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Abstract. Fix a commutative ring k, two elements β ∈ k and α ∈ k
and a positive integer n. Let X be the polynomial ring over k in
the n (n− 1) /2 indeterminates xi,j for all 1 ≤ i < j ≤ n. Con-
sider the ideal J of X generated by all polynomials of the form
xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α for 1 ≤ i < j < k ≤ n. The quo-

tient algebra X/J (at least for a certain choice of k, β and α) has
been introduced by Karola Mészáros in [Meszar09] as a commuta-
tive analogue of Anatol Kirillov’s quasi-classical Yang-Baxter alge-
bra. A monomial in X is said to be pathless if it has no divisors of
the form xi,jxj,k with 1 ≤ i < j < k ≤ n. The residue classes of
these pathless monomials span the k-module X/J , but (in general)
are k-linearly dependent. More combinatorially: Reducing a given
p ∈ X modulo the ideal J by applying replacements of the form
xi,jxj,k 7→ xi,k

(
xi,j + xj,k + β

)
+ α always eventually leads to a k-linear

combination of pathless monomials, but the result may depend on
the choices made in the process.

More recently, the study of Grothendieck polynomials has led Laura
Escobar and Karola Mészáros [EscMes15, §5] to defining a k-algebra
homomorphism D from X into the polynomial ring k [t1, t2, . . . , tn−1]
that sends each xi,j to ti. We show the following fact (generalizing a
conjecture of Mészáros): If p ∈ X , and if q ∈ X is a k-linear combina-
tion of pathless monomials satisfying p ≡ q modJ , then D (q) does
not depend on q (as long as β, α and p are fixed). Thus, the above
way of reducing a p ∈ X modulo J may lead to different results, but
all of them become identical once D is applied.
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We also find an actual basis of the k-module X/J , using what we
call forkless monomials.
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Introduction

The main result of this paper is probably best illustrated by an example:

Example 0.1. Let us play a solitaire game. Fix a positive integer n and two
numbers β ∈ Q and α ∈ Q, and let X be the ring Q

[
xi,j | 1 ≤ i < j ≤ n

]
of polynomials with rational coefficients in the n (n− 1) /2 indeterminates
xi,j with 1 ≤ i < j ≤ n. (For example, if n = 4, then X =
Q [x1,2, x1,3, x1,4, x2,3, x2,4, x3,4].)
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Start with any polynomial p ∈ X . The allowed move is the following: Pick a
monomial m that appears (with nonzero coefficient) in p and that is divisible
by xi,jxj,k for some 1 ≤ i < j < k ≤ n. For example, x1,2x1,3x2,4 is such a
monomial (if it appears in p and if n ≥ 4), because it is divisible by xi,jxj,k
for (i, j, k) = (1, 2, 4). Choose one triple (i, j, k) with 1 ≤ i < j < k ≤ n and
xi,jxj,k | m (sometimes, there are several choices). Now, replace this monomial

m by
xi,k
(
xi,j + xj,k + β

)
+ α

xi,jxj,k
m in p.

Thus, each move modifies the polynomial, replacing a monomial by a sum
of four monomials (or fewer, if β or α is 0). The game ends when no more
moves are possible (i.e., no monomial m appearing in your polynomial is
divisible by xi,jxj,k for any 1 ≤ i < j < k ≤ n).

It is easy to see that this game (a thinly veiled reduction procedure modulo
an ideal of X ) always ends after finitely many moves. Here is one instance of
this game being played, for n = 4 and β = 1 and α = 0 and starting with the
polynomial p = x1,2x2,3x3,4:

x1,2x2,3x3,4

7→ x1,3 (x1,2 + x2,3 + 1) x3,4

(here, we chose m = x1,2x2,3x3,4 and (i, j, k) = (1, 2, 3))
= x1,2x1,3x3,4 + x1,3x2,3x3,4 + x1,3x3,4

7→ x1,2x1,4 (x1,3 + x3,4 + 1) + x1,3x2,3x3,4 + x1,3x3,4

(here, we chose m = x1,2x1,3x3,4 and (i, j, k) = (1, 3, 4))
= x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x3,4 + x1,3x3,4

7→ x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,4 (x2,3 + x3,4 + 1) + x1,3x3,4

(here, we chose m = x1,3x2,3x3,4 and (i, j, k) = (2, 3, 4))
= x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x1,3x2,4x3,4 + x1,3x2,4

+ x1,3x3,4

7→ x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x1,3x2,4x3,4 + x1,3x2,4

+ x1,4 (x1,3 + x3,4 + 1)
(here, we chose m = x1,3x3,4 and (i, j, k) = (1, 3, 4))

= x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x1,3x2,4x3,4

+ x1,3x2,4 + x1,3x1,4 + x1,4x3,4 + x1,4

7→ x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x2,4x1,4 (x1,3 + x3,4 + 1)
+ x1,3x2,4 + x1,3x1,4 + x1,4x3,4 + x1,4

(here, we chose m = x1,3x2,4x3,4 and (i, j, k) = (1, 3, 4))
= x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,2x1,4 + x1,3x2,3x2,4 + x1,3x1,4x2,4

+ x1,4x2,4x3,4 + x1,4x2,4 + x1,3x2,4 + x1,3x1,4 + x1,4x3,4 + x1,4. (1)

The game ends at this polynomial, since there are no more moves to be done.
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A standard question about games like this is: Is the state obtained at the
end of the game (i.e., in our case, the polynomial after the game has ended)
independent of the choices made during the game? In our case, the answer is
“no” (in general, for n ≥ 4). Indeed, the reader can easily verify that the above
game could have led to a different result if we had made different choices.

However, something else turns out to be independent of the choices.
Namely, let us transform the polynomial at the end of the game further by
applying the substitution xi,j 7→ ti (where t1, t2, . . . , tn−1 are new indetermi-
nates). For example, doing this to the polynomial (1) results in

t1t1t1 + t1t1t3 + t1t1 + t1t2t2 + t1t1t2 + t1t2t3 + t1t2 + t1t2 + t1t1 + t1t3 + t1

= t1

(
2t1 + 2t2 + t3 + t2

1 + t2
2 + t1t2 + t1t3 + t2t3 + 1

)
.

According to a conjecture of Mészáros, the result of this substitution is indeed
independent of the choices made during the game (as long as p is fixed).

Why would one play a game like this? The reduction rule m 7→
xi,k
(
xi,j + xj,k + β

)
xi,jxj,k

m

(this is a particular case of our above rule, when α is set to 0) has appeared in
Karola Mészáros’s study [Meszar09] of the abelianization of Anatol Kirillov’s
quasi-classical Yang-Baxter algebra (see, e.g., [Kirill16] for a recent survey of the
latter and its many variants); it has a long prehistory (some of which is surveyed
in Section 4.3 below), starting with Vladimir Arnold’s 1971 work [Arnold71] on
the braid arrangement. To define this abelianization1, we let β be an indetermi-
nate (unlike in Example 0.1, where it was an element of Q). Furthermore, fix
a positive integer n. The abelianization of the (n-th) quasi-classical Yang-Baxter
algebra is the commutative Q [β]-algebra S (An) with

generators xi,j for all 1 ≤ i < j ≤ n and

relations xi,jxj,k = xi,k
(
xi,j + xj,k + β

)
for all 1 ≤ i < j < k ≤ n.

A natural question is to find an explicit basis of S (An) (as a Q-vector space,
or, if possible, as a Q [β]-module). One might try constructing such a basis us-
ing a reduction algorithm (or “straightening law”) that takes any element of
S (An) (written as any polynomial in the generators xi,j) and rewrites it in a
“normal form”. The most obvious way one could try to construct such a re-
duction algorithm is by repeatedly rewriting products of the form xi,jxj,k (with
1 ≤ i < j < k ≤ n) as xi,k

(
xi,j + xj,k + β

)
, until this is no longer possible. This

is precisely the game that we played in Example 0.1 (with the only difference
that β is now an indeterminate, not a number). Unfortunately, the result of the
game turns out to depend on the choices made while playing it; consequently,

1The notations used in this Introduction are meant to be provisional. In the rest of this paper, we
shall work with different notations (and in a more general setting), which will be introduced
in Section 1.
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the “normal form” it constructs is not literally a normal form, and instead of a
basis of S (An) we only obtain a spanning set.2

Nevertheless, the result of the game is not meaningless. The idea to sub-
stitute ti for xi,j (in the result, not in the original polynomial!) seems to have
appeared in work of Postnikov, Stanley and Mészáros; some concrete formulas
(for specific values of the initial polynomial and specific values of β) appear in
[Stanle15, Exercise A22] (resulting in Catalan and Narayana numbers). Recent
work on Grothendieck polynomials by Anatol Kirillov ([Kirill13, §4], [Kirill16])
and by Laura Escobar and Karola Mészáros [EscMes15, §5] has again brought
up the notion of substituting ti for xi,j in the polynomial obtained at the end of
the game. This has led Mészáros to the conjecture that, after this substitution,
the resulting polynomial no longer depends on the choices made during the
game. She has proven this conjecture for a certain class of polynomials (those
corresponding to “noncrossing trees”).

The main purpose of this paper is to establish Mészáros’s conjecture in the
general case. We shall, in fact, work in greater generality than all previously
published sources. First, instead of the relation xi,jxj,k = xi,k

(
xi,j + xj,k + β

)
,

we shall consider the “deformed” relation xi,jxj,k = xi,k
(
xi,j + xj,k + β

)
+ α; the

idea of this deformation again goes back to the work of Anatol Kirillov (see,
e.g., [Kirill16, Definition 5.1 (1)] for a noncommutative variant of the quotient
ring X/J , which he calls the “associative quasi-classical Yang–Baxter algebra
of weight (α, β)”). Instead of requiring β to be either a rational number (as
in Example 0.1) or an indeterminate over Q (as in the definition of S (An)),
we shall let β be any element of the ground ring, which in turn will be an
arbitrary commutative ring k. Rather than working in an algebra like S (An),
we shall work in the polynomial ring X = k

[
xi,j | 1 ≤ i < j ≤ n

]
, and study

the ideal J generated by all elements of the form xi,jxj,k− xi,k
(
xi,j + xj,k + β

)
− α

for 1 ≤ i < j < k ≤ n. Instead of focussing on the reduction algorithm, we shall
generally study polynomials in X that are congruent to each other modulo the
ideal J . A monomial in X will be called “pathless” if it is not divisible by
any monomial of the form xi,jxj,k with i < j < k. A polynomial in X will be
called “pathless” if all monomials appearing in it are pathless. Thus, “pathless”
polynomials are precisely the polynomials p ∈ X for which the game in Example
0.1 would end immediately if started at p.

Our main result (Theorem 1.7) will show that if p ∈ X is a polynomial, and
if q ∈ X is a pathless polynomial congruent to p modulo J , then the image of
q under the substitution xi,j 7→ ti does not depend on q (but only on α, β and
p). This, in particular, yields Mészáros’s conjecture; but it is a stronger result,
because it does not require that q is obtained from p by playing the game from
Example 0.1 (all we ask for is that q be pathless and congruent to p modulo J ),
and of course because of the more general setting.

2Surprisingly, a similar reduction algorithm does work for the (non-abelianized) quasi-classical
Yang-Baxter algebra itself. This is one of Mészáros’s results ([Meszar09, Theorem 30]).
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After the proof of Theorem 1.7, we shall rewrite the definition of J (and of X )
in a more symmetric form (Section 2.10). Then, we shall also answer the (easier)
question of finding a basis for the quotient ring X/J (Proposition 3.4). This
basis will be obtained using an explicit Gröbner basis of the ideal J .

We shall close with further considerations, open questions and connections to
previous research.

A recent preprint by Mészáros and St. Dizier [MesDiz17] proves a fact [MesDiz17,
Theorem A] which, translated into our language, confirms the conjecture stated
in Example 0.1 at least in the case when α = 0 and the game is started with a
monomial p. This might provide a different route to some of our results. (The ar-
guments in [MesDiz17] are of combinatorial nature, involving flows on graphs,
and so is the language used in [MesDiz17]; in particular, monomials are encoded
by graphs.)

0.1. Acknowledgments

The SageMath computer algebra system [SageMath] was of great service dur-
ing the development of the results below. Conversations with Nick Early have
led me to the ideas in Subsection 4.3, and Victor Reiner has helped me con-
cretize them. This paper has furthermore profited from enlightening comments
by Ricky Liu, Karola Mészáros, Nicholas Proudfoot, Travis Scrimshaw, Richard
Stanley, two anonymous referees and an anonymous editor.

0.2. Remark on alternative versions

You are reading the detailed version of this paper. For the standard version
(which is shorter by virtue of omitting some straightforward or well-known
proofs), see [Grinbe18].

In a previous version (arXiv:1704.00839v2) of this paper, a weaker version
of the main result was proven (which corresponds to the case α = 0 in our
notations). The proof used a somewhat different construction (involving formal
power series instead of Laurent series, and a different map A).

1. Definitions and results

Let us now start from scratch, and set the stage for the main result.

Definition 1.1. Let N = {0, 1, 2, . . .}.
Let [m] be the set {1, 2, . . . , m} for each m ∈N.
Let k be a commutative ring. (We fix k throughout this paper.)
Fix two elements β and α of k.

6

https://arxiv.org/abs/1704.00839v2


Reductions for the subdivision algebra April 21, 2019

The word “monomial” shall always mean an element of a free abelian
monoid (written multiplicatively). For example, the monomials in two in-
determinates x and y are the elements of the form xiyj with (i, j) ∈N2. Thus,
monomials do not include coefficients (and are not bound to a specific base
ring).

Definition 1.2. Fix a positive integer n. Let X be the polynomial ring

k
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]

.

This is a polynomial ring in n (n− 1) /2 indeterminates xi,j over k.
We shall use the notation M for the set of all monomials in these indeter-

minates xi,j. Notice that M is an abelian monoid under multiplication.

Definition 1.3. A monomial m ∈ M is said to be pathless if there exists no
triple (i, j, k) ∈ [n]3 satisfying i < j < k and xi,jxj,k | m (as monomials).

A polynomial p ∈ X is said to be pathless if it is a k-linear combination of
pathless monomials.

Definition 1.4. Let J be the ideal of X generated by all elements of the form
xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α for (i, j, k) ∈ [n]3 satisfying i < j < k.

The following fact is easy to check:

Proposition 1.5. Let p ∈ X . Then, there exists a pathless polynomial q ∈ X
such that p ≡ q modJ .

In general, this q is not unique.3

We shall roughly outline a proof of Proposition 1.5 now; a more detailed
writeup of this proof can be found at the end of this section.

Proof of Proposition 1.5 (sketched). The weight of a monomial ∏
(i,j)∈[n]2;

i<j

x
ai,j
i,j ∈M shall

3For instance, if k = Z, β = 1, α = 0 and n = 4, then

q1 = x1,2x1,3x1,4 + x1,2x1,4 + x1,2x1,4x3,4 + x1,3x1,4 + x1,3x1,4x2,4 + x1,3x2,3x2,4

+ x1,3x2,4 + x1,4 + x1,4x2,4 + x1,4x2,4x3,4 + x1,4x3,4

and

q2 = x1,2x1,3x1,4 + x1,2x1,4 + x1,2x1,4x3,4 + x1,3x1,4 + x1,3x1,4x2,3

+ x1,4 + x1,4x2,3 + x1,4x2,3x2,4 + x1,4x2,4 + x1,4x2,4x3,4 + x1,4x3,4

are two pathless polynomials q ∈ X satisfying x1,2x2,3x3,4 ≡ q modJ , but they are not
identical.
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mean the nonnegative integer ∑
(i,j)∈[n]2;

i<j

ai,j (n− j + i). If we have a monomial

m ∈ M that is not pathless, then we can find a triple (i, j, k) ∈ [n]3 satis-
fying i < j < k and xi,jxj,k | m; then, we can replace m by a polynomial

m̃ = m ·
xi,k
(
xi,j + xj,k + β

)
+ α

xi,jxj,k
, which is congruent to m modulo J but has

the property that all monomials appearing in it have a smaller weight than m.
This gives rise to a recursive algorithm4 for reducing a polynomial modulo the
ideal J . The procedure will necessarily terminate (although its result might
depend on the order of operation); the polynomial resulting at its end will be
pathless.

The ideal J is relevant to the so-called subdivision algebra of root polytopes (de-
noted by S (β) in [EscMes15, §5] and S (An) in [Meszar09, §1]). Namely, this
latter algebra is defined as the quotient X/J for a certain choice of k, β and α
(namely, for the choice where k is a univariate polynomial ring over Q, where β
is the indeterminate in k, and where α = 0). This algebra was first introduced by
Mészáros in [Meszar09] as the abelianization of Anatol Kirillov’s quasi-classical
Yang-Baxter algebra.

In [EscMes15, §5 and Appendix A], Escobar and Mészáros (motivated by com-
putations of Grothendieck polynomials) consider the result of substituting ti for
each variable xi,j in a polynomial f ∈ X . In our language, this leads to the
following definition:

Definition 1.6. Let T ′ be the polynomial ring k [t1, t2, . . . , tn−1]. We define a
k-algebra homomorphism D : X → T ′ by

D
(
xi,j
)
= ti for every (i, j) ∈ [n]2 satisfying i < j.

The goal of this paper is to prove the following fact, which (in a less general
setting) was conjectured by Karola Mészáros in a 2015 talk at MIT:

Theorem 1.7. Let p ∈ X . Consider any pathless polynomial q ∈ X such that
p ≡ q modJ . Then, D (q) does not depend on the choice of q (but merely on
the choice of α, β and p).

It is not generally true that D (q) = D (p); thus, Theorem 1.7 does not follow
from a simple “invariant”.

We shall prove Theorem 1.7 in the next section. But first, let us pay a debt and
explain the proof of Proposition 1.5 in full detail.

We begin with a few definitions:

4or “straightening law”, as algorithms of this kind are commonly called in algebraic combina-
torics
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Definition 1.8. Let Xpathless denote the k-submodule of X spanned by all path-
less monomials m ∈ M. Thus, Xpathless is the set of all pathless polynomials
f ∈ X .

Definition 1.9. Let m ∈ M be a monomial. The weight of m is defined to
be ∑

(i,j)∈[n]2;
i<j

ai,j (n− j + i), where the monomial m has been written in the form

m = ∏
(i,j)∈[n]2;

i<j

x
ai,j
i,j (with ai,j ∈N). This weight is an integer, and will be denoted

by weightm.

Observe the following properties of weights:

Lemma 1.10. (a) For any (i, j) ∈ [n]2 satisfying i < j, we have weight
(
xi,j
)
=

n− j + i.
(b) If p ∈M and q ∈M are two monomials, then weight (pq) = weight p+

weight q.
(c) If m ∈M is a monomial, then weightm ∈N.

Proof of Lemma 1.10. Parts (a) and (b) of Lemma 1.10 are left to the reader.
Let us observe that every (i, j) ∈ [n]2 satisfies

n− j︸︷︷︸
≤n

(since j∈[n])

+ i︸︷︷︸
>0

(since i∈[n])

≥ n− n + 0 = 0. (2)

(c) Let m ∈ M be a monomial. Write the monomial m in the form m =
∏

(i,j)∈[n]2;
i<j

x
ai,j
i,j (with ai,j ∈N). Then, the definition of weightm yields

weightm = ∑
(i,j)∈[n]2;

i<j

ai,j︸︷︷︸
≥0

(n− j + i)︸ ︷︷ ︸
≥0

(by (2))

≥ ∑
(i,j)∈[n]2;

i<j

0 · 0 = 0.

Hence, weightm ∈N. This proves Lemma 1.10 (c).

Lemma 1.11. Let m ∈M be a monomial. Then, m ∈ Xpathless + J .

Proof of Lemma 1.11. We shall prove Lemma 1.11 by strong induction over weightm.
5 Thus, we fix any N ∈ N, and we assume (as the induction hypothesis) that

5This is legitimate, since Lemma 1.10 (c) shows that weightm ∈ N in the situation of Lemma
1.11.
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Lemma 1.11 holds in the case when weightm < N. We then must show that
Lemma 1.11 holds in the case when weightm = N.

We have assumed that Lemma 1.11 holds in the case when weightm < N. In
other words,(

if m ∈M is a monomial such that weightm < N,
then m ∈ Xpathless + J

)
. (3)

Now, fix a monomial m ∈ M such that weightm = N. We shall show that
m ∈ Xpathless + J .

If m is pathless, then this is obvious6. Hence, for the rest of this proof, we
WLOG assume that m is not pathless. In other words, there exists a triple
(i, j, k) ∈ [n]3 satisfying i < j < k and xi,jxj,k | m (as monomials). Consider
such a triple (i, j, k).

We have xi,jxj,k | m (as monomials). In other words, there exists a monomial
n ∈M such that m = xi,jxj,kn. Consider this n.

We have xi,jxj,k− xi,k
(
xi,j + xj,k + β

)
− α ∈ J (since xi,jxj,k− xi,k

(
xi,j + xj,k + β

)
−

α is one of the designated generators of the ideal J ). Thus,
xi,jxj,k ≡ xi,k

(
xi,j + xj,k + β

)
+ α modJ . Now,

m = xi,jxj,k︸ ︷︷ ︸
≡xi,k(xi,j+xj,k+β)+α modJ

n ≡
(
xi,k
(
xi,j + xj,k + β

)
+ α
)
n

= xi,kxi,jn+ xi,kxj,kn+ βxi,kn+ αnmodJ .

In other words,

m ∈ xi,kxi,jn+ xi,kxj,kn+ βxi,kn+ αn+ J . (4)

We shall now analyze the four monomials xi,kxi,jn, xi,kxj,kn, xi,kn and n on the
right hand side of (4):

• We have weight
(
xi,kxi,jn

)
< N 7. Hence, (3) (applied to xi,kxi,jn instead

of m) shows that
xi,kxi,jn ∈ Xpathless + J .

6Proof. Assume that m is pathless. We must then show that m ∈ Xpathless + J .
But recall that the k-module Xpathless is spanned by the pathless monomials. Thus, m ∈
Xpathless (since m is a pathless monomial). Hence, m ∈ Xpathless ⊆ Xpathless + J , qed.

7Proof. We have m = xi,jxj,kn = xj,kxi,jn and thus

weight m︸︷︷︸
=xj,kxi,jn

= weight
(

xj,kxi,jn
)
= weight

(
xj,k

)
︸ ︷︷ ︸

=n−k+j
(by Lemma 1.10 (a),

applied to j and k instead of i and j)

+weight
(
xi,jn

)

(
by Lemma 1.10 (b), applied to p = xj,k and q = xi,jn

)
= n− k + j + weight

(
xi,jn

)
.

10
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• We have weight
(
xi,kxj,kn

)
< N 8. Hence, (3) (applied to xi,kxj,kn instead

of m) shows that
xi,kxj,kn ∈ Xpathless + J .

• We have weight (xi,kn) < N 9. Hence, (3) (applied to xi,kn instead of m)
shows that

xi,kn ∈ Xpathless + J .

But Lemma 1.10 (b) (applied to p = xi,k and q = xi,jn) shows that

weight
(

xi,kxi,jn
)
= weight (xi,k)︸ ︷︷ ︸

=n−k+i
(by Lemma 1.10 (a),

applied to k instead of j)

+weight
(
xi,jn

)
= n− k + i︸︷︷︸

<j

+weight
(
xi,jn

)

< n− k + j + weight
(
xi,jn

)
= weightm = N,

qed.
8Proof. We have

weight m︸︷︷︸
=xi,jxj,kn

= weight
(

xi,jxj,kn
)
= weight

(
xi,j
)︸ ︷︷ ︸

=n−j+i
(by Lemma 1.10 (a))

+weight
(

xj,kn
)

(
by Lemma 1.10 (b), applied to p = xi,j and q = xj,kn

)
= n− j + i + weight

(
xj,kn

)
.

But Lemma 1.10 (b) (applied to p = xi,k and q = xj,kn) shows that

weight
(

xi,kxj,kn
)
= weight (xi,k)︸ ︷︷ ︸

=n−k+i
(by Lemma 1.10 (a),

applied to k instead of j)

+weight
(

xj,kn
)
= n− k︸︷︷︸

>j
(since j<k)

+i + weight
(

xj,kn
)

< n− j + i + weight
(

xj,kn
)
= weightm = N,

qed.
9Proof. We have

weight m︸︷︷︸
=xi,jxj,kn

= weight
(

xi,jxj,kn
)
= weight

(
xi,j
)︸ ︷︷ ︸

=n−j+i
(by Lemma 1.10 (a))

+ weight
(

xj,kn
)

︸ ︷︷ ︸
=weight(xj,k)+weightn

(by Lemma 1.10 (b), applied to p=xj,k and q=n)(
by Lemma 1.10 (b), applied to p = xi,j and q = xj,kn

)
= n− j + i + weight

(
xj,k

)
︸ ︷︷ ︸

=n−k+j
(by Lemma 1.10 (a),

applied to j and k instead of i and j)

+weight n

= n− j + i + n− k + j︸ ︷︷ ︸
=n+n−k+i

+weight n = n︸︷︷︸
>0

+n− k + i + weight n

> n− k + i + weight n.

11



Reductions for the subdivision algebra April 21, 2019

• We have weight n < N 10. Hence, (3) (applied to n instead of m) shows
that

n ∈ Xpathless + J .

Now, (4) becomes

m ∈ xi,kxi,jn︸ ︷︷ ︸
∈Xpathless+J

+ xi,kxj,kn︸ ︷︷ ︸
∈Xpathless+J

+β xi,kn︸︷︷︸
∈Xpathless+J

+α n︸︷︷︸
∈Xpathless+J

+ J︸︷︷︸
⊆Xpathless+J

⊆
(
Xpathless + J

)
+
(
Xpathless + J

)
+ β

(
Xpathless + J

)
+ α

(
Xpathless + J

)
+
(
Xpathless + J

)
⊆ Xpathless + J

(since Xpathless + J is a k-module).
Now, let us forget that we fixed m. We thus have shown that if m ∈ M is

a monomial such that weightm = N, then m ∈ Xpathless + J . In other words,
Lemma 1.11 holds in the case when weightm = N. This completes the induction
step. Thus, Lemma 1.11 is proven.

Now, we can prove Proposition 1.5:

Proof of Proposition 1.5. Lemma 1.11 shows that m ∈ Xpathless + J for each m ∈
M. In other words, M ⊆ Xpathless +J (where we consider M as being embedded
into the polynomial ring X ).

But Lemma 1.10 (b) (applied to p = xi,k and q = n) yields

weight (xi,kn) = weight (xi,k)︸ ︷︷ ︸
=n−k+i

(by Lemma 1.10 (a),
applied to k instead of j)

+weight n = n− k + i + weight n

< weightm (since weightm > n− k + i + weight n)
= N,

qed.
10Proof. Lemma 1.10 (c) (applied to m = xj,k) yields weight

(
xj,k

)
∈ N. Thus, weight

(
xj,k

)
≥ 0.

Also, Lemma 1.10 (a) yields weight
(

xi,j
)
= n− j︸︷︷︸

≤n

+ i︸︷︷︸
>0

> n− n + 0 = 0. Now,

weight m︸︷︷︸
=xi,jxj,kn

= weight
(

xi,jxj,kn
)
= weight

(
xi,j
)︸ ︷︷ ︸

>0

+ weight
(

xj,kn
)

︸ ︷︷ ︸
=weight(xj,k)+weightn

(by Lemma 1.10 (b), applied to p=xj,k and q=n)(
by Lemma 1.10 (b), applied to p = xi,j and q = xj,kn

)
> 0 + weight

(
xj,k

)
︸ ︷︷ ︸

≥0

+weight n ≥ 0 + 0 + weight n = weight n.

Hence, weight n < weightm = N, qed.

12
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For any subsetW of X , we let spanW denote the k-submodule of X spanned
by W . The set M spans the k-module X (since each polynomial f ∈ X is a
k-linear combination of monomials m ∈ M). In other words, X = spanM. But
from M ⊆ Xpathless + J , we obtain spanM ⊆ span

(
Xpathless + J

)
= Xpathless +

J (since Xpathless +J is a k-submodule of X ). Hence, X = spanM ⊆ Xpathless +
J .

Now, p ∈ X ⊆ Xpathless + J . In other words, there exist u ∈ Xpathless and
v ∈ J such that p = u + v. Consider these u and v.

We have p = u + v︸︷︷︸
∈J
∈ u + J . In other words, p ≡ u modJ . But Xpathless

is the set of all pathless polynomials in X . Thus, u is a pathless polynomial
(since u ∈ Xpathless). Hence, there exists a pathless polynomial q ∈ X such that
p ≡ q modJ (namely, q = u). This proves Proposition 1.5.

2. The proof

2.1. Preliminaries

The proof of Theorem 1.7 will occupy most of this paper. It proceeds in several
steps. First, we shall define four k-algebras Q, T ′ [[w]], T and T [[w]] (with T ′
being a subalgebra of T ) and three k-linear maps A, B and E (with A and E
being k-algebra homomorphisms) forming a diagram

X A //

D ��

Q B // T [[w]]

T ′
E
// T ′ [[w]]

� ?

OO

(where the vertical arrow is a canonical injection) that is not commutative. We
shall eventually show that:

• (Proposition 2.5 below) the homomorphism A annihilates the ideal J ,

• (Proposition 2.10 below) the homomorphism E is injective, and

• (Corollary 2.17 below) each pathless polynomial q satisfies (E ◦ D) (q) =
(B ◦ A) (q) (the equation makes sense since T ′ [[w]] ⊆ T [[w]]).

These three facts will allow us to prove Theorem 1.7. Indeed, the first and
the third will imply that each pathless polynomial in J is annihilated by E ◦ D;
because of the second, this will show that it is also annihilated by D; and from
here, Theorem 1.7 will easily follow.

13
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2.2. The algebra Q of Laurent series

Let us begin by defining the notion of (formal) Laurent series in n indeterminates
r1, r2, . . . , rn. This is somewhat slippery terrain, and it is easy to accidentally get
a non-working definition (e.g., a notion of “Laurent series” not closed under
multiplication, or not allowing multiplication at all), but there are also several
different working definitions (see, e.g., [MonKau13] for a systematic treatment
revealing many degrees of freedom). The definition we shall give here has been
tailored to make our constructions work.

We begin by defining a k-module Q± of “two-sided infinite formal power
series over k”; this is not going to be a ring:

Definition 2.1. Consider n distinct symbols r1, r2, . . . , rn. Let R denote the free
abelian group on these n symbols, written multiplicatively. (That is, R is the
free Z-module on n generators r1, r2, . . . , rn, but with the addition renamed
as multiplication.) The elements of R thus have the form ra1

1 ra2
2 · · · r

an
n for

(a1, a2, . . . , an) ∈ Zn; we shall refer to such elements as Laurent monomials in
the symbols r1, r2, . . . , rn.

Informally, we let Q± denote the k-module of all “infinite k-linear com-
binations” of Laurent monomials. Formally speaking, we define Q± as the
direct product ∏

r∈R
k of copies of k indexed by Laurent monomials. We want

to write each element (λr)r∈R ∈ ∏
r∈R

k of this direct product as the formal

k-linear combination ∑
r∈R

λrr; in order for this to work, we make several fur-

ther conventions: First, we identify each Laurent monomial s ∈ R with the
element (δs,r)r∈R of Q± (where δs,r is the Kronecker delta). Second, we equip
the k-module Q± with a topology: namely, the product topology, defined
by recalling that it is a direct product ∏

r∈R
k of copies of k (each of which is

equipped with the discrete topology). Having made these conventions, we
can easily verify that each element (λr)r∈R of ∏

r∈R
k = Q± is indeed identical

with the infinite sum ∑
r∈R

λrr (which makes sense because of the topology on

Q±). As usual, if f = (λr)r∈R is an element of Q±, then λr (for a given r ∈ R)
will be called the coefficient of r in f and denoted by [r] f .

As we know, the Laurent monomials in R have the form ra1
1 ra2

2 · · · r
an
n for

(a1, a2, . . . , an) ∈ Zn; thus, sums of the form ∑
r∈R

λrr can also be rewritten in the

form ∑
(a1,a2,...,an)∈Zn

λa1,a2,...,anra1
1 ra2

2 · · · r
an
n ; this is the usual way in which elements

of Q± are written.
For example, for n = 1, an element of Q± will have the form ∑

a∈Z

λara
1 for some

family (λa)a∈Z of elements of k. Already in this simple situation, we see that
Q± is not a ring (or, at least, the usual recipe for multiplying power series does

14
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not work in Q±): Multiplying ∑
a∈Z

ra
1 with itself would result in(

∑
a∈Z

ra
1

)(
∑

a∈Z

ra
1

)
= ∑

(a,b)∈Z2

ra+b
1 ,

which is not a convergent sum in any reasonable topology (it contains each
Laurent monomial infinitely many times). We shall define Laurent series as a
subring of Q±:

Definition 2.2. (a) If d is an integer and r ∈ R is a Laurent monomial, then we
say that r lives above d if and only if r = ra1

1 ra2
2 · · · r

an
n for some (a1, a2, . . . , an) ∈

{d, d + 1, d + 2, . . .}n.
(b) If d is an integer and f is an element of Q±, then we say that f is

supported above d if and only if every (a1, a2, . . . , an) ∈ Zn \ {d, d + 1, d + 2, . . .}n

satisfies
[
ra1

1 ra2
2 · · · r

an
n
]

f = 0. In other words, f is supported above d if and
only if f is an infinite k-linear combination of Laurent monomials that live
above d.

(c) An element f ∈ Q± is said to be a Laurent series if and only if there exists
some d ∈ Z such that f is supported above d.

(d) We let k ((r1, r2, . . . , rn)) denote the k-submodule of Q± consisting of all
Laurent series.

(e) A multiplication can be defined on k ((r1, r2, . . . , rn)) by extending the
multiplication in the group R (in such a way that the resulting map is bilinear
and continuous). Explicitly, this means that if f = ∑

r∈R
λrr and g = ∑

r∈R
µrr are

two Laurent series, then their product f g is defined as the Laurent series(
∑
r∈R

λrr

)(
∑
r∈R

µrr

)
= ∑

u∈R
∑
v∈R

λuµvuv = ∑
r∈R

 ∑
(u,v)∈R2;

uv=r

λuµv

 r.

The inner sum ∑
(u,v)∈R2;

uv=r

λuµv here is well-defined, because all but finitely many

of its addends are zero. (In fact, if f is supported above d, and if g is supported
above e, then (for each given r ∈ R) there are only finitely many pairs (u, v) ∈
R2 such that uv = r and u lives above d and v lives above e; but these are the
only pairs that can contribute nonzero addends to the sum ∑

(u,v)∈R2;
uv=r

λuµv.)

Thus, k ((r1, r2, . . . , rn)) becomes a k-algebra with unity 1 = r0
1r0

2 · · · r0
n. We

denote this k-algebra by Q. Note that Q is a topological k-algebra; its topol-
ogy is inherited from Q±.

(f) An element f ∈ Q± is said to be a formal power series if and only if f is
supported above 0.

(g) We let k [[r1, r2, . . . , rn]] denote the k-submodule of Q± consisting of all
formal power series. Thus, k [[r1, r2, . . . , rn]] ⊆ Q ⊆ Q±.

15
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We now define certain Laurent monomials q1, q2, . . . , qn that we shall often
use:

Definition 2.3. For each i ∈ [n], we define a Laurent monomial qi in the
indeterminates r1, r2, . . . , rn by qi = riri+1 · · · rn. Notice that this qi is an actual
monomial, not only a Laurent monomial.

Notice that each Laurent monomial in R belongs to Q. Each of the elements
q1, q2, . . . , qn of Q is a Laurent monomial, and thus has an inverse (in R and
thus also in Q). Hence, it makes sense to speak of quotients such as qi/qj for
1 ≤ i ≤ j ≤ n. Explicitly, qi/qj = riri+1 · · · rj−1 whenever 1 ≤ i ≤ j ≤ n.
Thus, for any i ∈ [n] and j ∈ [n] satisfying i < j, the difference 1− qi/qj =
1− riri+1 · · · rj−1 is a formal power series in k [[r1, r2, . . . , rn]] having constant
term 1; it is therefore invertible in k [[r1, r2, . . . , rn]].

It is easy to see that

qa1
1 qa2

2 · · · q
an
n = ra1

1 ra1+a2
2 ra1+a2+a3

3 · · · ra1+a2+···+an
n (5)

for all (a1, a2, . . . , an) ∈ Zn. Also,

rb1
1 rb2

2 · · · r
bn
n = qb1

1 qb2−b1
2 qb3−b2

3 · · · qbn−bn−1
n (6)

for all (b1, b2, . . . , bn) ∈ Zn. Thus, each Laurent monomial r ∈ R can be written
uniquely in the form qa1

1 qa2
2 · · · q

an
n with (a1, a2, . . . , an) ∈ Zn. Thus,(

qa1
1 qa2

2 · · · q
an
n
)
(a1,a2,...,an)∈Zn is a topological basis11 of the k-module Q±.

2.3. The algebra homomorphism A : X → Q

11The notion of a “topological basis” that we are using here has nothing to do with the concept
of a basis of a topology (also known as “base”). Instead, it is merely an analogue of the
concept of a basis of a k-module. It is defined as follows:

A topological basis of a topological k-module M means a family (ms)s∈S ∈ MS with the
following two properties:

• For each family (λs)s∈S ∈ kS, the sum ∑
s∈S

λsms converges with respect to the topol-

ogy onM. (Such a sum is called an infinite k-linear combination of the family (ms)s∈S.)

• Each element ofM can be uniquely represented in the form ∑
s∈S

λsms for some family

(λs)s∈S ∈ kS.

For example,
(

rb1
1 rb2

2 · · · r
bn
n

)
(b1,b2,...,bn)∈Nn

is a topological basis of the topological k-module

k [[r1, r2, . . . , rn]], because each power series can be uniquely represented as an infinite k-
linear combination of all the monomials.
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Definition 2.4. Define a k-algebra homomorphism A : X → Q by

A
(
xi,j
)
= −

qi + β + α/qj

1− qi/qj
for all (i, j) ∈ [n]2 satisfying i < j.

Notice that this is well-defined, since all denominators appearing here are
invertible (indeed, qj is an invertible Laurent monomial in R, and 1− qi/qj is
an invertible formal power series in k [[r1, r2, . . . , rn]]).

Proposition 2.5. We have A (J ) = 0.

Proof of Proposition 2.5. The ideal J of X is generated by all elements of the form
xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α for (i, j, k) ∈ [n]3 satisfying i < j < k. Thus,

it suffices to show that A
(
xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α
)
= 0 for all triples

(i, j, k) ∈ [n]3 satisfying i < j < k. So let us fix such a triple.

The definition of A yields A
(
xi,j
)
= −

qi + β + α/qj

1− qi/qj
. Similarly, A

(
xj,k
)
=

−
qj + β + α/qk

1− qj/qk
and A (xi,k) = −

qi + β + α/qk
1− qi/qk

.

But A is a k-algebra homomorphism. Thus,

A
(
xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α
)

= A
(
xi,j
)︸ ︷︷ ︸

=−
qi + β + α/qj

1− qi/qj

A
(
xj,k
)︸ ︷︷ ︸

=−
qj + β + α/qk

1− qj/qk

− A (xi,k)︸ ︷︷ ︸
=−

qi + β + α/qk
1− qi/qk


A
(
xi,j
)︸ ︷︷ ︸

=−
qi + β + α/qj

1− qi/qj

+ A
(
xj,k
)︸ ︷︷ ︸

=−
qj + β + α/qk

1− qj/qk

+β


− α

=

(
−

qi + β + α/qj

1− qi/qj

)(
−

qj + β + α/qk

1− qj/qk

)

−
(
−qi + β + α/qk

1− qi/qk

)((
−

qi + β + α/qj

1− qi/qj

)
+

(
−

qj + β + α/qk

1− qj/qk

)
+ β

)
− α

= 0,

as an unpleasant but straightforward computation reveals. This proves Proposi-
tion 2.5.
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2.4. The algebras T and T [[w]] of power series

Definition 2.6. (a) Let T be the topological k-algebra k [[t1, t2, . . . , tn]]. This is
the ring of formal power series in the n indeterminates t1, t2, . . . , tn over k.

The topology on T shall be the usual one (i.e., the one defined similarly to
the one on Q±).

(b) We shall regard the canonical injections

T ′ = k [t1, t2, . . . , tn−1] ↪→ k [t1, t2, . . . , tn] ↪→ k [[t1, t2, . . . , tn]] = T

as inclusions. Thus, T ′ becomes a k-subalgebra of T . Hence, D : X → T ′
becomes a k-algebra homomorphism X → T .

(c) We consider the k-algebras T [[w]] and T ′ [[w]]. These are the k-algebras
of formal power series in a (new) indeterminate w over T and over T ′, respec-
tively. We endow the k-algebra T [[w]] with a topology defined as the product
topology, where T [[w]] is identified with a direct product of infinitely many
copies of T (each of which is equipped with the topology we previously de-
fined).

2.5. The continuous k-linear map B : Q → T [[w]]

We have T = k [[t1, t2, . . . , tn]]. Thus, T [[w]] can be regarded as the ring of
formal power series in the n + 1 indeterminates t1, t2, . . . , tn, w over k. (Strictly
speaking, this should say that there is a canonical topological k-algebra isomor-
phism from T [[w]] to the latter ring). Let us now show a simple lemma:

Lemma 2.7. Let m be a monomial in the indeterminates t1, t2, . . . , tn, w (with
nonnegative exponents). Then, there exist only finitely many (a1, a2, . . . , an) ∈
Zn satisfying  ∏

i∈[n];
ai>0

tai
i


 ∏

i∈[n];
ai<0

w−ai

 = m. (7)

Proof of Lemma 2.7. Write m in the form m =

(
∏

i∈[n]
tbi
i

)
wc for some nonnegative

integers b1, b2, . . . , bn, c. Let S be the finite set {−c,−c + 1, . . . , 0}∪{b1, b2, . . . , bn}.
Hence, Sn is also a finite set.

We want to prove that there exist only finitely many (a1, a2, . . . , an) ∈ Zn

satisfying (7). We shall show that each such (a1, a2, . . . , an) belongs to the set Sn.
Indeed, let (a1, a2, . . . , an) ∈ Zn satisfy (7). We must show that (a1, a2, . . . , an)

belongs to Sn.
Let j ∈ [n]. We want to prove that aj ∈ S.

18
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We know that (7) holds. Thus ∏
i∈[n];
ai>0

tai
i


 ∏

i∈[n];
ai<0

w−ai

 = m =

∏
i∈[n]

tbi
i

wc.

Thus,∏
i∈[n]

tbi
i

wc =

 ∏
i∈[n];
ai>0

tai
i


 ∏

i∈[n];
ai<0

w−ai

 =

 ∏
i∈[n];
ai>0

tai
i

w

∑
i∈[n];
ai<0

(−ai)

.

This is an equality between two monomials in the indeterminates t1, t2, . . . , tn, w.
Comparing exponents on both sides of this equality, we find that

bi =

{
ai, if ai > 0;
0, otherwise

for each i ∈ [n] (8)

and
c = ∑

i∈[n];
ai<0

(−ai) . (9)

Now, we are in one of the following three cases:
Case 1: We have aj < 0.
Case 2: We have aj = 0.
Case 3: We have aj > 0.
Let us first consider Case 1. In this case, we have aj < 0. Thus, we can split

off the addend for i = j from the sum ∑
i∈[n];
ai<0

(−ai). We thus find

∑
i∈[n];
ai<0

(−ai) =
(
−aj

)
+ ∑

i∈[n];
ai<0;
i 6=j

(−ai)︸ ︷︷ ︸
>0

(since ai<0)

≥
(
−aj

)
+ ∑

i∈[n];
ai<0;
i 6=j

0

︸ ︷︷ ︸
=0

= −aj.

Hence, (9) becomes c = ∑
i∈[n];
ai<0

(−ai) ≥ −aj. In other words, aj ≥ −c. Combining

this with aj < 0, we find

aj ∈ {−c,−c + 1, . . . ,−1} ⊆ {−c,−c + 1, . . . , 0}
⊆ {−c,−c + 1, . . . , 0} ∪ {b1, b2, . . . , bn} = S.

Thus, aj ∈ S is proven in Case 1.
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Let us now consider Case 2. In this case, we have aj = 0. Hence,

aj ∈ {−c,−c + 1, . . . , 0} ⊆ {−c,−c + 1, . . . , 0} ∪ {b1, b2, . . . , bn} = S.

Thus, aj ∈ S is proven in Case 2.
Let us finally consider Case 3. In this case, we have aj > 0. Applying (8) to

i = j, we find

bj =

{
aj, if aj > 0;
0, otherwise

= aj
(
since aj > 0

)
,

so that

aj = bj ∈ {b1, b2, . . . , bn} ⊆ {−c,−c + 1, . . . , 0} ∪ {b1, b2, . . . , bn} = S.

Thus, aj ∈ S is proven in Case 3.
We have now proven aj ∈ S in all three Cases 1, 2 and 3. Hence, aj ∈ S always

holds.
Forget that we have fixed j. We thus have shown that aj ∈ S for each j ∈ [n].

In other words, (a1, a2, . . . , an) belongs to Sn.
Now, forget that we have fixed (a1, a2, . . . , an). We thus have shown that each

(a1, a2, . . . , an) ∈ Zn satisfying (7) belongs to Sn. Since Sn is a finite set, this
shows that there exist only finitely many (a1, a2, . . . , an) ∈ Zn satisfying (7). This
proves Lemma 2.7.

Definition 2.8. We define a continuous k-linear map B : Q± → T [[w]] by
setting

B
(
qa1

1 qa2
2 · · · q

an
n
)
=

 ∏
i∈[n];
ai>0

tai
i


 ∏

i∈[n];
ai<0

w−ai


for each (a1, a2, . . . , an) ∈ Zn.

This is well-defined, since
(
qa1

1 qa2
2 · · · q

an
n
)
(a1,a2,...,an)∈Zn is a topological basis of

Q±, and because of Lemma 2.7 (which guarantees convergence when the map
B is applied to an infinite k-linear combination of Laurent monomials).

The k-linear map B : Q± → T [[w]] can be restricted to the k-submodule Q
of Q±. We denote this restriction by B as well. In the following, we shall only
be concerned with this restriction.

Of course, B is (in general) not a k-algebra homomorphism.

2.6. The k-algebra monomorphism E : T ′ → T ′ [[w]]
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Definition 2.9. We define a k-algebra homomorphism E : T ′ → T ′ [[w]] by

E (ti) = −
ti + β + αw

1− tiw
for each i ∈ [n− 1] .

This is well-defined (by the universal property of the polynomial ring T ′ =
k [t1, t2, . . . , tn−1]), because for each i ∈ [n− 1], the power series 1 − tiw is
invertible in T ′ [[w]] (indeed, its constant term is 1).

Proposition 2.10. The homomorphism E is injective.

Proof of Proposition 2.10. Let F : T ′ [[w]]→ T ′ be the T ′-algebra homomorphism
that sends each formal power series f ∈ T ′ [[w]] (regarded as a formal power
series in the single indeterminate w over T ′) to its constant term f (0) ∈ T ′.
Thus, F is a k-algebra homomorphism, and it sends w to 0 while sending each
element of T ′ to itself.

Let G : T ′ → T ′ be the k-algebra homomorphism that sends ti to −ti −
β for each i ∈ [n− 1]. (This is well-defined by the universal property of the
polynomial ring T ′ = k [t1, t2, . . . , tn−1].)

Notice that the map G ◦ F ◦ E : T ′ → T ′ is a k-algebra homomorphism (since
it is the composition of the three k-algebra homomorphisms E, F, G).

For each i ∈ [n− 1], we have

(F ◦ E) (ti) = F

 E (ti)︸ ︷︷ ︸
=−

ti + β + αw
1− tiw

 = F
(
− ti + β + αw

1− tiw

)
= − ti + β + αF (w)

1− tiF (w)

(
since F is a T ′-algebra homomorphism

)
= − ti + β + α0

1− ti0
(since F (w) = 0)

= − (ti + β)

and thus

(G ◦ F ◦ E) (ti) = G

(F ◦ E) (ti)︸ ︷︷ ︸
=−(ti+β)

 = G (− (ti + β)) = −

 G (ti)︸ ︷︷ ︸
=−ti−β

+β


(since G is a k-algebra homomorphism)

= − (−ti − β + β) = ti = id (ti) .

Hence, the two k-algebra homomorphisms G ◦ F ◦ E : T ′ → T ′ and id : T ′ → T ′
agree on the generating set {t1, t2, . . . , tn−1} of the k-algebra T ′. Thus, these two

21



Reductions for the subdivision algebra April 21, 2019

homomorphisms must be identical. In other words, G ◦ F ◦ E = id. Hence, the
map E has a left inverse, and thus is injective. This proves Proposition 2.10.

Thus, we have defined the following spaces and maps between them:

X A //

D ��

Q B // T [[w]]

T ′
E
// T ′ [[w]]

� ?

OO

(but this is not a commutative diagram). It is worth reminding ourselves that A,
D and E are k-algebra homomorphisms, but B (in general) is not.

2.7. Pathless monomials and subsets S of [n− 1]

Next, we want to study the action of the compositions B ◦ A and E ◦ D on path-
less monomials. We first introduce some more notations:

Definition 2.11. Let S be a subset of [n− 1].
(a) Let PS be the set of all pairs (i, j) ∈ S× ([n] \ S) satisfying i < j.
(b) A monomial m ∈ M is said to be S-friendly if it is a product of some of

the indeterminates xi,j with (i, j) ∈ PS. In other words, a monomial m ∈ M
is S-friendly if and only if every indeterminate xi,j that appears in m satisfies
i ∈ S and j /∈ S.

We let MS denote the set of all S-friendly monomials.
(c) We let XS denote the polynomial ring k

[
xi,j | (i, j) ∈ PS

]
. This is clearly

a subring of X . The k-module XS has a basis consisting of all S-friendly
monomials m ∈M.

(d) An n-tuple (a1, a2, . . . , an) ∈ Zn is said to be S-adequate if and only if it
satisfies (ai ≥ 0 for all i ∈ S) and (ai ≤ 0 for all i ∈ [n] \ S). We let QS denote
the subset of Q consisting of all infinite k-linear combinations of the Laurent
monomials qa1

1 qa2
2 · · · q

an
n for S-adequate n-tuples (a1, a2, . . . , an) ∈ Zn (as long

as these combinations belong to Q). It is easy to see that QS is a topological
k-subalgebra of Q (since the entrywise sum of two S-adequate n-tuples is
S-adequate again).

(At this point, it is helpful to recall once again that the q1, q2, . . . , qn are not
indeterminates, but rather monomials defined by qi = riri+1 · · · rn. But their
products qa1

1 qa2
2 · · · q

an
n are Laurent monomials. Explicitly, they can be rewrit-

ten as products of the r1, r2, . . . , rn using (5). Thus, it is easy to see that the
elements of QS are the infinite k-linear combinations of the Laurent monomi-
als rb1

1 rb2
2 · · · r

bn
n for all (b1, b2, . . . , bn) ∈ Zn satisfying (bi ≥ bi−1 for all i ∈ S)

and (bi ≤ bi−1 for all i ∈ [n] \ S), where we set b0 = 0, as long as these combi-
nations belong to Q. But we won’t need this characterization.)

(e) We let TS denote the topological k-algebra k [[ti | i ∈ S]]. This is a
topological subalgebra of T . Hence, the ring TS [[w]] (that is, the ring of formal
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power series in the (single) variable w over TS) is a topological k-subalgebra
of the similarly-defined ring T [[w]].

(f) We define a k-algebra homomorphism AS : XS → QS by

AS
(
xi,j
)
= −

qi + β + α/qj

1− qi/qj
for all (i, j) ∈ PS.

Notice that this is well-defined12.
(g) We define a continuous k-linear map BS : QS → TS [[w]] by setting

BS
(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏
i∈S

tai
i

) ∏
i∈[n]\S

w−ai


for each S-adequate (a1, a2, . . . , an) ∈ Zn.

This is well-defined, as we will see below (in Proposition 2.12 (b)).
(h) We let T ′S denote the k-algebra k [ti | i ∈ S]. This is a k-subalgebra of
T ′. Hence, the ring T ′S [[w]] (that is, the ring of formal power series in the
(single) variable w over T ′S ) is a k-subalgebra of the similarly-defined ring
T ′ [[w]].

(i) We define a k-algebra homomorphism DS : XS → T ′S by

DS
(
xi,j
)
= ti for all (i, j) ∈ PS.

This is well-defined, since each (i, j) ∈ PS satisfies i ∈ S.
(j) We define a k-algebra homomorphism ES : T ′S → T ′S [[w]] by

ES (ti) = −
ti + β + αw

1− tiw
for each i ∈ S.

This is well-defined (by the universal property of the polynomial ring T ′S ),
because for each i ∈ S, the power series 1− tiw is invertible in T ′S [[w]] (indeed,
its constant term is 1).

12Proof. Let (i, j) ∈ PS. The Laurent series qi belongs to QS, because the n-tuple
(0, 0, . . . , 0, 1, 0, 0, . . . 0) (where the 1 stands in the i-th position) is S-adequate. The Laurent
series α/qj belongs to QS, because the n-tuple (0, 0, . . . , 0,−1, 0, 0, . . . 0) (where the −1 stands
in the j-th position) is S-adequate. The Laurent series β (being a constant) is also in QS.
Hence, qi + β + α/qj (being a sum of three elements of QS) is also in QS.

For each k ≥ 0, the Laurent monomial
(
qi/qj

)k belongs to QS, because the n-tuple
(0, 0, . . . , 0, k, 0, 0, . . . , 0,−k, 0, 0, . . . , 0) (where the k stands in the i-th position, and the
−k stands in the j-th position) is S-adequate. Hence, ∑

k≥0

(
qi/qj

)k ∈ QS. In view of

∑
k≥0

(
qi/qj

)k
=

1
1− qi/qj

, this rewrites as
1

1− qi/qj
∈ QS. So we know that both Lau-
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Proposition 2.12. Let S be a subset of [n− 1].
(a) We have

B
(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏
i∈S

tai
i

) ∏
i∈[n]\S

w−ai

 (10)

for each S-adequate n-tuple (a1, a2, . . . , an) ∈ Zn.
(b) The map BS (defined in Definition 2.11 (g)) is well-defined.

Proof of Proposition 2.12. (a) Let (a1, a2, . . . , an) ∈ Zn be an S-adequate n-tuple.
We must prove (10).

The n-tuple (a1, a2, . . . , an) is S-adequate. Thus, (ai ≥ 0 for all i ∈ S) and
(ai ≤ 0 for all i ∈ [n] \ S). In particular, (ai ≤ 0 for all i ∈ [n] \ S). Hence, each
i ∈ [n] satisfying ai > 0 must belong to S (because otherwise, i would belong
to [n] \ S, and therefore would have to satisfy ai ≤ 0, which would contradict
ai > 0).

On the other hand, (ai ≥ 0 for all i ∈ S). Hence, each i ∈ [n] satisfying ai < 0
must belong to [n] \ S (because otherwise, i would belong to S, and therefore
would have to satisfy ai ≥ 0, which would contradict ai < 0).

Now, the definition of the map B yields

B
(
qa1

1 qa2
2 · · · q

an
n
)
=

 ∏
i∈[n];
ai>0

tai
i


︸ ︷︷ ︸

= ∏
i∈S;
ai>0

t
ai
i

(since each i∈[n]
satisfying ai>0

must belong to S)

 ∏
i∈[n];
ai<0

w−ai


︸ ︷︷ ︸
= ∏

i∈[n]\S;
ai<0

w−ai

(since each i∈[n]
satisfying ai<0

must belong to [n]\S)

=

∏
i∈S;
ai>0

tai
i


 ∏

i∈[n]\S;
ai<0

w−ai

 .

rent series qi + β + α/qj and
1

1− qi/qj
belong to QS. Therefore, so does their product

(
qi + β + α/qj

)
· 1

1− qi/qj
=

qi + β + α/qj

1− qi/qj
. Hence, −

qi + β + α/qj

1− qi/qj
also belongs to QS. This

proves that AS is well-defined (via the universal property of the polynomial ring XS).
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Comparing this with(
∏
i∈S

tai
i

)
︸ ︷︷ ︸

=

 ∏
i∈S;
ai=0

t
ai
i


 ∏

i∈S;
ai>0

t
ai
i


(since each i∈S satisfies either ai=0 or ai>0

(since ai≥0 for all i∈S))

 ∏
i∈[n]\S

w−ai


︸ ︷︷ ︸

=

 ∏
i∈[n]\S;

ai=0

w−ai


 ∏

i∈[n]\S;
ai<0

w−ai


(since each i∈[n]\S satisfies either ai=0 or ai<0

(since ai≤0 for all i∈[n]\S))

=

∏
i∈S;
ai=0

tai
i︸︷︷︸
=1

(since ai=0)


∏

i∈S;
ai>0

tai
i


 ∏

i∈[n]\S;
ai=0

w−ai︸︷︷︸
=1

(since ai=0)


 ∏

i∈[n]\S;
ai<0

w−ai



=

∏
i∈S;
ai=0

1


︸ ︷︷ ︸

=1

∏
i∈S;
ai>0

tai
i


 ∏

i∈[n]\S;
ai=0

1


︸ ︷︷ ︸

=1

 ∏
i∈[n]\S;

ai<0

w−ai



=

∏
i∈S;
ai>0

tai
i


 ∏

i∈[n]\S;
ai<0

w−ai

 ,

we obtain B
(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏
i∈S

tai
i

)(
∏

i∈[n]\S
w−ai

)
. This proves Proposition

2.12 (a).
(b) We must show that there exists a unique continuous k-linear map BS :
QS → TS [[w]] satisfying BS

(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏
i∈S

tai
i

)(
∏

i∈[n]\S
w−ai

)
for each S-adequate (a1, a2, . . . , an) ∈ Zn

 . (11)

The uniqueness of such a map is clear (because the elements of QS are infinite
k-linear combinations of the Laurent monomials qa1

1 qa2
2 · · · q

an
n for S-adequate n-

tuples (a1, a2, . . . , an) ∈ Zn; but the formula (11) uniquely determines the value
of BS on such a k-linear combination). Thus, it remains to prove its existence.

For each f ∈ QS, we have B ( f ) ∈ TS [[w]] 13. Hence, we can define a map

13Proof. Let f ∈ QS. We must show that B ( f ) ∈ TS [[w]]. Since the map B is k-linear and
continuous, we can WLOG assume that f is a Laurent monomial of the form qa1

1 qa2
2 · · · q

an
n
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B̃S : QS → TS [[w]] by

B̃S ( f ) = B ( f ) for each f ∈ QS.

This map B̃S is a restriction of the map B; hence, it is a continuous k-linear map
(since B is a continuous k-linear map). Furthermore, it satisfies

B̃S
(
qa1

1 qa2
2 · · · q

an
n
)
= B

(
qa1

1 qa2
2 · · · q

an
n
) (

by the definition of B̃S

)
=

(
∏
i∈S

tai
i

) ∏
i∈[n]\S

w−ai

 (by Proposition 2.12 (a))

for each S-adequate (a1, a2, . . . , an) ∈ Zn. Hence, B̃S is a continuous k-linear
map BS : QS → TS [[w]] satisfying (11). Thus, the existence of such a map BS
is proven. As we have explained, this completes the proof of Proposition 2.12
(b).

Proposition 2.13. Let S be a subset of [n− 1]. Then, the diagrams

XS_�

��

AS // QS_�

��

BS // TS [[w]]
_�

��

X
A
// Q

B
// T [[w]]

(12)

and
XS_�

��

DS // T ′S_�

��

ES // T ′S [[w]]
_�

��

X
D
// T ′

E
// T ′ [[w]]

(13)

(where the vertical arrows are the obvious inclusion maps) are commutative.

for some S-adequate n-tuple (a1, a2, . . . , an) ∈ Zn (because f is always an infinite k-linear
combination of such Laurent monomials). Assume this. Consider this (a1, a2, . . . , an) ∈ Zn.

Thus, f = qa1
1 qa2

2 · · · q
an
n . Applying the map B to both sides of this equality, we obtain

B ( f ) = B
(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏
i∈S

tai
i

) ∏
i∈[n]\S

w−ai

 (by Proposition 2.12 (a))

∈ TS [[w]] .

This is precisely what we wanted to show.
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Proof of Proposition 2.13. The commutativity of the left square of (12) is obvious14.
So is the commutativity of each of the two squares of (13)15. It thus remains to
prove the commutativity of the right square of (12). In other words, we must
show that BS (p) = B (p) for each p ∈ QS.

So fix p ∈ QS. Since both maps BS and B are continuous and k-linear, we
can WLOG assume that p is a Laurent monomial of the form qa1

1 qa2
2 · · · q

an
n for

an S-adequate n-tuple (a1, a2, . . . , an) ∈ Zn (since the elements of QS are infinite
k-linear combinations of Laurent monomials of this form). Assume this, and fix
this (a1, a2, . . . , an).

From p = qa1
1 qa2

2 · · · q
an
n , we obtain

B (p) = B
(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏
i∈S

tai
i

) ∏
i∈[n]\S

w−ai


(by Proposition 2.12 (a)). Comparing this with

BS (p) = BS
(
qa1

1 qa2
2 · · · q

an
n
) (

since p = qa1
1 qa2

2 · · · q
an
n
)

=

(
∏
i∈S

tai
i

) ∏
i∈[n]\S

w−ai

 (by the definition of BS) ,

we obtain BS (p) = B (p). This proves the commutativity of the right square of
(12). The proof of Proposition 2.13 is thus complete.

Proposition 2.14. Let S be a subset of [n− 1]. Then, BS : QS → TS [[w]] is a
continuous k-algebra homomorphism.

Proof of Proposition 2.14. We merely need to show that BS is a k-algebra homo-
morphism. To this purpose, by linearity, we only need to prove that BS (1) = 1
and BS (mn) = BS (m) BS (n) for any two Laurent monomials m and n of the form

14“Obvious” in the following sense: You want to prove that a diagram of the form

A1
f1
//

f2
��

A2

f3
��

A3 f4

// A4

is commutative, where A1,A2,A3,A4 are four k-algebras and f1, f2, f3, f4 are four k-algebra
homomorphisms. (In our concrete case, A1 = XS, A2 = QS, A3 = X , A4 = Q, f1 = AS and
f4 = A, whereas f2 and f3 are the inclusion maps XS → X and QS → Q.) In order to prove
this commutativity, it suffices to show that it holds on a generating set of the k-algebra A1.
In other words, it suffices to pick some generating set G of the k-algebra A1 and show that
all g ∈ G satisfy ( f3 ◦ f1) (g) = ( f4 ◦ f2) (g). (In our concrete case, it is most reasonable to
pick G =

{
xi,j | (i, j) ∈ PS

}
. The proof then becomes completely clear.)

15for similar reasons
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qa1
1 qa2

2 · · · q
an
n for S-adequate n-tuples (a1, a2, . . . , an) ∈ Zn (since the elements of

QS are infinite k-linear combinations of Laurent monomials of this form). This
is easy and left to the reader.

Proposition 2.15. Let S be a subset of [n− 1]. Let (i, j) ∈ PS. Then,

(ES ◦ DS)
(
xi,j
)
= (BS ◦ AS)

(
xi,j
)

.

Proof of Proposition 2.15. From (i, j) ∈ PS, we obtain i ∈ S and j ∈ [n] \ S. Thus,
the definition of BS reveals that BS (qi) = ti and BS

(
q−1

j

)
= w.

Proposition 2.14 shows that BS : QS → TS [[w]] is a continuous k-algebra
homomorphism. But the definition of AS yields

AS
(
xi,j
)
= −

qi + β + α/qj

1− qi/qj
= −

qi + β + αq−1
j

1− qiq−1
j

.

Applying the map BS to both sides of this equality, we find

BS
(

AS
(

xi,j
))

= BS

(
−

qi + β + αq−1
j

1− qiq−1
j

)
= −

BS (qi) + β + αBS

(
q−1

j

)
1− BS (qi) BS

(
q−1

j

)
 since BS is a k-algebra homomorphism, and thus

respects sums, products and fractions (as long as
the denominators of the fractions are invertible)


= − ti + β + αw

1− tiw

(
since BS (qi) = ti and BS

(
q−1

j

)
= w

)
.

Comparing this with

(ES ◦ DS)
(
xi,j
)
= ES

DS
(
xi,j
)︸ ︷︷ ︸

=ti

 = ES (ti) = −
ti + β + αw

1− tiw
,

we obtain BS
(

AS
(
xi,j
))

= (ES ◦ DS)
(
xi,j
)
. Thus, (ES ◦ DS)

(
xi,j
)
= BS

(
AS
(
xi,j
))

=

(BS ◦ AS)
(
xi,j
)
. This proves Proposition 2.15.

Proposition 2.16. Let m ∈M be a pathless monomial.
(a) There exists a subset S of [n− 1] such that m is S-friendly.
(b) Let S be such a subset. Then, m ∈ XS and (E ◦ D) (m) = (BS ◦ AS) (m).

Proof of Proposition 2.16. (a) Write m in the form m = ∏
(i,j)∈[n]2;

i<j

x
ai,j
i,j . For each i ∈
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[n− 1], define a bi ∈ N by bi =
n
∑

j=i+1
ai,j. Define a subset S of [n− 1] by S =

{i ∈ [n− 1] | bi > 0}. Then m is S-friendly16. This proves Proposition 2.16 (a).
(b) We know that m ∈ XS (since m is S-friendly). Now, we shall show that

(E ◦ D) |XS= BS ◦ AS (if we regard BS ◦ AS as a map to T [[w]] and regard E ◦ D
as a map to T [[w]]).

The map (E ◦ D) |XS is a k-algebra homomorphism (since D and E are k-
algebra homomorphisms), and the map BS ◦ AS is a k-algebra homomorphism
(since both BS and AS are k-algebra homomorphisms17). Hence, we are trying
to prove that two k-algebra homomorphisms are equal (namely, the homomor-
phisms (E ◦ D) |XS and BS ◦ AS). It is clearly enough to prove this on the gen-
erating family

(
xi,j
)
(i,j)∈PS

of the k-algebra XS. In other words, it is enough to

prove that
(
(E ◦ D) |XS

) (
xi,j
)
= (BS ◦ AS)

(
xi,j
)

for each (i, j) ∈ PS.
So let us fix some (i, j) ∈ PS. Proposition 2.13 shows that the diagram (13) is

commutative. Thus, (E ◦ D) |XS= ES ◦ DS (provided that we regard ES ◦ DS as a
map to T ′ [[w]]), and thus(

(E ◦ D) |XS

) (
xi,j
)
= (ES ◦ DS)

(
xi,j
)
= (BS ◦ AS)

(
xi,j
)

(by Proposition 2.15).
This completes our proof of (E ◦ D) |XS= BS ◦ AS. Now, from m ∈ XS, we

obtain (E ◦ D) (m) =
(
(E ◦ D) |XS

)︸ ︷︷ ︸
=BS◦AS

(m) = (BS ◦ AS) (m). This completes the

16Proof. We need to show that every indeterminate xi,j that appears in m satisfies i ∈ S and j /∈ S.
Indeed, assume the contrary. Thus, some indeterminate xi,j that appears in m does not

satisfy i ∈ S and j /∈ S. Fix such an indeterminate xi,j, and denote it by xu,v. Thus, xu,v is an
indeterminate that appears in m but does not satisfy u ∈ S and v /∈ S. Therefore, we have
either u /∈ S or v ∈ S (or both).

We have 1 ≤ u < v ≤ n (since the indeterminate xu,v exists) and thus u ∈ [n− 1]. The

definition of bu yields bu =
n
∑

j=u+1
au,j. But v ≥ u + 1 (since u < v). Hence, au,v is an addend

of the sum
n
∑

j=u+1
au,j. Hence,

n
∑

j=u+1
au,j ≥ au,v. But au,v > 0 (since the indeterminate xu,v

appears in m). Hence, bu =
n
∑

j=u+1
au,j ≥ au,v > 0. Therefore, u ∈ S (by the definition of S).

Hence, u /∈ S cannot hold. Therefore, v ∈ S (since we know that we have either u /∈ S or
v ∈ S). In other words, v ∈ [n− 1] and bv > 0 (by the definition of S). But the definition of

bv yields bv =
n
∑

j=v+1
av,j =

n
∑

w=v+1
av,w. Hence,

n
∑

w=v+1
av,w = bv > 0. Hence, there exists some

w ∈ {v + 1, v + 2, . . . , n} such that av,w > 0. Fix such a w.
We have v < w (since w ∈ {v + 1, v + 2, . . . , n}), hence u < v < w. Thus, (u, v) 6= (v, w).

Moreover, the indeterminate xv,w appears in m (since av,w > 0). Thus, both indeterminates
xu,v and xv,w appear in m. Hence, xu,vxv,w | m (since (u, v) 6= (v, w)).

But the monomial m is pathless. In other words, there exists no triple (i, j, k) ∈ [n]3 satis-
fying i < j < k and xi,jxj,k | m. This contradicts the fact that (u, v, w) is such a triple (since
u < v < w and xu,vxv,w | m). This contradiction completes our proof.

17Here we are using Proposition 2.14.
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proof of Proposition 2.16 (b).

2.8. (E ◦ D) (q) = (B ◦ A) (q) for pathless q

Corollary 2.17. Let q ∈ X be pathless. Then, (E ◦ D) (q) = (B ◦ A) (q).

Proof of Corollary 2.17. The polynomial q is pathless, i.e., is a k-linear combina-
tion of pathless monomials. Hence, we WLOG assume that q is a pathless mono-
mial m (since both maps E ◦ D and B ◦ A are k-linear). Consider this m.

Proposition 2.16 (a) shows that there exists a subset S of [n− 1] such that m is
S-friendly. Consider this S.

Proposition 2.16 (b) yields m ∈ XS and (E ◦ D) (m) = (BS ◦ AS) (m). But the
commutativity of the diagram (12) in Proposition 2.13 shows that BS ◦ AS =
(B ◦ A) |XS (provided that we regard BS ◦ AS as a map to T [[w]]). Hence,

(BS ◦ AS)︸ ︷︷ ︸
=(B◦A)|XS

(m) =
(
(B ◦ A) |XS

)
(m) = (B ◦ A) (m) .

Thus, (E ◦ D) (m) = (BS ◦ AS) (m) = (B ◦ A) (m). Since q = m, this rewrites as
(E ◦ D) (q) = (B ◦ A) (q). This proves Corollary 2.17.

2.9. Proof of Theorem 1.7

Lemma 2.18. Let p ∈ X be a pathless polynomial such that p ∈ J . Then,
D (p) = 0.

Proof of Lemma 2.18. We have A

 p︸︷︷︸
∈J

 ∈ A (J ) = 0 (by Proposition 2.5); thus,

A (p) = 0. But Corollary 2.17 (applied to q = p) yields

(E ◦ D) (p) = (B ◦ A) (p) = B

A (p)︸ ︷︷ ︸
=0

 = B (0) = 0

(since the map B is k-linear). Thus, E (D (p)) = (E ◦ D) (p) = 0. Since the k-
linear map E is injective (by Proposition 2.10), we thus conclude that D (p) = 0.
This proves Lemma 2.18.

We are now ready to prove Theorem 1.7:

Proof of Theorem 1.7. We need to prove that D (q) does not depend on the choice
of q. In other words, we need to prove that if f and g are two pathless polyno-
mials q ∈ X such that p ≡ q modJ , then D ( f ) = D (g).
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So let f and g be two pathless polynomials q ∈ X such that p ≡ q modJ .
Thus, p ≡ f modJ and p ≡ g modJ . Hence, f ≡ p ≡ g modJ , so that
f − g ∈ J . Also, the polynomial f − g ∈ X is pathless (since it is the difference
of the two pathless polynomials f and g). Thus, Lemma 2.18 (applied to f − g
instead of p) shows that D ( f − g) = 0. Thus, 0 = D ( f − g) = D ( f ) − D (g)
(since D is a k-algebra homomorphism). In other words, D ( f ) = D (g). This
proves Theorem 1.7.

2.10. Appendix: A symmetric description of J
In this section, let us give a different description of J that reveals a symmetry
inherent in the setting. First, we introduce auxiliary polynomials. So far, we have
only been considering indeterminates xi,j corresponding to pairs (i, j) ∈ [n]2

satisfying i < j. We shall now also define xi,j for pairs (i, j) ∈ [n]2 satisfying i > j;
but these xi,j will not be new indeterminates, but rather will be polynomials in
X :

Definition 2.19. (a) Let (i, j) ∈ [n]2 be a pair satisfying i > j. Then, we define
an element xi,j ∈ X by xi,j = −β− xj,i.

Thus, an element xi,j ∈ X is defined for any pair (i, j) of two distinct ele-
ments of [n].

(b) For any three distinct elements i, j, k of [n], we define a polynomial Ji,j,k ∈
X by

Ji,j,k = xi,jxj,k + xj,kxk,i + xk,ixi,j + β
(
xi,j + xj,k + xk,i

)
+ β2 − α.

Proposition 2.20. The ideal J of X is generated by all polynomials Ji,j,k for
i, j, k being three distinct elements of [n].

Proof of Proposition 2.20. If
(
up
)

p∈P is any family of elements of X , then
〈
up
〉

p∈P
shall mean the ideal of X generated by this family

(
up
)

p∈P. Thus, we need to

prove that J =
〈

Ji,j,k
〉

i,j,k are three distinct elements of [n].
We know (from the definition of J ) that

J =
〈

xi,jxj,k − xi,k
(
xi,j + xj,k + β

)
− α
〉
(i,j,k)∈[n]3 satisfying i<j<k . (14)

But for each (i, j, k) ∈ [n]3 satisfying i < j < k, we have

xi,jxj,k − xi,k
(
xi,j + xj,k + β

)
− α = Ji,j,k (15)
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18.
Hence, (14) rewrites as follows:

J =
〈

Ji,j,k
〉
(i,j,k)∈[n]3 satisfying i<j<k . (16)

On the other hand, the definition of Ji,j,k shows that Ji,j,k is symmetric in its
three arguments i, j, k; in other words, we have

Ji,j,k = Ji,k,j = Jj,i,k = Jj,k,i = Jk,i,j = Jk,j,i

whenever i, j, k are three distinct elements of [n]. Hence, the family(
Ji,j,k

)
i,j,k are three distinct elements of [n] contains the same elements as the family(

Ji,j,k
)
(i,j,k)∈[n]3 satisfying i<j<k, just repeated more often. Therefore, the ideal gen-

erated by the former family equals the ideal generated by the latter family. In
other words,〈

Ji,j,k
〉

i,j,k are three distinct elements of [n] =
〈

Ji,j,k
〉
(i,j,k)∈[n]3 satisfying i<j<k .

Comparing this with (16), we obtain J =
〈

Ji,j,k
〉

i,j,k are three distinct elements of [n].
This proves Proposition 2.20.

Proposition 2.20 reveals a hidden symmetry in the definitions of X and J :

Proposition 2.21. Consider the symmetric group Sn (that is, the group of all
permutations of [n]).

(a) There is a unique action of the group Sn on X by k-algebra automor-
phisms satisfying

σ · xi,j = xσ(i),σ(j) for all σ ∈ Sn

and all pairs (i, j) of distinct elements of [n] .

(b) The ideal J is invariant under this action of Sn, and thus the quotient
k-algebra X/J inherits this action of Sn.

18Proof of (15): Let (i, j, k) ∈ [n]3 be such that i < j < k. Then, the definition of Ji,j,k yields

Ji,j,k = xi,jxj,k + xj,kxk,i + xk,ixi,j + β
(

xi,j + xj,k + xk,i

)
+ β2 − α

= xi,jxj,k + xk,i︸︷︷︸
=−β−xi,k

(by the definition of xk,i ,
since k>i)

(
xi,j + xj,k + β

)
+ β

(
xi,j + xj,k

)
+ β2 − α

= xi,jxj,k + (−β− xi,k)
(

xi,j + xj,k + β
)
+ β

(
xi,j + xj,k

)
+ β2 − α

= xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α.

This proves (15).
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Proof of Proposition 2.21. (a) Let Y be the polynomial ring

k
[
yi,j | (i, j) ∈ [n]2 such that i 6= j

]
.

This is a polynomial ring in n (n− 1) indeterminates yi,j over k. The symmetric
group Sn acts on Y by k-algebra automorphisms; this action is defined by

σ · yi,j = yσ(i),σ(j) for all σ ∈ Sn

and all pairs (i, j) of distinct elements of [n] .

(The well-definedness of this action follows easily from the universal property
of the polynomial ring Y .)

Let φ : Y → X be the unique k-algebra homomorphism that sends each yi,j to
xi,j. This φ is well-defined by the universal property of the polynomial ring Y .
Also, φ is surjective, since the generators xi,j of X all belong to the image of φ.

If
(
up
)

p∈P is any family of elements of Y , then
〈
up
〉

p∈P shall mean the ideal

of Y generated by this family
(
up
)

p∈P. Define an ideal K of Y by

K =
〈
yi,j + yj,i + β

〉
(i,j)∈[n]2 such that i 6=j . (17)

Clearly, this ideal K is Sn-invariant. Hence, the quotient algebra Y/K inherits
the Sn-action from Y .

We are going to show that X ∼= Y/K.
Let π : Y → Y/K be the canonical projection; this is a surjective k-algebra

homomorphism. The k-algebra Y is generated by the yi,j for all (i, j) ∈ [n]2 such
that i 6= j. Hence, the quotient algebra Y/K is generated by the projections of
these yi,j. In other words, the quotient algebra Y/K is generated by the π

(
yi,j
)

for all (i, j) ∈ [n]2 such that i 6= j.
It is easy to see that φ (K) = 0 19. Hence, the k-algebra homomorphism

φ factors through the projection π : Y → Y/K. More precisely: There exists a
k-algebra homomorphism φ′ : Y/K → X satisfying φ = φ′ ◦ π. Consider this
φ′. Thus, each (i, j) ∈ [n]2 such that i 6= j satisfies

φ′
(
π
(
yi,j
))

=
(
φ′ ◦ π

)︸ ︷︷ ︸
=φ

(
yi,j
)
= φ

(
yi,j
)
= xi,j (18)

19Proof. It is clearly sufficient to show that φ
(
yi,j + yj,i + β

)
= 0 for each (i, j) ∈ [n]2 such that

i 6= j (because of (17)). So let us fix some (i, j) ∈ [n]2 such that i 6= j. We must prove that
φ
(
yi,j + yj,i + β

)
= 0.

This statement is clearly symmetric in i and j; thus, we WLOG assume that i ≤ j. Hence,
i < j (since i 6= j). The definition of φ yields φ

(
yi,j
)
= xi,j and φ

(
yj,i
)
= xj,i = −β− xi,j (by

the definition of xj,i, since j > i). Now, φ is a k-algebra homomorphism. Thus,

φ
(
yi,j + yj,i + β

)
= φ

(
yi,j
)︸ ︷︷ ︸

=xi,j

+ φ
(
yj,i
)︸ ︷︷ ︸

=−β−xi,j

+β = xi,j +
(
−β− xi,j

)
+ β = 0.

This completes our proof.
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(by the definition of φ).
Define a k-algebra homomorphism ζ : X → Y/K by requiring that

ζ
(
xi,j
)
= π

(
yi,j
)

for each (i, j) ∈ [n]2 satisfying i < j. (19)

(This is well-defined by the universal property of X .) Then, it is easy to see that

ζ
(
xi,j
)
= π

(
yi,j
)

for each (i, j) ∈ [n]2 satisfying i 6= j (20)

20.
Now, ζ ◦ φ′ = id 21 and φ′ ◦ ζ = id 22. Hence, the maps φ′ and ζ are

mutually inverse. Thus, the k-algebra homomorphism φ′ is invertible, and thus
is a k-algebra isomorphism.

20Proof of (20): Let (i, j) ∈ [n]2 be such that i 6= j. We must prove that ζ
(
xi,j
)
= π

(
yi,j
)
.

If i < j, then this follows immediately from (19). Thus, we WLOG assume that we don’t
have i < j. Hence, i ≥ j, so that i > j (since i 6= j). In other words, j < i. Thus, (19) (applied
to (j, i) instead of (i, j)) shows that ζ

(
xj,i
)
= π

(
yj,i
)
.

Notice that yi,j + yj,i + β ∈ K (by (17)), so that π
(
yi,j + yj,i + β

)
= 0 (since π is the canonical

projection Y → Y/K).
But the definition of xi,j yields xi,j = −β− xj,i (since i > j). Applying the map ζ to both

sides of this equality, we obtain

ζ
(

xi,j
)
= ζ

(
−β− xj,i

)
= −β− ζ

(
xj,i
)︸ ︷︷ ︸

=π(yj,i)

(since ζ is a k-algebra homomorphism)

= −β− π
(
yj,i
)

.

On the other hand, π is a k-algebra homomorphism, so that π
(
yi,j + yj,i + β

)
= π

(
yi,j
)
+

π
(
yj,i
)
+ β. Thus,

π
(
yi,j
)
+ π

(
yj,i
)
+ β = π

(
yi,j + yj,i + β

)
= 0.

Hence, π
(
yi,j
)
= −β − π

(
yj,i
)
. Comparing this with ζ

(
xi,j
)
= −β − π

(
yj,i
)
, we obtain

ζ
(

xi,j
)
= π

(
yi,j
)
. This completes our proof of (20).

21Proof. Both ζ ◦ φ′ and id are k-algebra homomorphisms (since ζ and φ′ are k-algebra ho-
momorphisms). Thus, we want to prove the equality of two k-algebra homomorphisms.
It therefore suffices to check their equality on the generators π

(
yi,j
)

of the k-algebra Y/K
(since we know that the k-algebra Y/K is generated by the π

(
yi,j
)

for all (i, j) ∈ [n]2 such
that i 6= j). In other words, it suffices to check that (ζ ◦ φ′)

(
π
(
yi,j
))

= π
(
yi,j
)

for each
(i, j) ∈ [n]2 such that i 6= j.

But this is easy: For each (i, j) ∈ [n]2 such that i 6= j, we have

(
ζ ◦ φ′

) (
π
(
yi,j
))

= ζ

φ′
(
π
(
yi,j
))︸ ︷︷ ︸

=xi,j
(by (18))

 = ζ
(
xi,j
)
= π

(
yi,j
)

(by (20)). Thus, ζ ◦ φ′ = id is proven.
22The proof of this is analogous to the proof of ζ ◦ φ′ = id (but instead of the generators π

(
yi,j
)

of the k-algebra Y/K, we now must use the generators xi,j of the k-algebra X ).
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Hence, X ∼= Y/K as k-algebras. Therefore, the Sn-action on Y/K can be trans-
ported to X . The result is an action of the group Sn on X by k-algebra automor-
phisms satisfying

σ · xi,j = xσ(i),σ(j) for all σ ∈ Sn

and all pairs (i, j) of distinct elements of [n] .

Moreover, this is clearly the only such action (because any k-algebra automor-
phism of X is determined by its action on the generators xi,j). This proves
Proposition 2.21 (a).

(b) If i, j, k are three distinct elements of [n], then σ · Ji,j,k = Jσ(i),σ(j),σ(k) for each
σ ∈ Sn (as follows easily from the definitions of the elements involved). Hence,
the action of Sn on X permutes the family

(
Ji,j,k

)
i,j,k are three distinct elements of [n].

Thus, the ideal generated by this family is Sn-invariant. Since this ideal is J
(by Proposition 2.20), we have thus shown that J is Sn-invariant. Hence, the
quotient k-algebra X/J inherits an Sn-action from X . Proposition 2.21 (b) is
thus proven.

3. Forkless polynomials and a basis of X/J

3.1. Statements

We have thus answered one of the major questions about the ideal J ; but we
have begged perhaps the most obvious one: Can we find a basis of the k-module
X/J ? This turns out to be much simpler than the above; the key is to use a
different strategy. Instead of reducing polynomials to pathless polynomials, we
shall reduce them to forkless polynomials, defined as follows:

Definition 3.1. A monomial m ∈M is said to be forkless if there exists no triple
(i, j, k) ∈ [n]3 satisfying i < j < k and xi,jxi,k | m (as monomials).

A polynomial p ∈ X is said to be forkless if it is a k-linear combination of
forkless monomials.

The following characterization of forkless polynomials is rather obvious:

Proposition 3.2. Let m ∈ M. Then, the monomial m is forkless if and only if
there exist a map f : [n− 1]→ [n] and a map g : [n− 1]→N such that

( f (i) > i for each i ∈ [n− 1]) and m = ∏
i∈[n−1]

xg(i)
i, f (i).

Now, we claim the following:
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Theorem 3.3. Let p ∈ X . Then, there exists a unique forkless polynomial
q ∈ X such that p ≡ q modJ .

Proposition 3.4. The projections of the forkless monomials m ∈ M onto the
quotient ring X/J form a basis of the k-module X/J .

3.2. A reminder on Gröbner bases

Theorem 3.3 and Proposition 3.4 can be proven using the theory of Gröbner
bases. See, e.g., [BecWei98] for an introduction. Let us outline the argument. We
shall use the following concepts:

Definition 3.5. Let Ξ be a set of indeterminates. Let XΞ be the polynomial
ring k [ξ | ξ ∈ Ξ] over k in these indeterminates. Let MΞ be the set of all
monomials in these indeterminates (i.e., the free abelian monoid on the set Ξ).
(For example, if Ξ =

{
xi,j | (i, j) ∈ [n]2 satisfying i < j

}
, then XΞ = X and

MΞ = M.)
(a) A term order on MΞ is a total order on the set MΞ that satisfies the

following conditions:

• Each m ∈MΞ satisfies 1 ≤ m (where 1 is the trivial monomial in MΞ).

• If m, u and v are three elements of MΞ satisfying u ≤ v, then mu ≤ mv.

(b) If we are given a total order on the set Ξ, then we canonically obtain a
term order on MΞ defined as follows: For two monomials m = ∏

ξ∈Ξ
ξmξ and

n = ∏
ξ∈Ξ

ξnξ in MΞ, we set m ≤ n if and only if either m = n or the largest

ξ ∈ Ξ for which mξ and nξ differ satisfies mξ < nξ . This term order is called
the inverse lexicographical order on the set MΞ determined by the given total order
on Ξ.

(c) Two monomials m = ∏
ξ∈Ξ

ξmξ and n = ∏
ξ∈Ξ

ξnξ in MΞ are said to be non-

disjoint if there exists some ξ ∈ Ξ satisfying mξ > 0 and nξ > 0. Otherwise, m
and n are said to be disjoint.

From now on, let us assume that some term order on MΞ has been chosen.
The next definitions will all rely on this term order.

(d) If f ∈ XΞ is a nonzero polynomial, then the head term of f denotes the
largest m ∈MΞ such that the coefficient of m in f is nonzero. This head term
will be denoted by HT ( f ). Furthermore, if f ∈ XΞ is a nonzero polynomial,
then the head coefficient of f is defined to be the coefficient of HT ( f ) in f ; this
coefficient will be denoted by HC ( f ).

(e) A nonzero polynomial f ∈ XΞ is said to be monic if its head coefficient
HC ( f ) is 1.
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(f) If m = ∏
ξ∈Ξ

ξmξ and n = ∏
ξ∈Ξ

ξnξ are two monomials in MΞ, then the

lowest common multiple lcm (m, n) of m and n is defined to be the monomial

∏
ξ∈Ξ

ξmax{mξ ,nξ}. (Thus, lcm (m, n) = mn if and only if m and n are disjoint.)

(g) If g1 and g2 are two monic polynomials in XΞ, then the S-polynomial
of g1 and g2 is defined to be the polynomial s1g1 − s2g2, where s1 and
s2 are the unique two monomials satisfying s1 HT (g1) = s2 HT (g2) =
lcm (HT (g1) , HT (g2)). This S-polynomial is denoted by spol (g1, g2).

From now on, let G be a subset of XΞ that consists of monic polynomials.
(h) We define a binary relation −→

G
on the set XΞ as follows: For two poly-

nomials f and g in XΞ, we set f −→
G

g (and say that f reduces to g modulo G)

if there exists some p ∈ G and some monomials t ∈MΞ and s ∈MΞ with the
following properties:

• The coefficient of t in f is 6= 0.

• We have s ·HT (p) = t.

• If a is the coefficient of t in f , then g = f − a · s · p.

(i) We let ∗−→
G

denote the reflexive-and-transitive closure of the relation −→
G

.

(j) We say that a monomial m ∈ MΞ is G-reduced if it is not divisible by the
head term of any element of G.

We say that a polynomial q ∈ XΞ is G-reduced if q is a k-linear combination
of G-reduced monomials.

(k) Let I be an ideal of XΞ. The set G is said to be a Gröbner basis of the ideal
I if and only if the set G generates I and has the following two equivalent
properties:

• For each p ∈ XΞ, there is a unique G-reduced q ∈ XΞ such that p ∗−→
G

q.

• For each p ∈ I , we have p ∗−→
G

0.

The definition we just gave is modelled after the definitions in [BecWei98,
Chapter 5]; however, there are several minor differences:

• We use the word “monomial” in the same meaning as [BecWei98, Chapter
5] use the word “term” (but not in the same meaning as [BecWei98, Chapter
5] use the word “monomial”).

• We allow k to be a commutative ring, whereas [BecWei98, Chapter 5] re-
quire k to be a field. This leads to some complications in the theory of
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Gröbner bases; in particular, not every ideal has a Gröbner basis anymore.
However, everything we are going to use about Gröbner bases in this paper
is still true in our general setting.

• We require the elements of the Gröbner basis G to be monic, whereas
[BecWei98, Chapter 5] merely assume them to be nonzero polynomials.
In this way, we are sacrificing some of the generality of [BecWei98, Chapter
5] (a sacrifice necessary to ensure that things don’t go wrong when k is not
a field). However, this is not a major loss of generality, since in the situ-
ation of [BecWei98, Chapter 5] the difference between monic polynomials
and arbitrary nonzero polynomials is not particularly large (we can scale
any nonzero polynomial by a constant scalar to obtain a monic polynomial,
and so we can assume the polynomials to be monic in most of the proofs).

The following fact is useful even if almost trivial:

Lemma 3.6. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let G be a subset of XΞ
that consists of monic polynomials. Let S be a finite set. For each s ∈ S, let gs
be an element of G, and let ss ∈MΞ and as ∈ k be arbitrary. Assume that the
monomials ss HT (gs) for all s ∈ S are distinct. Then, ∑

s∈S
asssgs

∗−→
G

0.

Proof of Lemma 3.6 (sketched). We proceed by strong induction on |S|. If |S| = 0,
then Lemma 3.6 is obvious23. Hence, WLOG assume that |S| > 0.

Let t be the element of S with highest st HT (gt). Then, t is the unique element
of S with highest st HT (gt) (since the monomials ss HT (gs) for all s ∈ S are
distinct). By the induction hypothesis, we have ∑

s∈S\{t}
asssgs

∗−→
G

0. If at = 0,

then this immediately rewrites as ∑
s∈S

asssgs
∗−→
G

0, and so we are done. Hence,

WLOG assume that at 6= 0. Hence, the head term of ∑
s∈S

asssgs is st HT (gt), with

coefficient at (since t is the unique element of S with highest st HT (gt)). Thus,
we know that:

• The coefficient of st HT (gt) is 6= 0 (since at 6= 0).

• We have st ·HT (gt) = st HT (gt).

• If a is the coefficient of st HT (gt) in ∑
s∈S

asssgs, then ∑
s∈S\{t}

asssgs = ∑
s∈S

asssgs−

a · st · gt (because this a is at).

23because in this case, we have ∑
s∈S

wsgs = (empty sum) = 0 ∗−→
G

0
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Hence, the definition of the relation −→
G

yields ∑
s∈S

asssgs −→
G

∑
s∈S\{t}

asssgs.

Combining this with ∑
s∈S\{t}

asssgs
∗−→
G

0, we obtain ∑
s∈S

asssgs
∗−→
G

0. This com-

pletes the induction step, and thus Lemma 3.6 is proven.

The following criterion for a set to be a Gröbner basis is well-known (it is, in
fact, the main ingredient in the proof of the correctness of Buchberger’s algo-
rithm):

Proposition 3.7. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let I be an ideal
of XΞ. Let G be a subset of XΞ that consists of monic polynomials. Assume
that the set G generates I . Then, G is a Gröbner basis of I if and only if it has
the following property:

• If g1 and g2 are any two elements of the set G, then spol (g1, g2)
∗−→
G

0.

Proofs of Proposition 3.7 (at least in the case when k is a field) can be found
in [BecWei98, Theorem 5.48, (iii) ⇐⇒ (i)], [EneHer12, Theorem 2.14], [Graaf16,
Theorem 1.1.33], [MalBlo15, V.3 i) ⇐⇒ ii)], [Monass02, Théorème (Buchberger)
(i) ⇐⇒ (ii)], and (in a slight variation) in [CoLiOs15, Chapter 2, §6, Theorem
6]24.

The following fact (known as “Buchberger’s first criterion”) somewhat simpli-
fies dealing with S-polynomials:

Proposition 3.8. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let G be a subset of
XΞ that consists of monic polynomials. Let g1 and g2 be two elements of the
set G such that the head terms of g1 and g2 are disjoint. Then, spol (g1, g2)

∗−→
G

0.

Proposition 3.8 can be found in [BecWei98, Lemma 5.66], [Graaf16, Lemma
1.1.38], [Grinbe17a, Theorem 4], [EneHer12, Proposition 2.15], [MalBlo15, V.6 i)]
and [Monass02, Lemme (in the section “Améliorations de l’algorithme”)]25.

We can combine Proposition 3.7 with Proposition 3.8 to obtain the following
fact:

24Different sources state slightly different versions of Proposition 3.7. For example, some texts
require spol (g1, g2)

∗−→
G

0 not for any two elements g1 and g2 of G, but only for any two

distinct elements g1 and g2 of G. However, this makes no difference, because if g1 and g2 are
equal, then spol (g1, g2) = 0 ∗−→

G
0. Similarly, other texts require g1 < g2 (with respect to some

chosen total order on G); this also does not change much, since spol (g1, g2) = − spol (g2, g1).
25That said, the proof of [Monass02, Lemme (in the section “Améliorations de l’algorithme”)] is

incorrect.
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Proposition 3.9. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let I be an ideal
of XΞ. Let G be a subset of XΞ that consists of monic polynomials. Assume
that the set G generates I . Then, G is a Gröbner basis of I if and only if it has
the following property:

• If g1 and g2 are two elements of the set G such that the head terms of g1

and g2 are non-disjoint, then spol (g1, g2)
∗−→
G

0.

Proposition 3.9 follows trivially from Proposition 3.7 after recalling Proposi-
tion 3.8. Explicitly, Proposition 3.9 appears (at least in the case when k is a
field) in [BecWei98, Theorem 5.68, (ii) ⇐⇒ (i)] and [Graaf16, Conclusion after
the proof of Lemma 1.1.38].

We shall also use the following simple fact, known as the “Macaulay-Buchberger
basis theorem”:

Proposition 3.10. Let Ξ, XΞ and MΞ be as in Definition 3.5. Let I be an
ideal of XΞ. Let G be a Gröbner basis of I . The projections of the G-reduced
monomials onto the quotient ring XΞ/I form a basis of the k-module XΞ/I .

Proposition 3.10 is easy to prove; it also appears (in the case when k is a field)
in various texts (e.g., [CoLiOs15, Chapter 5, §3, Proposition 1 and Proposition 4],
[Monass02, Théorème in the section “Espaces quotients”] or [Sturmf08, Theorem
1.2.6]).

For the sake of completeness, let us also outline its proof here:

Proof of Proposition 3.10 (sketched). For each polynomial p ∈ XΞ, we let p denote
the projection of p onto the quotient ring XΞ/I . Let Mred be the set of all G-
reduced monomials. Thus, we must prove that the family (m)m∈Mred

is a basis
of the k-module XΞ/I .

First, let us prove that this family is k-linearly independent. Indeed, let
(λm)m∈Mred

be a family of elements of k such that all but finitely many m ∈Mred
satisfy λm = 0, and such that ∑

m∈Mred

λmm = 0.

Now, let f = ∑
m∈Mred

λmm. Thus, f = ∑
m∈Mred

λmm = ∑
m∈Mred

λmm = 0, so that

f ∈ I . Assume (for the sake of contradiction) that f 6= 0.
The definition of a Gröbner basis shows that for each p ∈ I , we have p ∗−→

G
0.

Applying this to p = f , we obtain f ∗−→
G

0. Since f 6= 0, we thus conclude that

there exists some g ∈ XΞ such that f −→
G

g and g ∗−→
G

0 (because the relation
∗−→
G

is the reflexive-and-transitive closure of the relation −→
G

). Consider this g.
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We have f −→
G

g. By the definition of the relation −→
G

, this means that there

exists some p ∈ G and some monomials t ∈MΞ and s ∈MΞ with the following
properties:

• The coefficient of t in f is 6= 0.

• We have s ·HT (p) = t.

• If a is the coefficient of t in f , then g = f − a · s · p.

The coefficient of t in f is 6= 0. In other words, the monomial t appears in
f . Hence, t ∈ Mred (since all monomials appearing in f belong to Mred (by the
definition of f )). In other words, the monomial t is G-reduced. In other words,
the monomial t is not divisible by the head term of any element of G (by the
definition of “G-reduced”). But this contradicts the fact that t is divisible by
HT (p) (since s ·HT (p) = t), because HT (p) is the head term of the element p
of G. This contradiction shows that our assumption (that f 6= 0) was wrong.
Hence, we have f = 0.

Thus, ∑
m∈Mred

λmm = f = 0. Hence, λm = 0 for each m ∈ Mred (since the

monomials m ∈Mred are k-linearly independent). In other words, (λm)m∈Mred
=

(0)m∈Mred
.

Now, forget that we fixed (λm)m∈Mred
. We thus have shown that if (λm)m∈Mred

is a family of elements of k such that all but finitely many m ∈ Mred satisfy
λm = 0, and such that ∑

m∈Mred

λmm = 0, then (λm)m∈Mred
= (0)m∈Mred

. In other

words, the family (m)m∈Mred
is k-linearly independent.

Next, let us prove that this family spans the k-module XΞ/I . Indeed, let
r ∈ XΞ/I be arbitrary.

It is easy to see that if two elements f and g of XΞ satisfy f −→
G

g, then f = g

(because f −→
G

g implies that g = f − a · s · p for some a ∈ k, some s ∈MΞ and

some p ∈ G, but this shows that f − g = a · s · p︸︷︷︸
∈G⊆I

∈ a · s · I ⊆ I). Hence, if

two elements f and g of XΞ satisfy f ∗−→
G

g, then

f = g (21)

(because the relation ∗−→
G

is the reflexive-and-transitive closure of the relation

−→
G

).

We have r ∈ XΞ/I . Thus, we can write r as r = f for some f ∈ XΞ. Consider
this f .

The definition of a Gröbner basis shows that for each p ∈ XΞ, there is a unique
G-reduced q ∈ XΞ such that p ∗−→

G
q. Applying this to p = f , we conclude that
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there is a unique G-reduced q ∈ XΞ such that f ∗−→
G

q. Consider this q. Applying

(21) to g = q, we obtain f = q.
But the polynomial q is G-reduced. In other words, q is a k-linear combination

of G-reduced monomials. In other words, q is a k-linear combination of the
family (m)m∈Mred

. Hence, q is a k-linear combination of the family (m)m∈Mred
.

In view of r = f = q, this shows that r is a k-linear combination of the family
(m)m∈Mred

.
Now, forget that we fixed r. We thus have shown that each r ∈ XΞ/I is a k-

linear combination of the family (m)m∈Mred
. In other words, the family (m)m∈Mred

spans the k-module XΞ/I . Since we also know that this family is k-linearly
independent, we can thus conclude that (m)m∈Mred

is a basis of the k-module
XΞ/I . This proves Proposition 3.10.

3.3. The proofs

The main workhorse of the proofs is the following fact:

Proposition 3.11. Consider the inverse lexicographical order on the set M of
monomials determined by

x1,2 > x1,3 > · · · > x1,n

> x2,3 > x2,4 > · · · > x2,n

> · · ·
> xn−1,n.

Then, the set{
xi,kxi,j − xi,jxj,k + xi,kxj,k + βxi,k + α | (i, j, k) ∈ [n]3 satisfying i < j < k

}
(22)

is a Gröbner basis of the ideal J of X (with respect to this order).

Proof of Proposition 3.11 (sketched). The elements xi,kxi,j− xi,jxj,k + xi,kxj,k + βxi,k +

α of the set (22) differ from the designated generators xi,jxj,k− xi,k
(
xi,j + xj,k + β

)
−

α of the ideal J merely by a factor of −1 (indeed, xi,kxi,j − xi,jxj,k + xi,kxj,k +

βxi,k + α = (−1)
(
xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α
)
). Thus, they generate the

ideal J . Hence, in order to prove that they form a Gröbner basis of J , we
merely need to show the following claim:

Claim 1: Let g1 and g2 be two elements of the set (22) such that the
head terms of g1 and g2 are non-disjoint. Then, spol (g1, g2)

∗−→
G

0,

where G is the set (22).

42



Reductions for the subdivision algebra April 21, 2019

(Indeed, proving Claim 1 is sufficient because of Proposition 3.9.)
In order to prove Claim 1, we fix two elements g1 and g2 of the set (22) such

that the head terms of g1 and g2 are non-disjoint. Thus,

g1 = xi1,k1 xi1,j1 − xi1,j1 xj1,k1 + xi1,k1 xj1,k1 + βxi1,k1 + α

for some (i1, j1, k1) ∈ [n]3 satisfying i1 < j1 < k1, and

g2 = xi2,k2 xi2,j2 − xi2,j2 xj2,k2 + xi2,k2 xj2,k2 + βxi2,k2 + α

for some (i2, j2, k2) ∈ [n]3 satisfying i2 < j2 < k2. Since the head terms xi1,k1 xi1,j1
and xi2,k2 xi2,j2 of g1 and g2 are non-disjoint, we must have i1 = i2. Furthermore,
one of j1 and k1 must equal one of j2 and k2 (for the same reason). Thus, there
are at most four distinct integers among i1, i2, j1, j2, k1, k2.

We can now finish off Claim 1 by straightforward computations, after distin-
guishing several cases based upon which of the numbers j1 and k1 equal which
of the numbers j2 and k2. We WLOG assume that (i1, j1, k1) 6= (i2, j2, k2) (since
otherwise, it is clear that spol (g1, g2) = 0 ∗−→

G
0). Thus, there are exactly four

distinct integers among i1, i2, j1, j2, k1, k2 (since i1 = i2, since i1 < j1 < k1 and
i2 < j2 < k2, and since one of j1 and k1 equals one of j2 and k2). Let us denote
these four integers by a, b, c, d in increasing order (so that a < b < c < d). Hence,
i1 = a (since i1 < j1 < k1 and i2 < j2 < k2), whereas the two pairs (j1, k1) and
(j2, k2) are two of the three pairs (b, c), (b, d) and (c, d) (for the same reason).
Hence, g1 and g2 are two of the three polynomials

xa,cxa,b − xa,bxb,c + xa,cxb,c + βxa,c + α,
xa,dxa,b − xa,bxb,d + xa,dxb,d + βxa,d + α,
xa,dxa,c − xa,cxc,d + xa,dxc,d + βxa,d + α.

It thus remains to verify that spol (g1, g2)
∗−→
G

0.

Let us do this. Set

u1 = xa,cxa,b − xa,bxb,c + xa,cxb,c + βxa,c + α;
u2 = xa,dxa,b − xa,bxb,d + xa,dxb,d + βxa,d + α;
u3 = xa,dxa,c − xa,cxc,d + xa,dxc,d + βxa,d + α;
u4 = xb,cxb,d − xb,cxc,d + xb,dxc,d + βxb,d + α.

All four polynomials u1, u2, u3, u4 belong to G. We shall prove that spol (g1, g2)
∗−→
G

0 whenever g1 and g2 are two of the three polynomials u1, u2, u3. In other words,
we shall prove that spol (u1, u2)

∗−→
G

0, spol (u1, u3)
∗−→
G

0 and spol (u2, u3)
∗−→
G

0.

Start with the neat identity

u1 (xa,d − xb,d)− u2 (xa,c − xb,c)− u3 (xb,c − xb,d) + u4 (xa,c − xa,d) = 0.
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Expanding and bringing 6 of the 8 addends on the right hand side, we obtain

xa,du1 − xa,cu2 = −xb,cu2 − xa,cu4 + xb,du1 + xb,cu3 + xa,du4 − xb,du3.

Since the monomials

xb,c HT (u2) , xa,c HT (u4) , xb,d HT (u1) , xb,c HT (u3) , xa,d HT (u4) , xb,d HT (u3)

are distinct, we thus conclude that xa,du1− xa,cu2
∗−→
G

0 (by Lemma 3.6). In other

words, spol (u1, u2)
∗−→
G

0 (since spol (u1, u2) = xa,du1 − xa,cu2).

Next, observe the identity

xa,du1 − xa,bu3 = βu3 − βu2 − xa,bu4 − xb,cu2 + xb,cu3 + xa,du4 + xc,du1 − xc,du2.

Since the monomials

HT (u3) , HT (u2) , xa,b HT (u4) , xb,c HT (u2) , xb,c HT (u3) ,
xa,d HT (u4) , xc,d HT (u1) , xc,d HT (u2)

are distinct, we can conclude that xa,du1 − xa,bu3
∗−→
G

0 (by Lemma 3.6). In other

words, spol (u1, u3)
∗−→
G

0.

Finally, the identity we need for spol (u2, u3)
∗−→
G

0 is

xa,cu2 − xa,bu3 = βu3 − βu2 − xa,bu4 + xa,cu4 − xb,du1 + xc,du1 + xb,du3 − xc,du2.

The same distinctness argument works here.
We have thus proven Claim 1. Thus, Proposition 3.11 is proven.

Remark 3.12. Proposition 3.11 can be generalized somewhat. Namely, instead
of requiring the total order on M to be inverse lexicographic, it suffices to
assume that we are given any term order on M satisfying the following con-
dition: For every (i, j, k) ∈ [n]3 satisfying i < j < k, we have xi,k > xj,k and
xi,j > xj,k.

In fact, this condition ensures that the head term of the polynomial xi,kxi,j−
xi,jxj,k + xi,kxj,k + βxi,k + α (for (i, j, k) ∈ [n]3 satisfying i < j < k) is xi,kxi,j; but
this is all that was needed from our term order to make the above proof of
Proposition 3.11 valid.

Proof of Proposition 3.4 (sketched). Let G be the set (22). Then, Proposition 3.11
shows that G is a Gröbner basis of the ideal J of X (where M is endowed with
the term order defined in Proposition 3.11). Hence, Proposition 3.10 (applied
to Ξ =

{
xi,j | (i, j) ∈ [n]2 satisfying i < j

}
, XΞ = X , MΞ = M and I = J )

shows that the projections of the G-reduced monomials onto the quotient ring
X/J form a basis of the k-module X/J . Since the G-reduced monomials are
precisely the forkless monomials, this yields Proposition 3.4.
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Proof of Theorem 3.3 (sketched). Theorem 3.3 is merely a restatement of Proposi-
tion 3.4.

Remark 3.13. Let us notice that the “existence” part of Theorem 3.3 can also
be proven similarly to how we proved Proposition 1.5. This time, we need
to define a different notion of “weight”: Instead of defining the weight of a
monomial m = ∏

(i,j)∈[n]2;
i<j

x
ai,j
i,j to be weightm = ∑

(i,j)∈[n]2;
i<j

ai,j (n− j + i), we now

must define it to be weightm = ∑
(i,j)∈[n]2;

i<j

ai,j (j− i).

Question 3.14. Is there a similarly simple argument for the “uniqueness” part?

3.4. Dimensions

The k-module X/J is free of infinite rank whenever n ≥ 2; indeed, the basis
given in Proposition 3.4 is infinite (for any k ∈N, the monomial xk

1,2 is forkless).
However, X/J can be equipped with a filtration, whose filtered parts are of
finite rank. Namely, recall that the polynomial ring X is graded (by total degree)
and thus filtered; this filtration is then inherited by its quotient ring X/J . For
each k ∈ N, we let (X/J )≤k denote the k-th part of the filtration on X/J (that
is, the projection onto X/J of all polynomials p ∈ X of total degree ≤ k). A
moment of thought reveals that the basis of X/J given in Proposition 3.4 is a
filtered basis: For each k ∈ N, the projections of the forkless monomials m ∈M
of total degree ≤ k onto the quotient ring X/J form a basis of the k-module
(X/J )≤k. This basis is a finite basis, and so its size is a nonnegative integer.
What is this integer?

Of course, it suffices to count the forkless monomials m ∈ M of total degree
k for each k ∈ N. This is a relatively easy counting problem using some clas-
sical results [Stan11, Proposition 1.3.7 and Proposition 1.3.10]; the answer is the
following:

Proposition 3.15. For each k ∈N, let fn,k be the number of forkless monomials
m ∈M of total degree k. Then,

∑
k∈N

fn,ktk =
(1 + 0t) (1 + 1t) · · · (1 + (n− 2) t)

(1− t)n−1

(as formal power series in Z [[t]]).

When α = 0 and β = 0, the ideal J of X is homogeneous. Thus, in this case,
the quotient k-algebra X/J inherits not only a filtration, but also a grading from
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X ; its Hilbert series (with respect to this grading) is the power series ∑
k∈N

fn,ktk

of Proposition 3.15.

Question 3.16. The filtration on X/J considered above is not the only nat-
ural one. Another is the filtration by “weight” (as in Definition 1.9), or by
the alternative notion of “weight” mentioned in Remark 3.13. What are the
analogues of Proposition 3.15 for these filtrations?

4. Further questions

Let us finally indicate some further directions of research not mentioned so far.

4.1. The kernel of A

Question 4.1. (a) Is J the kernel of the map A : X → Q from Definition 2.4?
(b) Consider the polynomial ring k [q̃1, q̃2, . . . , q̃n] in n indeterminates

q̃1, q̃2, . . . , q̃n over k. Let Qrat denote the localization of this polynomial
ring at the multiplicative subset generated by all differences of the form
q̃i − q̃j (for 1 ≤ i < j ≤ n). Then, the morphism A : X → Q factors
through a k-algebra homomorphism Ã : X → Qrat which sends each xi,j

to −
q̃i + β + α/q̃j

1− q̃i/q̃j
= −

q̃iq̃j + βq̃j + α

q̃j − q̃i
∈ Qrat. Is J the kernel of this latter

homomorphism Ã ?

Parts (a) and (b) of Question 4.1 are equivalent, since the canonical k-algebra
homomorphismQrat → Q is injective. This question is interesting partly because
a positive answer to part (b) would provide a realization of X/J as a subalgebra
of a localized polynomial ring in (only) n indeterminates. This subalgebra would
probably not be the whole Qrat.

(Perhaps it can be shown – by some kind of multidimensional residues – that
A maps the forkless monomials in X to linearly independent elements of Q.
Such a proof would then immediately yield positive answers to parts (a) and (b)
of Question 4.1 as well as an alternative proof of Theorem 3.3.)

An approach to Question 4.1 (b) might begin with finding a basis of the k-
module Qrat. It turns out that such a basis is rather easy to construct:

Proposition 4.2. In Qrat, consider the family of all elements of the form
n
∏
i=1

gi,

where each gi has either the form
1(

q̃i − q̃j
)m for some j ∈ {i + 1, i + 2, . . . , n}

and m > 0 or the form q̃k
i for some k ∈ N. This family is a basis of the

k-module Qrat.
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Notice that this family is similar to the forkless monomials in Proposition 3.4,
but it is “larger” (if we would allow the gi to have the form q̃k

i only for k = 0,
then we would obtain a restricted family that would be in an obvious bijection
with the forkless monomials).

Proposition 4.2 is closely related to results by Horiuchi and Terao ([HorTer03]
and [Terao02]); indeed, if k is a field, then Qrat can be regarded as the ring of
regular functions on the complement of the braid arrangement in kn, and such
functions are what they have studied (although usually not the whole Qrat).
Notice however that they worked only over fields k of characteristic 0.

Let us only briefly hint to how Proposition 4.2 is proven; the details shall be
deferred to future work. We can construct Qrat recursively: For any n > 0,
we can first construct the k-algebra Qrat,n−1 defined as the localization of the
polynomial ring k [q̃2, q̃3, . . . , q̃n] at the multiplicative subset generated by all
differences of the form q̃i − q̃j (for 2 ≤ i < j ≤ n); then, Qrat is isomorphic to
the localization of the polynomial ring Qrat,n−1 [q̃1] at the multiplicative subset
generated by all differences of the form q̃1− q̃j (for 2 ≤ j ≤ n). Thus, Proposition
4.2 can be proven by induction over n, using the following fact:

Proposition 4.3. Let A be a commutative ring. Let f1, f2, . . . , fn be n elements
of A. Assume that for each 1 ≤ i < j ≤ n, the element fi− f j of A is invertible.
Let B be the localization of the polynomial ring A [x] at the multiplicative
subset generated by all differences of the form x− f j (for 1 ≤ j ≤ n). Then, B
is a free A-module, with a basis consisting of the following elements:

• all elements of the form
1(

x− f j
)m for j ∈ {1, 2, . . . , n} and m > 0;

• all elements of the form xk for k ∈N.

Proposition 4.3 is essentially a form of partial fraction decomposition, saying
that any element of B can be uniquely written as an A-linear combination of

elements of the form
1(

x− f j
)m for j ∈ {1, 2, . . . , n} and m > 0, plus a polynomial

in A [x]. This can be proven by thoroughly analyzing the corresponding proof
in the case when A is a field; the invertibility of the differences fi − f j is actually
what is needed here (since it entails that the ideals

(
x− f j

)
A [x] of A [x] for

j ∈ {1, 2, . . . , n} are pairwise comaximal).

4.2. Isomorphisms between X/J for different α, β

Let us now rename the ideal J as Jβ,α, in order to stress its dependence on β
and α.
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Question 4.4. When are the k-algebras X/Jβ,α for different choices of α and
β isomorphic?

For n = 2, the answer is clearly “always”, because X/Jβ,α does not depend
on α and β in this case (in fact, Jβ,α = 0 when n = 2). So the question only
becomes interesting for n ≥ 3. The answer may well depend on the base ring k,
and it is perhaps reasonable to assume that k is a field here. It is easy to come
up with an example where the k-algebras X/Jβ,α for different choices of α and
β are not isomorphic26. The following example should stress that isomorphisms
nevertheless can exist:

Example 4.5. (a) Let γ ∈ k. The k-algebra isomorphism X → X , xi,j 7→
γ− xi,j descends to a k-algebra isomorphism X/Jβ,α → X/Jβ+2γ,α+βγ+γ2 .

(b) Let ρ ∈ k be invertible. The k-algebra isomorphism X → X , xi,j 7→ ρxi,j
descends to a k-algebra isomorphism X/Jρβ,ρ2α → X/Jβ,α.

4.3. A deformation of the Orlik-Terao algebra?

We have already seen in Subsection 4.1 that the k-algebra X/J is closely con-
nected to the localization Qrat from Question 4.1. In the parlance of algebraic
geometers, Qrat is the coordinate ring of the complement of the braid arrange-
ment in kn. This complement has been the subject of a classical paper by Arnold
[Arnold71], which discussed its cohomology ring. Arnold’s description of this
cohomology ring is remarkably similar to our definition of X/J in the case
when β = 0 and α = 0. Namely, Arnold considers the exterior (i.e., free anti-

commutative) algebra A (n) in
(

n
2

)
indeterminates ωi,j for 1 ≤ i < j ≤ n up to

the relations ωi,jωj,k + ωj,kωk,i + ωk,iωi,j = 0, where ωu,v for u > v is defined to
be a synonym for ωv,u. He gives a basis [Arnold71, Corollary 3] of this k-module
A (n), which is almost exactly the same as our basis of forkless monomials for
X/J (with the difference, of course, that his monomials are squarefree because
they live in an exterior algebra, and that his choice of order is different).

Arnold’s algebra A (n) has since been significantly generalized. Namely, to
every matroid corresponds an Orlik-Solomon algebra [CorEti01]; this recovers the

26For example, let k be a field of characteristic 6= 2, and let n = 3. Then, X/Jβ,α is the
quotient of the polynomial ring X = k [x1,2, x1,3, x2,3] by the principal ideal generated by
x1,2x2,3 − x1,3 (x1,2 + x2,3 + β)− α.

We claim that any k-algebra X/Jβ,α for 4α = β2 is non-isomorphic to any k-algebra
X/Jβ,α for 4α 6= β2.

To see this, it suffices to show that the k-algebra X/Jβ,α has a “k-valued singular point”
(i.e., a k-algebra homomorphism ε : X/Jβ,α → k such that there exist three k-linearly in-
dependent (ε, ε)-derivations X/Jβ,α → k, where an (ε, ε)-derivation means a k-linear map
∂ : X/Jβ,α → k satisfying ∂ ( f g) = ∂ ( f ) ε (g) + ε ( f ) ∂ (g) for all f , g) if and only if 4α = β2.
But this is easily verified.
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algebra A (n) when the matroid is the graphical matroid of the complete graph
Kn. Seeing that the subdivision algebra X/J can be viewed as a commutative
analogue of A (n), we can thus ask for a similar commutative analogue of an
arbitrary Orlik-Solomon algebra.

Such an analogue, too, is known [SchToh15]: it is the Orlik-Terao algebra of
a finite family of vectors. This generalizes X/J in the case when β = 0 and
α = 0. We may thus regard X/J as a deformation of a specific Orlik-Terao
algebra, and ask for a generalization:

Question 4.6. (a) Can an arbitrary Orlik-Terao algebra be deformed by two
parameters β and α, generalizing our X/J ? A deformation by one parameter
h̄ (which we suspect to correspond to our X/J for the braid arrangement
with α = 0) has been studied by McBreen and Proudfoot in [McbPro15, §A.2]
at least in the case of a unimodular family of vectors.

(b) Does Theorem 1.7 extend to Orlik-Terao algebras?

Note that our basis of forkless monomials for X/J can be regarded as an
“nbc basis” in the sense of [CorEti01] (except that our monomials are not re-
quired to be squarefree). Indeed, if we totally order the monomials xi,j in such
a way that xi,j > xu,v whenever i < u, then the broken circuits of the graphical
matroid of Kn are precisely the sets of the form {{i, j} , {i, k}} for i < j < k;
but these correspond to the precise monomials xi,jxi,k that a forkless monomial
cannot be divisible by. Proudfoot’s and Speyer’s [ProSpe06, Theorem 4] leads
to a similar basis for Orlik-Terao algebras of arbitrary hyperplane arrangements,
and [McbPro15, Theorem A.9] extends this to its one-parameter deformation for
unimodular arrangements. We may still ask similar questions about oriented
matroids not coming from hyperplane arrangements, and we may also ask for
combinatorial proofs. Horiuchi’s and Terao’s works [HorTer03] and [Terao02]
seem relevant once again.

We end with an overview of algebras similar to X/J that have appeared in the
literature, making no claims of completeness. See also the last few paragraphs
of the Introduction of [Kirill16] for a history of these algebras.

• As mentioned above, in [Arnold71], Arnold introduced the noncommuta-
tive algebra A (n) with anticommuting generators ωi,j (for 1 ≤ i < j ≤ n)
and relations27

ωi,jωj,k + ωj,kωi,k + ωi,kωi,j = 0 (for 1 ≤ i < j < k ≤ n).

This was probably the first algebra of this kind to be defined. Note that the
relations can be rewritten in the form

ωi,jωj,k = −ωi,k
(
ωi,j −ωj,k

)
27Anticommutativity of the generators means that ωi,jωu,v = −ωu,vωi,j for all i < j and u < v,

and that ω2
i,j = 0 for all i < j.
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to reveal the similarity to the generators of J , but Arnold’s algebra does
not include the two “deforming” parameters α and β of our X/J . Arnold
showed that A (n) is isomorphic to the (integer) cohomology ring of the
space {(z1, z2, . . . , zn) ∈ Cn | z1, z2, . . . , zn are distinct}, and found a k-linear
basis of A (n). (Note that he has been working with k = Z, but this clearly
yields the same results for all k.)

This algebra A (n) has later been generalized to the Orlik-Solomon algebra
of an arbitrary hyperplane arrangement, and more generally of an arbi-
trary matroid (see, e.g., [Yuzvin01] for an exposition of the arrangement
case); the algebra A (n) is recovered by taking the braid arrangement.

• In [VarGel87], Gelfand and Varchenko have introduced a commutative
counterpart of the Orlik-Solomon algebra of a hyperplane arrangement S.
This algebra P is generated by the constant function 1 and the Heaviside
functions of the hyperplanes in the arrangement. If S is the braid arrange-
ment, then this algebra P is isomorphic to the commutative algebra P (n)
with generators xi,j (for 1 ≤ i < j ≤ n) and relations

x2
i,j = xi,j (for 1 ≤ i < j ≤ n), and

xi,jxj,k (xi,k − 1)−
(
xi,j − 1

) (
xj,k − 1

)
xi,k = 0 (for 1 ≤ i < j < k ≤ n).

(Actually, Gelfand and Varchenko require many more relations, correspond-
ing to all linear dependencies between the linear functions that determine
the hyperplanes of S; our relation xi,jxj,k (xi,k − 1)−

(
xi,j − 1

) (
xj,k − 1

)
xi,k =

0 corresponds to the linear dependency fi,j + f j,k − fi,k = 0 between the
linear functions fi,j = xi − xj, f j,k = xj − xk and fi,k = xi − xk. We are
using the nontrivial fact that the above relations suffice.) The relation
xi,jxj,k (xi,k − 1)−

(
xi,j − 1

) (
xj,k − 1

)
xi,k = 0 rewrites as

xi,jxj,k = xi,k
(
xi,j + xj,k − 1

)
,

which is exactly one of the generators of J when β = 1 and α = 0. How-
ever, the additional relations x2

i,j = xi,j make their algebra P (n) finite-
dimensional as a k-module (unlike our X/J ). Gelfand and Varchenko
find a basis of P (at least in the case when k = C), defined in terms of what
they call “open cycles” (and is nowadays known as broken circuits). If S is
the braid arrangement, and if an appropriate ordering of the hyperplanes
is used, then this basis becomes similar to our basis of forkless monomials
(Proposition 3.4), except that it only contains the squarefree forkless mono-
mials (as the x2

i,j = xi,j relations render all other monomials redundant).

This algebra P can be straightforwardly generalized to arbitrary oriented
matroids.

• The Gelfand-Varchenko algebra P (n) is filtered, and its associated graded
algebra is the commutative algebra Q (n) with generators xi,j (for 1 ≤ i <
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j ≤ n) and relations

x2
i,j = 0 (for 1 ≤ i < j ≤ n), and

xi,jxj,k = xi,k
(
xi,j + xj,k

)
(for 1 ≤ i < j < k ≤ n).

The latter relations are exactly the generators of J when β = 0 and α = 0.
This connection is explored, e.g., in Moseley’s [Mosele12] (although he
imposes a much larger set of relations); again, this k-algebra is a finite-
dimensional k-module with a “broken circuit” basis. The algebra Q (n)
also appears (as An) in Mathieu’s [Mathie95, §6].

Again, this generalizes to an arbitrary hyperplane arrangement, yield-
ing what is called its Artinian Orlik-Terao algebra (the algebra W (A) in
[OrlTer94]). But even the case of the type-A braid arrangement is still the
object of active research; see [EarRei18] (where Q (n) appears as Un) and
[Berget18, §8.2]28 (where Q (n) appears as SA⊥,−2 = Sym (K) /IA⊥,−2, if we
replace n− 1 by n) for recent studies of the Sn-action on Q (n).

• In [OrlTer94], Orlik and Terao assign an algebra K
[
α−1
A

]
to any hyperplane

arrangement A in a finite-dimensional K-vector space V, where K is any
field. Nowadays known as the (big) Orlik-Terao algebra, it is simply the
K-subalgebra of the ring of rational functions on V generated by the recip-
rocals of the linear forms whose kernels are the hyperplanes of A. When A
is the braid arrangement, this K-algebra is isomorphic to the commutative
K-algebra R (n) with generators xi,j (for 1 ≤ i < j ≤ n) and relations

xi,jxj,k = xi,k
(
xi,j + xj,k

)
(for 1 ≤ i < j < k ≤ n).

The relations here are exactly the generators of J when β = 0 and α = 0.
Unlike the previous algebras, this one is no longer finite-dimensional, thus
being the closest one so far to X/J . A basis of the (big) Orlik-Terao algebra
has been found by Proudfoot and Speyer in [ProSpe06].

• Kirillov, in [Kirill97, §4], introduces a noncommutative algebra Gn with
generators [i, j] (for 1 ≤ i < j ≤ n) and relations

[i, j] [j, k] = [j, k] [i, k] + [i, k] [i, j] (for 1 ≤ i < j < k ≤ n); (23)
[j, k] [i, j] = [i, k] [j, k] + [i, j] [i, k] (for 1 ≤ i < j < k ≤ n); (24)
[i, j] [k, l] = [k, l] [i, j] (for i < j and k < l with {i, j} ∩ {k, l} = ∅).

Note that the abelianization of this Gn is R (n). Kirillov states (without
proof) a basis of Gn in [Kirill97, Theorem 4.3]29, which (under abelianiza-
tion) transforms into the basis from our Proposition 3.4.

28Note that “n” should be replaced by “n− 1” in [Berget18, Lemma 8.2].
29Note that the “Z2 = {∅, [12]}” in [Kirill97, Theorem 4.3] is a typo, and should instead be

“Z2 =
{
∅, [12] , [12]2 , [13]3 , . . .

}
”.
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• In [Kirill97, Definition 10.5], Kirillov goes on to deform the algebra Gn,
replacing (23) and (24) by

[i, j] [j, k] = [j, k] [i, k] + [i, k] [i, j] + β [i, k] (for 1 ≤ i < j < k ≤ n);
[j, k] [i, j] = [i, k] [j, k] + [i, j] [i, k] + β [i, k] (for 1 ≤ i < j < k ≤ n),

where β ∈ k is fixed. He denotes this algebra by Ln,β, but leaves its prop-
erties to further study.

• The quasi-classical Yang-Baxter algebra B (An) is the noncommutative k-
algebra with generators xi,j (for 1 ≤ i < j ≤ n) and relations

xi,jxj,k = xi,kxi,j + xj,kxi,k + βxi,k (for 1 ≤ i < j < k ≤ n);

xi,jxk,l = xk,lxi,j (for i < j and k < l with {i, j} ∩ {k, l} = ∅).

Note that this is not the same as Ln,β, since the second relation of Ln,β is
missing here. This algebra B (An) was also introduced by Kirillov (accord-
ing to [Meszar09]).

• Mészáros, in [Meszar09], studies the abelianization of B (An); this is also
the abelianization of Ln,β. This is the k-algebra X/J for α = 0.

• In [Kirill16, Definition 5.1], Kirillov starts with two parameters α, β ∈ k and
defines the noncommutative k-algebra ÂCYBn (α, β), which has generators
xi,j (for 1 ≤ i < j ≤ n) and relations

xi,jxj,k = xi,kxi,j + xj,kxi,k + βxi,k + α (for 1 ≤ i < j < k ≤ n);

xi,jxk,l = xk,lxi,j (for i < j and k < l with {i, j} ∩ {k, l} = ∅).

This algebra deforms B (An); its abelianization is our X/J .

Question 4.7. Which of these algebras satisfy an analogue of Theorem 1.7?

4.4. Final questions

Finally, we pose two lateral but (in our view) equally interesting questions about
X/J .

The first question, suggested by a referee, concerns the geometric background
of Mészáros’s work. As mentioned in the Introduction, the algebra X/J gen-
eralizes Mészáros’s “subdivision algebra” S (An) from [Meszar09]. The latter
owes its name to a geometric interpretation of the relations xi,jxj,k = xi,kxi,j +
xi,kxj,k − xi,k that hold in X/J when β = −1 and α = 0. For example, if we
consider the standard basis (e1, e2, . . . , en) of Rn, then the cone

〈
ei − ej, ej − ek

〉
+

(where
〈
u1, u2, . . . , up

〉
+

means the cone spanned by p vectors u1, u2, . . . , up) is
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the union of the two cones
〈
ei − ek, ei − ej

〉
+

and
〈
ei − ek, ej − ek

〉
+

, while the in-
tersection of the latter two cones is 〈ei − ek〉+. Thus, the indicator functions of
these cones satisfy

1〈ei−ej,ej−ek〉+
= 1〈ei−ek,ei−ej〉+

+ 1〈ei−ek,ej−ek〉+
− 1〈ei−ek〉+

(with 1P denoting the indicator function of a polyhedron P), which is remi-
niscent of our relation xi,jxj,k = xi,kxi,j + xi,kxj,k − xi,k. As Mészáros showed in
[Meszar09], this similarity can be used in studying root polytopes.

The cones
〈
ei − ej, ej − ek

〉
+

,
〈
ei − ek, ei − ej

〉
+

,
〈
ei − ek, ej − ek

〉
+

and 〈ei − ek〉+
are examples of permutohedral cones, and there is a rich theory of relations be-
tween their characteristic functions; see [Early18a] and [Early18b].

Question 4.8. Can such a geometric interpretation be given for the relations
xi,jxj,k = xi,k

(
xi,j + xj,k + β

)
+ α in X/J for general α and β, or at least for

values other than β = −1 and α = 0 ?

The relation xi,jxj,k = xi,k
(
xi,j + xj,k − 1

)
in X/J for α = 0 and β = −1 also

is connected to MacMahon’s Partition Analysis; see [AnPaRi01, Fact 1.9] for an
equality that not only follows its structure, but also to some extent anticipates
our homomorphism A used above. Furthermore, MacMahon’s Ω≥ operator (see,
e.g., [AnPaRi01, Definition 1.1]) is rather similar to our linear map B, in that it
filters a Laurent series by removing all addends with negative exponents. This
connection, which I was alerted to by Richard Stanley, is yet to be explored.

The last question, entirely out of left field, asks for a connection to the notion
of Rota-Baxter algebras (see, e.g., [Guo09] for a survey):

Question 4.9. Is there anything to the superficial similarity [Grinbe17b] of the
relation xi,jxj,k = xi,k

(
xi,j + xj,k + β

)
with the axiom of a Rota-Baxter algebra?
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