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Abstract. Fix a commutative ring k, two elements β ∈ k and α ∈ k and a positive
integer n. Let X be the polynomial ring over k in the n (n− 1) /2 indeterminates xi,j
for all 1 ≤ i < j ≤ n. Consider the ideal J of X generated by all polynomials of the
form xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α for 1 ≤ i < j < k ≤ n. The quotient algebra X/J

(at least for a certain choice of k, β and α) has been introduced by Karola Mészáros
as a commutative analogue of Anatol Kirillov’s quasi-classical Yang-Baxter algebra. A
natural question is to find a combinatorial basis of this quotient algebra. One can de-
fine the pathless monomials, i.e., the monomials in X that have no divisors of the form
xi,jxj,k with 1 ≤ i < j < k ≤ n. The residue classes of these pathless monomials indeed
span the k-module X/J ; however, they turn out (in general) to be k-linearly depen-
dent. More combinatorially: Reducing a given monomial in X modulo the ideal J by
applying replacements of the form xi,jxj,k 7→ xi,k

(
xi,j + xj,k + β

)
− α always eventually

leads to a k-linear combination of pathless monomials, but the result may depend on
the choices made in the process.

More recently, the study of Grothendieck polynomials has led Laura Escobar and
Karola Mészáros to defining a k-algebra homomorphism D from X into the poly-
nomial ring k [t1, t2, . . . , tn−1] that sends each xi,j to ti. For a certain class of monomials
m (those corresponding to “noncrossing trees”), they have shown that whatever result
one gets by reducing m modulo J , the image of this result under D is independent on
the choices made in the reduction process. Mészáros has conjectured that this prop-
erty holds not only for this class of monomials, but for any polynomial p ∈ X . We
prove this result, in the following slightly stronger form: If p ∈ X , and if q ∈ X is a
k-linear combination of pathless monomials satisfying p ≡ q modJ , then D (q) does
not depend on q (as long as β, α and p are fixed).

We also find an actual basis of the k-module X/J , using what we call forkless mono-
mials.
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Introduction

We begin with an example that illustrates the main result of this work.2

Example 1. Let us play a solitaire game. Fix a positive integer n and two numbers β ∈ Q and
α ∈ Q, and let X be the ring Q

[
xi,j | 1 ≤ i < j ≤ n

]
of polynomials with rational coefficients

in the n (n− 1) /2 indeterminates xi,j with 1 ≤ i < j ≤ n. (For example, if n = 4, then
X = Q [x1,2, x1,3, x1,4, x2,3, x2,4, x3,4].)

Start with any polynomial p ∈ X . The allowed move is the following: Pick a monomial m that
appears in p and that is divisible by xi,jxj,k for some 1 ≤ i < j < k ≤ n. For example, x1,2x1,3x2,4
is such a monomial (if it appears in p and if n ≥ 4), because it is divisible by xi,jxj,k for (i, j, k) =
(1, 2, 4). Choose one triple (i, j, k) with 1 ≤ i < j < k ≤ n and xi,jxj,k | m (sometimes, there are
several choices). Now, replace this monomial m by

(
xi,k
(
xi,j + xj,k + β

)
+ α
)
m/
(
xi,jxj,k

)
in p.

The game ends when no more moves are possible (i.e., no monomial m divisible by any xi,jxj,k
appears in the polynomial anymore).

It is easy to see that this game (a thinly veiled reduction procedure modulo an ideal of X )
always ends after finitely many moves. For instance, if we start with the polynomial x1,2x2,3x1,3,
then after just a single move we obtain the polynomial (x1,3 (x1,2 + x2,3 + β) + α) x1,3 = x1,2x2

1,3 +

x2
1,3x2,3 + αx1,3 + βx2

1,3, from which no further moves are possible, so the game ends here.
Unlike for many simpler games of this kind, the polynomial obtained at the end of the game

does depend on the choices made during the game. For example, if we start with the polynomial
x1,2x2,3x3,4 for β = 0 and α = 0, then we can end up with (at least) two different polynomials3

depending on which moves we make. However, as we will show in Theorem 1, if we apply the
substitution xi,j 7→ ti to the polynomial obtained at the end of the game (where t1, t2, . . . , tn−1
are new indeterminates), then the result of the substitution will not depend on any choices made
in the game.

Why would one play a game like this? The interest in the reduction rule(
xi,k
(
xi,j + xj,k + β

))
m/
(
xi,jxj,k

)
(this is a particular case of our above rule, when α = 0)

originates in Mészáros’s study [8] of the abelianization of Kirillov’s quasi-classical Yang-
Baxter algebra (see [6] for a recent survey of the latter and its many variants). To define
this abelianization, we let β be an indeterminate (unlike in Example 1, where it was an
element of Q). Furthermore, fix a positive integer n. The abelianization of the (n-th)
quasi-classical Yang-Baxter algebra is the commutative Q [β]-algebra S (An) with

generators xi,j for all 1 ≤ i < j ≤ n and

relations xi,jxj,k = xi,k
(
xi,j + xj,k + β

)
for all 1 ≤ i < j < k ≤ n.

2The notations used in this Introduction are meant to be provisional. In the rest of this paper, we shall
work with different notations (and in a more general setting), which will be introduced in Section 1.

3namely, x1,2x1,3x1,4 + x1,2x1,4x3,4 + x1,3x1,4x2,4 + x1,3x2,3x2,4 + x1,4x2,4x3,4 and x1,2x1,3x1,4 + x1,2x1,4x3,4 +
x1,3x1,4x2,3 + x1,4x2,3x2,4 + x1,4x2,4x3,4
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A natural question is to find an explicit basis of S (An) (as a Q-vector space, or, if
possible, as a Q [β]-module). One might try constructing such a basis using a reduction
algorithm (or “straightening law”) that takes any element of S (An) (written as any
polynomial in the generators xi,j) and rewrites it in a “normal form”. The most obvious
way one could try to construct such a reduction algorithm is by repeatedly rewriting
products of the form xi,jxj,k (with 1 ≤ i < j < k ≤ n) as xi,k

(
xi,j + xj,k + β

)
, until this

is no longer possible. This is precisely the game that we played in Example 1 (with the
only difference that β is now an indeterminate, not a number). Unfortunately, the result
of the game turns out to depend on the choices made while playing it; consequently,
the “normal form” it constructs is not literally a normal form, and instead of a basis of
S (An) we only obtain a spanning set.4

Nevertheless, the result of the game is not meaningless. The idea to substitute ti
for xi,j (in the result, not in the original polynomial!) seems to have appeared in work
of Postnikov, Stanley and Mészáros; some concrete formulas (for specific values of the
initial polynomial and specific values of β) appear in [10, Exercise A22] (resulting in
Catalan and Narayana numbers). Recent work on Grothendieck polynomials by Escobar
and Mészáros [4, §5] has again brought up the notion of substituting ti for xi,j in the
polynomial obtained at the end of the game. This has led Mészáros to the conjecture
that, after this substitution, the resulting polynomial no longer depends on the choices
made during the game. She has proven this conjecture for a certain class of polynomials
(those corresponding to “noncrossing trees”).

The main purpose of this paper is to outline a proof of Mészáros’s conjecture in
the general case. We shall work in a more general situation. First, instead of the re-
lation xi,jxj,k = xi,k

(
xi,j + xj,k + β

)
, we shall consider the “deformed” relation xi,jxj,k =

xi,k
(
xi,j + xj,k + β

)
+ α; this idea again goes back to the work of Kirillov (see [6, Definition

5.1 (1)] for a noncommutative variant of the quotient ring X/J , which he calls the “as-
sociative quasi-classical Yang–Baxter algebra of weight (α, β)”). Second, we shall work
over an arbitrary commutative ring k instead of Q (and our parameters α and β will be
arbitrary elements of k). Rather than working in an algebra like S (An), we shall work
in the polynomial ring X = k

[
xi,j | 1 ≤ i < j ≤ n

]
, and study the ideal J generated by

all elements of the form xi,jxj,k − xi,k
(
xi,j + xj,k + β

)
− α for 1 ≤ i < j < k ≤ n. Instead

of focussing on the reduction algorithm itself, we shall generally study polynomials in
X that are congruent to each other modulo the ideal J . A monomial in X will be called
“pathless” if it is not divisible by any monomial of the form xi,jxj,k with i < j < k. A
polynomial in X will be called “pathless” if all monomials appearing in it are pathless.
Thus, “pathless” polynomials are precisely the polynomials p ∈ X for which the game
in Example 1 would end immediately if started at p. Our main result (Theorem 1) will
show that if p ∈ X is a polynomial, and if q ∈ X is a pathless polynomial congruent to

4Surprisingly, a similar reduction algorithm does work for the (non-abelianized) quasi-classical Yang-
Baxter algebra itself. This is one of Mészáros’s results [8, Theorem 30].
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p modulo J , then the image of q under the substitution xi,j 7→ ti does not depend on
q (but only on α, β and p). This, in particular, yields Mészáros’s conjecture; but it is a
stronger result, because it does not require that q is obtained from p by playing the game
from Example 1 (all we ask for is that q be pathless and congruent to p modulo J ), and
of course because of the more general setting.

After the proof of Theorem 1, we shall also outline an answer (Proposition 9) to the
(easier) question of finding a basis for the quotient ring X/J . This basis will be obtained
using an explicitly given Gröbner basis of the ideal J .

A particular case of the conjecture stated in Example 1 (where α = 0 and where the
game starts with a monomial β) has recently been obtained independently by Mészáros
and St. Dizier [7] using combinatorial and geometric methods.

This extended abstract is an abbreviated version of [5].

1 Definitions and results

Let us now start from scratch, and set the stage for the main result.

Definition 1. Let N = {0, 1, 2, . . .}. Let [m] be the set {1, 2, . . . , m} for each m ∈N. Let k be
a commutative ring. (We fix k throughout this paper.) Fix two elements β and α of k. The word
“monomial” shall always mean an element of a free abelian monoid (written multiplicatively).
For example, the monomials in two indeterminates x and y are the xiyj with (i, j) ∈ N2. Thus,
monomials do not include coefficients.

Fix a positive integer n. Let X = k
[

xi,j | (i, j) ∈ [n]2 satisfying i < j
]

be the polynomial
ring in the n (n− 1) /2 indeterminates xi,j over k. Let M be the set of all monomials in these
indeterminates xi,j.

Definition 2. A monomial m ∈M is said to be pathless if there exists no triple (i, j, k) ∈ [n]3

satisfying i < j < k and xi,jxj,k | m (as monomials). A polynomial p ∈ X is said to be pathless
if it is a k-linear combination of pathless monomials.

Definition 3. Let J be the ideal of X generated by all elements of the form
xi,jxj,k − xi,k

(
xi,j + xj,k + β

)
− α for (i, j, k) ∈ [n]3 satisfying i < j < k.

The following fact follows by a straightforward induction:

Proposition 1. Let p ∈ X . There exists a pathless polynomial q ∈ X such that p ≡ q modJ .

Proposition 1 corresponds to the fact that the game in Example 1 always ends. Since
the polynomial left behind by the game is path-dependent, the q in Proposition 1 is not
unique (in general).

The ideal J is relevant to the so-called subdivision algebra of root polytopes (denoted
by S (β) in [4, §5] and S (An) in [8, §1]). Namely, this latter algebra is defined as the
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quotient X/J for a certain choice of k, β and α. This algebra was first introduced by
Mészáros in [8] as the abelianization of Kirillov’s quasi-classical Yang-Baxter algebra.

In [4, §5 and §7], Escobar and Mészáros study the result of substituting ti for each
variable xi,j in a polynomial f ∈ X . In our language, this leads to the following:

Definition 4. Let T ′ be the polynomial ring k [t1, t2, . . . , tn−1]. We define a k-algebra homo-
morphism D : X → T ′ by

D
(
xi,j
)
= ti for every (i, j) ∈ [n]2 satisfying i < j.

The goal of this work is to prove the following fact, which (in a less general setting)
was conjectured by Mészáros in a 2015 talk at MIT:

Theorem 1. Let p ∈ X . Consider any pathless polynomial q ∈ X such that p ≡ q modJ .
Then, D (q) does not depend on the choice of q (but merely on the choice of α, β and p).

It is not generally true that D (q) = D (p).

2 The proof

The proof of Theorem 1 proceeds in several steps. First, we shall define four k-algebras
Q, T ′ [[w]], T and T [[w]] (with T ′ being a subalgebra of T ) and three k-linear maps A,
B and E (with A and E being k-algebra homomorphisms) forming a diagram

X A //

D ��

Q B // T [[w]]

T ′
E
// T ′ [[w]]

� ?

OO

(where the vertical arrow is a canonical injection) that is not commutative. We shall
eventually show that: the homomorphism A annihilates the ideal J (Proposition 2); the
homomorphism E is injective (Proposition 3); and each pathless polynomial q satisfies
(E ◦ D) (q) = (B ◦ A) (q) (Corollary 1). These three facts will allow us to prove Theo-
rem 1. Indeed, the first and the third will imply that each pathless polynomial in J is
annihilated by E ◦ D; because of the second, this will show that it is also annihilated by
D; and from here, Theorem 1 will easily follow.

2.1 Laurent series, and the maps A, B and E

We begin by recalling the definition of (formal) Laurent series in n indeterminates
r1, r2, . . . , rn. We refer to [5] for the full details of the definition.
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Definition 5. Consider n distinct symbols r1, r2, . . . , rn.
(a) A bi-infinite power series means a formal expression of the form

∑
(a1,a2,...,an)∈Zn

λa1,a2,...,anra1
1 ra2

2 · · · r
an
n ,

where λa1,a2,...,an is an element of k for each (a1, a2, . . . , an) ∈ Zn.
(b) A bi-infinite power series f = ∑

(a1,a2,...,an)∈Zn
λa1,a2,...,anra1

1 ra2
2 · · · r

an
n is said to be a Laurent

series if there exists a d ∈ Z such that all (a1, a2, . . . , an) ∈ Zn \ {d, d + 1, d + 2, . . .}n satisfy
λa1,a2,...,an = 0 (that is, no indeterminate appears with exponent < d in the series). If this d can
be taken to be 0, then f is said to be a formal power series.

(c) The Laurent series form a k-algebra (where multiplication is defined in the same way as,
e.g., for usual power series: by expanding and combining terms). Denote this k-algebra by Q.
The formal power series form a k-subalgebra k [[r1, r2, . . . , rn]] of Q.

The bi-infinite power series do not form a k-algebra, since multiplying two bi-infinite
power series would (in general) result in an infinite sum in front of each monomial.

Definition 6. A Laurent monomial means a formal expression of the form ra1
1 ra2

2 · · · r
an
n with

(a1, a2, . . . , an) ∈ Zn.
For each i ∈ [n], we define a Laurent monomial qi by qi = riri+1 · · · rn.
Notice that qi/qj = riri+1 · · · rj−1 whenever 1 ≤ i ≤ j ≤ n. Thus, for any i ∈ [n] and

j ∈ [n] satisfying i < j, the difference 1− qi/qj = 1− riri+1 · · · rj−1 is invertible in Q (since it
is a formal power series in k [[r1, r2, . . . , rn]] having constant term 1).

Definition 7. Define a k-algebra homomorphism A : X → Q by

A
(
xi,j
)
= −

qi + β + α/qj

1− qi/qj
for all (i, j) ∈ [n]2 satisfying i < j.

This is well-defined, since all denominators appearing here are invertible in Q.

Proposition 2. We have A (J ) = 0.

This can be proven by straightforward computations.

Definition 8. (a) Let T be the topological k-algebra k [[t1, t2, . . . , tn]]. This is the ring of formal
power series in the n indeterminates t1, t2, . . . , tn over k (equipped with the usual topology).

(b) We shall regard the canonical injections

T ′ = k [t1, t2, . . . , tn−1] ↪→ k [t1, t2, . . . , tn] ↪→ k [[t1, t2, . . . , tn]] = T

as inclusions. Thus, T ′ becomes a k-subalgebra of T . Hence, D : X → T ′ becomes a k-algebra
homomorphism X → T .
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(c) We consider the k-algebras T [[w]] and T ′ [[w]] (consisting of formal power series in a
new indeterminate w over T and over T ′, respectively). Thus, T [[w]] can be regarded as the
ring of formal power series in the n+ 1 indeterminates t1, t2, . . . , tn, w over k. We endow T [[w]]
with the topology transported from the latter ring.

Definition 9. We define a continuous k-linear map B : Q → T [[w]] by setting

B
(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏

i∈[n];
ai>0

tai
i

)(
∏

i∈[n];
ai<0

w−ai

)
for each (a1, a2, . . . , an) ∈ Zn. (2.1)

This map B is well-defined, because each Laurent monomial (in Q) can be written
uniquely in the form qa1

1 qa2
2 · · · q

an
n with (a1, a2, . . . , an) ∈ Zn, and because any given

monomial in t1, t2, . . . , tn, w appears on the right hand side of (2.1) for finitely many
(a1, a2, . . . , an) ∈ Zn only. Of course, B is (in general) not a k-algebra homomorphism.

Definition 10. We define a k-algebra homomorphism E : T ′ → T ′ [[w]] by

E (ti) = −
ti + β + αw

1− tiw
for each i ∈ [n− 1] .

This is well-defined, because for each i ∈ [n− 1], the power series 1− tiw is invertible in T ′ [[w]].

Proposition 3. The homomorphism E is injective.

Proof. Let F : T ′ [[w]] → T ′ be the T ′-algebra homomorphism that sends each formal
power series f ∈ T ′ [[w]] (regarded as a formal power series in the single indeterminate
w over T ′) to its constant term f (0) ∈ T ′. Let G : T ′ → T ′ be the k-algebra homomor-
phism that sends ti to −ti − β for each i ∈ [n− 1]. It is easy to check that G ◦ F ◦ E = id.
Hence, the map E has a left inverse, and thus is injective.

2.2 Pathless monomials and subsets S of [n− 1]

Next, we want to study the action of the compositions B ◦ A and E ◦ D on pathless
monomials. We need more notations:

Definition 11. Let S be a subset of [n− 1].
(a) Let PS be the set of all pairs (i, j) ∈ S× ([n] \ S) satisfying i < j.
(b) A monomial m ∈M is said to be S-friendly if it is a product of some of the indeterminates

xi,j with (i, j) ∈ PS. In other words, a monomial m ∈ M is S-friendly if and only if every
indeterminate xi,j that appears in m satisfies i ∈ S and j /∈ S.

We let MS denote the set of all S-friendly monomials.
(c) We let XS denote the polynomial ring k

[
xi,j | (i, j) ∈ PS

]
. This is clearly a subring of

X . The k-module XS has a basis consisting of all S-friendly monomials m ∈M.
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(d) An n-tuple (a1, a2, . . . , an) ∈ Zn is said to be S-adequate if and only if it satisfies
(ai ≥ 0 for all i ∈ S) and (ai ≤ 0 for all i ∈ [n] \ S). We let QS denote the subset of Q consist-
ing of all infinite k-linear combinations of the Laurent monomials qa1

1 qa2
2 · · · q

an
n for S-adequate

n-tuples (a1, a2, . . . , an) ∈ Zn (as long as these combinations belong to Q). It is easy to see that
QS is a topological k-subalgebra of Q (since the entrywise sum of two S-adequate n-tuples is
S-adequate again).

(e) We let TS denote the topological k-algebra k [[ti | i ∈ S]]. This is a topological subalgebra
of T . Hence, the ring TS [[w]] (that is, the ring of formal power series in the (single) variable w
over TS) is a topological k-subalgebra of the similarly-defined ring T [[w]].

(f) We define a k-algebra homomorphism AS : XS → QS by

AS
(
xi,j
)
= −

qi + β + α/qj

1− qi/qj
for all (i, j) ∈ PS.

This is easily seen to be well-defined.
(g) We define a continuous k-linear map BS : QS → TS [[w]] by setting

BS
(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏
i∈S

tai
i

)(
∏

i∈[n]\S
w−ai

)
for each S-adequate (a1, a2, . . . , an) ∈ Zn.

This is well-defined according to Proposition 4 (b) below.
(h) We let T ′S denote the k-algebra k [ti | i ∈ S]. This is a k-subalgebra of T ′. Hence, the

ring T ′S [[w]] (that is, the ring of formal power series in the (single) variable w over T ′S ) is a
k-subalgebra of the similarly-defined ring T ′ [[w]].

(i) We define a k-algebra homomorphism DS : XS → T ′S by

DS
(
xi,j
)
= ti for all (i, j) ∈ PS.

This is well-defined, since each (i, j) ∈ PS satisfies i ∈ S.
(j) We define a k-algebra homomorphism ES : T ′S → T ′S [[w]] by

ES (ti) = −
ti + β + αw

1− tiw
for each i ∈ S.

This is well-defined (by the universal property of the polynomial ring T ′S ), because for each i ∈ S,
the power series 1− tiw is invertible in T ′S [[w]] (indeed, its constant term is 1).

The following propositions are easy to verify:

Proposition 4. Let S be a subset of [n− 1].
(a) We have

B
(
qa1

1 qa2
2 · · · q

an
n
)
=

(
∏
i∈S

tai
i

)(
∏

i∈[n]\S
w−ai

)
(2.2)
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for each S-adequate n-tuple (a1, a2, . . . , an) ∈ Zn.
(b) The map BS (defined in Definition 11 (g)) is well-defined.

Proposition 5. Let S be a subset of [n− 1]. Then, the diagrams

XS_�

��

AS // QS_�

��

BS // TS [[w]]
_�

��

X
A
// Q

B
// T [[w]]

(2.3)

and
XS_�

��

DS // T ′S_�

��

ES // T ′S [[w]]
_�

��

X
D
// T ′

E
// T ′ [[w]]

(2.4)

(where the vertical arrows are the obvious inclusion maps) are commutative.

Proposition 6. Let S be a subset of [n− 1]. Then, BS : QS → TS [[w]] is a continuous k-algebra
homomorphism.

Proposition 7. Let S be a subset of [n− 1]. Let (i, j) ∈ PS. Then,

(ES ◦ DS)
(
xi,j
)
= (BS ◦ AS)

(
xi,j
)

.

Proposition 8. Let m ∈M be a pathless monomial.
(a) There exists a subset S of [n− 1] such that m is S-friendly.
(b) Let S be such a subset. Then, m ∈ XS and (E ◦ D) (m) = (BS ◦ AS) (m).

Proof of Proposition 8. (a) Write m in the form m = ∏(i,j)∈[n]2;
i<j

x
ai,j
i,j . For each i ∈ [n− 1], de-

fine a bi ∈N by bi = ∑n
j=i+1 ai,j. Define a subset S of [n− 1] by S = {i ∈ [n− 1] | bi > 0}.

An easy argument (using the pathlessness of m) then confirms that m is S-friendly. This
proves Proposition 8 (a).

(b) We know that m ∈ XS (since m is S-friendly). Now, we shall show that (E ◦ D) |XS=
BS ◦ AS (if we regard BS ◦ AS as a map to T [[w]] and regard E ◦ D as a map to T [[w]]).
It is clearly enough to prove this on the generating family

(
xi,j
)
(i,j)∈PS

of the k-algebra
XS (since all of AS, BS, D, E are k-algebra homomorphisms). In other words, it is enough
to prove that

(
(E ◦ D) |XS

) (
xi,j
)
= (BS ◦ AS)

(
xi,j
)

for each (i, j) ∈ PS. So let us fix
some (i, j) ∈ PS. Proposition 5 shows that the diagram (2.4) is commutative. Thus,
(E ◦ D) |XS= ES ◦ DS (provided that we regard ES ◦ DS as a map to T ′ [[w]]), and thus(

(E ◦ D) |XS

) (
xi,j
)
= (ES ◦ DS)

(
xi,j
)
= (BS ◦ AS)

(
xi,j
)

(by Proposition 7). This completes our proof of (E ◦ D) |XS= BS ◦ AS. Hence,
(E ◦ D) (m) = (BS ◦ AS) (m) (since m ∈ XS). This proves Proposition 8 (b).
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Corollary 1. Let q ∈ X be pathless. Then, (E ◦ D) (q) = (B ◦ A) (q).

Proof. WLOG assume that q is a pathless monomial m (by linearity). Proposition 8 (a)
shows that there exists a subset S of [n− 1] such that this m is S-friendly. Consider this
S. Proposition 8 (b) yields m ∈ XS and (E ◦ D) (m) = (BS ◦ AS) (m). But the commuta-
tivity of the diagram (2.3) shows that (BS ◦ AS) (m) = (B ◦ A) (m). Thus, (E ◦ D) (m) =
(BS ◦ AS) (m) = (B ◦ A) (m). Since q = m, this rewrites as (E ◦ D) (q) = (B ◦ A) (q).

2.3 Proof of Theorem 1

Lemma 1. Let p ∈ X be a pathless polynomial such that p ∈ J . Then, D (p) = 0.

Proof. We have A (J ) = 0 (by Proposition 2); thus, A (p) = 0 (since p ∈ J ). Hence,
B (A (p)) = B (0) = 0. But Corollary 1 (applied to q = p) yields (E ◦ D) (p) =
(B ◦ A) (p) = B (A (p)) = 0. Thus, E (D (p)) = (E ◦ D) (p) = 0. Since the k-linear
map E is injective (by Proposition 3), we thus conclude that D (p) = 0.

Proof of Theorem 1. We need to prove that if f and g are two pathless polynomials q ∈ X
such that p ≡ q modJ , then D ( f ) = D (g). So let f and g be two pathless polynomials
q ∈ X such that p ≡ q modJ . Thus, p ≡ f modJ and p ≡ g modJ . Hence, f ≡ p ≡
g modJ , so that f − g ∈ J . Also, the polynomial f − g ∈ X is pathless (since f and g
are pathless). Thus, Lemma 1 (applied to f − g instead of p) shows that D ( f − g) = 0.
Thus, 0 = D ( f − g) = D ( f )− D (g) (since D is a k-algebra homomorphism). In other
words, D ( f ) = D (g). This proves Theorem 1.

3 Forkless polynomials and a basis of X/J
We have thus answered one of the major questions about the ideal J ; but we have
begged perhaps the most obvious one: Can we find a basis of the k-module X/J ?
This turns out to be much simpler than the above; the key is to use a different strategy.
Instead of reducing polynomials to pathless polynomials, we shall reduce them to forkless
polynomials, defined as follows:

Definition 12. A monomial m ∈M is said to be forkless if there exists no triple (i, j, k) ∈ [n]3

satisfying i < j < k and xi,jxi,k | m (as monomials).
A polynomial p ∈ X is said to be forkless if it is a k-linear combination of forkless monomials.

Theorem 2. Let p ∈ X . There exists a unique forkless q ∈ X such that p ≡ q modJ .

Proposition 9. The projections of the forkless monomials m ∈ M onto the quotient ring X/J
form a basis of the k-module X/J .
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Theorem 2 and Proposition 9 are clearly equivalent. We prove them using the theory
of Gröbner bases (see, e.g., [1] for an introduction). While we give some details on the
proof in [5], in this abstract let us merely state the main step:

Proposition 10. Equip the set M of monomials with any term order (i.e., well-order that respects
the monoid structure of M) satisfying the following condition: For every (i, j, k) ∈ [n]3 satisfying
i < j < k, we have xi,k > xj,k and xi,j > xj,k.

Then, the set
{

xi,kxi,j − xi,jxj,k + xi,kxj,k + βxi,k + α | (i, j, k) ∈ [n]3 satisfying i < j < k
}

is a Gröbner basis of the ideal J of X (with respect to this order).

4 Further questions

Question 1. (a) Is J the kernel of the map A : X → Q from Definition 7?
(b) Consider the polynomial ring k [q̃1, q̃2, . . . , q̃n] in n indeterminates q̃1, q̃2, . . . , q̃n over k.

Let Qrat denote the localization of this polynomial ring at the multiplicative subset generated by
all differences of the form q̃i − q̃j (for 1 ≤ i < j ≤ n). Then, the morphism A : X → Q factors

through a k-algebra homomorphism Ã : X → Qrat which sends each xi,j to − q̃i+β+α/q̃j
1−q̃i/q̃j

=

− q̃i q̃j+βq̃j+α

q̃j−q̃i
∈ Qrat. Is J the kernel of this latter homomorphism Ã ?

Of course, if the answer to Question 1 (a) is positive, then so is the answer to Question
1 (b). This question is interesting partly because a positive answer to part (b) would
provide a realization of X/J as a subalgebra of a localized polynomial ring in (only) n
indeterminates. This subalgebra would probably not be the whole Qrat.

As a step towards Question 1 (b), we have found a basis of the k-module Qrat:

Proposition 11. In Qrat, consider the family of all elements of the form ∏n
i=1 gi, where each gi

has either the form 1/
(
q̃i − q̃j

)m for some j ∈ {i + 1, i + 2, . . . , n} and m > 0 or the form q̃k
i for

some k ∈N. This family is a basis of the k-module Qrat.

This family is similar to the forkless monomials in Proposition 9, but it is “larger”.
If β = 0 and α = 0, then the subdivision algebra X/J is a known construct: it

is the Orlik-Terao algebra [9] of the braid arrangement. We may thus regard X/J as a
deformation of a specific Orlik-Terao algebra, and ask for a generalization:

Question 2. (a) Can an arbitrary Orlik-Terao algebra be deformed by two parameters β and α,
generalizing our X/J ?

(b) Our basis of forkless monomials for X/J can be regarded as an “nbc basis” in the sense
of [2] (except that our monomials are not required to be squarefree). Indeed, if we totally order
the monomials xi,j in such a way that xi,j > xu,v whenever i < u, then the broken circuits of the
graphical matroid of Kn are precisely the sets of the form {{i, j} , {i, k}} for i < j < k; but these
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correspond to the precise monomials xi,jxi,k that a forkless monomial cannot be divisible by. Does
this extend to the arbitrary Orlik-Terao algebras?

(c) Does Theorem 1 extend to Orlik-Terao algebras?
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