renamed } z \text { as }\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right) \\
= & \left\langle v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n} \mid\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \in V^{n-1-i}\right\rangle=V^{\otimes(n-1-i)}
\end{aligned}
$$

(since the k-module $V^{\otimes(n-1-i)}$ is generated by its pure tensors, i. e., by tensors of the form $v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}$ with $\left.\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \in V^{n-1-i}\right)$. Also,

$$
\begin{aligned}
\left\langle b(y) \mid y \in V^{2}\right\rangle & =\langle\underbrace{b\left(v_{i}, v_{i+1}\right)}_{=v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i}} \mid\left(v_{i}, v_{i+1}\right) \in V^{2}\rangle \quad \text { (here, we renamed } y \text { as }\left(v_{i}, v_{i+1}\right)) \\
& =\left\langle v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i} \mid\left(v_{i}, v_{i+1}\right) \in V^{2}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle \\
& \left.\quad \text { (here, we renamed }\left(v_{i}, v_{i+1}\right) \text { as }\left(v_{1}, v_{2}\right)\right) \\
& =Q_{2}(V) \quad \quad \text { (by Corollary 39). }
\end{aligned}
$$

Thus, (35) becomes

$$
\begin{aligned}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n) \mid} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& =\underbrace{\left\langle a(x) \mid x \in V^{i-1}\right\rangle}_{=V^{\otimes(i-1)}} \cdot \underbrace{\left\langle b(y) \mid y \in V^{2}\right\rangle}_{=Q_{2}(V)} \cdot \underbrace{\left\langle c(z) \mid z \in V^{n-1-i}\right\rangle}_{=V^{\otimes(n-1-i)}} \\
& =V^{\otimes(i-1)} \cdot\left(Q_{2}(V)\right) \cdot V^{\otimes(n-1-i)},
\end{aligned}
$$

so that Lemma 41 is proven.
This lemma yields:

Corollary 42. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Then,

$$
Q_{n}(V)=\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(Q_{2}(V)\right) \cdot V^{\otimes(n-1-i)}
$$

(this is an equality between k-submodules of $\otimes V$, where $Q_{n}(V)$ becomes such a k submodule by means of the inclusion $\left.Q_{n}(V) \subseteq V^{\otimes n} \subseteq \otimes V\right)$. Here, the multiplication on the right hand side is multiplication inside the k-algebra $\otimes V$.

Proof of Corollary 42. For every $i \in\{1,2, \ldots, i-1\}$, let τ_{i} denote the transposition $(i, i+1) \in S_{n}$. Then, by Proposition 38, we have

$$
\begin{aligned}
Q_{n}(V) & =\sum_{i=1}^{n-1} \underbrace{\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle}_{=V^{\otimes(i-1) \cdot\left(Q_{2}(V)\right) \cdot V^{\otimes(n-1-i)}(\text { by Lemma } 41}} \\
& =\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(Q_{2}(V)\right) \cdot V^{\otimes(n-1-i)} .
\end{aligned}
$$

Thus, Corollary 42 is proven.
We now claim that:
Theorem 43. Let k be a commutative ring. Let V be a k-module. We know that $Q_{n}(V)$ is a k-submodule of $V^{\otimes n}$ for every $n \in \mathbb{N}$. Thus, $\bigoplus_{n \in \mathbb{N}} Q_{n}(V)$ is a k-submodule of $\bigoplus_{n \in \mathbb{N}} V^{\otimes n}=\otimes V$. This k-submodule satisfies

$$
\bigoplus_{n \in \mathbb{N}} Q_{n}(V)=(\otimes V) \cdot\left(Q_{2}(V)\right) \cdot(\otimes V) .
$$

Proof of Theorem 43. Working inside $\otimes V$, we have

$$
\begin{aligned}
& \bigoplus_{n \in \mathbb{N}} Q_{n}(V)=\sum_{n \in \mathbb{N}} \sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(Q_{2}(V)\right) \cdot V^{\otimes(n-1-i)} \quad \quad \text { (by Corollary 42) } \\
& =\sum_{n \in \mathbb{N}} \underbrace{\sum_{i=0}^{n-2}} V^{\otimes i} \cdot\left(Q_{2}(V)\right) \cdot \underbrace{V^{\otimes(n-1-(i+1))}}_{=V^{\otimes(n-1-i-1)}=V^{\otimes(n-(i+2))}} \\
& =\sum_{\substack{i \in \mathbb{N} ; \\
n-2 \geq i}}=\sum_{\substack{i \in \mathbb{N} ; \\
n \geq i+2}} \\
& =\sum_{n \in \mathbb{N}} \sum_{i \in \mathbb{N} ;} V^{\otimes i} \cdot\left(Q_{2}(V)\right) \cdot V^{\otimes(n-(i+2))} \\
& \underbrace{n \geq i+2}_{\substack{=\sum_{i \in \mathbb{N}} \begin{array}{c}
n \in \mathbb{N} ; \\
n \geq i+2
\end{array}}} \\
& \text { (here, we substituted } i \text { for } i-1 \text { in the second sum) } \\
& =\sum_{i \in \mathbb{N}} \sum_{n \in \mathbb{N} ;} V^{\otimes i} \cdot\left(Q_{2}(V)\right) \cdot V^{\otimes(n-(i+2))}=\sum_{i \in \mathbb{N}} V^{\otimes i} \cdot\left(Q_{2}(V)\right) \cdot \sum_{\substack{n \in \mathbb{N} ; \\
n \geq i+2}} V^{\otimes(n-(i+2))} \\
& =\sum_{i \in \mathbb{N}} V^{\otimes i} \cdot\left(Q_{2}(V)\right) \cdot \sum_{j \in \mathbb{N}} V^{\otimes j} \\
& \text { (here, we substituted } j \text { for } n-(i+2) \text { in the second sum) } \\
& =\underbrace{\left(\sum_{i \in \mathbb{N}} V^{\otimes i}\right)}_{=\otimes V(\text { by }(26))} \cdot\left(Q_{2}(V)\right) \cdot \underbrace{\left(\sum_{j \in \mathbb{N}} V^{\otimes j}\right)}_{=\otimes V(\text { by } \sqrt{277})} \\
& =(\otimes V) \cdot\left(Q_{2}(V)\right) \cdot(\otimes V) \text {. }
\end{aligned}
$$

This proves Theorem 43 .
Now we can finally define the pseudoexterior algebra:
Definition 44. Let k be a commutative ring. Let V be a k-module.
By Theorem 43, the two k-submodules $\underset{n \in \mathbb{N}}{ } Q_{n}(V)$ and $(\otimes V) \cdot\left(Q_{2}(V)\right) \cdot(\otimes V)$ of $\otimes V$ are identic (where $\bigoplus_{n \in \mathbb{N}} Q_{n}(V)$ becomes a k-submodule of $\otimes V$ in the same way as explained in Theorem 43). We denote these two identic k-submodules by $Q(V)$. In other words, we define $Q(V)$ by

$$
Q(V)=\bigoplus_{n \in \mathbb{N}} Q_{n}(V)=(\otimes V) \cdot\left(Q_{2}(V)\right) \cdot(\otimes V)
$$

Since $Q(V)=(\otimes V) \cdot\left(Q_{2}(V)\right) \cdot(\otimes V)$, it is clear that $Q(V)$ is a two-sided ideal of the k-algebra $\otimes V$.

Now we define a k-module Exter V as the direct sum $\bigoplus_{n \in \mathbb{N}} \operatorname{Exter}^{n} V$. Then,

$$
\text { Exter } \begin{aligned}
V & =\bigoplus_{n \in \mathbb{N}} \underbrace{\operatorname{Exter} V}_{=V^{\otimes n} / Q_{n}(V)}=\bigoplus_{n \in \mathbb{N}}\left(V^{\otimes n} / Q_{n}(V)\right) \cong \underbrace{\left(\bigoplus_{n \in \mathbb{N}} V^{\otimes n}\right)}_{=\otimes V} / \underbrace{\left(\bigoplus_{n \in \mathbb{N}} Q_{n}(V)\right)}_{=Q(V)} \\
& =(\otimes V) / Q(V) .
\end{aligned}
$$

This is a canonical isomorphism, so we will use it to identify Exter V with $(\otimes V) / Q(V)$. Since $Q(V)$ is a two-sided ideal of the k-algebra $\otimes V$, the quotient k-module $(\otimes V) / Q(V)$ canonically becomes a k-algebra. Since Exter $V=$ $(\otimes V) / Q(V)$, this means that Exter V becomes a k-algebra. We refer to this k algebra as the pseudoexterior algebra of the k-module V.
We denote by exter $_{V}$ the canonical projection $\otimes V \rightarrow(\otimes V) / Q(V)=$ Exter V. Clearly, this map exter ${ }_{V}$ is a surjective k-algebra homomorphism. Besides, due to $\otimes V=\bigoplus_{n \in \mathbb{N}} V^{\otimes n}$ and $Q(V)=\bigoplus_{n \in \mathbb{N}} Q_{n}(V)$, it is clear that the canonical projection $\otimes V \rightarrow(\otimes V) / Q(V)$ is the direct sum of the canonical projections $V^{\otimes n} \rightarrow$ $V^{\otimes n} / Q_{n}(V)$ over all $n \in \mathbb{N}$. Since the canonical projection $\otimes V \rightarrow(\otimes V) / Q(V)$ is the map exter ${ }_{V}$, whereas the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / Q_{n}(V)$ is the map $\operatorname{exter}_{V, n}$, this rewrites as follows: The map exter V_{V} is the direct sum of the maps $\operatorname{exter}_{V, n}$ over all $n \in \mathbb{N}$.

We now prove a first, almost trivial result about the $Q(V)$:
Lemma 45. Let k be a commutative ring. Let V and W be two k-modules. Let $f: V \rightarrow W$ be a k-module homomorphism.
(a) Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ satisfies $(\otimes f)(Q(V)) \subseteq$ $Q(W)$. Also, for every $n \in \mathbb{N}$, the k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ satisfies $f^{\otimes n}\left(Q_{n}(V)\right) \subseteq Q_{n}(W)$.
(b) Assume that f is surjective. Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow$ $\otimes W$ satisfies $(\otimes f)(Q(V))=Q(W)$. Also, for every $n \in \mathbb{N}$, the k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ satisfies $f^{\otimes n}\left(Q_{n}(V)\right)=Q_{n}(W)$.

Proof of Lemma 45. (a) Fix some $n \in \mathbb{N}$. For every $i \in\{1,2, \ldots, n-1\}$, let τ_{i} denote the transposition $(i, i+1) \in S_{n}$. Then, the definition of $Q_{n}(V)$ yields

$$
\begin{equation*}
Q_{n}(V)=\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle, \tag{36}
\end{equation*}
$$

whereas the definition of $Q_{n}(W)$ yields

$$
\begin{equation*}
Q_{n}(W)=\sum_{i=1}^{n-1}\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle . \tag{37}
\end{equation*}
$$

Now it is easy to see that every $i \in\{1,2, \ldots, n-1\}$ satisfies

$$
\begin{align*}
& f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right) \\
& \subseteq\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle . \tag{38}
\end{align*}
$$

$$
\begin{aligned}
& f^{\otimes n}\left(Q_{n}(V)\right) \\
& =f^{\otimes n}\left(\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right) \\
& =\sum_{i=1}^{n-1} \underbrace{f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right)}_{\left.\subseteq\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle \text { (by } \sqrt{887}\right)}
\end{aligned}
$$

(since $f^{\otimes n}$ is linear)
$\subseteq \sum_{i=1}^{n-1}\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle$
$=Q_{n}(W)$.
${ }^{11}$ Proof. Fix some $i \in\{1,2, \ldots, n-1\}$. Let S be the set

$$
\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} .
$$

It is clear that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies
$f^{\otimes n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}\right)$
$=f\left(v_{1}\right) \otimes f\left(v_{2}\right) \otimes \cdots \otimes f\left(v_{n}\right)+f\left(v_{\tau_{i}(1)}\right) \otimes f\left(v_{\tau_{i}(2)}\right) \otimes \cdots \otimes f\left(v_{\tau_{i}(n)}\right) \quad$ (by the definition of $\left.f^{\otimes n}\right)$
$\in\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\}$
$\subseteq\left\langle\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\}\right\rangle$
$=\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle$.
In other words,

$$
\begin{aligned}
& \left\{f^{\otimes n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}\right) \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} \\
& \subseteq\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left\{f^{\otimes n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}\right) \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} \\
& =f^{\otimes n}(\underbrace{\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}}_{=S})=f^{\otimes n}(S),
\end{aligned}
$$

this rewrites as

$$
f^{\otimes n}(S) \subseteq\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle .
$$

By Proposition 35 (a) (applied to $f^{\otimes n}(S), W^{\otimes n}$ and
$\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle$ instead of S, M and Q), this yields

$$
\left\langle f^{\otimes n}(S)\right\rangle \subseteq\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle .
$$

But by Proposition 35 (b) (applied to $f^{\otimes n}, V^{\otimes n}$ and $W^{\otimes n}$ instead of f, M and R), we have $f^{\otimes n}(\langle S\rangle)=\left\langle f^{\otimes n}(S)\right\rangle$. Thus,
$f^{\otimes n}(\langle S\rangle)=\left\langle f^{\otimes n}(S)\right\rangle \subseteq\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle$.
Since

$$
\begin{aligned}
\langle S\rangle= & \left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}\right\rangle \\
& \left.\quad \text { because } S=\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}\right) \\
= & \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle,
\end{aligned}
$$

this becomes

$$
\begin{aligned}
& f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right) \\
& \subseteq\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle,
\end{aligned}
$$

qed.

Thus, we have shown that

$$
\begin{equation*}
\text { for every } n \in \mathbb{N} \text {, we have } f^{\otimes n}\left(Q_{n}(V)\right) \subseteq Q_{n}(W) \tag{39}
\end{equation*}
$$

Now forget that we fixed n. Since the map $\otimes f$ is the direct sum of the maps $f^{\otimes n}$: $V^{\otimes n} \rightarrow W^{\otimes n}$ for all $n \in \mathbb{N}$, we have $(\otimes f)(x)=f^{\otimes n}(x)$ for every $n \in \mathbb{N}$ and every $x \in$ $V^{\otimes n}$. Thus, for every $n \in \mathbb{N}$, we have $(\otimes f)\left(Q_{n}(V)\right)=\{\underbrace{(\otimes f)(x)}_{\substack{\left.=f^{\otimes n}(x) \\ \text { (since } x \in Q_{n}(V) \subseteq V^{\otimes n}\right)}} \mid x \in Q_{n}(V)\}=$ $\left\{f^{\otimes n}(x) \mid x \in Q_{n}(V)\right\}=f^{\otimes n}\left(Q_{n}(V)\right)$.

The definition of $Q(W)$ yields $Q(W)=\bigoplus_{n \in \mathbb{N}} Q_{n}(W)$. Since direct sums are sums, this rewrites as $Q(W)=\sum_{n \in \mathbb{N}} Q_{n}(W)$.

Now, $Q(V)=\bigoplus_{n \in \mathbb{N}} Q_{n}(V)=\sum_{n \in \mathbb{N}} Q_{n}(V)$ (since direct sums are sums) and thus
$(\otimes f)(Q(V))=(\otimes f)\left(\sum_{n \in \mathbb{N}} Q_{n}(V)\right)=\sum_{n \in \mathbb{N}} \underbrace{(\otimes f)\left(Q_{n}(V)\right)}_{\substack{f^{\otimes n}\left(Q_{n}(V)\right)\left(Q_{2}(W) \\(\text { by }(39))\right.}} \subseteq \sum_{n \in \mathbb{N}} Q_{n}(W)=Q(W)$.
This completes the proof of Lemma 45 (a).
(b) Fix some $n \in \mathbb{N}$. For every $i \in\{1,2, \ldots, n-1\}$, it is easy to prove (using the surjectivity of f) that

$$
\begin{align*}
& f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \quad \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right) \\
& =\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle . \tag{40}
\end{align*}
$$

Proof of (40). Fix some $i \in\{1,2, \ldots, n-1\}$. Then, every $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}$ satisfies

$$
\begin{aligned}
& w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \\
& \in f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right) .
\end{aligned}
$$

${ }^{12}$ In other words,
$\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\}$
$\subseteq f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right)$.
Applying Proposition 35 (a) to
$\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\}, W^{\otimes n}$ and

[^6]$f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right)$ instead of S, M and Q), we conclude from this that
\[

$$
\begin{aligned}
& \left\langle\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\}\right\rangle \\
& \subseteq f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)}\right| \quad\left|\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right) .
\end{aligned}
$$
\]

Thus,

$$
\begin{aligned}
& \left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\rangle \\
& =\left\langle\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}\right\}\right\rangle \\
& \subseteq f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right) .
\end{aligned}
$$

Combined with (38), this yields (40). Thus, we have proven (40).
In the proof of Lemma 45 (a), we have used (38) to show that $f^{\otimes n}\left(Q_{n}(V)\right) \subseteq$ $Q_{n}(W)$. In the same way, we can use 40) to prove that $f^{\otimes n}\left(Q_{n}(V)\right)=Q_{n}(W)$ (in the situation of Lemma 45 (b)).

So we have shown that

$$
\begin{equation*}
\text { for every } n \in \mathbb{N} \text {, we have } f^{\otimes n}\left(Q_{n}(V)\right)=Q_{n}(W) \tag{41}
\end{equation*}
$$

In the proof of Lemma 45 (a), we have used (39) to conclude that $(\otimes f)(Q(V)) \subseteq$ $Q(W)$. In the same way, we can use (41) to conclude that $(\otimes f)(Q(V))=Q(W)$ (in the situation of Lemma 45 (b)). This completes the proof of Lemma 45 (b).
[Remark. The above proof of Lemma 45 uses the definition of $Q(V)$ as $\underset{n \in \mathbb{N}}{\bigoplus_{n}} Q_{n}(V)$. We could just as well have proven Lemma 45 using the definition of $Q(V)$ as $(\otimes V)$. $\left.\left(Q_{2}(V)\right) \cdot(\otimes V).\right]$

The pseudoexterior algebra is (just as most other constructions we did above) functorial in V. This means that:

Now, by the definition of $f^{\otimes n}$, we have

$$
\begin{aligned}
& f^{\otimes n}\left(z_{1} \otimes z_{2} \otimes \cdots \otimes z_{n}+z_{\tau_{i}(1)} \otimes z_{\tau_{i}(2)} \otimes \cdots \otimes z_{\tau_{i}(n)}\right) \\
& =\underbrace{f\left(z_{1}\right) \otimes f\left(z_{2}\right) \otimes \cdots \otimes f\left(z_{n}\right)}_{=w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}}+\underbrace{f\left(z_{\tau_{i}(1)}\right) \otimes f\left(z_{\tau_{i}(2)}\right) \otimes \cdots \otimes f\left(z_{\tau_{i}(n)}\right)}_{=w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)}} \\
& =w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)},
\end{aligned}
$$

so that

$$
\begin{aligned}
& w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}+w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)}
\end{aligned}
$$

$$
\begin{aligned}
& \in f^{\otimes n}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle\right),
\end{aligned}
$$

qed.

Definition 46. Let k be a commutative ring. Let V and W be two k-modules. Let $f: V \rightarrow W$ be a k-module homomorphism. Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ satisfies $(\otimes f)(Q(V)) \subseteq Q(W)$ (by Lemma 45(a)), and thus gives rise to a k-algebra homomorphism $(\otimes V) / Q(V) \rightarrow(\otimes W) / Q(W)$. This latter k algebra homomorphism will be denoted by Exter f. Since $(\otimes V) / Q(V)=$ Exter V and $(\otimes W) / Q(W)=\operatorname{Exter} W$, this homomorphism Exter $f:(\otimes V) / Q(V) \rightarrow$ $(\otimes W) / Q(W)$ is actually a homomorphism from Exter V to Exter W.
By the construction of $\operatorname{Exter} f$, the diagram

commutes (since exter ${ }_{V}$ is the canonical projection $\otimes V \rightarrow$ Exter V and since exter ${ }_{W}$ is the canonical projection $\otimes W \rightarrow$ Exter W).

As a consequence of Lemma 45 (b), we have:
Proposition 47. Let k be a commutative ring. Let V and W be two k-modules. Let $f: V \rightarrow W$ be a surjective k-module homomorphism. Then:
(a) The k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ is surjective for every $n \in \mathbb{N}$.
(b) The k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ is surjective.
(c) The k-algebra homomorphism Exter $f: \operatorname{Exter} V \rightarrow \operatorname{Exter} W$ is surjective.

Proof of Proposition 47, (a) Let $n \in \mathbb{N}$. Lemma 24 (applied to $f_{i}=f$) yields that the map $\underbrace{f \otimes f \otimes \cdots \otimes f}_{n \text { times }}$ is surjective. Since $f^{\otimes n}=\underbrace{f \otimes f \otimes \cdots \otimes f}_{n \text { times }}$, this yields that the map $f^{\otimes n}$ is surjective. This proves Proposition 47 (a).
(b) We defined the map $\otimes f$ as the direct sum of the maps $f^{\otimes n}$ for all $n \in \mathbb{N}$. Since the maps $f^{\otimes n}$ are surjective (by Proposition 47 (a)), this yields that the map $\otimes f$ is surjective (since the direct sum of surjective maps is always surjective). This proves Proposition 47 (b).
(c) Since the diagram (42) commutes, we have $\operatorname{exter}_{W} \circ(\otimes f)=($ Exter $f) \circ \operatorname{exter}_{V}$. Now, the map exter ${ }_{W}$ is surjective (since it is the canonical projection $\otimes W \rightarrow \operatorname{Exter} W$), and the map $\otimes f$ is surjective (by Proposition 47 (b)). Hence, the map exter ${ }_{W} \circ(\otimes f)$ is surjective (since the composition of surjective maps is always surjective). Since $\operatorname{exter}_{W} \circ(\otimes f)=(\operatorname{Exter} f) \circ \operatorname{exter}_{V}$, this yields that the map (Exter $\left.f\right) \circ \operatorname{exter}_{V}$ is surjective. Hence, the map Exter f is surjective (because if α and β are two maps such that the composition $\alpha \circ \beta$ is surjective, then α must itself be surjective). This proves Proposition 47 (c).

0.13. The kernel of Exter f

We will now formulate a result about the kernel of $\operatorname{Exter} f$ for a k-module map f (similar to Theorem 32, but with a twist):

Theorem 48. Let k be a commutative ring. Let V and V^{\prime} be two k-modules, and let $f: V \rightarrow V^{\prime}$ be a surjective k-module homomorphism. Then, the kernel of the map Exter $f:$ Exter $V \rightarrow$ Exter V^{\prime} is

$$
\begin{aligned}
\operatorname{Ker}(\operatorname{Exter} f) & =\left(\operatorname{Exter}^{\operatorname{Ex}}\right) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)=(\text { Exter } V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \\
& =\operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\text { Exter } V)
\end{aligned}
$$

Here, $\operatorname{Ker} f$ is considered a k-submodule of $\otimes V$ by means of the inclusion $\operatorname{Ker} f \subseteq$ $V=V^{\otimes 1} \subseteq \otimes V$.

Note that the $\operatorname{Ker}(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)$ part of this theorem will be a rather quick application of Proposition 15 to the results of Theorem 32 and Proposition 47 (c). It is slightly less clear how to show the (Exter V). $\operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f)=\operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)$ part. We will do this using the following lemma:

Lemma 49. Let k be a commutative ring. Let V be a k-module. Let A be a k algebra, and let $\pi: \otimes V \rightarrow A$ be a surjective k-algebra homomorphism. Let M be a k-submodule of A such that $M \cdot \pi(V) \subseteq M$. Then, M is a right ideal of A.

Proof of Lemma 49 . We claim that for every $n \in \mathbb{N}$, we have

$$
\begin{equation*}
M \cdot \pi\left(V^{\otimes n}\right) \subseteq M \tag{43}
\end{equation*}
$$

Proof of (43). We are going to prove (43) by induction over n :
Induction base: For $n=0$, we have

$$
M \cdot \pi(\underbrace{V^{\otimes n}}_{=V \otimes 0=k=k \cdot 1})=M \cdot \underbrace{\pi(k \cdot 1)}_{\begin{array}{c}
=k \cdot \pi(1) \\
\text { (since } \pi \text { is } k \text {-linear) }
\end{array}}=M \cdot k \cdot \underbrace{\pi(1)}_{\begin{array}{c}
=1 \begin{array}{l}
(\text { since } \pi \text { is a } \\
k \text {-algebra homomorphism) }
\end{array}
\end{array} \pi=M \cdot k \cdot 1=M, ~}=M
$$

(since M is a k-module). Thus, (43) is true for $n=0$. This completes the induction base.

Induction step: Let $m \in \mathbb{N}$. Assume that (43) holds for $n=m$. We now must prove that (43) holds for $n=m+1$.

Since (43) holds for $n=m$, we have $M \cdot \pi\left(V^{\otimes m}\right) \subseteq M$. Since $V^{\otimes(m+1)}=V \cdot V^{\otimes m}$ we have

$$
\pi\left(V^{\otimes(m+1)}\right)=\pi\left(V \cdot V^{\otimes m}\right)=\pi(V) \cdot \pi\left(V^{\otimes m}\right) \quad(\text { since } \pi \text { is a } k \text {-algebra homomorphism })
$$

[^7]$$
V \cdot V^{\otimes m}=\langle\underbrace{v \cdot w}_{=v \otimes w} \mid(v, w) \in V \times V^{\otimes m}\rangle=\left\langle v \otimes w \mid \quad(v, w) \in V \times V^{\otimes m}\right\rangle .
$$

Compared with $V^{\otimes(m+1)}=V \otimes V^{\otimes m}=\left\langle v \otimes w \mid(v, w) \in V \times V^{\otimes m}\right\rangle$ (since a tensor product is generated by its pure tensors), this yields $V^{\otimes(m+1)}=V \cdot V^{\otimes m}$, qed.
so that

$$
M \cdot \pi\left(V^{\otimes(m+1)}\right)=\underbrace{M \cdot \pi(V)}_{\subseteq M} \cdot \pi\left(V^{\otimes m}\right) \subseteq M \cdot \pi\left(V^{\otimes m}\right) \subseteq M .
$$

In other words, (43) holds for $n=m+1$. This completes the induction step.
Thus, the induction proof of (43) is complete.
Now that (43) is proven, we notice that

$$
\otimes V=\bigoplus_{n \in \mathbb{N}} V^{\otimes n}=\sum_{n \in \mathbb{N}} V^{\otimes n} \quad \text { (since direct sums are sums) }
$$

so that

$$
\pi(\otimes V)=\pi\left(\sum_{n \in \mathbb{N}} V^{\otimes n}\right)=\sum_{n \in \mathbb{N}} \pi\left(V^{\otimes n}\right) \quad \text { (since } \pi \text { is linear) } .
$$

Since $\pi(\otimes V)=A$ (because π is surjective), this becomes $A=\sum_{n \in \mathbb{N}} \pi\left(V^{\otimes n}\right)$. Thus,

$$
M \cdot A=M \cdot \sum_{n \in \mathbb{N}} \pi\left(V^{\otimes n}\right)=\sum_{n \in \mathbb{N}} \underbrace{M \cdot \pi\left(V^{\otimes n}\right)}_{\subseteq M \text { (by (43)) }} \subseteq \sum_{n \in \mathbb{N}} M \subseteq M
$$

(since M is a k-module). In other words, M is a right ideal of A. This proves Lemma 49.

Corollary 50. Let k be a commutative ring. Let V be a k-module, and let W be a k-submodule of V. Then,
$(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W) \cdot(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W)=\operatorname{exter}_{V}(W) \cdot(\operatorname{Exter} V)$.
Here, W is considered a k-submodule of $\otimes V$ by means of the inclusion $W \subseteq V=$ $V^{\otimes 1} \subseteq \otimes V$.

Proof of Corollary 50. (i) We have $V \cdot W+Q_{2}(V)=W \cdot V+Q_{2}(V)$ (as k-submodules of $\otimes V)$.

Proof. Let $(v, w) \in V \times W$ be arbitrary. Then,

$$
\begin{aligned}
& \subseteq\left\langle\left\{v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\}\right\rangle=\left\langle v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle=Q_{2}(V)
\end{aligned}
$$

(by Corollary 39), so that
$v \cdot w \in Q_{2}(V)-\underbrace{w}_{\in W} \cdot \underbrace{v}_{\in V}=Q_{2}(V)-W \cdot V=Q_{2}(V)+W \cdot V \quad$ (since $W \cdot V$ is a k-module).
Since this holds for all $(v, w) \in V \times W$, we thus have

$$
\{v \cdot w \mid(v, w) \in V \times W\} \subseteq Q_{2}(V)+W \cdot V .
$$

Applying Proposition 35 (a) to $\otimes V,\{v \cdot w \mid(v, w) \in V \times W\}$ and $Q_{2}(V)+W \cdot V$ instead of M, S and Q, we see that this yields

$$
\langle\{v \cdot w \mid(v, w) \in V \times W\}\rangle \subseteq Q_{2}(V)+W \cdot V
$$

Since

$$
\langle\{v \cdot w \mid(v, w) \in V \times W\}\rangle=\langle v \cdot w \mid(v, w) \in V \times W\rangle=V \cdot W,
$$

this rewrites as $V \cdot W \subseteq Q_{2}(V)+W \cdot V$. Thus,

$$
\begin{aligned}
V \cdot W+Q_{2}(V) & \subseteq\left(Q_{2}(V)+W \cdot V\right)+Q_{2}(V)=W \cdot V+\underbrace{Q_{2}(V)+Q_{2}(V)}_{\substack{\subseteq Q_{2}(V) \\
\text { (since } Q_{2}(V) \text { is a } k \text {-module) }}} \\
& \subseteq W \cdot V+Q_{2}(V) .
\end{aligned}
$$

Combining this with the fact that $W \cdot V+Q_{2}(V) \subseteq V \cdot W+Q_{2}(V)$ (which can be proven completely analogously), we obtain that $V \cdot W+Q_{2}(V)=W \cdot V+Q_{2}(V)$. This proves (i).
(ii) We have $\operatorname{exter}_{V}(V) \cdot \operatorname{exter}_{V}(W)=\operatorname{exter}_{V}(W) \cdot \operatorname{exter}_{V}(V)$ (as k-submodules of Exter V).

Proof. Since exter ${ }_{V}$ is a k-algebra homomorphism, we have

$$
\operatorname{exter}_{V}\left(V \cdot W+Q_{2}(V)\right)=\operatorname{exter}_{V}(V) \cdot \operatorname{exter}_{V}(W)+\operatorname{exter}_{V}\left(Q_{2}(V)\right)
$$

But since $\operatorname{exter}_{V}\left(Q_{2}(V)\right)=0$ (because exter ${ }_{V}$ is the canonical projection $\otimes V \rightarrow$ $(\otimes V) / Q(V)$, and thus $Q(V)=\operatorname{Ker}^{\operatorname{exter}}{ }_{V}$, so that $Q_{2}(V) \subseteq \bigoplus_{n \in \mathbb{N}} Q_{n}(V)=Q(V)=$ Ker exter $\left._{V}\right)$, this rewrites as

$$
\operatorname{exter}_{V}\left(V \cdot W+Q_{2}(V)\right)=\operatorname{exter}_{V}(V) \cdot \operatorname{exter}_{V}(W)+0=\operatorname{exter}_{V}(V) \cdot \operatorname{exter}_{V}(W)
$$

Similarly,

$$
\operatorname{exter}_{V}\left(W \cdot V+Q_{2}(V)\right)=\operatorname{exter}_{V}(W) \cdot \operatorname{exter}_{V}(V)
$$

Now,
$\operatorname{exter}_{V}(V) \cdot \operatorname{exter}_{V}(W)=\operatorname{exter}_{V}\left(V \cdot W+Q_{2}(V)\right)=\operatorname{exter}_{V}\left(W \cdot V+Q_{2}(V)\right)$
(since $V \cdot W+Q_{2}(V)=W \cdot V+Q_{2}(V)$ by (i)) $=\operatorname{exter}_{V}(W) \cdot \operatorname{exter}_{V}(V)$,
and thus (ii) is proven.
(iii) We have $(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W) \cdot($ Exter $V)$.

Proof. We have
$(\operatorname{Exter} V) \cdot \underbrace{\operatorname{exter}_{V}(W) \cdot \operatorname{exter}_{V}(V)}_{=\operatorname{exter}_{V}(V) \cdot \operatorname{exter}_{V}(W)}=\underbrace{(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(V)}_{\subseteq \operatorname{Exter} V} \cdot \operatorname{exter}_{V}(W) \subseteq(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W)$.
By Lemma 49 (applied to $A=\operatorname{Exter} V, \pi=\operatorname{exter}_{V}$ and $\left.M=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W)\right)$, this yields that $(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W)$ is a right ideal of Exter V. In other words, $($ Exter $V) \cdot \operatorname{exter}_{V}(W)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W) \cdot(\operatorname{Exter} V)$. This proves (iii).
(iv) We have $\operatorname{exter}_{V}(W) \cdot(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W) \cdot($ Exter $V)$.

Proof. The proof of (iv) is analogous to the proof of (iii) (but this time we need an analogue of Lemma 49 for left instead of right ideals).
(v) Corollary 50 clearly follows by combining (iii) and (iv). The proof of Corollary 50 is thus complete.

Proof of Theorem 48. Applying the commutative diagram (42) to $W=V^{\prime}$, we obtain the commutative diagram

But it is easy to see that

$$
\left.\operatorname{Ker~}^{\operatorname{exter}_{V^{\prime}} \subseteq(\otimes f)(\text { Ker exter }}{ }_{V}\right)
$$

${ }^{14}$ and that the map exter ${ }_{V}$ is surjective (since exter ${ }_{V}$ is the canonical projection $\otimes V \rightarrow$ Exter V). Hence, we can apply Proposition 15 to the commutative diagram (44), and conclude that $\operatorname{Ker}(\operatorname{Exter} f)=\operatorname{exter}_{V}(\operatorname{Ker}(\otimes f))$. Since $\operatorname{Ker}(\otimes f)=(\otimes V) \cdot(\operatorname{Ker} f)$. $(\otimes V)$ by Theorem 32, this becomes
$\operatorname{Ker}(\operatorname{Exter} f)=\operatorname{exter}_{V}((\otimes V) \cdot(\operatorname{Ker} f) \cdot(\otimes V))=\operatorname{exter}_{V}(\otimes V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \cdot \operatorname{exter}_{V}(\otimes V)$ (since exter_{V} is a k-algebra homomorphism).

Since exter $(\otimes V)=$ Exter V (because exter ${ }_{V}$ is surjective), this becomes

$$
\operatorname{Ker}(\operatorname{Exter} f)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)
$$

Combined with the equality
$(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f)=\operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)$
(which follows from Corollary 50, applied to $W=\operatorname{Ker} f$), this yields

$$
\begin{aligned}
\operatorname{Ker}(\operatorname{Exter} f) & =\left({\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f)}=\operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)\right.
\end{aligned}
$$

This proves Theorem 48 .
Here is a way to rewrite Theorem 48
Corollary 51. Let k be a commutative ring. Let V be a k-module. Let W be a k-submodule of V, and let $f: V \rightarrow V / W$ be the canonical projection.
(a) Then, the kernel of the map Exter $f: \operatorname{Exter} V \rightarrow \operatorname{Exter}(V / W)$ is

$$
\begin{aligned}
\operatorname{Ker}(\operatorname{Exter} f) & =(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W) \cdot(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W) \\
& =\operatorname{exter}_{V}(W) \cdot(\operatorname{Exter} V) .
\end{aligned}
$$

${ }^{14}$ Proof. Since exter $_{V}$ is the canonical projection $\otimes V \rightarrow(\otimes V) / Q(V)$, we have Ker exter ${ }_{V}=$ $Q(V)$. Similarly, Ker exter $V^{\prime}=Q\left(V^{\prime}\right)$. But Lemma 45 (b) (applied to $W=V^{\prime}$) yields that $(\otimes f)(Q(V))=Q\left(V^{\prime}\right)$. Thus,

$$
\text { Ker exter }_{V^{\prime}}=Q\left(V^{\prime}\right)=(\otimes f)(\underbrace{Q(V)}_{=\text {Ker exter }_{V}})=(\otimes f)\left(\text { Ker exter }_{V}\right),
$$

qed.

Here, W is considered a k-submodule of $\otimes V$ by means of the inclusion $W \subseteq V=$ $V^{\otimes 1} \subseteq \otimes V$.
(b) We have
$(\operatorname{Exter} V) /\left((\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W)\right) \cong \operatorname{Exter}(V / W) \quad$ as k-modules.

Proof of Corollary 51. Since f is the canonical projection $V \rightarrow V / W$, it is clear that f is surjective and that $\operatorname{Ker} f=W$. Now, we can apply Theorem 48 to $V^{\prime}=V / W$ and conclude that

$$
\begin{aligned}
\operatorname{Ker}(\operatorname{Exter} f) & =\left(\operatorname{Exter}_{V}\right) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(\operatorname{Ker} f) \\
& =\operatorname{exter}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Exter} V) .
\end{aligned}
$$

Since $\operatorname{Ker} f=W$, this simplifies to

$$
\begin{aligned}
\operatorname{Ker}(\operatorname{Exter} f) & =(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W) \cdot(\operatorname{Exter} V)=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W) \\
& =\operatorname{exter}_{V}(W) \cdot(\operatorname{Exter}(W)
\end{aligned}
$$

This proves Corollary 51 (a).
Since the map $f: V \rightarrow V / W$ is surjective, the map $\operatorname{Exter} f: \operatorname{Exter} V \rightarrow \operatorname{Exter}(V / W)$ is also surjective (by Proposition 47 (c), applied to V / W instead of W), and thus we have $(\operatorname{Exter} f)(\operatorname{Exter} V)=\operatorname{Exter}(V / W)$. But by the isomorphism theorem, $($ Exter $f)($ Exter $V) \cong(\operatorname{Exter} V) / \operatorname{Ker}(\operatorname{Exter} f)$ as k-modules. Thus,

$$
\begin{aligned}
\operatorname{Exter}(V / W) & =(\operatorname{Exter} f)(\operatorname{Exter} V) \cong(\operatorname{Exter} V) / \underbrace{\operatorname{Ker}(\operatorname{Exter} f)}_{=(\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W)} \\
& =(\operatorname{Exter} V) /\left((\operatorname{Exter} V) \cdot \operatorname{exter}_{V}(W)\right) \quad \text { as } k \text {-modules. }
\end{aligned}
$$

This proves Corollary 51 (b).

0.14. The symmetric algebra

In the previous two subsections (Subsections 0.12 and 0.13), we have studied the pseudoexterior algebra Exter V of a k-module V. Many properties of the pseudoexterior algebra Exter V are shared by its more well-known analogue - the symmetric algebra Sym V. Pretty much all of our above-proven properties of Exter V have analogues for Sym V. We are now going to formulate these analogues, without proving them (because their proofs are completely analogous to the proofs of the properties of Exter V that we did above). First, before we define the symmetric algebra $\operatorname{Sym} V$, let us define the symmetric powers $\operatorname{Sym}^{n} V$:

Definition 52. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Let $K_{n}(V)$ be the k-submodule

$$
\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid \quad\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\rangle
$$

of the k-module $V^{\otimes n}$ (where we are using Convention 34, and are denoting the n-th symmetric group by S_{n}).

The factor k-module $V^{\otimes n} / K_{n}(V)$ is called the n-th symmetric power of the k module V and will be denoted by $\operatorname{Sym}^{n} V$. We denote by $\operatorname{sym}_{V, n}$ the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / K_{n}(V)=\operatorname{Sym}^{n} V$. Clearly, this map $\operatorname{sym}_{V, n}$ is a surjective k-module homomorphism.

We should understand these notions $K_{n}(V), \operatorname{Sym}^{n} V$ and $\operatorname{sym}_{V, n}$ as analogues of the notions $Q_{n}(V)$, Exter $^{n} V$ and exter $_{V, n}$ from Definition 36, respectively. Here is an analogue of Proposition 38 .

Proposition 53. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Then,
$K_{n}(V)=\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle$,
where τ_{i} denotes the transposition $(i, i+1) \in S_{n}$.
Proof of Proposition 53. The proof of this Proposition 53 is completely analogous to the proof of Proposition 38 (up to some replacing of + signs by - signs and some removal of powers of -1) and can be found in $\S 5.1$ of the long (detailed) version of [3].

Here is the analogue of Corollary 39.
Corollary 54. Let k be a commutative ring. Let V be a k-module. Then,

$$
K_{2}(V)=\left\langle v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle .
$$

Proof of Corollary 54. Again, the proof of Corollary 54 is completely analogous to the proof of Corollary 39.

Next, the analogue of Lemma 41 :
Lemma 55. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Let $i \in\{1,2, \ldots, n-1\}$.
Then,

$$
\begin{aligned}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& =V^{\otimes(i-1)} \cdot\left(K_{2}(V)\right) \cdot V^{\otimes(n-1-i)},
\end{aligned}
$$

where τ_{i} denotes the transposition $(i, i+1) \in S_{n}$. Here, we consider $V^{\otimes n}$ as a k-submodule of $\otimes V$.

Proof of Lemma 55. The proof of Lemma 55 is completely analogous to the proof of Lemma 41.

Next, the analogue of Corollary 42,

Corollary 56. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$.
Then,

$$
K_{n}(V)=\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(K_{2}(V)\right) \cdot V^{\otimes(n-1-i)}
$$

(this is an equality between k-submodules of $\otimes V$, where $K_{n}(V)$ becomes such a k submodule by means of the inclusion $\left.K_{n}(V) \subseteq V^{\otimes n} \subseteq \otimes V\right)$. Here, the multiplication on the right hand side is multiplication inside the k-algebra $\otimes V$.

Proof of Corollary 56. The proof of Corollary 56 is completely analogous to the proof of Corollary 42.

Now the analogue of Theorem 43:
Theorem 57. Let k be a commutative ring. Let V be a k-module. We know that $K_{n}(V)$ is a k-submodule of $V^{\otimes n}$ for every $n \in \mathbb{N}$. Thus, $\bigoplus_{n \in \mathbb{N}} K_{n}(V)$ is a k-submodule of $\bigoplus_{n \in \mathbb{N}} V^{\otimes n}=\otimes V$. This k-submodule satisfies

$$
\bigoplus_{n \in \mathbb{N}} K_{n}(V)=(\otimes V) \cdot\left(K_{2}(V)\right) \cdot(\otimes V)
$$

Proof of Theorem 57. The proof of Theorem 57 is completely analogous to the proof of Theorem 43.

Now we can finally define the symmetric algebra, similarly to Definition 44 ,
Definition 58. Let k be a commutative ring. Let V be a k-module. By Theorem 57, the two k-submodules $\underset{n \in \mathbb{N}}{\bigoplus_{n}} K_{n}(V)$ and $(\otimes V) \cdot\left(K_{2}(V)\right) \cdot(\otimes V)$ of $\otimes V$ are identic (where $\bigoplus K_{n}(V)$ becomes a k-submodule of $\otimes V$ in the same way as explained in Theorem 57). We denote these two identic k-submodules by $K(V)$. In other words, we define $K(V)$ by

$$
K(V)=\bigoplus_{n \in \mathbb{N}} K_{n}(V)=(\otimes V) \cdot\left(K_{2}(V)\right) \cdot(\otimes V)
$$

Since $K(V)=(\otimes V) \cdot\left(K_{2}(V)\right) \cdot(\otimes V)$, it is clear that $K(V)$ is a two-sided ideal of the k-algebra $\otimes V$.
Now we define a k-module $\operatorname{Sym} V$ as the direct sum $\bigoplus_{n \in \mathbb{N}} \operatorname{Sym}^{n} V$. Then,

$$
\begin{aligned}
\operatorname{Sym} V & =\bigoplus_{n \in \mathbb{N}} \underbrace{\operatorname{Sym}^{n} V}_{=V^{\otimes n} / K_{n}(V)}=\bigoplus_{n \in \mathbb{N}}\left(V^{\otimes n} / K_{n}(V)\right) \cong \underbrace{\left(\bigoplus_{n \in \mathbb{N}} V^{\otimes n}\right)}_{=\otimes V} / \underbrace{\left(\bigoplus_{n \in \mathbb{N}} K_{n}(V)\right)}_{=K(V)} \\
& =(\otimes V) / K(V) .
\end{aligned}
$$

This is a canonical isomorphism, so we will use it to identify $\operatorname{Sym} V$ with $(\otimes V) / K(V)$. Since $K(V)$ is a two-sided ideal of the k-algebra $\otimes V$, the quotient k-module $(\otimes V) / K(V)$ canonically becomes a k-algebra. Since $\operatorname{Sym} V=$ $(\otimes V) / K(V)$, this means that $\operatorname{Sym} V$ becomes a k-algebra. We refer to this k algebra as the symmetric algebra of the k-module V.
We denote by sym_{V} the canonical projection $\otimes V \rightarrow(\otimes V) / K(V)=$ Sym V. Clearly, this map sym_{V} is a surjective k-algebra homomorphism. Besides, due to $\otimes V=\bigoplus_{n \in \mathbb{N}} V^{\otimes n}$ and $K(V)=\bigoplus_{n \in \mathbb{N}} K_{n}(V)$, it is clear that the canonical projection $\otimes V \rightarrow(\otimes V) / K(V)$ is the direct sum of the canonical projections $V^{\otimes n} \rightarrow$ $V^{\otimes n} / K_{n}(V)$ over all $n \in \mathbb{N}$. Since the canonical projection $\otimes V \rightarrow(\otimes V) / K(V)$ is the map sym_{V}, whereas the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / K_{n}(V)$ is the map $\operatorname{sym}_{V, n}$, this rewrites as follows: The map sym ${ }_{V}$ is the direct sum of the maps sym ${ }_{V, n}$ over all $n \in \mathbb{N}$.
When $v_{1}, v_{2}, \ldots, v_{n}$ are some elements of V, one often abbreviates the element $\operatorname{sym}_{V}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)$ of $\operatorname{Sym} V$ by $v_{1} v_{2} \cdots v_{n}$. (We will not use this abbreviation in this following.)

We should think of the notions $K(V)$, $\operatorname{Sym} V$ and sym_{V} as analogues of the notions $Q(V)$, Exter V and exter $_{V}$ from Definition 44, respectively. The next result provides an analogue of Lemma 45:

Lemma 59. Let k be a commutative ring. Let V and W be two k-modules. Let $f: V \rightarrow W$ be a k-module homomorphism.
(a) Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ satisfies $(\otimes f)(K(V)) \subseteq$ $K(W)$. Also, for every $n \in \mathbb{N}$, the k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ satisfies $f^{\otimes n}\left(K_{n}(V)\right) \subseteq K_{n}(W)$.
(b) Assume that f is surjective. Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow$ $\otimes W$ satisfies $(\otimes f)(K(V))=K(W)$. Also, for every $n \in \mathbb{N}$, the k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ satisfies $f^{\otimes n}\left(K_{n}(V)\right)=K_{n}(W)$.

The following definition mirrors Definition 46:
Definition 60. Let k be a commutative ring. Let V and W be two k-modules. Let $f: V \rightarrow W$ be a k-module homomorphism. Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ satisfies $(\otimes f)(K(V)) \subseteq K(W)$ (by Lemma 59 (a)), and thus gives rise to a k-algebra homomorphism $(\otimes V) / K(V) \rightarrow(\otimes W) / K(W)$. This latter k algebra homomorphism will be denoted by $\operatorname{Sym} f$. Since $(\otimes V) / K(V)=\operatorname{Sym} V$ and $(\otimes W) / K(W)=\operatorname{Sym} W$, this homomorphism $\operatorname{Sym} f:(\otimes V) / K(V) \rightarrow$ $(\otimes W) / K(W)$ is actually a homomorphism from $\operatorname{Sym} V$ to $\operatorname{Sym} W$.
By the construction of $\operatorname{Sym} f$, the diagram

commutes (since sym_{V} is the canonical projection $\otimes V \rightarrow \operatorname{Sym} V$ and since sym ${ }_{W}$ is the canonical projection $\otimes W \rightarrow \operatorname{Sym} W)$.

Needless to say, the notion $\operatorname{Sym} f$ introduced in this definition is an analogue of the notion Exter f introduced in Definition 46 .

Here is the analogue of Proposition 47:
Proposition 61. Let k be a commutative ring. Let V and W be two k-modules.
Let $f: V \rightarrow W$ be a surjective k-module homomorphism. Then:
(a) The k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ is surjective for every $n \in \mathbb{N}$.
(b) The k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ is surjective.
(c) The k-algebra homomorphism $\operatorname{Sym} f: \operatorname{Sym} V \rightarrow \operatorname{Sym} W$ is surjective.

Proof of Proposition 61. The proof of this Proposition 61 is completely analogous to the proof of Proposition 47 (and parts (a) and (b) are even the same).

So much for analogues of the results of Subsection 0.12. Now let us formulate the analogues of the results of Subsection 0.13. First, the analogue of Theorem 48:

Theorem 62. Let k be a commutative ring. Let V and V^{\prime} be two k-modules, and let $f: V \rightarrow V^{\prime}$ be a surjective k-module homomorphism. Then, the kernel of the map $\operatorname{Sym} f: \operatorname{Sym} V \rightarrow \operatorname{Sym} V^{\prime}$ is

$$
\begin{aligned}
\operatorname{Ker}(\operatorname{Sym} f) & =(\operatorname{Sym} V) \cdot \operatorname{sym}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Sym} V)=(\operatorname{Sym} V) \cdot \operatorname{sym}_{V}(\operatorname{Ker} f) \\
& =\operatorname{sym}_{V}(\operatorname{Ker} f) \cdot(\operatorname{Sym} V)
\end{aligned}
$$

Here, $\operatorname{Ker} f$ is considered a k-submodule of $\otimes V$ by means of the inclusion $\operatorname{Ker} f \subseteq$ $V=V^{\otimes 1} \subseteq \otimes V$.

Proof of Theorem 62. The proof of this Theorem 62 is completely analogous to that of Theorem 48 .

The analogue of Corollary 50 comes next:
Corollary 63. Let k be a commutative ring. Let V be a k-module, and let W be a k-submodule of V. Then,

$$
(\operatorname{Sym} V) \cdot \operatorname{sym}_{V}(W) \cdot(\operatorname{Sym} V)=(\operatorname{Sym} V) \cdot \operatorname{sym}_{V}(W)=\operatorname{sym}_{V}(W) \cdot(\operatorname{Sym} V) .
$$

Here, W is considered a k-submodule of $\otimes V$ by means of the inclusion $W \subseteq V=$ $V^{\otimes 1} \subseteq \otimes V$.

Proof of Corollary 63. Expectedly, the proof of Corollary 63 is analogous to the proof of Corollary 50 .

Finally, the analogue of Corollary 51:
Corollary 64. Let k be a commutative ring. Let V be a k-module. Let W be a k-submodule of V, and let $f: V \rightarrow V / W$ be the canonical projection.
(a) Then, the kernel of the map $\operatorname{Sym} f: \operatorname{Sym} V \rightarrow \operatorname{Sym}(V / W)$ is
$\operatorname{Ker}(\operatorname{Sym} f)=(\operatorname{Sym} V) \cdot \operatorname{sym}_{V}(W) \cdot(\operatorname{Sym} V)=(\operatorname{Sym} V) \cdot \operatorname{sym}_{V}(W)=\operatorname{sym}_{V}(W) \cdot(\operatorname{Sym} V)$.

Here, W is considered a k-submodule of $\otimes V$ by means of the inclusion $W \subseteq V=$ $V^{\otimes 1} \subseteq \otimes V$.
(b) We have

$$
(\operatorname{Sym} V) /\left((\operatorname{Sym} V) \cdot \operatorname{sym}_{V}(W)\right) \cong \operatorname{Sym}(V / W) \quad \text { as } k \text {-modules. }
$$

Proof of Corollary 64. The proof of Corollary 64 is analogous to the proof of Corollary 51.

0.15. The exterior algebra

Now we are going to study the exterior algebra $\wedge V$ of a k-module V. This algebra is rather similar, but not completely analogous to Exter V and $\operatorname{Sym} V$. We are going to again formulate properties similar to corresponding properties of Exter V and $\operatorname{Sym} V$; but this time, some of these properties will require different proofs, so we will not always be able to skip their proofs by referring to analogy. Still some of the proofs will be very similar to the corresponding proofs for Exter V we gave in Subsections 0.12 and 0.13 (some others will be not). First, before we define the exterior algebra $\wedge V$, let us define the exterior powers $\wedge^{n} V$:

Definition 65. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$.
Let $R_{n}(V)$ be the k-submodule

$$
\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),(i, j)\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; i \neq j ; v_{i}=v_{j}\right\rangle
$$

of the k-module $V^{\otimes n}$ (where we are using Convention 34).
The factor k-module $V^{\otimes n} / R_{n}(V)$ is called the n-th exterior power of the k-module V and will be denoted by $\wedge^{n} V$. We denote by wedge ${ }_{V, n}$ the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / R_{n}(V)=\wedge^{n} V$. Clearly, this map wedge ${ }_{V, n}$ is a surjective k-module homomorphism.

We should understand these notions $R_{n}(V), \wedge^{n} V$ and wedge ${ }_{V, n}$ as analogues of the notions $Q_{n}(V)$, Exter $^{n} V$ and exter ${ }_{V, n}$ from Definition 36, respectively. First something very basic - an analogue of Corollary 39:

Corollary 66. Let k be a commutative ring. Let V be a k-module. Then,

$$
R_{2}(V)=\langle v \otimes v \mid v \in V\rangle .
$$

Proof of Corollary 66. We have the inclusions

$$
\left\{v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\} \subseteq\{v \otimes v \mid v \in V\}
$$

${ }^{15}$ and

$$
\{v \otimes v \mid v \in V\} \subseteq\left\{v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\}
$$

 $\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2}$ such that $i \neq j$ and $v_{i}=v_{j}$ and $p=v_{1} \otimes v_{2}$. Consider this
${ }^{16}$ Combining these two inclusions, we get

$$
\left\{v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\}=\{v \otimes v \mid v \in V\}
$$

But by the definition of $R_{2}(V)$, we have

$$
\begin{aligned}
R_{2}(V) & =\left\langle v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\rangle \\
& =\langle\underbrace{\left\{v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\}}_{=\{v \otimes v \mid v \in V\}}\rangle \\
& =\langle\{v \otimes v \mid v \in V\}\rangle=\langle v \otimes v \mid v \in V\rangle .
\end{aligned}
$$

This proves Corollary 66 .
Here is an analogue of Proposition 38:
Proposition 67. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Then,

$$
R_{n}(V)=\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle
$$

While the proof of this proposition is not too much harder than that of Proposition 38, it is better understood when split into lemmas. Here is the first one:

Lemma 68. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Let $\widetilde{R}_{n}(V)$ denote the k-submodule

$$
\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle
$$

of $V^{\otimes n}$. Then, $Q_{n}(V) \subseteq \widetilde{R}_{n}(V)$.
$\left(\left(v_{1}, v_{2}\right),(i, j)\right)$. Then, $(i, j) \in\{1,2\}^{2}$. Since $i \neq j$, this yields that either $(i=1$ and $j=2)$ or ($j=1$ and $i=2$). In each of these two cases, we have $v_{1}=v_{2}$ (in fact, in the case $(i=1$ and $j=2$), the equation $v_{i}=v_{j}$ rewrites as $v_{1}=v_{2}$; and in the other case ($j=1$ and $i=2$), the equation $v_{i}=v_{j}$ rewrites as $v_{2}=v_{1}$, so that $v_{1}=v_{2}$. Hence, we have $v_{1}=v_{2}$. Thus, $p=\underbrace{v_{1}}_{=v_{2}} \otimes v_{2}=$ $v_{2} \otimes v_{2} \in\{v \otimes v \mid v \in V\}$.
We have thus shown that $p \in\{v \otimes v \mid v \in V\}$ for every $p \in\left\{v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\}$. Hence, $\left\{v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\} \subseteq\{v \otimes v \mid v \in V\}$, qed.
${ }^{16}$ Proof. Let $p \in\{v \otimes v \mid v \in V\}$. Then, there exists $v \in V$ such that $p=v \otimes$ v. Consider this v. Then, there exists some $\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2}$ with $i \neq$ j and $v_{i}=v_{j}$ such that $p=v_{1} \otimes v_{2}$ (namely, $\left.\left(\left(v_{1}, v_{2}\right),(i, j)\right)=((v, v),(1,2))\right)$. Hence, $p \in\left\{v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\}$. Since we have proven this for every $p \in\{v \otimes v \mid v \in V\}$, we have thus shown that $\{v \otimes v \mid v \in V\} \subseteq$ $\left\{v_{1} \otimes v_{2} \mid\left(\left(v_{1}, v_{2}\right),(i, j)\right) \in V^{2} \times\{1,2\}^{2} ; i \neq j ; v_{i}=v_{j}\right\}$.

Proof of Lemma 68. (i) Every $i \in\{1,2, \ldots, n-1\}$ satisfies

$$
\begin{align*}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& \subseteq\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle, \tag{46}
\end{align*}
$$

where τ_{i} denotes the transposition $(i, i+1) \in S_{n}$.
Proof. Fix some $i \in\{1,2, \ldots, n-1\}$. Now let \mathfrak{W} be the set

$$
\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{i}=w_{i+1}\right\} .
$$

Then,

$$
\begin{equation*}
w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \in \mathfrak{W} \quad \text { for every }\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} \text { satisfying } w_{i}=w_{i+1} . \tag{47}
\end{equation*}
$$

Fix some arbitrary $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$. Define a tensor $A \in V^{\otimes(i-1)}$ by $A=$ $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}$. Define a tensor $C \in V^{\otimes(n-1-i)}$ by $C=v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}$. Then, recalling Convention 12, we have

$$
\begin{align*}
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} & =\underbrace{\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}\right)}_{=A} \otimes\left(v_{i} \otimes v_{i+1}\right) \otimes \underbrace{\left(v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}\right)}_{=C} \\
& =A \otimes\left(v_{i} \otimes v_{i+1}\right) \otimes C . \tag{48}
\end{align*}
$$

On the other hand, every $j \in\{1,2, \ldots, i-1\}$ satisfies $\tau_{i}(j)=j$ (since τ_{i} is the transposition $(i, i+1)$) and thus $v_{\tau_{i}(j)}=v_{j}$. In other words, we have the equalities $v_{\tau_{i}(1)}=v_{1}, v_{\tau_{i}(2)}=v_{2}, \ldots, v_{\tau_{i}(i-1)}=v_{i-1}$. Taking the tensor product of these equalities yields

$$
v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(i-1)}=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}=A .
$$

Every $j \in\{i+2, i+3, \ldots, n\}$ satisfies $\tau_{i}(j)=j$ (since τ_{i} is the transposition $(i, i+1))$ and thus $v_{\tau_{i}(j)}=v_{j}$. In other words, we have the equalities $v_{\tau_{i}(i+2)}=v_{i+2}$, $v_{\tau_{i}(i+3)}=v_{i+3}, \ldots, v_{\tau_{i}(n)}=v_{n}$. Taking the tensor product of these equalities yields

$$
v_{\tau_{i}(i+2)} \otimes v_{\tau_{i}(i+3)} \otimes \cdots \otimes v_{\tau_{i}(n)}=v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}=C .
$$

Since τ_{i} is the transposition $(i, i+1)$, we have $\tau_{i}(i)=i+1$ and $\tau_{i}(i+1)=i$. These equalities yield $v_{\tau_{i}(i)}=v_{i+1}$ and $v_{\tau_{i}(i+1)}=v_{i}$, respectively.

Now,

$$
\begin{aligned}
& v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \\
& =\underbrace{\left(v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(i-1)}\right)}_{=A} \otimes(\underbrace{v_{\tau_{i}(i)}}_{=v_{i+1}} \otimes \underbrace{v_{\tau_{i}(i+1)}}_{=v_{i}}) \otimes \underbrace{\left(v_{\tau_{i}(i+2)} \otimes v_{\tau_{i}(i+3)} \otimes \cdots \otimes v_{\tau_{i}(n)}\right)}_{=C} \\
& =A \otimes\left(v_{i+1} \otimes v_{i}\right) \otimes C .
\end{aligned}
$$

Adding this to (48), we get

$$
\begin{align*}
& v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \\
& =A \otimes\left(v_{i} \otimes v_{i+1}\right) \otimes C+A \otimes\left(v_{i+1} \otimes v_{i}\right) \otimes C \\
& =A \otimes\left(v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i}\right) \otimes C . \tag{49}
\end{align*}
$$

But it is easy to see that

$$
\begin{equation*}
A \otimes p \otimes p \otimes C \in \mathfrak{W} \quad \text { for every } p \in V \tag{50}
\end{equation*}
$$

${ }^{17}$ Since $\mathfrak{W} \subseteq\langle\mathfrak{W}\rangle$, this yields

$$
\begin{equation*}
A \otimes p \otimes p \otimes C \in\langle\mathfrak{W}\rangle \quad \text { for every } p \in V \text {. } \tag{52}
\end{equation*}
$$

Now,

$$
\begin{aligned}
v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i} & =\underbrace{\left(v_{i} \otimes v_{i}+v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i}+v_{i+1} \otimes v_{i+1}\right)}_{=\left(v_{i}+v_{i+1}\right) \otimes\left(v_{i}+v_{i+1}\right)}-v_{i} \otimes v_{i}-v_{i+1} \otimes v_{i+1} \\
& =\left(v_{i}+v_{i+1}\right) \otimes\left(v_{i}+v_{i+1}\right)-v_{i} \otimes v_{i}-v_{i+1} \otimes v_{i+1} .
\end{aligned}
$$

${ }^{17}$ Proof of (50). Let $p \in V$. Define an n-tuple $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n}$ by

$$
\left(w_{\ell}=\left\{\begin{array}{c}
v_{\ell}, \text { if } \ell<i ; \tag{51}\\
p, \text { if } \ell=i ; \\
p, \text { if } \ell=i+1 ; \\
v_{\ell}, \text { if } \ell>i+1
\end{array} \quad \text { for every } \ell \in\{1,2, \ldots, n\}\right) .\right.
$$

Then, every $\ell \in\{1,2, \ldots, i-1\}$ satisfies $w_{\ell}=\left\{\begin{array}{c}v_{\ell}, \text { if } \ell<i ; \\ p, \text { if } \ell=i ; \\ p \text {, if } \ell=i+1 ; \\ v_{\ell}, \text { if } \ell>i+1\end{array} \quad=v_{\ell}\right.$ (since $\ell<i$). In other words, we have the equalities $w_{1}=v_{1}, w_{2}=v_{2}, \ldots, w_{i-1}=v_{i-1}$. Taking the tensor product of these equalities, we get $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{i-1}=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}=A$.

$$
\text { Also, every } \ell \in\{i+2, i+3, \ldots, n\} \text { satisfies } w_{\ell}=\left\{\begin{array}{c}
v_{\ell}, \text { if } \ell<i ; \\
p \text {, if } \ell i ; \\
p \text {, if } \ell=i+1 ; \\
v_{\ell}, \text { if } \ell>i+1
\end{array} \text {, }=v_{\ell}(\text { since } \ell>i+1)\right. \text {. In }
$$

other words, we have the equalities $w_{i+2}=v_{i+2}, w_{i+3}=v_{i+3}, \ldots, w_{n}=v_{n}$. Taking the tensor product of these equalities, we get $w_{i+2} \otimes w_{i+3} \otimes \cdots \otimes w_{n}=v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}=C$.

$$
\text { Applying } 551 \text { to } \ell=i \text {, we get } w_{i}=\left\{\begin{array}{c}
v_{i}, \text { if } i<i ; \\
p, \text { if } i=i ; \\
p, \text { if } i=i+1 ; \\
v_{i}, \text { if } i>i+1
\end{array} \quad=p(\text { since } i=i) . \text { Applying } \square 51\right\} \text { to }
$$

$$
\ell=i+1 \text {, we get } w_{i}=\left\{\begin{array}{c}
v_{i+1}, \text { if } i+1<i ; \\
p \text {, if } i+1=i ; \\
p, \text { if } i+1=i+1 ; \\
v_{i+1}, \text { if } i+1>i+1
\end{array}=p(\text { since } i+1=i+1) .\right.
$$

Now,
$w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}=\underbrace{\left(w_{1} \otimes w_{2} \otimes \cdots \otimes w_{i-1}\right)}_{=A} \otimes \underbrace{w_{i}}_{=p} \otimes \underbrace{w_{i+1}}_{=p} \otimes \underbrace{\left(w_{i+2} \otimes w_{i+3} \otimes \cdots \otimes w_{n}\right)}_{=C}=A \otimes p \otimes p \otimes C$.
Since $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \in \mathfrak{W}$ (by (47)), we thus have $A \otimes p \otimes p \otimes C \in \mathfrak{W}$. This proves (50).

Thus, (49) becomes

$$
\in\langle\mathfrak{W}\rangle-\langle\mathfrak{W}\rangle-\langle\mathfrak{W}\rangle \subseteq\langle\mathfrak{W}\rangle \quad \text { (since }\langle\mathfrak{W}\rangle \text { is a } k \text {-module) } .
$$

We now forget that we fixed $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. What we have proven is that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \in\langle\mathfrak{W}\rangle .
$$

In other words,

$$
\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} \subseteq\langle\mathfrak{W J}\rangle .
$$

Hence, Proposition 35 (a) (applied to $V^{\otimes n}$,
$\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}$ and $\langle\mathfrak{W}\rangle$ instead of M, S and Q) yields

$$
\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}\right\rangle \subseteq\langle\mathfrak{W}\rangle .
$$

Thus,

$$
\begin{aligned}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& =\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}\right\rangle \\
& \subseteq\langle\mathfrak{W}\rangle=\left\langle\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{i}=w_{i+1}\right\}\right\rangle \\
& \quad\left(\text { since } \mathfrak{W}=\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{i}=w_{i+1}\right\}\right) \\
& =\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{i}=w_{i+1}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle
\end{aligned}
$$

(here, we renamed $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ as $\left.\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right)$.
This proves (i).
(ii) For every $i \in\{1,2, \ldots, n-1\}$, let τ_{i} denote the transposition $(i, i+1) \in S_{n}$. By Proposition 38, we have

$$
\begin{align*}
Q_{n}(V) & =\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& \subseteq \sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle \tag{46}\\
& =\widetilde{R}_{n}(V) .
\end{align*}
$$

This proves Lemma 68 .
Our next step is the following lemma:

$$
\begin{aligned}
& v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{\tau_{i}(1)} \otimes v_{\tau_{i}(2)} \otimes \cdots \otimes v_{\tau_{i}(n)} \\
& =A \otimes \underbrace{\left(v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i}\right)}_{=\left(v_{i}+v_{i+1}\right) \otimes\left(v_{i}+v_{i+1}\right)-v_{i} \otimes v_{i}-v_{i+1} \otimes v_{i+1}} \otimes C \\
& =A \otimes\left(\left(v_{i}+v_{i+1}\right) \otimes\left(v_{i}+v_{i+1}\right)-v_{i} \otimes v_{i}-v_{i+1} \otimes v_{i+1}\right) \otimes C \\
& =\underbrace{A \otimes\left(v_{i}+v_{i+1}\right) \otimes\left(v_{i}+v_{i+1}\right) \otimes C}_{\left.\in\{\mathfrak{2 W \rangle}\rangle \text { (by (522), applied to } p=v_{i}+v_{i+1}\right)}-\underbrace{A \otimes v_{i} \otimes v_{i} \otimes C}_{\in\{\mathfrak{W}\rangle\rangle\left(\text { by } \sqrt{52]} \text {, applied to } p=v_{i}\right)}-\underbrace{A \otimes v_{i+1} \otimes v_{i+1} \otimes C}_{\in\{\mathfrak{W}\rangle\rangle\left(\text { by } \text { (522), applied to } p=v_{i+1}\right)}
\end{aligned}
$$

Lemma 69. In the situation of Lemma 68, we have $\widetilde{R}_{n}(V) \subseteq R_{n}(V)$.
Proof of Lemma 69. First fix some $\mathbf{I} \in\{1,2, \ldots, n-1\}$. Fix some $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in$ V^{n} satisfying $w_{\mathbf{I}}=w_{\mathbf{I}+1}$. Then, the pair $\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right),(\mathbf{I}, \mathbf{I}+1)\right) \in V^{n} \times\{1,2, \ldots, n\}^{2}$ satisfies $\mathbf{I} \neq \mathbf{I}+1$ and $v_{\mathbf{I}}=v_{\mathbf{I}+1}$. Therefore,
$w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}$
$\in\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),(i, j)\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; i \neq j ; v_{i}=v_{j}\right\}$ $\subseteq\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),(i, j)\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; i \neq j ; v_{i}=v_{j}\right\}\right\rangle$ $=\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),(i, j)\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; i \neq j ; v_{i}=v_{j}\right\rangle$
$=R_{n}(V)$.
Now forget that we fixed some $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n}$ satisfying $w_{\mathbf{I}}=w_{\mathbf{I}+1}$. We have thus proven that every $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n}$ satisfying $w_{\mathbf{I}}=w_{\mathbf{I}+1}$ satisfies $w_{1} \otimes w_{2} \otimes$ $\cdots \otimes w_{n} \in R_{n}(V)$. In other words, we have proven that

$$
\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{\mathbf{I}}=w_{\mathbf{I}+1}\right\} \subseteq R_{n}(V)
$$

Hence, Proposition 35 (a) (applied to $V^{\otimes n}$,
$\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid \quad\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{\mathbf{I}}=w_{\mathbf{I}+1}\right\}$ and $R_{n}(V)$ instead of M, S and Q) yields

$$
\left\langle\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{\mathbf{I}}=w_{\mathbf{I}+1}\right\}\right\rangle \subseteq R_{n}(V)
$$

So we have

$$
\begin{align*}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{\mathbf{I}}=v_{\mathbf{I}+1}\right\rangle \\
& =\left\langle w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{\mathbf{I}}=w_{\mathbf{I}+1}\right\rangle \\
& \left.\quad \text { (here, we renamed }\left(v_{1}, v_{2}, \ldots, v_{n}\right) \text { as }\left(w_{1}, w_{2}, \ldots, w_{n}\right)\right) \\
& =\left\langle\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n} ; w_{\mathbf{I}}=w_{\mathbf{I}+1}\right\}\right\rangle \subseteq R_{n}(V) . \tag{53}
\end{align*}
$$

Now forget that we fixed some $\mathbf{I} \in\{1,2, \ldots, n-1\}$. We have now proven that every $\mathbf{I} \in\{1,2, \ldots, n-1\}$ satisfies (53). Now,

$$
\begin{aligned}
\widetilde{R}_{n}(V) & =\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle \\
& =\sum_{\mathbf{I}=1}^{n-1} \underbrace{\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{\mathbf{I}}=v_{\mathbf{I}+1}\right\rangle}_{\subseteq R_{n}(V)(\text { by }(533)}
\end{aligned}
$$

(here, we renamed the summation index i as \mathbf{I})

$$
\subseteq \sum_{\mathbf{I}=1}^{n-1} R_{n}(V) \subseteq R_{n}(V) \quad\left(\text { since } R_{n}(V) \text { is a } k \text {-module }\right)
$$

This proves Lemma 69.
Our final lemma is:

Lemma 70. In the situation of Lemma 68, we have $R_{n}(V) \subseteq \widetilde{R}_{n}(V)$.
Proof of Lemma 70. (i) It is clear that every $\mathbf{I} \in\{1,2, \ldots, n-1\}$ satisfies

$$
\begin{aligned}
& \left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{\mathbf{I}}=v_{\mathbf{I}+1}\right\} \\
& \subseteq\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{\mathbf{I}}=v_{\mathbf{I}+1}\right\}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{\mathbf{I}}=v_{\mathbf{I}+1}\right\rangle \\
& \subseteq \sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle=\widetilde{R}_{n}(V) .
\end{aligned}
$$

In other words, for every $\mathbf{I} \in\{1,2, \ldots, n-1\}$,
every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ such that $v_{\mathbf{I}}=v_{\mathbf{I}+1}$ satisfies $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \in \widetilde{R}_{n}(V)$.
(ii) Every $\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right),(\mathbf{I}, \mathbf{J})\right) \in V^{n} \times\{1,2, \ldots, n\}^{2}$ satisfying $\mathbf{I} \neq \mathbf{J}$ and $w_{\mathbf{I}}=$ $w_{\mathbf{J}}$ must satisfy $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \in \widetilde{R}_{n}(V)$.

Proof. Fix some $\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right),(\mathbf{I}, \mathbf{J})\right) \in V^{n} \times\{1,2, \ldots, n\}^{2}$ satisfying $\mathbf{I} \neq \mathbf{J}$ and $w_{\mathbf{I}}=w_{\mathbf{J}}$.

Then, $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n}$ and $(\mathbf{I}, \mathbf{J}) \in\{1,2, \ldots, n\}^{2}$.
We can WLOG assume that $\mathbf{I} \leq \mathbf{J}$ (since otherwise, we could just transpose \mathbf{I} with \mathbf{J}, and nothing would change (because each of the conditions $\mathbf{I} \neq \mathbf{J}$ and $w_{\mathbf{I}}=w_{\mathbf{J}}$ is clearly symmetric with respect to \mathbf{I} and $\mathbf{J})$). So let us assume this. Then, $\mathbf{I}<\mathbf{J}$ (since $\mathbf{I} \leq \mathbf{J}$ and $\mathbf{I} \neq \mathbf{J}$). Thus, $\mathbf{I}<\mathbf{J} \leq n$, so that $\mathbf{I} \leq n-1$ (since \mathbf{I} and n are integers), and thus $\mathbf{I}+1 \leq n$. This allows us to speak of the vector $w_{\mathbf{I}+1}$.

Now, there clearly exists a permutation $\tau \in S_{n}$ such that $\tau(\mathbf{I})=\mathbf{I}$ and $\tau(\mathbf{I}+1)=\mathbf{J}$. ${ }^{18}$ Consider such a τ. From $\tau(\mathbf{I})=\mathbf{I}$, we obtain $w_{\tau(\mathbf{I})}=w_{\mathbf{I}}=w_{\mathbf{J}}=w_{\tau(\mathbf{I}+1)}$ (since $\mathbf{J}=\tau(\mathbf{I}+1)$.

Now, since $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in V^{n}$ and $\tau \in S_{n}$, we have $\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right), \tau\right) \in V^{n} \times$ S_{n}, so that
$w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}-(-1)^{\tau} w_{\tau(1)} \otimes w_{\tau(2)} \otimes \cdots \otimes w_{\tau(n)}$
$\in\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid \quad\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\}$
$\subseteq\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\}\right\rangle$
$=\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\rangle$
$=Q_{n}(V) \subseteq \widetilde{R}_{n}(V) \quad$ (by Lemma 68).
${ }^{18}$ Proof. We distinguish between two cases:
Case 1: We have $\mathbf{J}=\mathbf{I}+1$.
Case 2: We have $\mathbf{J} \neq \mathbf{I}+1$.
First consider Case 1. In this case, the permutation id $\in S_{n}$ satisfies id $(\mathbf{I})=\mathbf{I}$ and $\operatorname{id}(\mathbf{I}+1)=$ $\mathbf{I}+1=\mathbf{J}$. Hence, in Case 1, there exists a permutation $\tau \in S_{n}$ such that $\tau(\mathbf{I})=\mathbf{I}$ and $\tau(\mathbf{I}+1)=\mathbf{J}$ (namely, $\tau=\mathrm{id}$).

Now let us consider Case 2. In this case, $\mathbf{J} \neq \mathbf{I}+1$. Hence, the transposition $(\mathbf{J}, \mathbf{I}+1) \in S_{n}$ is well-defined, and it satisfies $(\mathbf{J}, \mathbf{I}+1)(\mathbf{I})=\mathbf{I}($ since $\mathbf{J} \neq \mathbf{I}$ and $\mathbf{I}+1 \neq \mathbf{I})$ and $(\mathbf{J}, \mathbf{I}+1)(\mathbf{I}+1)=\mathbf{J}$. Hence, in Case 2, there exists a permutation $\tau \in S_{n}$ such that $\tau(\mathbf{I})=\mathbf{I}$ and $\tau(\mathbf{I}+1)=\mathbf{J}$ (namely, $\tau=(\mathbf{J}, \mathbf{I}+1)$.

We have thus proven in each of the two possible cases that there exists a permutation $\tau \in S_{n}$ such that $\tau(\mathbf{I})=\mathbf{I}$ and $\tau(\mathbf{I}+1)=\mathbf{J}$.

This completes the proof that there always exists a permutation $\tau \in S_{n}$ such that $\tau(\mathbf{I})=\mathbf{I}$ and $\tau(\mathbf{I}+1)=\mathbf{J}$.

On the other hand, the n-tuple $\left(w_{\tau(1)}, w_{\tau(2)}, \ldots, w_{\tau(n)}\right) \in V^{n}$ satisfies $w_{\tau(\mathbf{I})}=w_{\tau(\mathbf{I}+1)}$.
Hence, (54) (applied to $\left.\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\left(w_{\tau(1)}, w_{\tau(2)}, \ldots, w_{\tau(n)}\right)\right)$ yields $w_{\tau(1)} \otimes w_{\tau(2)} \otimes$
$\cdots \otimes w_{\tau(n)} \in \widetilde{R}_{n}(V)$.
Now,
$w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}$
$=\underbrace{\left(w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}-(-1)^{\tau} w_{\tau(1)} \otimes w_{\tau(2)} \otimes \cdots \otimes w_{\tau(n)}\right)}_{\in \widetilde{R}_{n}(V)}+(-1)^{\tau} \underbrace{w_{\tau(1)} \otimes w_{\tau(2)} \otimes \cdots \otimes w_{\tau(n)}}_{\in \widetilde{R}_{n}(V)}$
$\in \widetilde{R}_{n}(V)+(-1)^{\tau} \widetilde{R}_{n}(V) \subseteq \widetilde{R}_{n}(V) \quad\left(\right.$ since $\widetilde{R}_{n}(V)$ is a k-module $)$.
This proves (ii).
(iii) According to (ii), every $\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right),(\mathbf{I}, \mathbf{J})\right) \in V^{n} \times\{1,2, \ldots, n\}^{2}$ satisfying
$\mathbf{I} \neq \mathbf{J}$ and $w_{\mathbf{I}}=w_{\mathbf{J}}$ must satisfy $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \in \widetilde{R}_{n}(V)$.
In other words,
$\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right),(\mathbf{I}, \mathbf{J})\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; \mathbf{I} \neq \mathbf{J} ; w_{\mathbf{I}}=w_{\mathbf{J}}\right\}$
$\subseteq \widetilde{R}_{n}(V)$.
Thus, Proposition 35 (a) (applied to $V^{\otimes n}$,
$\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right),(\mathbf{I}, \mathbf{J})\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; \mathbf{I} \neq \mathbf{J} ; w_{\mathbf{I}}=w_{\mathbf{J}}\right\}$
and $\widetilde{R}_{n}(V)$ instead of M, S and Q) yields
$\left\langle\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right),(\mathbf{I}, \mathbf{J})\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; \mathbf{I} \neq \mathbf{J} ; w_{\mathbf{I}}=w_{\mathbf{J}}\right\}\right\rangle$ $\subseteq \widetilde{R}_{n}(V)$.

Now,
$R_{n}(V)$
$=\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),(i, j)\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; i \neq j ; v_{i}=v_{j}\right\rangle$
$=\left\langle\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \mid\left(\left(w_{1}, w_{2}, \ldots, w_{n}\right),(\mathbf{I}, \mathbf{J})\right) \in V^{n} \times\{1,2, \ldots, n\}^{2} ; \mathbf{I} \neq \mathbf{J} ; w_{\mathbf{I}}=w_{\mathbf{J}}\right\}\right\rangle$
$\subseteq \widetilde{R}_{n}(V)$.
This proves Lemma 70 .
Proof of Proposition 67. Lemma 70 yields $R_{n}(V) \subseteq \widetilde{R}_{n}(V)$. Lemma 69 yields $\widetilde{R}_{n}(V) \subseteq$ $R_{n}(V)$. Combining these two inclusions, we obtain $\widetilde{R}_{n}(V)=R_{n}(V)$. Thus,

$$
R_{n}(V)=\widetilde{R}_{n}(V)=\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle
$$

This proves Proposition 67.
The analogue of Lemma 41 looks as follows:

Lemma 71. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$. Let $i \in\{1,2, \ldots, n-1\}$.
Then,

$$
\begin{aligned}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle \\
& =V^{\otimes(i-1)} \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)} .
\end{aligned}
$$

Here, we consider $V^{\otimes n}$ as a k-submodule of $\otimes V$.
Proof of Lemma 71. Let V^{Δ} be the k-submodule $\{(v, v) \mid v \in V\}$ of V^{2}. Then, $V^{\Delta}=$ $\left\{(v, w) \in V^{2} \mid v=w\right\}$. Hence, for every $\left(v_{i}, v_{i+1}\right) \in V^{2}$, we have

$$
\begin{equation*}
\left(v_{i}, v_{i+1}\right) \in V^{\Delta} \text { if and only if } v_{i}=v_{i+1} \tag{55}
\end{equation*}
$$

Define a map $a: V^{i-1} \rightarrow V^{\otimes(i-1)}$ by

$$
\left(a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1} \quad \text { for every }\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \in V^{i-1}\right) .
$$

Define a map $b: V^{\Delta} \rightarrow V^{\otimes 2}$ by

$$
\left(b\left(v_{i}, v_{i+1}\right)=v_{i} \otimes v_{i+1} \quad \text { for every }\left(v_{i}, v_{i+1}\right) \in V^{\Delta}\right) .
$$

(Of course, every $\left(v_{i}, v_{i+1}\right) \in V^{\Delta}$ in fact satisfies $v_{i}=v_{i+1}$ by the definition of V^{Δ}; but we still use different letters for v_{i} and v_{i+1} here to make this notation match another one.) Define a map $c: V^{n-1-i} \rightarrow V^{\otimes(n-1-i)}$ by
$\left(c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)=v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n} \quad\right.$ for every $\left.\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \in V^{n-1-i}\right)$.
Since $V^{\otimes(i-1)}$, $V^{\otimes 2}$ and $V^{\otimes(n-1-i)}$ are k-submodules of $\otimes V$, we can consider all three maps a, b and c as maps to the set $\otimes V$.

It is now easy to see that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ such that $v_{i}=v_{i+1}$ satisfies $\left(v_{i}, v_{i+1}\right) \in V^{\Delta}$ and

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right),
$$

where the multiplication on the right hand side is the multiplication in the tensor
algebra $\otimes V . \quad{ }^{19}$ Thus,
$\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle$
$=\left\langle a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle$
$=\left\langle a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right.$

(here, we substituted the triple $\left.\left(\left(v_{1}, v_{2}, \ldots, v_{i-1}\right),\left(v_{i}, v_{i+1}\right),\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right)\right)$
$=\left\langle a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right.$
$\left|\left(\left(v_{1}, v_{2}, \ldots, v_{i-1}\right),\left(v_{i}, v_{i+1}\right),\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right) \in V^{i-1} \times V^{2} \times V^{n-1-i} ;\left(v_{i}, v_{i+1}\right) \in V^{\Delta}\right\rangle$
$=\langle a(x) b(y) c(z) \mid \underbrace{(x, y, z) \in V^{i-1} \times V^{2} \times V^{n-1-i} ; y \in V^{\Delta}}_{\text {this is equivalent to }(x, y, z) \in V^{i-1} \times V^{\Delta} \times V^{n-1-i}}\rangle$
(here, we renamed $\left(\left(v_{1}, v_{2}, \ldots, v_{i-1}\right),\left(v_{i}, v_{i+1}\right),\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right)$ as $\left.(x, y, z)\right)$
$=\left\langle a(x) b(y) c(z) \mid \quad(x, y, z) \in V^{i-1} \times V^{\Delta} \times V^{n-1-i}\right\rangle$.
But Lemma 40 (b) (applied to $X=V^{i-1}, Y=V^{\Delta}, Z=V^{n-1-i}$ and $P=\otimes V$) yields

$$
\begin{aligned}
& \left\langle a(x) \mid x \in V^{i-1}\right\rangle \cdot\left\langle b(y) \mid y \in V^{\Delta}\right\rangle \cdot\left\langle c(z) \mid z \in V^{n-1-i}\right\rangle \\
& =\left\langle a(x) b(y) c(z) \mid \quad(x, y, z) \in V^{i-1} \times V^{\Delta} \times V^{n-1-i}\right\rangle .
\end{aligned}
$$

${ }^{19}$ Proof. Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ be such that $v_{i}=v_{i+1}$. Then, $(\underbrace{v_{i}}_{=v_{i+1}}, v_{i+1})=\left(v_{i+1}, v_{i+1}\right) \in$ $\{(v, v) \mid v \in V\}=V^{\Delta}$. Recalling Convention 12, we have

$$
\begin{aligned}
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} & =\underbrace{\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}\right)}_{=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)} \otimes \underbrace{\left(v_{i} \otimes v_{i+1}\right)}_{=b\left(v_{i}, v_{i+1}\right)} \otimes \underbrace{\left(v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}\right)}_{=c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)} \\
& =a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes b\left(v_{i}, v_{i+1}\right) \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) .
\end{aligned}
$$

On the other hand, (3) (applied to $a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right), b\left(v_{i}, v_{i+1}\right), i-1$ and 2 instead of a, b, n and m) yields

$$
a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right)=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes b\left(v_{i}, v_{i+1}\right)
$$

Also, (33) (applied to $a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right), c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right), i+1$ and $n-1-i$ instead of a, b, n and $m)$ yields

$$
\begin{aligned}
& a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right) \cdot c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \\
& =\underbrace{\left(a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \cdot b\left(v_{i}, v_{i+1}\right)\right)}_{=a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes b\left(v_{i}, v_{i+1}\right)} \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \\
& =a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \otimes b\left(v_{i}, v_{i+1}\right) \otimes c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}
\end{aligned}
$$

qed.

Compared to (56), this yields

$$
\begin{align*}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle \\
& =\left\langle a(x) \mid x \in V^{i-1}\right\rangle \cdot\left\langle b(y) \mid y \in V^{\Delta}\right\rangle \cdot\left\langle c(z) \mid z \in V^{n-1-i}\right\rangle . \tag{57}
\end{align*}
$$

But

$$
\begin{aligned}
&\left\langle a(x) \mid x \in V^{i-1}\right\rangle=\langle\underbrace{a\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)}_{=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}} \mid\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \in V^{i-1}\rangle \\
&\left.\quad \text { (here, we renamed } x \text { as }\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)\right) \\
&=\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1} \mid\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \in V^{i-1}\right\rangle=V^{\otimes(i-1)}
\end{aligned}
$$

(since the k-module $V^{\otimes(i-1)}$ is generated by its pure tensors, i. e., by tensors of the form $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{i-1}$ with $\left.\left(v_{1}, v_{2}, \ldots, v_{i-1}\right) \in V^{i-1}\right)$. Also,

$$
\begin{aligned}
&\left\langle c(z) \mid z \in V^{n-1-i}\right\rangle=\langle\underbrace{c\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)}_{=v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}} \mid\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \in V^{n-1-i}\rangle \\
&\left.\quad \text { (here, we renamed } z \text { as }\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right)\right) \\
&=\left\langle v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n} \mid\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \in V^{n-1-i}\right\rangle=V^{\otimes(n-1-i)}
\end{aligned}
$$

(since the k-module $V^{\otimes(n-1-i)}$ is generated by its pure tensors, i. e., by tensors of the form $v_{i+2} \otimes v_{i+3} \otimes \cdots \otimes v_{n}$ with $\left.\left(v_{i+2}, v_{i+3}, \ldots, v_{n}\right) \in V^{n-1-i}\right)$. Also, the map

$$
\begin{equation*}
V \rightarrow V^{\Delta}, \quad v \mapsto(v, v) \tag{58}
\end{equation*}
$$

is a bijection (this follows easily by the definition of V^{Δ}), and thus we have

$$
\begin{aligned}
\left\langle b(y) \mid y \in V^{\Delta}\right\rangle= & \langle\underbrace{b(v, v)}_{\substack{=v v v \\
\text { (by the definition of } b)}} \mid v \in V\rangle \\
& \quad\binom{\text { here, we substituted }(v, v) \text { for } y, \text { because }}{\text { the map (58) is a bijection }} \\
= & \langle v \otimes v \mid v \in V\rangle=R_{2}(V) \quad \text { (by Corollary 66). } .
\end{aligned}
$$

Thus, (57) becomes

$$
\begin{aligned}
& \left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle \\
& =\underbrace{\left\langle a(x) \mid x \in V^{i-1}\right\rangle}_{=V^{\otimes(i-1)}} \cdot \underbrace{\left\langle b(y) \mid y \in V^{\Delta}\right\rangle}_{=R_{2}(V)} \cdot \underbrace{\left\langle c(z) \mid z \in V^{n-1-i}\right\rangle}_{=V^{\otimes(n-1-i)}} \\
& =V^{\otimes(i-1)} \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)},
\end{aligned}
$$

so that Lemma 71 is proven.
Next, the analogue of Corollary 42,

Corollary 72. Let k be a commutative ring. Let V be a k-module. Let $n \in \mathbb{N}$.
Then,

$$
R_{n}(V)=\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)}
$$

(this is an equality between k-submodules of $\otimes V$, where $R_{n}(V)$ becomes such a k submodule by means of the inclusion $\left.R_{n}(V) \subseteq V^{\otimes n} \subseteq \otimes V\right)$. Here, the multiplication on the right hand side is multiplication inside the k-algebra $\otimes V$.

Proof of Corollary 72. By Proposition 67, we have

$$
\begin{aligned}
R_{n}(V) & =\sum_{i=1}^{n-1} \underbrace{}_{=V^{\otimes(i-1) \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)}(\text { by Lemma } 71)}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle} \\
& =\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)} .
\end{aligned}
$$

Thus, Corollary 72 is proven.
Now the analogue of Theorem 43 .
Theorem 73. Let k be a commutative ring. Let V be a k-module. We know that $R_{n}(V)$ is a k-submodule of $V^{\otimes n}$ for every $n \in \mathbb{N}$. Thus, $\bigoplus_{n \in \mathbb{N}} R_{n}(V)$ is a k-submodule of $\bigoplus_{n \in \mathbb{N}} V^{\otimes n}=\otimes V$. This k-submodule satisfies

$$
\bigoplus_{n \in \mathbb{N}} R_{n}(V)=(\otimes V) \cdot\left(R_{2}(V)\right) \cdot(\otimes V)
$$

Proof of Theorem 73. The proof of Theorem 73 using Corollary 72 is completely analogous to the proof of Theorem 43 using Corollary 42 .

Now we can finally define the exterior algebra, similarly to Definition 44 .
Definition 74. Let k be a commutative ring. Let V be a k-module.
By Theorem 73 , the two k-submodules $\bigoplus_{n \in \mathbb{N}} R_{n}(V)$ and $(\otimes V) \cdot\left(R_{2}(V)\right) \cdot(\otimes V)$ of $\otimes V$ are identic (where $\bigoplus_{n \in \mathbb{N}} R_{n}(V)$ becomes a k-submodule of $\otimes V$ in the same way as explained in Theorem 73). We denote these two identic k-submodules by $R(V)$. In other words, we define $R(V)$ by

$$
R(V)=\bigoplus_{n \in \mathbb{N}} R_{n}(V)=(\otimes V) \cdot\left(R_{2}(V)\right) \cdot(\otimes V)
$$

Since $R(V)=(\otimes V) \cdot\left(R_{2}(V)\right) \cdot(\otimes V)$, it is clear that $R(V)$ is a two-sided ideal of the k-algebra $\otimes V$.

Now we define a k-module $\wedge V$ as the direct sum $\bigoplus_{n \in \mathbb{N}} \wedge^{n} V$. Then,

$$
\begin{aligned}
\wedge V & =\bigoplus_{n \in \mathbb{N}=V^{\otimes n} / R_{n}(V)}^{\wedge^{n} V}=\bigoplus_{n \in \mathbb{N}}\left(V^{\otimes n} / R_{n}(V)\right) \cong \underbrace{\left(\bigoplus_{n \in \mathbb{N}} V^{\otimes n}\right)}_{=\otimes V} / \underbrace{\left(\bigoplus_{n \in \mathbb{N}} R_{n}(V)\right)}_{=R(V)} \\
& =(\otimes V) / R(V) .
\end{aligned}
$$

This is a canonical isomorphism, so we will use it to identify $\wedge V$ with $(\otimes V) / R(V)$. Since $R(V)$ is a two-sided ideal of the k-algebra $\otimes V$, the quotient k-module $(\otimes V) / R(V)$ canonically becomes a k-algebra. Since $\wedge V=(\otimes V) / R(V)$, this means that $\wedge V$ becomes a k-algebra. We refer to this k-algebra as the exterior algebra of the k-module V.
We denote by wedge ${ }_{V}$ the canonical projection $\otimes V \rightarrow(\otimes V) / R(V)=\wedge V$. Clearly, this map wedge ${ }_{V}$ is a surjective k-algebra homomorphism. Besides, due to $\otimes V=\bigoplus_{n \in \mathbb{N}} V^{\otimes n}$ and $R(V)=\bigoplus_{n \in \mathbb{N}} R_{n}(V)$, it is clear that the canonical projection $\otimes V \rightarrow(\otimes V) / R(V)$ is the direct sum of the canonical projections $V^{\otimes n} \rightarrow$ $V^{\otimes n} / R_{n}(V)$ over all $n \in \mathbb{N}$. Since the canonical projection $\otimes V \rightarrow(\otimes V) / R(V)$ is the map wedge ${ }_{V}$, whereas the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / R_{n}(V)$ is the map wedge $_{V, n}$, this rewrites as follows: The map wedge ${ }_{V}$ is the direct sum of the maps wedge $_{V, n}$ over all $n \in \mathbb{N}$.
When $v_{1}, v_{2}, \ldots, v_{n}$ are some elements of V, one often abbreviates the element wedge $_{V}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)$ of $\wedge V$ by $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{n}$. (We will not use this abbreviation in this following.)

We should think of the notions $R(V), \wedge V$ and wedge $_{V}$ as analogues of the notions $Q(V)$, Exter V and exter $_{V}$ from Definition 44, respectively. The next result provides an analogue of Lemma 45 :

Lemma 75. Let k be a commutative ring. Let V and W be two k-modules. Let $f: V \rightarrow W$ be a k-module homomorphism.
(a) Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ satisfies $(\otimes f)(R(V)) \subseteq$ $R(W)$. Also, for every $n \in \mathbb{N}$, the k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ satisfies $f^{\otimes n}\left(R_{n}(V)\right) \subseteq R_{n}(W)$.
(b) Assume that f is surjective. Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow$ $\otimes W$ satisfies $(\otimes f)(R(V))=R(W)$. Also, for every $n \in \mathbb{N}$, the k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ satisfies $f^{\otimes n}\left(R_{n}(V)\right)=R_{n}(W)$.

We can prove Lemma 75 by imitating the proof of Lemma 45 with some minor changes, but let us instead give a different proof for a change:

Proof of Lemma 75. First, let us prepare.
Corollary 66 yields $R_{2}(V)=\langle v \otimes v \mid v \in V\rangle$. Corollary 66 (applied to W instead of V) yields $R_{2}(W)=\langle v \otimes v \mid v \in W\rangle=\langle w \otimes w \mid w \in W\rangle$.

Now, every $v \in V$ satisfies

$$
\begin{aligned}
(\otimes f)(v \otimes v) & =f(v) \otimes f(v) \quad \text { (by the definition of } \otimes f) \\
& \in\{w \otimes w \mid w \in W\} .
\end{aligned}
$$

In other words,

$$
\begin{equation*}
\{(\otimes f)(v \otimes v) \mid v \in V\} \subseteq\{w \otimes w \mid w \in W\} \tag{59}
\end{equation*}
$$

Thus,

$$
(\otimes f)(\{v \otimes v \mid v \in V\})=\{(\otimes f)(v \otimes v) \mid v \in V\} \subseteq\{w \otimes w \mid w \in W\} .
$$

But Proposition 35 (b) (applied to $\otimes V,\{v \otimes v \mid v \in V\}, \otimes W$ and $\otimes f$ instead of M, S, R and $f)$ yields $(\otimes f)(\langle\{v \otimes v \mid v \in V\}\rangle)=\langle(\otimes f)(\{v \otimes v \mid v \in V\})\rangle$. Now,

$$
R_{2}(V)=\langle v \otimes v \mid v \in V\rangle=\langle\{v \otimes v \mid v \in V\}\rangle,
$$

so that

$$
\begin{align*}
(\otimes f)\left(R_{2}(V)\right) & =(\otimes f)(\langle\{v \otimes v \mid v \in V\}\rangle)=\langle\underbrace{(\otimes f)(\{v \otimes v \mid v \in V\})}_{\subseteq\{w \otimes w \mid w \in W\}}\rangle \\
& \subseteq\langle\{w \otimes w \mid w \in W\}\rangle=\langle w \otimes w \mid w \in W\rangle=R_{2}(W) . \tag{60}
\end{align*}
$$

By Corollary 72, we have

$$
\begin{equation*}
R_{n}(V)=\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)} \tag{61}
\end{equation*}
$$

for every $n \in \mathbb{N}$. Corollary 72 (applied to W instead of V) yields

$$
\begin{equation*}
R_{n}(W)=\sum_{i=1}^{n-1} W^{\otimes(i-1)} \cdot\left(R_{2}(W)\right) \cdot W^{\otimes(n-1-i)} \tag{62}
\end{equation*}
$$

for every $n \in \mathbb{N}$.
The map $\otimes f$ is the direct sum of the maps $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ for $n \in \mathbb{N}$. Hence, for every $n \in \mathbb{N}$, the restriction $\left.(\otimes f)\right|_{V \otimes n}$ of the map $\otimes f$ to $V^{\otimes n}$ is the map $f^{\otimes n}$ (at least if we ignore the technicality that the targets of the maps $\otimes f$ and $f^{\otimes n}$ are different).

It is also clear that

$$
\begin{equation*}
(\otimes f)\left(V^{\otimes j}\right) \subseteq W^{\otimes j} \quad \text { for every } j \in \mathbb{N} \tag{63}
\end{equation*}
$$

(since $\otimes f$ is the direct sum of the maps $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ for $n \in \mathbb{N}$).
(a) For every $n \in \mathbb{N}$, we have

$$
\begin{align*}
(\otimes f)\left(R_{n}(V)\right)= & (\otimes f)\left(\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)}\right) \tag{61}\\
= & \sum_{i=1}^{n-1} \underbrace{(\otimes f)\left(V^{\otimes(i-1)}\right)}_{\subseteq W^{\otimes(i-1)}(\text { by } \sqrt{63)})} \cdot \underbrace{(\otimes f)\left(R_{2}(V)\right)}_{\left.\subseteq R_{2}(W) \text { (by } \sqrt{60)}\right)} \cdot \underbrace{(\otimes f)\left(V^{\otimes(n-1-i)}\right)}_{\subseteq W^{\otimes(n-1-i)}(\text { by } \sqrt{633)})} \\
& \subseteq \sum_{i=1}^{n-1} W^{\otimes(i-1)} \cdot\left(R_{2}(W)\right) \cdot W^{\otimes(n-1-i)}=R_{n}(W) .
\end{align*}
$$

Since $(\otimes f)\left(R_{n}(V)\right)=\underbrace{\left(\left.(\otimes f)\right|_{V \otimes n}\right)}_{=f^{\otimes n}}\left(R_{n}(V)\right)=f^{\otimes n}\left(R_{n}(V)\right)$, this rewrites as $f^{\otimes n}\left(R_{n}(V)\right) \subseteq$ $R_{n}(W)$.

We have $R(V)=\bigoplus_{n \in \mathbb{N}} R_{n}(V)=\sum_{n \in \mathbb{N}} R_{n}(V)$ (because direct sums are sums) and $R(W)=\sum_{n \in \mathbb{N}} R_{n}(W)$ (similarly). Since $R(V)=\sum_{n \in \mathbb{N}} R_{n}(V)$, we have
$(\otimes f)(R(V))=(\otimes f)\left(\sum_{n \in \mathbb{N}} R_{n}(V)\right)=\sum_{n \in \mathbb{N}} \underbrace{(\otimes f)\left(R_{n}(V)\right)}_{\subseteq R_{n}(W)} \quad$ (since $\otimes f$ is k-linear)

$$
\subseteq \sum_{n \in \mathbb{N}} R_{n}(W)=R(W) .
$$

This completes the proof of Lemma 75 (a).
(b) Assume that the map f is surjective.

Every $w \in W$ satisfies $w \otimes w \in\{(\otimes f)(v \otimes v) \mid v \in V\}$. ${ }^{20}$ In other words, $\{w \otimes w \mid w \in W\} \subseteq\{(\otimes f)(v \otimes v) \mid v \in V\}$. Combined with (59), this yields

$$
\begin{equation*}
\{(\otimes f)(v \otimes v) \mid v \in V\}=\{w \otimes w \mid w \in W\} \tag{64}
\end{equation*}
$$

Now, in the same way as we used (59) to prove (60), we can use (64) to prove that

$$
\begin{equation*}
(\otimes f)\left(R_{n}(V)\right)=R_{n}(W) . \tag{65}
\end{equation*}
$$

For every $n \in \mathbb{N}$, we have $(\otimes f)\left(V^{\otimes n}\right)=\underbrace{\left(\left.(\otimes f)\right|_{V \otimes n}\right)}_{=f^{\otimes n}}\left(V^{\otimes n}\right)=f^{\otimes n}\left(V^{\otimes n}\right)=W^{\otimes n}$ (since $f^{\otimes n}$ is surjective by Proposition 47 (a)). Renaming n as j in this statement, we see that

$$
\begin{equation*}
(\otimes f)\left(V^{\otimes j}\right) \subseteq W^{\otimes j} \quad \text { for every } j \in \mathbb{N} . \tag{66}
\end{equation*}
$$

Now, for every $n \in \mathbb{N}$, we have

$$
\begin{align*}
(\otimes f)\left(R_{n}(V)\right)= & (\otimes f)\left(\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)}\right) \tag{61}\\
= & \sum_{i=1}^{n-1} \underbrace{(\otimes f)\left(V^{\otimes(i-1)}\right)}_{=W^{\otimes(i-1)}(\text { by } \sqrt{666})} \cdot \underbrace{(\otimes f)\left(R_{2}(V)\right)}_{=R_{2}(W)(\text { by } \sqrt{65)})} \cdot \underbrace{(\otimes f)\left(V^{\otimes(n-1-i)}\right)}_{=W^{\otimes(n-1-i)}(\text { by } \sqrt{66]})} \\
& =\sum_{i=1}^{n-1} W^{\otimes(i-1)} \cdot\left(R_{2}(W)\right) \cdot W^{\otimes(n-1-i)}=R_{n}(W) .
\end{align*}
$$

Since $(\otimes f)\left(R_{n}(V)\right)=\underbrace{\left(\left.(\otimes f)\right|_{V \otimes n}\right)}_{=f^{\otimes n}}\left(R_{n}(V)\right)=f^{\otimes n}\left(R_{n}(V)\right)$, this rewrites as $f^{\otimes n}\left(R_{n}(V)\right)=$ $R_{n}(W)$.

[^8]We have $R(V)=\bigoplus_{n \in \mathbb{N}} R_{n}(V)=\sum_{n \in \mathbb{N}} R_{n}(V)$ (because direct sums are sums) and $R(W)=\sum_{n \in \mathbb{N}} R_{n}(W)$ (similarly). Since $R(V)=\sum_{n \in \mathbb{N}} R_{n}(V)$, we have

$$
\begin{aligned}
(\otimes f)(R(V)) & =(\otimes f)\left(\sum_{n \in \mathbb{N}} R_{n}(V)\right)=\sum_{n \in \mathbb{N}} \underbrace{(\otimes f)\left(R_{n}(V)\right)}_{=R_{n}(W)} \quad \text { (since } \otimes f \text { is } k \text {-linear) } \\
& =\sum_{n \in \mathbb{N}} R_{n}(W)=R(W) .
\end{aligned}
$$

This completes the proof of Lemma 75 (b).
The following definition mirrors Definition 46:
Definition 76. Let k be a commutative ring. Let V and W be two k-modules. Let $f: V \rightarrow W$ be a k-module homomorphism. Then, the k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ satisfies $(\otimes f)(R(V)) \subseteq R(W)$ (by Lemma 75 (a)), and thus gives rise to a k-algebra homomorphism $(\otimes V) / R(V) \rightarrow(\otimes W) / R(W)$. This latter k-algebra homomorphism will be denoted by $\wedge f$. Since $(\otimes V) / R(V)=\wedge V$ and $(\otimes W) / R(W)=\wedge W$, this homomorphism $\wedge f:(\otimes V) / R(V) \rightarrow(\otimes W) / R(W)$ is actually a homomorphism from $\wedge V$ to $\wedge W$.
By the construction of $\wedge f$, the diagram

commutes (since wedge ${ }_{V}$ is the canonical projection $\otimes V \rightarrow \wedge V$ and since wedge ${ }_{W}$ is the canonical projection $\otimes W \rightarrow \wedge W)$.

Needless to say, the notion $\wedge f$ introduced in this definition is an analogue of the notion Exter f introduced in Definition 46.

Here is the analogue of Proposition 47:
Proposition 77. Let k be a commutative ring. Let V and W be two k-modules. Let $f: V \rightarrow W$ be a surjective k-module homomorphism. Then:
(a) The k-module homomorphism $f^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$ is surjective for every $n \in \mathbb{N}$.
(b) The k-algebra homomorphism $\otimes f: \otimes V \rightarrow \otimes W$ is surjective.
(c) The k-algebra homomorphism $\wedge f: \wedge V \rightarrow \wedge W$ is surjective.

Proof of Proposition 77. The proof of this Proposition 77 is completely analogous to the proof of Proposition 47 (and parts (a) and (b) are even the same).

So much for analogues of the results of Subsection 0.12. Now let us formulate the analogues of the results of Subsection 0.13. First, the analogue of Theorem 48:

Theorem 78. Let k be a commutative ring. Let V and V^{\prime} be two k-modules, and let $f: V \rightarrow V^{\prime}$ be a surjective k-module homomorphism. Then, the kernel of the $\operatorname{map} \wedge f: \wedge V \rightarrow \wedge V^{\prime}$ is
$\operatorname{Ker}(\wedge f)=(\wedge V) \cdot \operatorname{wedge}_{V}(\operatorname{Ker} f) \cdot(\wedge V)=(\wedge V) \cdot$ wedge $_{V}(\operatorname{Ker} f)=\operatorname{wedge}_{V}(\operatorname{Ker} f) \cdot(\wedge V)$.
Here, $\operatorname{Ker} f$ is considered a k-submodule of $\otimes V$ by means of the inclusion $\operatorname{Ker} f \subseteq$ $V=V^{\otimes 1} \subseteq \otimes V$.

Proof of Theorem 78. The proof of this Theorem 78 is completely analogous to that of Theorem 48,

The analogue of Corollary 50 comes next:
Corollary 79. Let k be a commutative ring. Let V be a k-module, and let W be a k-submodule of V. Then,

$$
(\wedge V) \cdot \operatorname{wedge}_{V}(W) \cdot(\wedge V)=(\wedge V) \cdot \operatorname{wedge}_{V}(W)=\operatorname{wedge}_{V}(W) \cdot(\wedge V)
$$

Here, W is considered a k-submodule of $\otimes V$ by means of the inclusion $W \subseteq V=$ $V^{\otimes 1} \subseteq \otimes V$.

Proof of Corollary 79. Expectedly, the proof of Corollary 79 is analogous to the proof of Corollary 50 .

Finally, the analogue of Corollary 51:
Corollary 80. Let k be a commutative ring. Let V be a k-module. Let W be a k-submodule of V, and let $f: V \rightarrow V / W$ be the canonical projection.
(a) Then, the kernel of the map $\wedge f: \wedge V \rightarrow \wedge(V / W)$ is
$\operatorname{Ker}(\wedge f)=(\wedge V) \cdot \operatorname{wedge}_{V}(W) \cdot(\wedge V)=(\wedge V) \cdot \operatorname{wedge}_{V}(W)=\operatorname{wedge}_{V}(W) \cdot(\wedge V)$.
Here, W is considered a k-submodule of $\otimes V$ by means of the inclusion $W \subseteq V=$ $V^{\otimes 1} \subseteq \otimes V$.
(b) We have

$$
(\wedge V) /\left((\wedge V) \cdot \text { wedge }_{V}(W)\right) \cong \wedge(V / W) \quad \text { as } k \text {-modules. }
$$

Proof of Corollary 80. The proof of Corollary 80 is analogous to the proof of Corollary 51.

0.16. The relation between the exterior and pseudoexterior algebras

The name "pseudoexterior" for the algebra Exter V introduced in Definition 44 already suggests a close relation to the exterior algebra $\wedge V$. Indeed such a relation is given by the following two theorems:

Theorem 81. Let k be a commutative ring. Let V be a k-module.
(a) We have $Q_{n}(V) \subseteq R_{n}(V)$ for all $n \in \mathbb{N}$.
(b) We have $Q(V) \subseteq R(V)$.
(c) For every $n \in \mathbb{N}$, the projection wedge ${ }_{V, n}: V^{\otimes n} \rightarrow \wedge^{n} V$ factors through the projection exter $_{V, n}: V^{\otimes n} \rightarrow$ Exter $^{n} V$.
(d) The projection wedge ${ }_{V}: \otimes V \rightarrow \wedge V$ factors through the projection exter ${ }_{V}$: $\otimes V \rightarrow$ Exter V.

Theorem 82. Let k be a commutative ring in which 2 is invertible. Let V be a k-module.
(a) We have $Q_{n}(V)=R_{n}(V)$ for all $n \in \mathbb{N}$.
(b) We have $Q(V)=R(V)$.
(c) For every $n \in \mathbb{N}$, we have $\wedge^{n} V=\operatorname{Exter}^{n} V$ and wedge ${ }_{V, n}=\operatorname{exter}_{V, n}$.
(d) We have $\wedge V=$ Exter V and wedge ${ }_{V}=\operatorname{exter}_{V}$.

Proof of Theorem 81. (a) Let us use the notations of Lemma 68. For every $n \in \mathbb{N}$, we have

$$
\begin{aligned}
Q_{n}(V) & \subseteq \widetilde{R}_{n}(V) & & (\text { by Lemma 68) } \\
& \subseteq R_{n}(V) & & (\text { by Lemma 69) } .
\end{aligned}
$$

This proves Theorem 81 (a).
(b) We have

$$
Q(V)=\bigoplus_{n \in \mathbb{N}} \underbrace{Q_{n}(V)}_{\substack{\subseteq R_{n}(V) \\ \text { (by Theorem [1] (a)) }}} \subseteq \bigoplus_{n \in \mathbb{N}} R_{n}(V)=R(V) .
$$

This proves Theorem 81 (b).
(c) Let $n \in \mathbb{N}$. The canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / R_{n}(V)$ factors through the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / Q_{n}(V)$ (because $Q_{n}(V) \subseteq R_{n}(V)$ by Theorem 81 (a)). Since the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / R_{n}(V)$ is the map wedge ${ }_{V, n}$: $V^{\otimes n} \rightarrow \wedge^{n} V$, and since the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / Q_{n}(V)$ is the map $\operatorname{exter}_{V, n}: V^{\otimes n} \rightarrow$ Exter $^{n} V$, this rewrites as follows: The map wedge ${ }_{V, n}: V^{\otimes n} \rightarrow \wedge^{n} V$ factors through the map $\operatorname{exter}_{V, n}: V^{\otimes n} \rightarrow \operatorname{Exter}^{n} V$. This proves Theorem 81 (c).
(d) The canonical projection $\otimes V \rightarrow(\otimes V) / R(V)$ factors through the canonical projection $\otimes V \rightarrow(\otimes V) / Q(V)$ (because $Q(V) \subseteq R(V)$ by Theorem 81 (b)). Since the canonical projection $\otimes V \rightarrow(\otimes V) / R(V)$ is the map wedge ${ }_{V}: \otimes V \rightarrow \wedge V$, and since the canonical projection $\otimes V \rightarrow(\otimes V) / Q(V)$ is the map exter ${ }_{V}: \otimes V \rightarrow$ Exter V, this rewrites as follows: The map wedge ${ }_{V}: \otimes V \rightarrow \wedge V$ factors through the map exter $_{V}: \otimes V \rightarrow$ Exter V. This proves Theorem 81(d).

Proof of Theorem 82. The main step is to prove that $Q_{2}(V)=R_{2}(V)$. Let us do this now:

Corollary 39 yields

$$
Q_{2}(V)=\left\langle v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle .
$$

Every $v \in V$ satisfies

$$
\begin{aligned}
v \otimes v & =\frac{1}{2}(v \otimes v+v \otimes v) \quad \text { (since } 2 \text { is invertible in } k \text {) } \\
& =\frac{1}{2} v \otimes v+v \otimes \frac{1}{2} v \in\left\{v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\}
\end{aligned}
$$

(since the tensor $\frac{1}{2} v \otimes v+v \otimes \frac{1}{2} v$ has the form $v_{1} \otimes v_{2}+v_{2} \otimes v_{1}$ for $\left(v_{1}, v_{2}\right)=\left(\frac{1}{2} v, v\right)$).
In other words,

$$
\{v \otimes v \mid v \in V\} \subseteq\left\{v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\} .
$$

Now, Corollary 66 yields

$$
\begin{aligned}
R_{2}(V) & =\langle v \otimes v \mid v \in V\rangle=\langle\underbrace{\{v \otimes v \mid v \in V\}}_{\subseteq\left\{v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\}}\rangle \subseteq\left\langle\left\{v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle=Q_{2}(V) .
\end{aligned}
$$

Combined with $Q_{2}(V) \subseteq R_{2}(V)$ (which follows from Theorem 81 (a), applied to $n=2$), this yields $Q_{2}(V)=R_{2}(V)$.
(a) Let $n \in \mathbb{N}$. Both $Q_{n}(V)$ and $R_{n}(V)$ are k-submodules of $V^{\otimes n}$ and thus k submodules of $\otimes V$ (since $\left.V^{\otimes n} \subseteq \otimes V\right)$. Using the multiplication on the k-algebra $\otimes V$, we have

$$
\begin{aligned}
Q_{n}(V) & =\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot \underbrace{\left(Q_{2}(V)\right)}_{=R_{2}(V)} \cdot V^{\otimes(n-1-i)} \quad \text { (by Corollary 42) } \\
& =\sum_{i=1}^{n-1} V^{\otimes(i-1)} \cdot\left(R_{2}(V)\right) \cdot V^{\otimes(n-1-i)}=R_{n}(V) \quad \text { (by Corollary 72). }
\end{aligned}
$$

This proves Theorem 82 (a).
(b) We have

$$
Q(V)=\bigoplus_{n \in \mathbb{N}} \underbrace{Q_{n}(V)}_{\substack{R_{n}(V) \\ \text { (by Theorem|82|(a)) }}}=\bigoplus_{n \in \mathbb{N}} R_{n}(V)=R(V) .
$$

This proves Theorem 82 (b).
(c) Let $n \in \mathbb{N}$. Then, $V^{\otimes n} / R_{n}(V)=V^{\otimes n} / Q_{n}(V)$ (because $R_{n}(V)=Q_{n}(V)$ by Theorem 82 (a)). Thus, $\wedge^{n} V=V^{\otimes n} / R_{n}(V)=V^{\otimes n} / Q_{n}(V)=\operatorname{Exten}^{n} V$.

Since the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / R_{n}(V)$ is the map wedge ${ }_{V, n}: V^{\otimes n} \rightarrow$ $\wedge^{n} V$, and since the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / Q_{n}(V)$ is the map exter ${ }_{V, n}$: $V^{\otimes n} \rightarrow \operatorname{Exter}^{n} V$, we have wedge ${ }_{V, n}=\operatorname{exter}_{V, n}$ (because $R_{n}(V)=Q_{n}(V)$). This proves Theorem 82 (c).
(d) We have $(\otimes V) / R(V)=(\otimes V) / Q(V)$ (because $R(V)=Q(V)$ by Theorem 82 (b)). Since the canonical projection $\otimes V \rightarrow(\otimes V) / R(V)$ is the map wedge ${ }_{V}: \otimes V \rightarrow$ $\wedge V$, and since the canonical projection $\otimes V \rightarrow(\otimes V) / Q(V)$ is the map exter ${ }_{V}: \otimes V \rightarrow$ Exter V, we have wedge ${ }_{V}=\operatorname{exter}_{V}$ (because $R(V)=Q(V)$). This proves Theorem 82 (d).

0.17. The symmetric algebra is commutative

In this section we are going to continue the study of the symmetric algebra that we started in Section 0.14 and prove some results which don't have direct analogues for Exter V and $\wedge V$ (although some analogues for $\wedge V$ can be found with a little more effort, which we are not going to make).

The main result of this section will be:
Theorem 83. Let k be a commutative ring. Let V be a k-module. Then, the k-algebra $\operatorname{Sym} V$ is commutative.

The standard proof of this theorem proceeds by double induction over the degrees of the tensors that must be shown to commute. We are going to show a slightly slicker version of this proof here, which replaces the double induction by a double application of Lemma 49 (which, in its proof, hides an induction). The intermediate step between these two applications will be the following lemma:

Lemma 84. Let k be a commutative ring. Let V be a k-module. Every $v \in V$ and every $p \in \operatorname{Sym} V$ satisfy $\operatorname{sym}_{V}(v) \cdot p=p \cdot \operatorname{sym}_{V}(v)$.
(Of course, the notations we are using here and everywhere throughout this section are the notations of Section 0.14.)

Proof of Lemma 84. Let $v \in V$. Let M be the subset

$$
\left\{q \in \operatorname{Sym} V \mid \operatorname{sym}_{V}(v) \cdot q=q \cdot \operatorname{sym}_{V}(v)\right\}
$$

of $\operatorname{Sym} V$. We are going to prove that M is the whole Sym V.
First of all, we have $0 \in M \quad{ }^{21}$. Furthermore, every $\alpha \in k, \beta \in k, p \in M$ and $r \in M$ satisfy $\alpha p+\beta r \in M . \quad{ }^{[22}$ In other words, M is a k-submodule of Sym V.

Second, $1 \in M$ (with 1 denoting the unity of the k-algebra $\operatorname{Sym} V$)
On the other hand, every $(p, s) \in M \times \operatorname{sym}_{V}(V)$ satisfy $p \cdot s \in M \quad{ }^{24}$. In other words, $\left\{p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\} \subseteq M$. By Proposition 35 (a) (applied to Sym V, $\left\{p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\}$ and M instead of M, S and $\left.Q\right)$, this yields

$$
\left\langle\left\{p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\}\right\rangle \subseteq M .
$$

${ }^{21}$ Proof. Clearly, $\operatorname{sym}_{V}(v) \cdot 0=0=0 \cdot \operatorname{sym}_{V}(v)$, so that $0 \quad \in$ $\left\{q \in \operatorname{Sym} V \mid \operatorname{sym}_{V}(v) \cdot q=q \cdot \operatorname{sym}_{V}(v)\right\}=M$.
${ }^{22}$ Proof. Let $\alpha \in k, \beta \in k, p \in M$ and $r \in M$.
Since $p \in M=\left\{q \in \operatorname{Sym} V \mid \operatorname{sym}_{V}(v) \cdot q=q \cdot \operatorname{sym}_{V}(v)\right\}$, we have $\operatorname{sym}_{V}(v) \cdot p=p \cdot \operatorname{sym}_{V}(v)$.
Similarly, $\operatorname{sym}_{V}(v) \cdot r=r \cdot \operatorname{sym}_{V}(v)$. Now,

$$
\begin{aligned}
\operatorname{sym}_{V}(v) \cdot(\alpha p+\beta r) & =\alpha \underbrace{\operatorname{sym}_{V}(v) \cdot p}_{=p \cdot \operatorname{sym}_{V}(v)}+\beta \underbrace{\operatorname{sym}_{V}(v) \cdot r}_{=r \cdot \operatorname{sym}_{V}(v)}=\alpha p \cdot \operatorname{sym}_{V}(v)+\beta r \cdot \operatorname{sym}_{V}(v) \\
& =(\alpha p+\beta r) \cdot \operatorname{sym}_{V}(v) .
\end{aligned}
$$

In other words, $\alpha p+\beta r \in\left\{q \in \operatorname{Sym} V \mid \operatorname{sym}_{V}(v) \cdot q=q \cdot \operatorname{sym}_{V}(v)\right\}=M$, qed.
${ }^{23}$ Proof. Clearly, $\operatorname{sym}_{V}(v) \cdot 1=\operatorname{sym}_{V}(v)=1 \cdot \operatorname{sym}_{V}(v)$, so that $1 \in$ $\left\{q \in \operatorname{Sym} V \mid \operatorname{sym}_{V}(v) \cdot q=q \cdot \operatorname{sym}_{V}(v)\right\}=M$.
${ }^{24}$ Proof. Let $(p, s) \in M \times \operatorname{sym}_{V}(V)$. Then, $p \in M$ and $s \in \operatorname{sym}_{V}(V)$. Since $s \in \operatorname{sym}_{V}(V)$, there exists some $w \in V$ such that $s=\operatorname{sym}_{V}(w)$. Consider this w.

Since $p \in M=\left\{q \in \operatorname{Sym} V \mid \operatorname{sym}_{V}(v) \cdot q=q \cdot \operatorname{sym}_{V}(v)\right\}$, we have $\operatorname{sym}_{V}(v) \cdot p=p \cdot \operatorname{sym}_{V}(v)$.
We have $v \in V=V^{\otimes 1}$ and $w \in V=V^{\otimes 1}$. Hence, $v \cdot w=v \otimes w$ (by (3), applied to $v, w, 1$ and

Now,
$M \cdot \operatorname{sym}_{V}(V)=\left\langle p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\rangle=\left\langle\left\{p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\}\right\rangle \subseteq M$.
By Lemma 49 (applied to $A=\operatorname{Sym} V$ and $\pi=\operatorname{sym}_{V}$), this yields that M is a right ideal of $\operatorname{Sym} V$. Thus, $M \cdot \operatorname{Sym} V \subseteq M$. But since $1 \in M$, we have 1 . $\operatorname{Sym} V \subseteq M \cdot \operatorname{Sym} V \subseteq M$, so that $\operatorname{Sym} V=1 \cdot \operatorname{Sym} V \subseteq M$. Combined with $M \subseteq \operatorname{Sym} V$, this yields $M=\operatorname{Sym} V$. Hence, every $p \in \operatorname{Sym} V$ satisfies $p \in M=$ $\left\{q \in \operatorname{Sym} V \mid \operatorname{sym}_{V}(v) \cdot q=q \cdot \operatorname{sym}_{V}(v)\right\}$, so that $\operatorname{sym}_{V}(v) \cdot p=p \cdot \operatorname{sym}_{V}(v)$. This proves Lemma 84.

Using Lemma 84, we will now prove Theorem 83;
Proof of Theorem [83. a) Let $t \in \operatorname{Sym} V$. We are going to prove that $t p=p t$ for every $p \in \operatorname{Sym} V$.

Proof. Let M be the subset

$$
\{q \in \operatorname{Sym} V \quad \mid t q=q t\}
$$

of Sym V. We are going to prove that M is the whole Sym V.
First of all, we have $0 \in M \quad{ }^{25}$. Also, every $\alpha \in k, \beta \in k, p \in M$ and $r \in M$ satisfy $\alpha p+\beta r \in M . \quad{ }^{26}$ In other words, M is a k-submodule of Sym V.

Second, $1 \in M$ (with 1 denoting the unity of the k-algebra $\operatorname{Sym} V$)
1 instead of a, b, n and $m)$ and similarly $w \cdot v=w \otimes v$. Thus,

$$
\begin{aligned}
\underbrace{v \cdot w}_{=v \otimes w}-\underbrace{w \cdot v}_{=w \otimes v} & =v \otimes w-w \otimes v \\
& \in\left\{v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\} \\
& \subseteq\left\langle\left\{v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle=K_{2}(V) \quad \text { (by Corollary 54) } \\
& \subseteq \bigoplus_{n \in \mathbb{N}} K_{n}(V)=K(V) .
\end{aligned}
$$

In other words, $v \cdot w \equiv w \cdot v \bmod K(V)$. Since sym_{V} is the projection $\otimes V \rightarrow(\otimes V) / K(V)$, this rewrites as $\operatorname{sym}_{V}(v \cdot w)=\operatorname{sym}_{V}(w \cdot v)$. Since sym_{V} is a k-algebra homomorphism, we have $\operatorname{sym}_{V}(v \cdot w)=\operatorname{sym}_{V}(v) \cdot \operatorname{sym}_{V}(w)$ and $\operatorname{sym}_{V}(w \cdot v)=\operatorname{sym}_{V}(w) \cdot \operatorname{sym}_{V}(v)$.

Now,

$$
\begin{aligned}
\underbrace{\operatorname{sym}_{V}(v) \cdot p}_{=p \cdot \operatorname{sym}_{V}(v)} \cdot \underbrace{s}_{=\operatorname{sym}_{V}(w)} & =p \cdot \underbrace{\operatorname{sym}_{V}(v) \cdot \operatorname{sym}_{V}(w)}_{\substack{\operatorname{sym}_{V}(v \cdot w)=\operatorname{sym}_{V}(w \cdot v) \\
\operatorname{sym}_{V}(w) \cdot \operatorname{sym}_{V}(v)}}=p \cdot \underbrace{\operatorname{sym}_{V}(w)}_{=s} \cdot \operatorname{sym}_{V}(v) \\
& =p \cdot s \cdot \operatorname{sym}_{V}(v) .
\end{aligned}
$$

In other words, $p \cdot s \in\left\{q \in \operatorname{Sym} V \mid \operatorname{sym}_{V}(v) \cdot q=q \cdot \operatorname{sym}_{V}(v)\right\}=M$, qed.
${ }^{25}$ Proof. Clearly, $t 0=0=0 t$, so that $0 \in\{q \in \operatorname{Sym} V \mid t q=q t\}=M$.
${ }^{26}$ Proof. Let $\alpha \in k, \beta \in k, p \in M$ and $r \in M$.
Since $p \in M=\{q \in \operatorname{Sym} V \mid t q=q t\}$, we have $t p=p t$. Similarly, $t r=r t$. Now,

$$
t(\alpha p+\beta r)=\alpha \underbrace{t p}_{=p t}+\beta \underbrace{t r}_{=r t}=\alpha p t+\beta r t=(\alpha p+\beta r) t .
$$

In other words, $\alpha p+\beta r \in\{q \in \operatorname{Sym} V \mid t q=q t\}=M$, qed.
${ }^{27}$ Proof. Clearly, $t \cdot 1=t=1 t$, so that $1 \in\{q \in \operatorname{Sym} V \mid t q=q t\}=M$.

On the other hand, every $(p, s) \in M \times \operatorname{sym}_{V}(V)$ satisfy $p \cdot s \in M \quad{ }^{28}$. In other words, $\left\{p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\} \subseteq M$. By Proposition 35 (a) (applied to Sym V, $\left\{p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\}$ and M instead of M, S and $\left.Q\right)$, this yields

$$
\left\langle\left\{p \cdot s \mid \quad(p, s) \in M \times \operatorname{sym}_{V}(V)\right\}\right\rangle \subseteq M .
$$

Now,
$M \cdot \operatorname{sym}_{V}(V)=\left\langle p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\rangle=\left\langle\left\{p \cdot s \mid(p, s) \in M \times \operatorname{sym}_{V}(V)\right\}\right\rangle \subseteq M$.
By Lemma 49 (applied to $A=\operatorname{Sym} V$ and $\pi=\operatorname{sym}_{V}$), this yields that M is a right ideal of $\operatorname{Sym} V$. Thus, $M \cdot \operatorname{Sym} V \subseteq M$. But since $1 \in M$, we have $1 \cdot \operatorname{Sym} V \subseteq$ $M \cdot \operatorname{Sym} V \subseteq M$, so that $\operatorname{Sym} V=1 \cdot \operatorname{Sym} V \subseteq M$. Combined with $M \subseteq \operatorname{Sym} V$, this yields $M=\operatorname{Sym} V$. Hence, every $p \in \operatorname{Sym} V$ satisfies $p \in M=\{q \in \operatorname{Sym} V \mid t q=q t\}$, so that $t p=p t$. This proves a).
b) Forget that we fixed t. We have proven that every $t \in \operatorname{Sym} V$ and every $p \in \operatorname{Sym} V$ satisfy $t p=p t$ (by part a)). In other words, the k-algebra $\operatorname{Sym} V$ is commutative. Theorem 83 is proven.

Theorem 83 is a result on the nature of the factor algebra Sym $V=(\otimes V) / K(V)$, so unsurprisingly it gives us an insight about the ideal $K(V)$ itself - namely, a new characterization of this ideal:

Corollary 85. Let k be a commutative ring. Let V be a k-module. Then,

$$
K(V)=(\otimes V) \cdot\left\langle p q-q p \mid \quad(p, q) \in(\otimes V)^{2}\right\rangle \cdot(\otimes V) .
$$

This Corollary is usually formulated as follows: The ideal $K(V)$ is the commutator ideal of the k-algebra $\otimes V$. This is actually often used as an alternative definition of $K(V)$.

Proof of Corollary 85. a) Let us first show that $K(V) \subseteq(\otimes V) \cdot\left\langle p q-q p \mid \quad(p, q) \in(\otimes V)^{2}\right\rangle$. $(\otimes V)$.

Proof. Every $\left(v_{1}, v_{2}\right) \in V^{2}$ satisfies $v_{1} \otimes v_{2}-v_{2} \otimes v_{1}=v_{1} v_{2}-v_{2} v_{1}$. $\quad{ }^{29}$ Hence,

$$
\begin{aligned}
& \left\{v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\} \\
& =\left\{v_{1} v_{2}-v_{2} v_{1} \mid \quad\left(v_{1}, v_{2}\right) \in V^{2}\right\}=\left\{p q-q p \mid(p, q) \in V^{2}\right\} \\
& \left.\quad \text { (here, we renamed }\left(v_{1}, v_{2}\right) \text { as }(p, q)\right) \\
& \subseteq\left\{p q-q p \mid(p, q) \in(\otimes V)^{2}\right\} \quad\left(\text { since } V^{2} \subseteq(\otimes V)^{2}\right)
\end{aligned}
$$

${ }^{28}$ Proof. Let $(p, s) \in M \times \operatorname{sym}_{V}(V)$. Then, $p \in M$ and $s \in \operatorname{sym}_{V}(V)$. Since $s \in \operatorname{sym}_{V}(V)$, there exists some $v \in V$ such that $s=\operatorname{sym}_{V}(v)$. Consider this v. Lemma 84 (applied to t instead of p) yields $\operatorname{sym}_{V}(v) \cdot t=t \cdot \operatorname{sym}_{V}(v)$. Since $\operatorname{sym}_{V}(v)=s$, this becomes $s \cdot t=t \cdot s$.

Since $p \in M=\{q \in \operatorname{Sym} V \mid t q=q t\}$, we have $t p=p t$. Now, $\underbrace{t p}_{=p t} s=p \underbrace{t \cdot s}_{=s \cdot t=s t}=p s t$. In other words, $p s \in\{q \in \operatorname{Sym} V \mid t q=q t\}=M$, so that $p \cdot s=p s \in M$, qed.
${ }^{29}$ Proof. Let $\left(v_{1}, v_{2}\right) \in V^{2}$. Then, $v_{1} \in V=V^{\otimes 1}$ and $v_{2} \in V=V^{\otimes 1}$. Hence, $v_{1} \cdot v_{2}=v_{1} \otimes v_{2}$ (by (3), applied to $v_{1}, v_{2}, 1$ and 1 instead of a, b, n and m) and similarly $v_{2} \cdot v_{1}=v_{2} \otimes v_{1}$. Hence,

$$
\underbrace{v_{1} \otimes v_{2}}_{=v_{1} \cdot v_{2}=v_{1} v_{2}}-\underbrace{v_{2} \otimes v_{1}}_{=v_{2} \cdot v_{1}=v_{2} v_{1}}=v_{1} v_{2}-v_{2} v_{1},
$$

qed.

Thus,

$$
\left\langle\left\{v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\}\right\rangle \subseteq\left\langle\left\{p q-q p \mid(p, q) \in(\otimes V)^{2}\right\}\right\rangle .
$$

But by Corollary 54, we have

$$
\begin{aligned}
K_{2}(V) & =\left\langle v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\rangle=\left\langle\left\{v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \mid\left(v_{1}, v_{2}\right) \in V^{2}\right\}\right\rangle \\
& \subseteq\left\langle\left\{p q-q p \mid(p, q) \in(\otimes V)^{2}\right\}\right\rangle=\left\langle p q-q p \mid(p, q) \in(\otimes V)^{2}\right\rangle .
\end{aligned}
$$

Hence,

$$
(\otimes V) \cdot\left(K_{2}(V)\right) \cdot(\otimes V) \subseteq(\otimes V) \cdot\left\langle p q-q p \mid \quad(p, q) \in(\otimes V)^{2}\right\rangle \cdot(\otimes V) .
$$

Since $(\otimes V) \cdot\left(K_{2}(V)\right) \cdot(\otimes V)=K(V)$, this rewrites as

$$
K(V) \subseteq(\otimes V) \cdot\left\langle p q-q p \mid \quad(p, q) \in(\otimes V)^{2}\right\rangle \cdot(\otimes V)
$$

This proves part a).
b) Now we will prove that $(\otimes V) \cdot\left\langle p q-q p \mid(p, q) \in(\otimes V)^{2}\right\rangle \cdot(\otimes V) \subseteq K(V)$.

Proof. Every $(p, q) \in(\otimes V)^{2}$ satisfy $p q-q p \in K(V){ }^{30}$. In other words, $\left\{p q-q p \mid(p, q) \in(\otimes V)^{2}\right\} \subseteq K(V)$. Hence, Proposition 35 (a) (applied to $\otimes V$, $\left\{p q-q p \mid(p, q) \in(\otimes V)^{2}\right\}$ and $K(V)$ instead of M, S and $\left.Q\right)$ yields

$$
\left\langle\left\{p q-q p \mid(p, q) \in(\otimes V)^{2}\right\}\right\rangle \subseteq K(V) .
$$

Thus,

$$
\left\langle p q-q p \mid(p, q) \in(\otimes V)^{2}\right\rangle=\left\langle\left\{p q-q p \mid(p, q) \in(\otimes V)^{2}\right\}\right\rangle \subseteq K(V) .
$$

Hence,

$$
(\otimes V) \cdot\left\langle p q-q p \mid \quad(p, q) \in(\otimes V)^{2}\right\rangle \cdot(\otimes V) \subseteq(\otimes V) \cdot(K(V)) \cdot(\otimes V) \subseteq K(V)
$$

(since $K(V)$ is a two-sided ideal of $\otimes V)$. This proves part b).
c) Combining $K(V) \subseteq(\otimes V) \cdot\left\langle p q-q p \mid(p, q) \in(\otimes V)^{2}\right\rangle \cdot(\otimes V)$ (which we know from part a)) with $(\otimes V) \cdot\left\langle p q-q p \mid \quad(p, q) \in(\otimes V)^{2}\right\rangle \cdot(\otimes V) \subseteq K(V)$ (which we know from part b)), we obtain $K(V)=(\otimes V) \cdot\left\langle p q-q p \mid(p, q) \in(\otimes V)^{2}\right\rangle \cdot(\otimes V)$. This proves Corollary 85.

0.18. Some universal properties

We shall next discuss some universal properties for the pseudoexterior powers Exter ${ }^{n} V$, the symmetric powers $\operatorname{Sym}^{n} V$ and the exterior powers $\wedge^{n} V$.

Let us first recall the definition of a multilinear map:

```
\({ }^{30}\) Proof. Let \((p, q) \in(\otimes V)^{2}\). Then,
    \(\operatorname{sym}_{V}(p q)=\operatorname{sym}_{V}(p) \cdot \operatorname{sym}_{V}(q) \quad\left(\right.\) since \(\operatorname{sym}_{V}\) is a \(k\)-algebra homomorphism)
    \(=\operatorname{sym}_{V}(q) \cdot \operatorname{sym}_{V}(p) \quad(\) since \(\operatorname{Sym} V\) is commutative by Theorem 83)
    \(=\operatorname{sym}_{V}(q p) \quad\left(\right.\) since sym \({ }_{V}\) is a \(k\)-algebra homomorphism).
```

In other words, $p q \equiv q p \bmod K(V)$ (since sym_{V} is the projection $\left.\otimes V \rightarrow(\otimes V) / K(V)\right)$. In other words, $p q-q p \in K(V)$, qed.

Definition 86. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let $V_{1}, V_{2}, \ldots, V_{n}$ be k-modules.

Let W be any k-module, and let $f: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W$ be a map. We say that the map f is multilinear if and only if for each $i \in\{1,2, \ldots, n\}$ and each

$$
\left(v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, v_{i+2}, \ldots, v_{n}\right) \in V_{1} \times V_{2} \times \cdots \times V_{i-1} \times V_{i+1} \times V_{i+2} \times \cdots \times V_{n},
$$

the map

$$
\begin{aligned}
V_{i} & \rightarrow W \\
v & \mapsto f\left(v_{1}, v_{2}, \ldots, v_{i-1}, v, v_{i+1}, v_{i+2}, \ldots, v_{n}\right)
\end{aligned}
$$

is k-linear.
Now, we can state the classical universal property of a tensor product:
Proposition 87. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let $V_{1}, V_{2}, \ldots, V_{n}$ be k-modules.

Let W be any k-module, and let $f: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W$ be a multilinear map. Then, there exists a unique k-linear map $f_{\otimes}: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V_{1} \times V_{2} \times \cdots \times V_{n}$ satisfies $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Proposition 87 is the classical result that allows one to construct maps from a tensor product comfortably.

The particular case of Proposition 87 when all of $V_{1}, V_{2}, \ldots, V_{n}$ are identical will be the most useful to us:

Corollary 88. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V be a k-module.
Let W be any k-module, and let $f: V^{n} \rightarrow W$ be a multilinear map. Then, there exists a unique k-linear map $f_{\otimes}: V^{\otimes n} \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Proof of Corollary 88. The map f is a multilinear map $V^{n} \rightarrow W$. In other words, the map f is a multilinear map $\underbrace{V \times V \times \cdots \times V}_{n \text { times }} \rightarrow W$ (since $V^{n}=\underbrace{V \times V \times \cdots \times V}_{n \text { times }}$). Thus, Proposition 87 (applied to $V_{i}=V$) shows that there exists a unique k-linear map $f_{\otimes}: \underbrace{V \otimes V \otimes \cdots \otimes V}_{n \text { times }} \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \underbrace{V \times V \times \cdots \times V}_{n \text { times }}$ satisfies $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Since $\underbrace{V \otimes V \otimes \cdots \otimes V}_{n \text { times }}=V^{\otimes n}$ and $\underbrace{V \times V \times \cdots \times V}=V^{n}$, this rewrites as follows: There exists a unique k-linear map $f_{\otimes}: V^{\otimes n} \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=$ $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. This proves Corollary 88 .

We shall now use Corollary 88 to derive a universal property for the pseudoexterior powers Exter ${ }^{n} V$. We first state an almost obvious fact:

Lemma 89. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V be a k-module. Let W be any k-module, and let $f: V^{n} \rightarrow W$ be any map. Then, there exists at most one k-linear map $f_{\text {Exter }}: \operatorname{Exter}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\text {Exter }}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Proof of Lemma 89. Let α and β be two k-linear maps $f_{\text {Exter }}: \operatorname{Exter}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\text {Exter }}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. We shall show that $\alpha=\beta$.

We know that α is a k-linear map $f_{\text {Exter }}: \operatorname{Exter}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in$ V^{n} satisfies $f_{\text {Exter }}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. In other words, α is a k-linear map $\operatorname{Exter}^{n} V \rightarrow W$ and has the property that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies

$$
\begin{equation*}
\alpha\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right) \tag{68}
\end{equation*}
$$

The same argument (applied to β instead of α) shows that β is a k-linear map Exter $^{n} V \rightarrow W$ and has the property that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies

$$
\begin{equation*}
\beta\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right) \tag{69}
\end{equation*}
$$

Now, the map $\alpha-\beta$ is k-linear (since the mps α and β are k-linear). Hence, $\operatorname{Ker}(\alpha-\beta)$ is a k-submodule of $\operatorname{Exter}^{n} V$.

Define a subset S of $\operatorname{Exter}^{n} V$ by

$$
\begin{equation*}
S=\left\{\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right) \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} . \tag{70}
\end{equation*}
$$

Then, $S \subseteq \operatorname{Ker}(\alpha-\beta) \quad{ }^{31}$. Hence, Proposition 35 (a) (applied to $M=\operatorname{Exter}^{n} V$ and $Q=\operatorname{Ker}(\alpha-\beta))$ shows that $\langle S\rangle \subseteq \operatorname{Ker}(\alpha-\beta)$.

On the other hand, define a subset S^{\prime} of $V^{\otimes n}$ by

$$
\begin{equation*}
S^{\prime}=\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} \tag{71}
\end{equation*}
$$

Then,

$$
\begin{align*}
\operatorname{exter}_{V, n}\left(S^{\prime}\right)= & \operatorname{exter}_{V, n}\left(\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}\right) \\
& \quad(\operatorname{by}(71)) \\
= & \left\{\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right) \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\} \\
= & \text { (by (70) }) . \tag{72}
\end{align*}
$$

[^9]However, the tensor product $V^{\otimes n}$ is generated (as a k-module) by its pure tensors. In other words,

$$
\begin{aligned}
V^{\otimes n} & =\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\rangle \\
& =\langle\underbrace{\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}}_{=S^{\prime}}\rangle=\left\langle S^{\prime}\right\rangle .
\end{aligned}
$$

Applying the map exter ${ }_{V, n}$ to both sides of this equality, we obtain

$$
\begin{aligned}
& \operatorname{exter}_{V, n}\left(V^{\otimes n}\right)= \operatorname{exter}_{V, n}\left(\left\langle S^{\prime}\right\rangle\right)=\langle\underbrace{\operatorname{exter}_{V, n}\left(S^{\prime}\right)}_{\substack{=S \\
\left(\operatorname{byy}_{72}\right)}}\rangle \\
& \quad \text { by Proposition } 35(\mathbf{b})(\operatorname{applied} \text { to } \\
&\left.\left(V^{\otimes n}, S^{\prime}, \operatorname{Exter}^{n} V \text { and } \operatorname{exter}_{V, n} \text { instead of } M, S, R \text { and } f\right)\right) \\
&=\langle S\rangle .
\end{aligned}
$$

But the map exter ${ }_{V, n}$ is surjective. Hence, $\operatorname{Exter}^{n} V=\operatorname{exter}_{V, n}\left(V^{\otimes n}\right)=\langle S\rangle \subseteq$ $\operatorname{Ker}(\alpha-\beta)$. In other words, $\alpha-\beta=0$. Hence, $\alpha=\beta$.

Now, forget that we fixed α and β. We thus have shown that if α and β are two k-linear maps $f_{\text {Exter }}: \operatorname{Exter}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\text {Exter }}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, then $\alpha=\beta$. In other words, there exists at most one k-linear map $f_{\text {Exter }}: \operatorname{Exter}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\text {Exter }}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. This proves Lemma 89 .

We shall furthermore need a definition:
Definition 90. Let $n \in \mathbb{N}$. Let V be a set.
Let W be a \mathbb{Z}-module. Let $f: V^{n} \rightarrow W$ be a map. We say that the map f is antisymmetric if and only if each $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ and $\gamma \in S_{n}$ satisfy

$$
f\left(v_{\gamma(1)}, v_{\gamma(2)}, \ldots, v_{\gamma(n)}\right)=(-1)^{\gamma} f\left(v_{1}, v_{2}, \ldots, v_{n}\right) .
$$

Now, we can state a universal property for the pseudoexterior powers Exter ${ }^{n} V$:
Corollary 91. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V be a k-module.
Let W be any k-module, and let $f: V^{n} \rightarrow W$ be an antisymmetric multilinear map. (The notion of "antisymmetric" makes sense here because the k-module W is clearly a \mathbb{Z}-module.) Then, there exists a unique k-linear map $f_{\text {Exter }}$: Exter ${ }^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\text {Exter }}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=$ $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Before we prove this, let us recall a classical fact from abstract algebra - viz. the universal property of quotient modules (also known as the homomorphism theorem for k-modules):

Proposition 92. Let k be a commutative ring. Let V be a k-module. Let I be a k-submodule of V. Let π_{I} be the canonical projection $V \rightarrow V / I$.

Let W be any k-module, and let $f: V \rightarrow W$ be a k-linear map satisfying $f(I)=0$. Then, there exists a unique k-linear map $f^{\prime}: V / I \rightarrow W$ satisfying $f=f^{\prime} \circ \pi_{I}$.

Proof of Corollary 91. Corollary 88 shows that there exists a unique k-linear map f_{\otimes} : $V^{\otimes n} \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=$ $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Consider this f_{\otimes}. The map f_{\otimes} is k-linear; thus, $\operatorname{Ker}\left(f_{\otimes}\right)$ is a k submodule of $V^{\otimes n}$.

We know that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies

$$
\begin{equation*}
f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right) . \tag{73}
\end{equation*}
$$

The map f is antisymmetric. In other words, each $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ and $\gamma \in S_{n}$ satisfy

$$
\begin{equation*}
f\left(v_{\gamma(1)}, v_{\gamma(2)}, \ldots, v_{\gamma(n)}\right)=(-1)^{\gamma} f\left(v_{1}, v_{2}, \ldots, v_{n}\right) \tag{74}
\end{equation*}
$$

(by the definition of "antisymmetric").
Define a subset T of $V^{\otimes n}$ by

$$
T=\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid \quad\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\} .
$$

Thus,
$\langle T\rangle$
$=\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\}\right\rangle$
$=\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\rangle$
$=Q_{n}(V)$
(since $Q_{n}(V)$ is defined to be
$\left.\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\rangle\right)$.
Recall that $\operatorname{exter}_{V, n}$ is the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / Q_{n}(V)$.
Now, $T \subseteq \operatorname{Ker}\left(f_{\otimes}\right)[32[$ Thus, $f_{\otimes}(\underbrace{T}_{\subseteq \operatorname{Ker}\left(f_{\otimes}\right)}) \subseteq f_{\otimes}\left(\operatorname{Ker}\left(f_{\otimes}\right)\right)=0$, so that $f_{\otimes}(T)=$
0. But Proposition 35 (b) (applied to $V^{\otimes n}, T, W$ and f_{\otimes} instead of M, S, R and
${ }^{32}$ Proof. Let $t \in T$. Then,
$t \in T=\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid \quad\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}\right\}$.
In other words, t has the form $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}$ for some $\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}$. Consider this $\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right)$.

It is known that $(-1)^{\sigma} \in\{1,-1\}$. But each $g \in\{1,-1\}$ satisfies $g^{2}=1$. Applying this to $g=(-1)^{\sigma}$, we obtain $\left((-1)^{\sigma}\right)^{2}=1$.

From $\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right), \sigma\right) \in V^{n} \times S_{n}$, we obtain $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ and $\sigma \in S_{n}$. From 73), we obtain $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. From 73) (applied to $\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right)$ instead of $\left.\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right)$, we obtain

$$
\begin{aligned}
f_{\otimes}\left(v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}\right) & =f\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right) \\
& \left.=(-1)^{\sigma} f\left(v_{1}, v_{2}, \ldots, v_{n}\right) \quad(\text { by } 74)(\text { applied to } \gamma=\sigma)\right) .
\end{aligned}
$$

f) yields $f_{\otimes}(\langle T\rangle)=\langle\underbrace{f_{\otimes}(T)}_{=0}\rangle=\langle 0\rangle=0$. Since $\langle T\rangle=Q_{n}(V)$, this rewrites as $f_{\otimes}\left(Q_{n}(V)\right)=0$.

Hence, Proposition 92 (applied to $V^{\otimes n}, Q_{n}(V)$, exter ${ }_{V, n}, W$ and f_{\otimes} instead of V, I, π_{I}, W and f) yields that there exists a unique k-linear map $f^{\prime}: V^{\otimes n} / Q_{n}(V) \rightarrow W$ satisfying $f_{\otimes}=f^{\prime} \circ$ exter $_{V, n}$. Consider this f^{\prime}.

The map f^{\prime} is a k-linear map $V^{\otimes n} / Q_{n}(V) \rightarrow W$. In other words, the map f^{\prime} is a k-linear map Exter ${ }^{n} V \rightarrow W$ (since $\left.V^{\otimes n} / Q_{n}(V)=\operatorname{Exter}^{n} V\right)$. Every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in$ V^{n} satisfies

$$
\begin{aligned}
& f^{\prime}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right) \\
& =\underbrace{\left(f^{\prime} \circ \operatorname{exter}_{V, n}\right)}_{=f_{\otimes}}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right) \\
& =f\left(v_{1}, v_{2}, \ldots, v_{n}\right) \quad(\text { by }(73)) .
\end{aligned}
$$

Thus, f^{\prime} is a k-linear map $\operatorname{Exter}^{n} V \rightarrow W$ and has the property that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in$ V^{n} satisfies $f^{\prime}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Hence, there exists at least one k-linear map $f_{\text {Exter }}: \operatorname{Exter}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in$ V^{n} satisfies $f_{\text {Exter }}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ (namely, $f_{\text {Exter }}=$ $\left.f^{\prime}\right)$. Since we also know that there exists at most one such map (in fact, this follows from Lemma 89), we can therefore conclude that there exists a unique k linear map $f_{\text {Exter }}: \operatorname{Exter}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\text {Exter }}\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. This proves Corollary 91 .

We can similarly deal with symmetric powers. First, we state an analogue to Lemma 89:

Lemma 93. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V be a k-module. Let W be any k-module, and let $f: V^{n} \rightarrow W$ be any map. Then, there exists at most one k-linear map $f_{\mathrm{Sym}}: \operatorname{Sym}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\mathrm{Sym}}\left(\operatorname{sym}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Multiplying both sides of this equality by $(-1)^{\sigma}$, we obtain

$$
(-1)^{\sigma} f_{\otimes}\left(v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}\right)=\underbrace{(-1)^{\sigma}(-1)^{\sigma}}_{=\left((-1)^{\sigma}\right)^{2}=1} f\left(v_{1}, v_{2}, \ldots, v_{n}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right) .
$$

Now, applying the map f_{\otimes} to both sides of the equality $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes$ $v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}$, we find

$$
\begin{aligned}
f_{\otimes}(t) & =f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-(-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}\right) \\
& =\underbrace{f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)}_{=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)}-\underbrace{(-1)^{\sigma} f_{\otimes}\left(v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}\right)}_{=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)} \\
\quad & \quad \text { since the map } f_{\otimes} \text { is } k \text {-linear) } \\
& =f\left(v_{1}, v_{2}, \ldots, v_{n}\right)-f\left(v_{1}, v_{2}, \ldots, v_{n}\right)=0 .
\end{aligned}
$$

In other words, $t \in \operatorname{Ker}\left(f_{\otimes}\right)$.
Now, forget that we fixed t. We thus have proven that $t \in \operatorname{Ker}\left(f_{\otimes}\right)$ for each $t \in T$. In other words, $T \subseteq \operatorname{Ker}\left(f_{\otimes}\right)$.

Proof of Lemma 93. The proof of Lemma 93 is completely analogous to the proof of Lemma 89, and thus is omitted.

Next, we state a definition (which is analogous to Definition 90, but works in a greater generality, since W no longer needs to be a \mathbb{Z}-module):

Definition 94. Let $n \in \mathbb{N}$. Let V be a set.
Let W be a set. Let $f: V^{n} \rightarrow W$ be a map. We say that the map f is symmetric if and only if each $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ and $\gamma \in S_{n}$ satisfy

$$
f\left(v_{\gamma(1)}, v_{\gamma(2)}, \ldots, v_{\gamma(n)}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right) .
$$

Now, we can state a universal property for the symmetric powers $\operatorname{Sym}^{n} V$:
Corollary 95. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V be a k-module.
Let W be any k-module, and let $f: V^{n} \rightarrow W$ be a symmetric multilinear map. Then, there exists a unique k-linear map $f_{\mathrm{Sym}}: \operatorname{Sym}^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\mathrm{Sym}}\left(\operatorname{sym}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Proof of Corollary 95. The proof of Corollary 95 is completely analogous to the proof of Corollary 91 (up to some replacing of + signs by - signs and some removal of powers of -1), and thus is omitted.

We shall next derive similar results for exterior powers. First of all, we can again easily obtain an analogue to Lemma 89:

Lemma 96. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V be a k-module. Let W be any k-module, and let $f: V^{n} \rightarrow W$ be any map. Then, there exists at most one k-linear map $f_{\wedge}: \wedge^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\wedge}\left(\right.$ wedge $\left._{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Proof of Lemma 96. The proof of Lemma 96 is completely analogous to the proof of Lemma 89, and thus is omitted.

Next, we define a notion of "weakly alternating" which is (in some weak sense) similar to Definition 90 (but at this point, there is no direct analogy any more):

Definition 97. Let $n \in \mathbb{N}$. Let V be a set.
Let W be a \mathbb{Z}-module. Let $f: V^{n} \rightarrow W$ be a map. We say that the map f is weakly alternating if and only if each $i \in\{1,2, \ldots, n-1\}$ and $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfying $v_{i}=v_{i+1}$ satisfy

$$
f\left(v_{1}, v_{2}, \ldots, v_{n}\right)=0 .
$$

Now, we can state a universal property for the pseudoexterior powers $\wedge^{n} V$:
Corollary 98. Let k be a commutative ring. Let $n \in \mathbb{N}$. Let V be a k-module.
Let W be any k-module, and let $f: V^{n} \rightarrow W$ be a weakly alternating multilinear map. (The notion of "weakly alternating" makes sense here because the k-module W is clearly a \mathbb{Z}-module.) Then, there exists a unique k-linear map $f_{\wedge}: \wedge^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\wedge}\left(\right.$ wedge $\left._{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=$ $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

Proof of Corollary 98. Corollary 88 shows that there exists a unique k-linear map f_{\otimes} : $V^{\otimes n} \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=$ $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Consider this f_{\otimes}. The map f_{\otimes} is k-linear; thus, $\operatorname{Ker}\left(f_{\otimes}\right)$ is a k submodule of $V^{\otimes n}$.

We know that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies

$$
\begin{equation*}
f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right) . \tag{75}
\end{equation*}
$$

The map f is weakly alternating. In other words, each $i \in\{1,2, \ldots, n-1\}$ and $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfying $v_{i}=v_{i+1}$ satisfy

$$
\begin{equation*}
f\left(v_{1}, v_{2}, \ldots, v_{n}\right)=0 . \tag{76}
\end{equation*}
$$

(by the definition of "weakly alternating").
Fix $i \in\{1,2, \ldots, n-1\}$. Define a subset T of $V^{\otimes n}$ by

$$
T=\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\} .
$$

Thus,

$$
\begin{align*}
& \langle T\rangle \\
& =\left\langle\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\}\right\rangle \\
& =\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle . \tag{77}
\end{align*}
$$

Recall that wedge ${ }_{V, n}$ is the canonical projection $V^{\otimes n} \rightarrow V^{\otimes n} / R_{n}(V)$.
Now, $T \subseteq \operatorname{Ker}\left(f_{\otimes}\right) \prod^{33}$. Thus, $f_{\otimes}(\underbrace{T}_{\subseteq \operatorname{Ker}\left(f_{\otimes}\right)}) \subseteq f_{\otimes}\left(\operatorname{Ker}\left(f_{\otimes}\right)\right)=0$, so that $f_{\otimes}(T)=$
0. But Proposition 35 (b) (applied to $V^{\otimes n}, T, W$ and f_{\otimes} instead of M, S, R and f) yields $f_{\otimes}(\langle T\rangle)=\langle\underbrace{f_{\otimes}(T)}_{=0}\rangle=\langle 0\rangle=0$. In view of $\square 77$, this rewrites as

$$
\begin{equation*}
f_{\otimes}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle\right)=0 . \tag{78}
\end{equation*}
$$

Now, forget that we fixed i. We thus have proven (78) for each $i \in\{1,2, \ldots, n-1\}$. But Proposition 67 yields

$$
R_{n}(V)=\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle .
$$

${ }^{33}$ Proof. Let $t \in T$. Then,

$$
t \in T=\left\{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\}
$$

In other words, t has the form $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$ for some $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfying $v_{i}=v_{i+1}$. Consider this $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

From (75), we obtain $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)=0$ (by (76)).
Now, applying the map f_{\otimes} to both sides of the equality $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$, we find $f_{\otimes}(t)=$ $f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=0$. In other words, $t \in \operatorname{Ker}\left(f_{\otimes}\right)$.

Now, forget that we fixed t. We thus have proven that $t \in \operatorname{Ker}\left(f_{\otimes}\right)$ for each $t \in T$. In other words, $T \subseteq \operatorname{Ker}\left(f_{\otimes}\right)$.

Applying the map f_{\otimes} to both sides of this equality, we obtain

$$
\left.\begin{array}{l}
f_{\otimes}\left(R_{n}(V)\right) \\
=f_{\otimes}\left(\sum_{i=1}^{n-1}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle\right) \\
=\sum_{i=1}^{n-1} \underbrace{f_{\otimes}\left(\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n} ; v_{i}=v_{i+1}\right\rangle\right)}_{\substack{\text { (by } \left.\frac{0}{788}\right)}} \\
\quad \text { (since the map } f_{\otimes} \text { is } k \text {-linear) }
\end{array}\right)
$$

Hence, Proposition 92 (applied to $V^{\otimes n}, R_{n}(V)$, wedge ${ }_{V, n}, W$ and f_{\otimes} instead of V, I, π_{I}, W and f) yields that there exists a unique k-linear map $f^{\prime}: V^{\otimes n} / R_{n}(V) \rightarrow W$ satisfying $f_{\otimes}=f^{\prime} \circ$ wedge $_{V, n}$. Consider this f^{\prime}.

The map f^{\prime} is a k-linear map $V^{\otimes n} / R_{n}(V) \rightarrow W$. In other words, the map f^{\prime} is a k-linear map $\wedge^{n} V \rightarrow W$ (since $\left.V^{\otimes n} / R_{n}(V)=\wedge^{n} V\right)$. Every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies

$$
\begin{aligned}
& f^{\prime}\left(\operatorname{wedge}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right) \\
& =\underbrace{\left(f^{\prime} \circ \text { wedge }_{V, n}\right)}_{=f_{\otimes}}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f_{\otimes}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right) \\
& =f\left(v_{1}, v_{2}, \ldots, v_{n}\right) \quad(\text { by (75) }) .
\end{aligned}
$$

Thus, f^{\prime} is a k-linear map $\wedge^{n} V \rightarrow W$ and has the property that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in$ V^{n} satisfies $f^{\prime}\left(\right.$ wedge $\left._{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Hence, there exists at least one k-linear map $f_{\wedge}: \wedge^{n} V \rightarrow W$ such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\wedge}\left(\right.$ wedge $\left._{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ (namely, $\left.f_{\wedge}=f^{\prime}\right)$. Since we also know that there exists at most one such map (in fact, this follows from Lemma 96), we can therefore conclude that there exists a unique k-linear map $f_{\wedge}: \wedge^{n} V \rightarrow$ W such that every $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$ satisfies $f_{\wedge}\left(\right.$ wedge $\left._{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=$ $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. This proves Corollary 98 .

References

[1] Tom (Thomas) Goodwillie, MathOverflow post \#65716 (answer to "Commutator tensors and submodules").
http://mathoverflow.net/questions/65716
[2] Darij Grinberg, The Clifford algebra and the Chevalley map - a computational approach (summary version).
http://www.cip.ifi.lmu.de/~grinberg/algebra/chevalleys.pdf
Darij Grinberg, The Clifford algebra and the Chevalley map - a computational approach (detailed version).
http://www.cip.ifi.lmu.de/~grinberg/algebra/chevalley.pdf
[3] Darij Grinberg, Poincaré-Birkhoff-Witt type results for inclusions of Lie algebras, 2011.
http://www.cip.ifi.lmu.de/~grinberg/algebra/algebra.html\#pbw
[4] Vorlesung Hopfalgebren von Hans-Jürgen Schneider, mitgeschrieben von Darij Grinberg.
https://sites.google.com/site/darijgrinberg/hopfalgebren

[^0]: ${ }^{1}$ In fact, if we look at Definition 3] we see that the k-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ was defined as $V_{1} \otimes\left(V_{2} \otimes V_{3} \otimes \cdots \otimes V_{n}\right)$, so it is the k-module $A \otimes B$ where $A=V_{1}$ and $B=V_{2} \otimes V_{3} \otimes \cdots \otimes V_{n}$. Since the usual definition of a pure tensor in $A \otimes B$ defines it as an element of the form $v \otimes T$ for some $v \in A$ and $T \in B$, it thus is logical to say that a pure tensor in $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ means an element of the form $v \otimes T$ for $v \in V_{1}$ and $T \in V_{2} \otimes V_{3} \otimes \cdots \otimes V_{n}$.

[^1]: ${ }^{2}$ For example, if z is a vector in the k-module V, then we can define two elements u and v of $\otimes V$ by $u=1+z$ and $v=1-z$ (where 1 and z are considered to be elements of $\otimes V$ according to Definition 13 (c)), and while the product of these elements u and v in $\otimes V$ is the element $(1+z) \cdot(1-z)=1 \cdot 1-1 \cdot z+1 \cdot z-z \otimes z=1-z \otimes z \in \otimes V$, the tensor product of these elements u and v is the element $(1+z) \otimes(1-z)$ of $(k \oplus V) \otimes(k \oplus V) \cong k \oplus V \oplus V \oplus(V \otimes V)$, which is a different element of a totally different k-module. So if we would use one and the same notation $u \otimes v$ for both the product of u and v in $\otimes V$ and the tensor product of u and v in $(k \oplus V) \otimes(k \oplus V)$, we would have ambiguous notations.

[^2]: ${ }^{3}$ Proof. Let $x \in g(W)$ be arbitrary. Then, there exists some $w \in W$ such that $x=g(w)$. Consider this w. Then, $x=g(w)=g_{1}(w) \in g_{1}(W)$, qed.

[^3]: ${ }^{4}$ Proof. Let $x \in f(V)$ be arbitrary. Then, there exists some $v \in V$ such that $x=f(v)$. Consider this v. Then, $x=f(v)=f_{1}(v) \in f_{1}(V)$, qed.

[^4]: ${ }^{5}$ Proof. Let $y \in f(B)$. Then, there exists some $x \in B$ such that $y=f(x)$ (by the definition of $f(B))$. Consider this x. Then, $f^{\prime}(x)=f(x)=y$.

 Hence, we have shown that for every $y \in f(B)$, there exists some $x \in B$ such that $y=f^{\prime}(x)$. In other words, the map $f^{\prime}: B \rightarrow f(B)$ is surjective, qed.

[^5]: ${ }^{7}$ Proof. We have $u \in V^{\otimes(i-1)}$ and $v \in W \subseteq V=V^{\otimes 1}$. Hence, $u \cdot v=u \otimes v$ (by (3), applied to u, v,
 $i-1$ and 1 instead of a, b, n and m) and thus $u \cdot v=\underbrace{u}_{\in V^{\otimes(i-1)}} \otimes \underbrace{v}_{\in V^{\otimes 1}} \in V^{\otimes\left({ }^{2}-1\right)} \otimes V^{\otimes 1}=V^{\otimes i}$.
 Combined with $w \in V^{\otimes(n-i)}$, this leads to $(u \otimes v) \cdot w=(u \otimes v) \otimes w$ (by 3), applied to $u \otimes v, w, i$ and $n-i$ instead of a, b, n and m). Thus, $\underbrace{u \cdot v}_{=u \otimes v} \cdot w=(u \otimes v) \cdot w=(u \otimes v) \otimes w=u \otimes v \otimes w$, qed.

[^6]: ${ }^{12}$ Proof. Let $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in W^{n}$. For every $i \in\{1,2, \ldots, n\}$, there exists some $z_{i} \in V$ such that $w_{i}=f\left(z_{i}\right)$ (since f is surjective). Fix such a z_{i} for each $i \in\{1,2, \ldots, n\}$. Then, $w_{1}=$ $f\left(z_{1}\right), w_{2}=f\left(z_{2}\right), \ldots, w_{n}=f\left(z_{n}\right)$. Taking the tensor product of these equalities, we get $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}=f\left(z_{1}\right) \otimes f\left(z_{2}\right) \otimes \cdots \otimes f\left(z_{n}\right)$. Also, since $w_{i}=f\left(z_{i}\right)$ for each $i \in\{1,2, \ldots, n\}$, we have $w_{\tau_{i}(1)}=f\left(z_{\tau_{i}(1)}\right), w_{\tau_{i}(2)}=f\left(z_{\tau_{i}(2)}\right), \ldots, w_{\tau_{i}(n)}=f\left(z_{\tau_{i}(n)}\right)$. Taking the tensor product of these equalities, we get $w_{\tau_{i}(1)} \otimes w_{\tau_{i}(2)} \otimes \cdots \otimes w_{\tau_{i}(n)}=f\left(z_{\tau_{i}(1)}\right) \otimes f\left(z_{\tau_{i}(2)}\right) \otimes \cdots \otimes f\left(z_{\tau_{i}(n)}\right)$.

[^7]: ${ }^{13}$ Proof. Every $v \in V$ and $w \in V^{\otimes m}$ satisfy $v \cdot w=v \otimes w$ (by (3), applied to $n=1, a=v$ and $\left.b=w\right)$. In other words, every $(v, w) \in V \times V^{\otimes m}$ satisfies $v \cdot w=v \otimes w$. Thus,

[^8]: ${ }^{20}$ Proof. Let $w \in W$ be arbitrary. Then, there exists some $z \in V$ such that $w=f(z)$ (since f is surjective). Consider this z. Then, $w \otimes w=f(z) \otimes f(z)=(\otimes f)(z \otimes z)$ (by the definition of $\otimes f)$, so that $w \otimes w \in\{(\otimes f)(v \otimes v) \mid v \in V\}$, qed.

[^9]: ${ }^{31}$ Proof. Let $s \in S$. Thus, $s \in S=\left\{\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right) \mid\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}\right\}$. In other words, $s=\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)$ for some $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V^{n}$. Consider this $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.
 Applying the map α to the equality $s=\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)$, we obtain

 $$
 \alpha(s)=\alpha\left(\operatorname{exter}_{V, n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)
 $$

 (by 68$)$. The same argument (applied to β instead of α) shows that $\beta(s)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Thus, $\alpha(s)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\beta(s)$. Now, $(\alpha-\beta)(s)=\underbrace{\alpha(s)}_{=\beta(s)}-\beta(s)=\beta(s)-\beta(s)=0$, so that $s \in \operatorname{Ker}(\alpha-\beta)$.

 Now, let us forget that we fixed s. We thus have shown that $s \in \operatorname{Ker}(\alpha-\beta)$ for each $s \in S$. In other words, $S \subseteq \operatorname{Ker}(\alpha-\beta)$.

